subr_vmem.c revision 1.70 1 /* $NetBSD: subr_vmem.c,v 1.70 2012/01/30 17:35:18 para Exp $ */
2
3 /*-
4 * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * reference:
31 * - Magazines and Vmem: Extending the Slab Allocator
32 * to Many CPUs and Arbitrary Resources
33 * http://www.usenix.org/event/usenix01/bonwick.html
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.70 2012/01/30 17:35:18 para Exp $");
38
39 #if defined(_KERNEL)
40 #include "opt_ddb.h"
41 #define QCACHE
42 #endif /* defined(_KERNEL) */
43
44 #include <sys/param.h>
45 #include <sys/hash.h>
46 #include <sys/queue.h>
47 #include <sys/bitops.h>
48
49 #if defined(_KERNEL)
50 #include <sys/systm.h>
51 #include <sys/kernel.h> /* hz */
52 #include <sys/callout.h>
53 #include <sys/kmem.h>
54 #include <sys/pool.h>
55 #include <sys/vmem.h>
56 #include <sys/workqueue.h>
57 #include <sys/atomic.h>
58 #include <uvm/uvm.h>
59 #include <uvm/uvm_extern.h>
60 #include <uvm/uvm_km.h>
61 #include <uvm/uvm_page.h>
62 #include <uvm/uvm_pdaemon.h>
63 #else /* defined(_KERNEL) */
64 #include "../sys/vmem.h"
65 #endif /* defined(_KERNEL) */
66
67
68 #if defined(_KERNEL)
69 #include <sys/evcnt.h>
70 #define VMEM_EVCNT_DEFINE(name) \
71 struct evcnt vmem_evcnt_##name = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, \
72 "vmemev", #name); \
73 EVCNT_ATTACH_STATIC(vmem_evcnt_##name);
74 #define VMEM_EVCNT_INCR(ev) vmem_evcnt_##ev.ev_count++
75 #define VMEM_EVCNT_DECR(ev) vmem_evcnt_##ev.ev_count--
76
77 VMEM_EVCNT_DEFINE(bt_pages)
78 VMEM_EVCNT_DEFINE(bt_count)
79 VMEM_EVCNT_DEFINE(bt_inuse)
80
81 #define LOCK_DECL(name) \
82 kmutex_t name; char lockpad[COHERENCY_UNIT - sizeof(kmutex_t)]
83
84 #define CONDVAR_DECL(name) \
85 kcondvar_t name;
86
87 #else /* defined(_KERNEL) */
88 #include <stdio.h>
89 #include <errno.h>
90 #include <assert.h>
91 #include <stdlib.h>
92 #include <string.h>
93
94 #define VMEM_EVCNT_INCR(ev) /* nothing */
95 #define VMEM_EVCNT_DECR(ev) /* nothing */
96
97 #define UNITTEST
98 #define KASSERT(a) assert(a)
99 #define LOCK_DECL(name) /* nothing */
100 #define CONDVAR_DECL(name) /* nothing */
101 #define VMEM_CONDVAR_INIT(vm, wchan) /* nothing */
102 #define VMEM_CONDVAR_BROADCAST(vm) /* nothing */
103 #define mutex_init(a, b, c) /* nothing */
104 #define mutex_destroy(a) /* nothing */
105 #define mutex_enter(a) /* nothing */
106 #define mutex_tryenter(a) true
107 #define mutex_exit(a) /* nothing */
108 #define mutex_owned(a) /* nothing */
109 #define ASSERT_SLEEPABLE() /* nothing */
110 #define panic(...) printf(__VA_ARGS__); abort()
111 #endif /* defined(_KERNEL) */
112
113 struct vmem;
114 struct vmem_btag;
115
116 #if defined(VMEM_SANITY)
117 static void vmem_check(vmem_t *);
118 #else /* defined(VMEM_SANITY) */
119 #define vmem_check(vm) /* nothing */
120 #endif /* defined(VMEM_SANITY) */
121
122 #define VMEM_MAXORDER (sizeof(vmem_size_t) * CHAR_BIT)
123
124 #define VMEM_HASHSIZE_MIN 1 /* XXX */
125 #define VMEM_HASHSIZE_MAX 65536 /* XXX */
126 #define VMEM_HASHSIZE_INIT 1
127
128 #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
129
130 CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
131 LIST_HEAD(vmem_freelist, vmem_btag);
132 LIST_HEAD(vmem_hashlist, vmem_btag);
133
134 #if defined(QCACHE)
135 #define VMEM_QCACHE_IDX_MAX 32
136
137 #define QC_NAME_MAX 16
138
139 struct qcache {
140 pool_cache_t qc_cache;
141 vmem_t *qc_vmem;
142 char qc_name[QC_NAME_MAX];
143 };
144 typedef struct qcache qcache_t;
145 #define QC_POOL_TO_QCACHE(pool) ((qcache_t *)(pool->pr_qcache))
146 #endif /* defined(QCACHE) */
147
148 #define VMEM_NAME_MAX 16
149
150 /* vmem arena */
151 struct vmem {
152 CONDVAR_DECL(vm_cv);
153 LOCK_DECL(vm_lock);
154 vm_flag_t vm_flags;
155 vmem_import_t *vm_importfn;
156 vmem_release_t *vm_releasefn;
157 size_t vm_nfreetags;
158 LIST_HEAD(, vmem_btag) vm_freetags;
159 void *vm_arg;
160 struct vmem_seglist vm_seglist;
161 struct vmem_freelist vm_freelist[VMEM_MAXORDER];
162 size_t vm_hashsize;
163 size_t vm_nbusytag;
164 struct vmem_hashlist *vm_hashlist;
165 struct vmem_hashlist vm_hash0;
166 size_t vm_quantum_mask;
167 int vm_quantum_shift;
168 size_t vm_size;
169 size_t vm_inuse;
170 char vm_name[VMEM_NAME_MAX+1];
171 LIST_ENTRY(vmem) vm_alllist;
172
173 #if defined(QCACHE)
174 /* quantum cache */
175 size_t vm_qcache_max;
176 struct pool_allocator vm_qcache_allocator;
177 qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
178 qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
179 #endif /* defined(QCACHE) */
180 };
181
182 #define VMEM_LOCK(vm) mutex_enter(&vm->vm_lock)
183 #define VMEM_TRYLOCK(vm) mutex_tryenter(&vm->vm_lock)
184 #define VMEM_UNLOCK(vm) mutex_exit(&vm->vm_lock)
185 #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl)
186 #define VMEM_LOCK_DESTROY(vm) mutex_destroy(&vm->vm_lock)
187 #define VMEM_ASSERT_LOCKED(vm) KASSERT(mutex_owned(&vm->vm_lock))
188
189 #if defined(_KERNEL)
190 #define VMEM_CONDVAR_INIT(vm, wchan) cv_init(&vm->vm_cv, wchan)
191 #define VMEM_CONDVAR_DESTROY(vm) cv_destroy(&vm->vm_cv)
192 #define VMEM_CONDVAR_WAIT(vm) cv_wait(&vm->vm_cv, &vm->vm_lock)
193 #define VMEM_CONDVAR_BROADCAST(vm) cv_broadcast(&vm->vm_cv)
194 #endif /* defined(_KERNEL) */
195
196 /* boundary tag */
197 struct vmem_btag {
198 CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
199 union {
200 LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
201 LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
202 } bt_u;
203 #define bt_hashlist bt_u.u_hashlist
204 #define bt_freelist bt_u.u_freelist
205 vmem_addr_t bt_start;
