subr_vmem.c revision 1.72.2.1.4.1 1 /* $NetBSD: subr_vmem.c,v 1.72.2.1.4.1 2013/02/08 20:22:18 riz Exp $ */
2
3 /*-
4 * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * reference:
31 * - Magazines and Vmem: Extending the Slab Allocator
32 * to Many CPUs and Arbitrary Resources
33 * http://www.usenix.org/event/usenix01/bonwick.html
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.72.2.1.4.1 2013/02/08 20:22:18 riz Exp $");
38
39 #if defined(_KERNEL)
40 #include "opt_ddb.h"
41 #define QCACHE
42 #endif /* defined(_KERNEL) */
43
44 #include <sys/param.h>
45 #include <sys/hash.h>
46 #include <sys/queue.h>
47 #include <sys/bitops.h>
48
49 #if defined(_KERNEL)
50 #include <sys/systm.h>
51 #include <sys/kernel.h> /* hz */
52 #include <sys/callout.h>
53 #include <sys/kmem.h>
54 #include <sys/pool.h>
55 #include <sys/vmem.h>
56 #include <sys/workqueue.h>
57 #include <sys/atomic.h>
58 #include <uvm/uvm.h>
59 #include <uvm/uvm_extern.h>
60 #include <uvm/uvm_km.h>
61 #include <uvm/uvm_page.h>
62 #include <uvm/uvm_pdaemon.h>
63 #else /* defined(_KERNEL) */
64 #include "../sys/vmem.h"
65 #endif /* defined(_KERNEL) */
66
67
68 #if defined(_KERNEL)
69 #include <sys/evcnt.h>
70 #define VMEM_EVCNT_DEFINE(name) \
71 struct evcnt vmem_evcnt_##name = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, \
72 "vmemev", #name); \
73 EVCNT_ATTACH_STATIC(vmem_evcnt_##name);
74 #define VMEM_EVCNT_INCR(ev) vmem_evcnt_##ev.ev_count++
75 #define VMEM_EVCNT_DECR(ev) vmem_evcnt_##ev.ev_count--
76
77 VMEM_EVCNT_DEFINE(bt_pages)
78 VMEM_EVCNT_DEFINE(bt_count)
79 VMEM_EVCNT_DEFINE(bt_inuse)
80
81 #define LOCK_DECL(name) \
82 kmutex_t name; char lockpad[COHERENCY_UNIT - sizeof(kmutex_t)]
83
84 #define CONDVAR_DECL(name) \
85 kcondvar_t name;
86
87 #else /* defined(_KERNEL) */
88 #include <stdio.h>
89 #include <errno.h>
90 #include <assert.h>
91 #include <stdlib.h>
92 #include <string.h>
93
94 #define VMEM_EVCNT_INCR(ev) /* nothing */
95 #define VMEM_EVCNT_DECR(ev) /* nothing */
96
97 #define UNITTEST
98 #define KASSERT(a) assert(a)
99 #define LOCK_DECL(name) /* nothing */
100 #define CONDVAR_DECL(name) /* nothing */
101 #define VMEM_CONDVAR_INIT(vm, wchan) /* nothing */
102 #define VMEM_CONDVAR_BROADCAST(vm) /* nothing */
103 #define mutex_init(a, b, c) /* nothing */
104 #define mutex_destroy(a) /* nothing */
105 #define mutex_enter(a) /* nothing */
106 #define mutex_tryenter(a) true
107 #define mutex_exit(a) /* nothing */
108 #define mutex_owned(a) /* nothing */
109 #define ASSERT_SLEEPABLE() /* nothing */
110 #define panic(...) printf(__VA_ARGS__); abort()
111 #endif /* defined(_KERNEL) */
112
113 struct vmem;
114 struct vmem_btag;
115
116 #if defined(VMEM_SANITY)
117 static void vmem_check(vmem_t *);
118 #else /* defined(VMEM_SANITY) */
119 #define vmem_check(vm) /* nothing */
120 #endif /* defined(VMEM_SANITY) */
121
122 #define VMEM_MAXORDER (sizeof(vmem_size_t) * CHAR_BIT)
123
124 #define VMEM_HASHSIZE_MIN 1 /* XXX */
125 #define VMEM_HASHSIZE_MAX 65536 /* XXX */
126 #define VMEM_HASHSIZE_INIT 1
127
128 #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
129
130 CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
131 LIST_HEAD(vmem_freelist, vmem_btag);
132 LIST_HEAD(vmem_hashlist, vmem_btag);
133
134 #if defined(QCACHE)
135 #define VMEM_QCACHE_IDX_MAX 32
136
137 #define QC_NAME_MAX 16
138
139 struct qcache {
140 pool_cache_t qc_cache;
141 vmem_t *qc_vmem;
142 char qc_name[QC_NAME_MAX];
143 };
144 typedef struct qcache qcache_t;
145 #define QC_POOL_TO_QCACHE(pool) ((qcache_t *)(pool->pr_qcache))
146 #endif /* defined(QCACHE) */
147
148 #define VMEM_NAME_MAX 16
149
150 /* vmem arena */
151 struct vmem {
152 CONDVAR_DECL(vm_cv);
153 LOCK_DECL(vm_lock);
154 vm_flag_t vm_flags;
155 vmem_import_t *vm_importfn;
156 vmem_release_t *vm_releasefn;
157 size_t vm_nfreetags;
158 LIST_HEAD(, vmem_btag) vm_freetags;
159 void *vm_arg;