206 vmem_size_t bt_size;
207 int bt_type;
208 };
209
210 #define BT_TYPE_SPAN 1
211 #define BT_TYPE_SPAN_STATIC 2
212 #define BT_TYPE_FREE 3
213 #define BT_TYPE_BUSY 4
214 #define BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
215
216 #define BT_END(bt) ((bt)->bt_start + (bt)->bt_size - 1)
217
218 typedef struct vmem_btag bt_t;
219
220 #if defined(_KERNEL)
221 static kmutex_t vmem_list_lock;
222 static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
223 #endif /* defined(_KERNEL) */
224
225 /* ---- misc */
226
227 #define VMEM_ALIGNUP(addr, align) \
228 (-(-(addr) & -(align)))
229
230 #define VMEM_CROSS_P(addr1, addr2, boundary) \
231 ((((addr1) ^ (addr2)) & -(boundary)) != 0)
232
233 #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
234 #define SIZE2ORDER(size) ((int)ilog2(size))
235
236 #if !defined(_KERNEL)
237 #define xmalloc(sz, flags) malloc(sz)
238 #define xfree(p, sz) free(p)
239 #define bt_alloc(vm, flags) malloc(sizeof(bt_t))
240 #define bt_free(vm, bt) free(bt)
241 #else /* defined(_KERNEL) */
242
243 #define xmalloc(sz, flags) \
244 kmem_alloc(sz, ((flags) & VM_SLEEP) ? KM_SLEEP : KM_NOSLEEP);
245 #define xfree(p, sz) kmem_free(p, sz);
246
247 #define BT_MINRESERVE 6
248 #define BT_MAXFREE 64
249 #define STATIC_VMEM_COUNT 5
250 #define STATIC_BT_COUNT 200
251 #define STATIC_QC_POOL_COUNT (VMEM_QCACHE_IDX_MAX + 1)
252
253 static struct vmem static_vmems[STATIC_VMEM_COUNT];
254 static int static_vmem_count = STATIC_VMEM_COUNT;
255
256 static struct vmem_btag static_bts[STATIC_BT_COUNT];
257 static int static_bt_count = STATIC_BT_COUNT;
258
259 static struct pool_cache static_qc_pools[STATIC_QC_POOL_COUNT];
260 static int static_qc_pool_count = STATIC_QC_POOL_COUNT;
261
262 vmem_t *kmem_va_meta_arena;
263 vmem_t *kmem_meta_arena;
264
265 static kmutex_t vmem_btag_lock;
266 static LIST_HEAD(, vmem_btag) vmem_btag_freelist;
267 static size_t vmem_btag_freelist_count = 0;
268 static size_t vmem_btag_count = STATIC_BT_COUNT;
269
270 /* ---- boundary tag */
271
272 #define BT_PER_PAGE (PAGE_SIZE / sizeof(bt_t))
273
274 static int bt_refill(vmem_t *vm, vm_flag_t flags);
275
276 static int
277 bt_refillglobal(vm_flag_t flags)
278 {
279 vmem_addr_t va;
280 bt_t *btp;
281 bt_t *bt;
282 int i;
283
284 mutex_enter(&vmem_btag_lock);
285 if (vmem_btag_freelist_count > (BT_MINRESERVE * 16)) {
286 mutex_exit(&vmem_btag_lock);
287 return 0;
288 }
289
290 if (vmem_alloc(kmem_meta_arena, PAGE_SIZE,
291 (flags & ~VM_FITMASK) | VM_INSTANTFIT | VM_POPULATING, &va) != 0) {
292 mutex_exit(&vmem_btag_lock);
293 return ENOMEM;
294 }
295 VMEM_EVCNT_INCR(bt_pages);
296
297 btp = (void *) va;
298 for (i = 0; i < (BT_PER_PAGE); i++) {
299 bt = btp;
300 memset(bt, 0, sizeof(*bt));
301 LIST_INSERT_HEAD(&vmem_btag_freelist, bt,
302 bt_freelist);
303 vmem_btag_freelist_count++;
304 vmem_btag_count++;
305 VMEM_EVCNT_INCR(bt_count);
306 btp++;
307 }
308 mutex_exit(&vmem_btag_lock);
309
310 bt_refill(kmem_arena, (flags & ~VM_FITMASK) | VM_INSTANTFIT);
311 bt_refill(kmem_va_meta_arena, (flags & ~VM_FITMASK) | VM_INSTANTFIT);
312 bt_refill(kmem_meta_arena, (flags & ~VM_FITMASK) | VM_INSTANTFIT);
313
314 return 0;
315 }
316
317 static int
318 bt_refill(vmem_t *vm, vm_flag_t flags)
319 {
320 bt_t *bt;
321
322 bt_refillglobal(flags);
323
324 VMEM_LOCK(vm);
325 mutex_enter(&vmem_btag_lock);
326 while (!LIST_EMPTY(&vmem_btag_freelist) &&
327 vm->vm_nfreetags < (BT_MINRESERVE * 2)) {
328 bt = LIST_FIRST(&vmem_btag_freelist);
329 LIST_REMOVE(bt, bt_freelist);
330 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
331 vm->vm_nfreetags++;
332 vmem_btag_freelist_count--;
333 }
334 mutex_exit(&vmem_btag_lock);
335
336 if (vm->vm_nfreetags == 0) {
337 VMEM_UNLOCK(vm);
338 return ENOMEM;
339 }
340 VMEM_UNLOCK(vm);
341
342 return 0;
343 }
344
345 static inline bt_t *
346 bt_alloc(vmem_t *vm, vm_flag_t flags)
347 {
348 bt_t *bt;
349 again:
350 VMEM_LOCK(vm);
351 if (vm->vm_nfreetags < BT_MINRESERVE &&
352 (flags & VM_POPULATING) == 0) {
353 VMEM_UNLOCK(vm);
354 if (bt_refill(vm, VM_NOSLEEP | VM_INSTANTFIT)) {
355 return NULL;
356 }
357 goto again;
358 }
359 bt = LIST_FIRST(&vm->vm_freetags);
360 LIST_REMOVE(bt, bt_freelist);
361 vm->vm_nfreetags--;
362 VMEM_UNLOCK(vm);
363 VMEM_EVCNT_INCR(bt_inuse);
364
365 return bt;
366 }
367
368 static inline void
369 bt_free(vmem_t *vm, bt_t *bt)
370 {
371
372 VMEM_LOCK(vm);
373 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
374 vm->vm_nfreetags++;
375 while (vm->vm_nfreetags > BT_MAXFREE) {
376 bt = LIST_FIRST(&vm->vm_freetags);
377 LIST_REMOVE(bt, bt_freelist);
378 vm->vm_nfreetags--;
379 mutex_enter(&vmem_btag_lock);
380 LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
381 vmem_btag_freelist_count++;
382 mutex_exit(&vmem_btag_lock);
383 }
384 VMEM_UNLOCK(vm);
385 VMEM_EVCNT_DECR(bt_inuse);
386 }
387
388 #endif /* defined(_KERNEL) */
389
390 /*
391 * freelist[0] ... [1, 1]
392 * freelist[1] ... [2, 3]
393 * freelist[2] ... [4, 7]
394 * freelist[3] ... [8, 15]
395 * :
396 * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
397 * :
398 */
399
400 static struct vmem_freelist *
401 bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
402 {
403 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
404 const int idx = SIZE2ORDER(qsize);
405
406 KASSERT(size != 0 && qsize != 0);
407 KASSERT((size & vm->vm_quantum_mask) == 0);
408 KASSERT(idx >= 0);
409 KASSERT(idx < VMEM_MAXORDER);
410
411 return &vm->vm_freelist[idx];
412 }
413
414 /*
415 * bt_freehead_toalloc: return the freelist for the given size and allocation
416 * strategy.
417 *
418 * for VM_INSTANTFIT, return the list in which any blocks are large enough
419 * for the requested size. otherwise, return the list which can have blocks
420 * large enough for the requested size.
421 */
422
423 static struct vmem_freelist *
424 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
425 {
426 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
427 int idx = SIZE2ORDER(qsize);
428
429 KASSERT(size != 0 && qsize != 0);
430 KASSERT((size & vm->vm_quantum_mask) == 0);
431
432 if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
433 idx++;
434 /* check too large request? */
435 }
436 KASSERT(idx >= 0);
437 KASSERT(idx < VMEM_MAXORDER);
438
439 return &vm->vm_freelist[idx];
440 }
441
442 /* ---- boundary tag hash */
443
444 static struct vmem_hashlist *
445 bt_hashhead(vmem_t *vm, vmem_addr_t addr)
446 {
447 struct vmem_hashlist *list;
448 unsigned int hash;
449
450 hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
451 list = &vm->vm_hashlist[hash % vm->vm_hashsize];
452
453 return list;
454 }
455
456 static bt_t *
457 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
458 {
459 struct vmem_hashlist *list;
460 bt_t *bt;
461
462 list = bt_hashhead(vm, addr);
463 LIST_FOREACH(bt, list, bt_hashlist) {
464 if (bt->bt_start == addr) {
465 break;
466 }
467 }
468
469 return bt;
470 }
471
472 static void
473 bt_rembusy(vmem_t *vm, bt_t *bt)
474 {
475
476 KASSERT(vm->vm_nbusytag > 0);
477 vm->vm_nbusytag--;
478 LIST_REMOVE(bt, bt_hashlist);
479 }
480
481 static void
482 bt_insbusy(vmem_t *vm, bt_t *bt)
483 {
484 struct vmem_hashlist *list;
485
486 KASSERT(bt->bt_type == BT_TYPE_BUSY);
487
488 list = bt_hashhead(vm, bt->bt_start);
489 LIST_INSERT_HEAD(list, bt, bt_hashlist);
490 vm->vm_nbusytag++;
491 }
492
493 /* ---- boundary tag list */
494
495 static void
496 bt_remseg(vmem_t *vm, bt_t *bt)
497 {
498
499 CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
500 }
501
502 static void
503 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
504 {
505
506 CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
507 }
508
509 static void
510 bt_insseg_tail(vmem_t *vm, bt_t *bt)
511 {
512
513 CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
514 }
515
516 static void
517 bt_remfree(vmem_t *vm, bt_t *bt)
518 {
519
520 KASSERT(bt->bt_type == BT_TYPE_FREE);
521
522 LIST_REMOVE(bt, bt_freelist);
523 }
524
525 static void
526 bt_insfree(vmem_t *vm, bt_t *bt)
527 {
528 struct vmem_freelist *list;
529
530 list = bt_freehead_tofree(vm, bt->bt_size);
531 LIST_INSERT_HEAD(list, bt, bt_freelist);
532 }
533
534 /* ---- vmem internal functions */
535
536 #if defined(QCACHE)
537 static inline vm_flag_t
538 prf_to_vmf(int prflags)
539 {
540 vm_flag_t vmflags;
541
542 KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
543 if ((prflags & PR_WAITOK) != 0) {
544 vmflags = VM_SLEEP;
545 } else {
546 vmflags = VM_NOSLEEP;
547 }
548 return vmflags;
549 }
550
551 static inline int
552 vmf_to_prf(vm_flag_t vmflags)
553 {
554 int prflags;
555
556 if ((vmflags & VM_SLEEP) != 0) {
557 prflags = PR_WAITOK;
558 } else {
559 prflags = PR_NOWAIT;
560 }
561 return prflags;
562 }
563
564 static size_t
565 qc_poolpage_size(size_t qcache_max)
566 {
567 int i;
568
569 for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
570 /* nothing */
571 }
572 return ORDER2SIZE(i);
573 }
574
575 static void *
576 qc_poolpage_alloc(struct pool *pool, int prflags)
577 {
578 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
579 vmem_t *vm = qc->qc_vmem;
580 vmem_addr_t addr;
581
582 if (vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
583 prf_to_vmf(prflags) | VM_INSTANTFIT, &addr) != 0)
584 return NULL;
585 return (void *)addr;
586 }
587
588 static void
589 qc_poolpage_free(struct pool *pool, void *addr)
590 {
591 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
592 vmem_t *vm = qc->qc_vmem;
593
594 vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
595 }
596
597 static void
598 qc_init(vmem_t *vm, size_t qcache_max, int ipl)
599 {
600 qcache_t *prevqc;
601 struct pool_allocator *pa;
602 int qcache_idx_max;
603 int i;
604
605 KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
606 if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
607 qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
608 }
609 vm->vm_qcache_max = qcache_max;
610 pa = &vm->vm_qcache_allocator;
611 memset(pa, 0, sizeof(*pa));
612 pa->pa_alloc = qc_poolpage_alloc;
613 pa->pa_free = qc_poolpage_free;
614 pa->pa_pagesz = qc_poolpage_size(qcache_max);
615
616 qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
617 prevqc = NULL;
618 for (i = qcache_idx_max; i > 0; i--) {
619 qcache_t *qc = &vm->vm_qcache_store[i - 1];
620 size_t size = i << vm->vm_quantum_shift;
621 pool_cache_t pc;
622
623 qc->qc_vmem = vm;
624 snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
625 vm->vm_name, size);
626
627 if (vm->vm_flags & VM_BOOTSTRAP) {
628 KASSERT(static_qc_pool_count > 0);
629 pc = &static_qc_pools[--static_qc_pool_count];
630 pool_cache_bootstrap(pc, size,
631 ORDER2SIZE(vm->vm_quantum_shift), 0,
632 PR_NOALIGN | PR_NOTOUCH | PR_RECURSIVE /* XXX */,
633 qc->qc_name, pa, ipl, NULL, NULL, NULL);
634 } else {
635 pc = pool_cache_init(size,
636 ORDER2SIZE(vm->vm_quantum_shift), 0,
637 PR_NOALIGN | PR_NOTOUCH /* XXX */,
638 qc->qc_name, pa, ipl, NULL, NULL, NULL);
639 }
640 qc->qc_cache = pc;
641 KASSERT(qc->qc_cache != NULL); /* XXX */
642 if (prevqc != NULL &&
643 qc->qc_cache->pc_pool.pr_itemsperpage ==
644 prevqc->qc_cache->pc_pool.pr_itemsperpage) {
645 if (vm->vm_flags & VM_BOOTSTRAP) {
646 pool_cache_bootstrap_destroy(pc);
647 //static_qc_pool_count++;
648 } else {
649 pool_cache_destroy(qc->qc_cache);
650 }
651 vm->vm_qcache[i - 1] = prevqc;
652 continue;
653 }
654 qc->qc_cache->pc_pool.pr_qcache = qc;
655 vm->vm_qcache[i - 1] = qc;
656 prevqc = qc;
657 }
658 }
659
660 static void
661 qc_destroy(vmem_t *vm)
662 {
663 const qcache_t *prevqc;
664 int i;
665 int qcache_idx_max;
666
667 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
668 prevqc = NULL;
669 for (i = 0; i < qcache_idx_max; i++) {
670 qcache_t *qc = vm->vm_qcache[i];
671
672 if (prevqc == qc) {
673 continue;
674 }
675 if (vm->vm_flags & VM_BOOTSTRAP) {
676 pool_cache_bootstrap_destroy(qc->qc_cache);
677 } else {
678 pool_cache_destroy(qc->qc_cache);
679 }
680 prevqc = qc;
681 }
682 }
683 #endif
684
685 #if defined(_KERNEL)
686 void
687 vmem_bootstrap(void)
688 {
689
690 mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_VM);
691 mutex_init(&vmem_btag_lock, MUTEX_DEFAULT, IPL_VM);
692
693 while (static_bt_count-- > 0) {
694 bt_t *bt = &static_bts[static_bt_count];
695 LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
696 VMEM_EVCNT_INCR(bt_count);
697 vmem_btag_freelist_count++;
698 }
699 }
700
701 void
702 vmem_init(vmem_t *vm)
703 {
704
705 kmem_va_meta_arena = vmem_create("vmem-va", 0, 0, PAGE_SIZE,
706 vmem_alloc, vmem_free, vm,
707 0, VM_NOSLEEP | VM_BOOTSTRAP | VM_LARGEIMPORT,
708 IPL_VM);
709
710 kmem_meta_arena = vmem_create("vmem-meta", 0, 0, PAGE_SIZE,
711 uvm_km_kmem_alloc, uvm_km_kmem_free, kmem_va_meta_arena,
712 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
713 }
714 #endif /* defined(_KERNEL) */
715
716 static int
717 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
718 int spanbttype)
719 {
720 bt_t *btspan;
721 bt_t *btfree;
722
723 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
724 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
725 KASSERT(spanbttype == BT_TYPE_SPAN ||
726 spanbttype == BT_TYPE_SPAN_STATIC);
727
728 btspan = bt_alloc(vm, flags);
729 if (btspan == NULL) {
730 return ENOMEM;
731 }
732 btfree = bt_alloc(vm, flags);
733 if (btfree == NULL) {
734 bt_free(vm, btspan);
735 return ENOMEM;
736 }
737
738 btspan->bt_type = spanbttype;
739 btspan->bt_start = addr;
740 btspan->bt_size = size;
741
742 btfree->bt_type = BT_TYPE_FREE;
743 btfree->bt_start = addr;
744 btfree->bt_size = size;
745
746 VMEM_LOCK(vm);
747 bt_insseg_tail(vm, btspan);
748 bt_insseg(vm, btfree, btspan);
749 bt_insfree(vm, btfree);
750 vm->vm_size += size;
751 VMEM_UNLOCK(vm);
752
753 return 0;
754 }
755
756 static void
757 vmem_destroy1(vmem_t *vm)
758 {
759
760 #if defined(QCACHE)
761 qc_destroy(vm);
762 #endif /* defined(QCACHE) */
763 if (vm->vm_hashlist != NULL) {
764 int i;
765
766 for (i = 0; i < vm->vm_hashsize; i++) {
767 bt_t *bt;
768
769 while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
770 KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
771 bt_free(vm, bt);
772 }
773 }
774 if (vm->vm_hashlist != &vm->vm_hash0) {
775 xfree(vm->vm_hashlist,
776 sizeof(struct vmem_hashlist *) * vm->vm_hashsize);
777 }
778 }
779
780 while (vm->vm_nfreetags > 0) {
781 bt_t *bt = LIST_FIRST(&vm->vm_freetags);
782 LIST_REMOVE(bt, bt_freelist);
783 vm->vm_nfreetags--;
784 mutex_enter(&vmem_btag_lock);
785 #if defined (_KERNEL)
786 LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
787 vmem_btag_freelist_count++;
788 #endif /* defined(_KERNEL) */
789 mutex_exit(&vmem_btag_lock);
790 }
791
792 VMEM_LOCK_DESTROY(vm);
793 xfree(vm, sizeof(*vm));
794 }
795
796 static int
797 vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
798 {
799 vmem_addr_t addr;
800 int rc;
801
802 if (vm->vm_importfn == NULL) {
803 return EINVAL;
804 }
805
806 if (vm->vm_flags & VM_LARGEIMPORT) {
807 size *= 32;
808 }
809
810 if (vm->vm_flags & VM_XIMPORT) {
811 rc = ((vmem_ximport_t *)vm->vm_importfn)(vm->vm_arg, size,
812 &size, flags, &addr);
813 } else {
814 rc = (vm->vm_importfn)(vm->vm_arg, size, flags, &addr);
815 }
816 if (rc) {
817 return ENOMEM;
818 }
819
820 if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) != 0) {
821 (*vm->vm_releasefn)(vm->vm_arg, addr, size);
822 return ENOMEM;
823 }
824
825 return 0;
826 }
827
828 static int
829 vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
830 {
831 bt_t *bt;
832 int i;
833 struct vmem_hashlist *newhashlist;
834 struct vmem_hashlist *oldhashlist;
835 size_t oldhashsize;
836
837 KASSERT(newhashsize > 0);
838
839 newhashlist =
840 xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
841 if (newhashlist == NULL) {
842 return ENOMEM;
843 }
844 for (i = 0; i < newhashsize; i++) {
845 LIST_INIT(&newhashlist[i]);
846 }
847
848 if (!VMEM_TRYLOCK(vm)) {
849 xfree(newhashlist,
850 sizeof(struct vmem_hashlist *) * newhashsize);
851 return EBUSY;
852 }
853 oldhashlist = vm->vm_hashlist;
854 oldhashsize = vm->vm_hashsize;
855 vm->vm_hashlist = newhashlist;
856 vm->vm_hashsize = newhashsize;
857 if (oldhashlist == NULL) {
858 VMEM_UNLOCK(vm);
859 return 0;
860 }
861 for (i = 0; i < oldhashsize; i++) {
862 while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
863 bt_rembusy(vm, bt); /* XXX */
864 bt_insbusy(vm, bt);
865 }
866 }
867 VMEM_UNLOCK(vm);
868
869 if (oldhashlist != &vm->vm_hash0) {
870 xfree(oldhashlist,
871 sizeof(struct vmem_hashlist *) * oldhashsize);
872 }
873
874 return 0;
875 }
876
877 /*
878 * vmem_fit: check if a bt can satisfy the given restrictions.
879 *
880 * it's a caller's responsibility to ensure the region is big enough
881 * before calling us.
882 */
883
884 static int
885 vmem_fit(const bt_t const *bt, vmem_size_t size, vmem_size_t align,
886 vmem_size_t phase, vmem_size_t nocross,
887 vmem_addr_t minaddr, vmem_addr_t maxaddr, vmem_addr_t *addrp)
888 {
889 vmem_addr_t start;
890 vmem_addr_t end;
891
892 KASSERT(size > 0);
893 KASSERT(bt->bt_size >= size); /* caller's responsibility */
894
895 /*
896 * XXX assumption: vmem_addr_t and vmem_size_t are
897 * unsigned integer of the same size.
898 */
899
900 start = bt->bt_start;
901 if (start < minaddr) {
902 start = minaddr;
903 }
904 end = BT_END(bt);
905 if (end > maxaddr) {
906 end = maxaddr;
907 }
908 if (start > end) {
909 return ENOMEM;
910 }
911
912 start = VMEM_ALIGNUP(start - phase, align) + phase;
913 if (start < bt->bt_start) {
914 start += align;
915 }
916 if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
917 KASSERT(align < nocross);
918 start = VMEM_ALIGNUP(start - phase, nocross) + phase;
919 }
920 if (start <= end && end - start >= size - 1) {
921 KASSERT((start & (align - 1)) == phase);
922 KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
923 KASSERT(minaddr <= start);
924 KASSERT(maxaddr == 0 || start + size - 1 <= maxaddr);
925 KASSERT(bt->bt_start <= start);
926 KASSERT(BT_END(bt) - start >= size - 1);
927 *addrp = start;
928 return 0;
929 }
930 return ENOMEM;
931 }
932
933
934 /*
935 * vmem_create_internal: creates a vmem arena.
936 */
937
938 static vmem_t *
939 vmem_create_internal(const char *name, vmem_addr_t base, vmem_size_t size,
940 vmem_size_t quantum, vmem_import_t *importfn, vmem_release_t *releasefn,
941 void *arg, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
942 {
943 vmem_t *vm = NULL;
944 int i;
945
946 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
947 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
948 KASSERT(quantum > 0);
949
950 if (flags & VM_BOOTSTRAP) {
951 #if defined(_KERNEL)
952 KASSERT(static_vmem_count > 0);
953 vm = &static_vmems[--static_vmem_count];
954 #endif /* defined(_KERNEL) */
955 } else {
956 vm = xmalloc(sizeof(*vm), flags);
957 }
958 if (vm == NULL) {
959 return NULL;
960 }
961
962 VMEM_CONDVAR_INIT(vm, "vmem");
963 VMEM_LOCK_INIT(vm, ipl);
964 vm->vm_flags = flags;
965 vm->vm_nfreetags = 0;
966 LIST_INIT(&vm->vm_freetags);
967 strlcpy(vm->vm_name, name, sizeof(vm->vm_name));
968 vm->vm_quantum_mask = quantum - 1;
969 vm->vm_quantum_shift = SIZE2ORDER(quantum);
970 KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
971 vm->vm_importfn = importfn;
972 vm->vm_releasefn = releasefn;
973 vm->vm_arg = arg;
974 vm->vm_nbusytag = 0;
975 vm->vm_size = 0;
976 vm->vm_inuse = 0;
977 #if defined(QCACHE)
978 qc_init(vm, qcache_max, ipl);
979 #endif /* defined(QCACHE) */
980
981 CIRCLEQ_INIT(&vm->vm_seglist);
982 for (i = 0; i < VMEM_MAXORDER; i++) {
983 LIST_INIT(&vm->vm_freelist[i]);
984 }
985 vm->vm_hashlist = NULL;
986 if (flags & VM_BOOTSTRAP) {
987 vm->vm_hashsize = 1;
988 vm->vm_hashlist = &vm->vm_hash0;
989 } else if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
990 vmem_destroy1(vm);
991 return NULL;
992 }
993
994 if (size != 0) {
995 if (vmem_add(vm, base, size, flags) != 0) {
996 vmem_destroy1(vm);
997 return NULL;
998 }
999 }
1000
1001 #if defined(_KERNEL)
1002 if (flags & VM_BOOTSTRAP) {
1003 bt_refill(vm, VM_NOSLEEP);
1004 }
1005
1006 mutex_enter(&vmem_list_lock);
1007 LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
1008 mutex_exit(&vmem_list_lock);
1009 #endif /* defined(_KERNEL) */
1010
1011 return vm;
1012 }
1013
1014
1015 /* ---- vmem API */
1016
1017 /*
1018 * vmem_create: create an arena.
1019 *
1020 * => must not be called from interrupt context.
1021 */
1022
1023 vmem_t *
1024 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
1025 vmem_size_t quantum, vmem_import_t *importfn, vmem_release_t *releasefn,
1026 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
1027 {
1028
1029 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1030 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1031 KASSERT((flags & (VM_XIMPORT)) == 0);
1032
1033 return vmem_create_internal(name, base, size, quantum,
1034 importfn, releasefn, source, qcache_max, flags, ipl);
1035 }
1036
1037 /*
1038 * vmem_xcreate: create an arena takes alternative import func.
1039 *
1040 * => must not be called from interrupt context.
1041 */
1042
1043 vmem_t *
1044 vmem_xcreate(const char *name, vmem_addr_t base, vmem_size_t size,
1045 vmem_size_t quantum, vmem_ximport_t *importfn, vmem_release_t *releasefn,
1046 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
1047 {
1048
1049 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1050 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1051 KASSERT((flags & (VM_XIMPORT)) == 0);
1052
1053 return vmem_create_internal(name, base, size, quantum,
1054 (vmem_import_t *)importfn, releasefn, source,
1055 qcache_max, flags | VM_XIMPORT, ipl);
1056 }
1057
1058 void
1059 vmem_destroy(vmem_t *vm)
1060 {
1061
1062 #if defined(_KERNEL)
1063 mutex_enter(&vmem_list_lock);
1064 LIST_REMOVE(vm, vm_alllist);
1065 mutex_exit(&vmem_list_lock);
1066 #endif /* defined(_KERNEL) */
1067
1068 vmem_destroy1(vm);
1069 }
1070
1071 vmem_size_t
1072 vmem_roundup_size(vmem_t *vm, vmem_size_t size)
1073 {
1074
1075 return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
1076 }
1077
1078 /*
1079 * vmem_alloc:
1080 *
1081 * => caller must ensure appropriate spl,
1082 * if the arena can be accessed from interrupt context.
1083 */
1084
1085 int
1086 vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags, vmem_addr_t *addrp)
1087 {
1088 const vm_flag_t strat __unused = flags & VM_FITMASK;
1089
1090 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1091 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1092
1093 KASSERT(size > 0);
1094 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1095 if ((flags & VM_SLEEP) != 0) {
1096 ASSERT_SLEEPABLE();
1097 }
1098
1099 #if defined(QCACHE)
1100 if (size <= vm->vm_qcache_max) {
1101 void *p;
1102 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1103 qcache_t *qc = vm->vm_qcache[qidx - 1];
1104
1105 p = pool_cache_get(qc->qc_cache, vmf_to_prf(flags));
1106 if (addrp != NULL)
1107 *addrp = (vmem_addr_t)p;
1108 return (p == NULL) ? ENOMEM : 0;
1109 }
1110 #endif /* defined(QCACHE) */
1111
1112 return vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
1113 flags, addrp);
1114 }
1115
1116 int
1117 vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align,
1118 const vmem_size_t phase, const vmem_size_t nocross,
1119 const vmem_addr_t minaddr, const vmem_addr_t maxaddr, const vm_flag_t flags,
1120 vmem_addr_t *addrp)
1121 {
1122 struct vmem_freelist *list;
1123 struct vmem_freelist *first;
1124 struct vmem_freelist *end;
1125 bt_t *bt;
1126 bt_t *btnew;
1127 bt_t *btnew2;
1128 const vmem_size_t size = vmem_roundup_size(vm, size0);
1129 vm_flag_t strat = flags & VM_FITMASK;
1130 vmem_addr_t start;
1131 int rc;
1132
1133 KASSERT(size0 > 0);
1134 KASSERT(size > 0);
1135 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1136 if ((flags & VM_SLEEP) != 0) {
1137 ASSERT_SLEEPABLE();
1138 }
1139 KASSERT((align & vm->vm_quantum_mask) == 0);
1140 KASSERT((align & (align - 1)) == 0);
1141 KASSERT((phase & vm->vm_quantum_mask) == 0);
1142 KASSERT((nocross & vm->vm_quantum_mask) == 0);
1143 KASSERT((nocross & (nocross - 1)) == 0);
1144 KASSERT((align == 0 && phase == 0) || phase < align);
1145 KASSERT(nocross == 0 || nocross >= size);
1146 KASSERT(minaddr <= maxaddr);
1147 KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
1148
1149 if (align == 0) {
1150 align = vm->vm_quantum_mask + 1;
1151 }
1152
1153 /*
1154 * allocate boundary tags before acquiring the vmem lock.
1155 */
1156 btnew = bt_alloc(vm, flags);
1157 if (btnew == NULL) {
1158 return ENOMEM;
1159 }
1160 btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
1161 if (btnew2 == NULL) {
1162 bt_free(vm, btnew);
1163 return ENOMEM;
1164 }
1165
1166 /*
1167 * choose a free block from which we allocate.
1168 */
1169 retry_strat:
1170 first = bt_freehead_toalloc(vm, size, strat);
1171 end = &vm->vm_freelist[VMEM_MAXORDER];
1172 retry:
1173 bt = NULL;
1174 VMEM_LOCK(vm);
1175 vmem_check(vm);
1176 if (strat == VM_INSTANTFIT) {
1177 /*
1178 * just choose the first block which satisfies our restrictions.
1179 *
1180 * note that we don't need to check the size of the blocks
1181 * because any blocks found on these list should be larger than
1182 * the given size.
1183 */
1184 for (list = first; list < end; list++) {
1185 bt = LIST_FIRST(list);
1186 if (bt != NULL) {
1187 rc = vmem_fit(bt, size, align, phase,
1188 nocross, minaddr, maxaddr, &start);
1189 if (rc == 0) {
1190 goto gotit;
1191 }
1192 /*
1193 * don't bother to follow the bt_freelist link
1194 * here. the list can be very long and we are
1195 * told to run fast. blocks from the later free
1196 * lists are larger and have better chances to
1197 * satisfy our restrictions.
1198 */
1199 }
1200 }
1201 } else { /* VM_BESTFIT */
1202 /*
1203 * we assume that, for space efficiency, it's better to
1204 * allocate from a smaller block. thus we will start searching
1205 * from the lower-order list than VM_INSTANTFIT.
1206 * however, don't bother to find the smallest block in a free
1207 * list because the list can be very long. we can revisit it
1208 * if/when it turns out to be a problem.
1209 *
1210 * note that the 'first' list can contain blocks smaller than
1211 * the requested size. thus we need to check bt_size.
1212 */
1213 for (list = first; list < end; list++) {
1214 LIST_FOREACH(bt, list, bt_freelist) {
1215 if (bt->bt_size >= size) {
1216 rc = vmem_fit(bt, size, align, phase,
1217 nocross, minaddr, maxaddr, &start);
1218 if (rc == 0) {
1219 goto gotit;
1220 }
1221 }
1222 }
1223 }
1224 }
1225 VMEM_UNLOCK(vm);
1226 #if 1
1227 if (strat == VM_INSTANTFIT) {
1228 strat = VM_BESTFIT;
1229 goto retry_strat;
1230 }
1231 #endif
1232 if (align != vm->vm_quantum_mask + 1 || phase != 0 || nocross != 0) {
1233
1234 /*
1235 * XXX should try to import a region large enough to
1236 * satisfy restrictions?
1237 */
1238
1239 goto fail;
1240 }
1241 /* XXX eeek, minaddr & maxaddr not respected */
1242 if (vmem_import(vm, size, flags) == 0) {
1243 goto retry;
1244 }
1245 /* XXX */
1246
1247 if ((flags & VM_SLEEP) != 0) {
1248 VMEM_LOCK(vm);
1249 VMEM_CONDVAR_WAIT(vm);
1250 VMEM_UNLOCK(vm);
1251 goto retry;
1252 }
1253 fail:
1254 bt_free(vm, btnew);
1255 bt_free(vm, btnew2);
1256 return ENOMEM;
1257
1258 gotit:
1259 KASSERT(bt->bt_type == BT_TYPE_FREE);
1260 KASSERT(bt->bt_size >= size);
1261 bt_remfree(vm, bt);
1262 vmem_check(vm);
1263 vm->vm_inuse += size;
1264 if (bt->bt_start != start) {
1265 btnew2->bt_type = BT_TYPE_FREE;
1266 btnew2->bt_start = bt->bt_start;
1267 btnew2->bt_size = start - bt->bt_start;
1268 bt->bt_start = start;
1269 bt->bt_size -= btnew2->bt_size;
1270 bt_insfree(vm, btnew2);
1271 bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
1272 btnew2 = NULL;
1273 vmem_check(vm);
1274 }
1275 KASSERT(bt->bt_start == start);
1276 if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
1277 /* split */
1278 btnew->bt_type = BT_TYPE_BUSY;
1279 btnew->bt_start = bt->bt_start;
1280 btnew->bt_size = size;
1281 bt->bt_start = bt->bt_start + size;
1282 bt->bt_size -= size;
1283 bt_insfree(vm, bt);
1284 bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
1285 bt_insbusy(vm, btnew);
1286 vmem_check(vm);
1287 VMEM_UNLOCK(vm);
1288 } else {
1289 bt->bt_type = BT_TYPE_BUSY;
1290 bt_insbusy(vm, bt);
1291 vmem_check(vm);
1292 VMEM_UNLOCK(vm);
1293 bt_free(vm, btnew);
1294 btnew = bt;
1295 }
1296 if (btnew2 != NULL) {
1297 bt_free(vm, btnew2);
1298 }
1299 KASSERT(btnew->bt_size >= size);
1300 btnew->bt_type = BT_TYPE_BUSY;
1301
1302 if (addrp != NULL)
1303 *addrp = btnew->bt_start;
1304 return 0;
1305 }
1306
1307 /*
1308 * vmem_free:
1309 *
1310 * => caller must ensure appropriate spl,
1311 * if the arena can be accessed from interrupt context.
1312 */
1313
1314 void
1315 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1316 {
1317
1318 KASSERT(size > 0);
1319
1320 #if defined(QCACHE)
1321 if (size <= vm->vm_qcache_max) {
1322 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1323 qcache_t *qc = vm->vm_qcache[qidx - 1];
1324
1325 pool_cache_put(qc->qc_cache, (void *)addr);
1326 return;
1327 }
1328 #endif /* defined(QCACHE) */
1329
1330 vmem_xfree(vm, addr, size);
1331 }
1332
1333 void
1334 vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1335 {
1336 bt_t *bt;
1337 bt_t *t;
1338 LIST_HEAD(, vmem_btag) tofree;
1339
1340 LIST_INIT(&tofree);
1341
1342 KASSERT(size > 0);
1343
1344 VMEM_LOCK(vm);
1345
1346 bt = bt_lookupbusy(vm, addr);
1347 KASSERT(bt != NULL);
1348 KASSERT(bt->bt_start == addr);
1349 KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1350 bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1351 KASSERT(bt->bt_type == BT_TYPE_BUSY);
1352 bt_rembusy(vm, bt);
1353 bt->bt_type = BT_TYPE_FREE;
1354
1355 vm->vm_inuse -= bt->bt_size;
1356
1357 /* coalesce */
1358 t = CIRCLEQ_NEXT(bt, bt_seglist);
1359 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1360 KASSERT(BT_END(bt) < t->bt_start); /* YYY */
1361 bt_remfree(vm, t);
1362 bt_remseg(vm, t);
1363 bt->bt_size += t->bt_size;
1364 LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1365 }
1366 t = CIRCLEQ_PREV(bt, bt_seglist);
1367 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1368 KASSERT(BT_END(t) < bt->bt_start); /* YYY */
1369 bt_remfree(vm, t);
1370 bt_remseg(vm, t);
1371 bt->bt_size += t->bt_size;
1372 bt->bt_start = t->bt_start;
1373 LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1374 }
1375
1376 t = CIRCLEQ_PREV(bt, bt_seglist);
1377 KASSERT(t != NULL);
1378 KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1379 if (vm->vm_releasefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1380 t->bt_size == bt->bt_size) {
1381 vmem_addr_t spanaddr;
1382 vmem_size_t spansize;
1383
1384 KASSERT(t->bt_start == bt->bt_start);
1385 spanaddr = bt->bt_start;
1386 spansize = bt->bt_size;
1387 bt_remseg(vm, bt);
1388 LIST_INSERT_HEAD(&tofree, bt, bt_freelist);
1389 bt_remseg(vm, t);
1390 LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1391 vm->vm_size -= spansize;
1392 VMEM_CONDVAR_BROADCAST(vm);
1393 VMEM_UNLOCK(vm);
1394 (*vm->vm_releasefn)(vm->vm_arg, spanaddr, spansize);
1395 } else {
1396 bt_insfree(vm, bt);
1397 VMEM_CONDVAR_BROADCAST(vm);
1398 VMEM_UNLOCK(vm);
1399 }
1400
1401 while (!LIST_EMPTY(&tofree)) {
1402 t = LIST_FIRST(&tofree);
1403 LIST_REMOVE(t, bt_freelist);
1404 bt_free(vm, t);
1405 }
1406 }
1407
1408 /*
1409 * vmem_add:
1410 *
1411 * => caller must ensure appropriate spl,
1412 * if the arena can be accessed from interrupt context.
1413 */
1414
1415 int
1416 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1417 {
1418
1419 return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1420 }
1421
1422 /*
1423 * vmem_size: information about arenas size
1424 *
1425 * => return free/allocated size in arena
1426 */
1427 vmem_size_t
1428 vmem_size(vmem_t *vm, int typemask)
1429 {
1430
1431 switch (typemask) {
1432 case VMEM_ALLOC:
1433 return vm->vm_inuse;
1434 case VMEM_FREE:
1435 return vm->vm_size - vm->vm_inuse;
1436 case VMEM_FREE|VMEM_ALLOC:
1437 return vm->vm_size;
1438 default:
1439 panic("vmem_size");
1440 }
1441 }
1442
1443 /* ---- rehash */
1444
1445 #if defined(_KERNEL)
1446 static struct callout vmem_rehash_ch;
1447 static int vmem_rehash_interval;
1448 static struct workqueue *vmem_rehash_wq;
1449 static struct work vmem_rehash_wk;
1450
1451 static void
1452 vmem_rehash_all(struct work *wk, void *dummy)
1453 {
1454 vmem_t *vm;
1455
1456 KASSERT(wk == &vmem_rehash_wk);
1457 mutex_enter(&vmem_list_lock);
1458 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1459 size_t desired;
1460 size_t current;
1461
1462 if (!VMEM_TRYLOCK(vm)) {
1463 continue;
1464 }
1465 desired = vm->vm_nbusytag;
1466 current = vm->vm_hashsize;
1467 VMEM_UNLOCK(vm);
1468
1469 if (desired > VMEM_HASHSIZE_MAX) {
1470 desired = VMEM_HASHSIZE_MAX;
1471 } else if (desired < VMEM_HASHSIZE_MIN) {
1472 desired = VMEM_HASHSIZE_MIN;
1473 }
1474 if (desired > current * 2 || desired * 2 < current) {
1475 vmem_rehash(vm, desired, VM_NOSLEEP);
1476 }
1477 }
1478 mutex_exit(&vmem_list_lock);
1479
1480 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1481 }
1482
1483 static void
1484 vmem_rehash_all_kick(void *dummy)
1485 {
1486
1487 workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1488 }
1489
1490 void
1491 vmem_rehash_start(void)
1492 {
1493 int error;
1494
1495 error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1496 vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
1497 if (error) {
1498 panic("%s: workqueue_create %d\n", __func__, error);
1499 }
1500 callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
1501 callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1502
1503 vmem_rehash_interval = hz * 10;
1504 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1505 }
1506 #endif /* defined(_KERNEL) */
1507
1508 /* ---- debug */
1509
1510 #if defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY)
1511
1512 static void bt_dump(const bt_t *, void (*)(const char *, ...));
1513
1514 static const char *
1515 bt_type_string(int type)
1516 {
1517 static const char * const table[] = {
1518 [BT_TYPE_BUSY] = "busy",
1519 [BT_TYPE_FREE] = "free",
1520 [BT_TYPE_SPAN] = "span",
1521 [BT_TYPE_SPAN_STATIC] = "static span",
1522 };
1523
1524 if (type >= __arraycount(table)) {
1525 return "BOGUS";
1526 }
1527 return table[type];
1528 }
1529
1530 static void
1531 bt_dump(const bt_t *bt, void (*pr)(const char *, ...))
1532 {
1533
1534 (*pr)("\t%p: %" PRIu64 ", %" PRIu64 ", %d(%s)\n",
1535 bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1536 bt->bt_type, bt_type_string(bt->bt_type));
1537 }
1538
1539 static void
1540 vmem_dump(const vmem_t *vm , void (*pr)(const char *, ...))
1541 {
1542 const bt_t *bt;
1543 int i;
1544
1545 (*pr)("vmem %p '%s'\n", vm, vm->vm_name);
1546 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1547 bt_dump(bt, pr);
1548 }
1549
1550 for (i = 0; i < VMEM_MAXORDER; i++) {
1551 const struct vmem_freelist *fl = &vm->vm_freelist[i];
1552
1553 if (LIST_EMPTY(fl)) {
1554 continue;
1555 }
1556
1557 (*pr)("freelist[%d]\n", i);
1558 LIST_FOREACH(bt, fl, bt_freelist) {
1559 bt_dump(bt, pr);
1560 }
1561 }
1562 }
1563
1564 #endif /* defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) */
1565
1566 #if defined(DDB)
1567 static bt_t *
1568 vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
1569 {
1570 bt_t *bt;
1571
1572 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1573 if (BT_ISSPAN_P(bt)) {
1574 continue;
1575 }
1576 if (bt->bt_start <= addr && addr <= BT_END(bt)) {
1577 return bt;
1578 }
1579 }
1580
1581 return NULL;
1582 }
1583
1584 void
1585 vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1586 {
1587 vmem_t *vm;
1588
1589 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1590 bt_t *bt;
1591
1592 bt = vmem_whatis_lookup(vm, addr);
1593 if (bt == NULL) {
1594 continue;
1595 }
1596 (*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1597 (void *)addr, (void *)bt->bt_start,
1598 (size_t)(addr - bt->bt_start), vm->vm_name,
1599 (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1600 }
1601 }
1602
1603 void
1604 vmem_printall(const char *modif, void (*pr)(const char *, ...))
1605 {
1606 const vmem_t *vm;
1607
1608 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1609 vmem_dump(vm, pr);
1610 }
1611 }
1612
1613 void
1614 vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...))
1615 {
1616 const vmem_t *vm = (const void *)addr;
1617
1618 vmem_dump(vm, pr);
1619 }
1620 #endif /* defined(DDB) */
1621
1622 #if defined(_KERNEL)
1623 #define vmem_printf printf
1624 #else
1625 #include <stdio.h>
1626 #include <stdarg.h>
1627
1628 static void
1629 vmem_printf(const char *fmt, ...)
1630 {
1631 va_list ap;
1632 va_start(ap, fmt);
1633 vprintf(fmt, ap);
1634 va_end(ap);
1635 }
1636 #endif
1637
1638 #if defined(VMEM_SANITY)
1639
1640 static bool
1641 vmem_check_sanity(vmem_t *vm)
1642 {
1643 const bt_t *bt, *bt2;
1644
1645 KASSERT(vm != NULL);
1646
1647 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1648 if (bt->bt_start > BT_END(bt)) {
1649 printf("corrupted tag\n");
1650 bt_dump(bt, vmem_printf);
1651 return false;
1652 }
1653 }
1654 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1655 CIRCLEQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
1656 if (bt == bt2) {
1657 continue;
1658 }
1659 if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
1660 continue;
1661 }
1662 if (bt->bt_start <= BT_END(bt2) &&
1663 bt2->bt_start <= BT_END(bt)) {
1664 printf("overwrapped tags\n");
1665 bt_dump(bt, vmem_printf);
1666 bt_dump(bt2, vmem_printf);
1667 return false;
1668 }
1669 }
1670 }
1671
1672 return true;
1673 }
1674
1675 static void
1676 vmem_check(vmem_t *vm)
1677 {
1678
1679 if (!vmem_check_sanity(vm)) {
1680 panic("insanity vmem %p", vm);
1681 }
1682 }
1683
1684 #endif /* defined(VMEM_SANITY) */
1685
1686 #if defined(UNITTEST)
1687 int
1688 main(void)
1689 {
1690 int rc;
1691 vmem_t *vm;
1692 vmem_addr_t p;
1693 struct reg {
1694 vmem_addr_t p;
1695 vmem_size_t sz;
1696 bool x;
1697 } *reg = NULL;
1698 int nreg = 0;
1699 int nalloc = 0;
1700 int nfree = 0;
1701 vmem_size_t total = 0;
1702 #if 1
1703 vm_flag_t strat = VM_INSTANTFIT;
1704 #else
1705 vm_flag_t strat = VM_BESTFIT;
1706 #endif
1707
1708 vm = vmem_create("test", 0, 0, 1, NULL, NULL, NULL, 0, VM_SLEEP,
1709 #ifdef _KERNEL
1710 IPL_NONE
1711 #else
1712 0
1713 #endif
1714 );
1715 if (vm == NULL) {
1716 printf("vmem_create\n");
1717 exit(EXIT_FAILURE);
1718 }
1719 vmem_dump(vm, vmem_printf);
1720
1721 rc = vmem_add(vm, 0, 50, VM_SLEEP);
1722 assert(rc == 0);
1723 rc = vmem_add(vm, 100, 200, VM_SLEEP);
1724 assert(rc == 0);
1725 rc = vmem_add(vm, 2000, 1, VM_SLEEP);
1726 assert(rc == 0);
1727 rc = vmem_add(vm, 40000, 65536, VM_SLEEP);
1728 assert(rc == 0);
1729 rc = vmem_add(vm, 10000, 10000, VM_SLEEP);
1730 assert(rc == 0);
1731 rc = vmem_add(vm, 500, 1000, VM_SLEEP);
1732 assert(rc == 0);
1733 rc = vmem_add(vm, 0xffffff00, 0x100, VM_SLEEP);
1734 assert(rc == 0);
1735 rc = vmem_xalloc(vm, 0x101, 0, 0, 0,
1736 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1737 assert(rc != 0);
1738 rc = vmem_xalloc(vm, 50, 0, 0, 0, 0, 49, strat|VM_SLEEP, &p);
1739 assert(rc == 0 && p == 0);
1740 vmem_xfree(vm, p, 50);
1741 rc = vmem_xalloc(vm, 25, 0, 0, 0, 0, 24, strat|VM_SLEEP, &p);
1742 assert(rc == 0 && p == 0);
1743 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1744 0xffffff01, 0xffffffff, strat|VM_SLEEP, &p);
1745 assert(rc != 0);
1746 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1747 0xffffff00, 0xfffffffe, strat|VM_SLEEP, &p);
1748 assert(rc != 0);
1749 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1750 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1751 assert(rc == 0);
1752 vmem_dump(vm, vmem_printf);
1753 for (;;) {
1754 struct reg *r;
1755 int t = rand() % 100;
1756
1757 if (t > 45) {
1758 /* alloc */
1759 vmem_size_t sz = rand() % 500 + 1;
1760 bool x;
1761 vmem_size_t align, phase, nocross;
1762 vmem_addr_t minaddr, maxaddr;
1763
1764 if (t > 70) {
1765 x = true;
1766 /* XXX */
1767 align = 1 << (rand() % 15);
1768 phase = rand() % 65536;
1769 nocross = 1 << (rand() % 15);
1770 if (align <= phase) {
1771 phase = 0;
1772 }
1773 if (VMEM_CROSS_P(phase, phase + sz - 1,
1774 nocross)) {
1775 nocross = 0;
1776 }
1777 do {
1778 minaddr = rand() % 50000;
1779 maxaddr = rand() % 70000;
1780 } while (minaddr > maxaddr);
1781 printf("=== xalloc %" PRIu64
1782 " align=%" PRIu64 ", phase=%" PRIu64
1783 ", nocross=%" PRIu64 ", min=%" PRIu64
1784 ", max=%" PRIu64 "\n",
1785 (uint64_t)sz,
1786 (uint64_t)align,
1787 (uint64_t)phase,
1788 (uint64_t)nocross,
1789 (uint64_t)minaddr,
1790 (uint64_t)maxaddr);
1791 rc = vmem_xalloc(vm, sz, align, phase, nocross,
1792 minaddr, maxaddr, strat|VM_SLEEP, &p);
1793 } else {
1794 x = false;
1795 printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1796 rc = vmem_alloc(vm, sz, strat|VM_SLEEP, &p);
1797 }
1798 printf("-> %" PRIu64 "\n", (uint64_t)p);
1799 vmem_dump(vm, vmem_printf);
1800 if (rc != 0) {
1801 if (x) {
1802 continue;
1803 }
1804 break;
1805 }
1806 nreg++;
1807 reg = realloc(reg, sizeof(*reg) * nreg);
1808 r = ®[nreg - 1];
1809 r->p = p;
1810 r->sz = sz;
1811 r->x = x;
1812 total += sz;
1813 nalloc++;
1814 } else if (nreg != 0) {
1815 /* free */
1816 r = ®[rand() % nreg];
1817 printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1818 (uint64_t)r->p, (uint64_t)r->sz);
1819 if (r->x) {
1820 vmem_xfree(vm, r->p, r->sz);
1821 } else {
1822 vmem_free(vm, r->p, r->sz);
1823 }
1824 total -= r->sz;
1825 vmem_dump(vm, vmem_printf);
1826 *r = reg[nreg - 1];
1827 nreg--;
1828 nfree++;
1829 }
1830 printf("total=%" PRIu64 "\n", (uint64_t)total);
1831 }
1832 fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1833 (uint64_t)total, nalloc, nfree);
1834 exit(EXIT_SUCCESS);
1835 }
1836 #endif /* defined(UNITTEST) */
1837