160 struct vmem_seglist vm_seglist;
161 struct vmem_freelist vm_freelist[VMEM_MAXORDER];
162 size_t vm_hashsize;
163 size_t vm_nbusytag;
164 struct vmem_hashlist *vm_hashlist;
165 struct vmem_hashlist vm_hash0;
166 size_t vm_quantum_mask;
167 int vm_quantum_shift;
168 size_t vm_size;
169 size_t vm_inuse;
170 char vm_name[VMEM_NAME_MAX+1];
171 LIST_ENTRY(vmem) vm_alllist;
172
173 #if defined(QCACHE)
174 /* quantum cache */
175 size_t vm_qcache_max;
176 struct pool_allocator vm_qcache_allocator;
177 qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
178 qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
179 #endif /* defined(QCACHE) */
180 };
181
182 #define VMEM_LOCK(vm) mutex_enter(&vm->vm_lock)
183 #define VMEM_TRYLOCK(vm) mutex_tryenter(&vm->vm_lock)
184 #define VMEM_UNLOCK(vm) mutex_exit(&vm->vm_lock)
185 #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl)
186 #define VMEM_LOCK_DESTROY(vm) mutex_destroy(&vm->vm_lock)
187 #define VMEM_ASSERT_LOCKED(vm) KASSERT(mutex_owned(&vm->vm_lock))
188
189 #if defined(_KERNEL)
190 #define VMEM_CONDVAR_INIT(vm, wchan) cv_init(&vm->vm_cv, wchan)
191 #define VMEM_CONDVAR_DESTROY(vm) cv_destroy(&vm->vm_cv)
192 #define VMEM_CONDVAR_WAIT(vm) cv_wait(&vm->vm_cv, &vm->vm_lock)
193 #define VMEM_CONDVAR_BROADCAST(vm) cv_broadcast(&vm->vm_cv)
194 #endif /* defined(_KERNEL) */
195
196 /* boundary tag */
197 struct vmem_btag {
198 CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
199 union {
200 LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
201 LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
202 } bt_u;
203 #define bt_hashlist bt_u.u_hashlist
204 #define bt_freelist bt_u.u_freelist
205 vmem_addr_t bt_start;
206 vmem_size_t bt_size;
207 int bt_type;
208 };
209
210 #define BT_TYPE_SPAN 1
211 #define BT_TYPE_SPAN_STATIC 2
212 #define BT_TYPE_FREE 3
213 #define BT_TYPE_BUSY 4
214 #define BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
215
216 #define BT_END(bt) ((bt)->bt_start + (bt)->bt_size - 1)
217
218 typedef struct vmem_btag bt_t;
219
220 #if defined(_KERNEL)
221 static kmutex_t vmem_list_lock;
222 static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
223 #endif /* defined(_KERNEL) */
224
225 /* ---- misc */
226
227 #define VMEM_ALIGNUP(addr, align) \
228 (-(-(addr) & -(align)))
229
230 #define VMEM_CROSS_P(addr1, addr2, boundary) \
231 ((((addr1) ^ (addr2)) & -(boundary)) != 0)
232
233 #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
234 #define SIZE2ORDER(size) ((int)ilog2(size))
235
236 #if !defined(_KERNEL)
237 #define xmalloc(sz, flags) malloc(sz)
238 #define xfree(p, sz) free(p)
239 #define bt_alloc(vm, flags) malloc(sizeof(bt_t))
240 #define bt_free(vm, bt) free(bt)
241 #else /* defined(_KERNEL) */
242
243 #define xmalloc(sz, flags) \
244 kmem_alloc(sz, ((flags) & VM_SLEEP) ? KM_SLEEP : KM_NOSLEEP);
245 #define xfree(p, sz) kmem_free(p, sz);
246
247 #define BT_MINRESERVE 6
248 #define BT_MAXFREE 64
249 #define STATIC_VMEM_COUNT 5
250 #define STATIC_BT_COUNT 200
251 /* must be equal or greater then qcache multiplier for kmem_va_arena */
252 #define STATIC_QC_POOL_COUNT 8
253
254 static struct vmem static_vmems[STATIC_VMEM_COUNT];
255 static int static_vmem_count = STATIC_VMEM_COUNT;
256
257 static struct vmem_btag static_bts[STATIC_BT_COUNT];
258 static int static_bt_count = STATIC_BT_COUNT;
259
260 static struct pool_cache static_qc_pools[STATIC_QC_POOL_COUNT];
261 static int static_qc_pool_count = STATIC_QC_POOL_COUNT;
262
263 vmem_t *kmem_va_meta_arena;
264 vmem_t *kmem_meta_arena;
265
266 static kmutex_t vmem_refill_lock;
267 static kmutex_t vmem_btag_lock;
268 static LIST_HEAD(, vmem_btag) vmem_btag_freelist;
269 static size_t vmem_btag_freelist_count = 0;
270 static size_t vmem_btag_count = STATIC_BT_COUNT;
271
272 /* ---- boundary tag */
273
274 #define BT_PER_PAGE (PAGE_SIZE / sizeof(bt_t))
275
276 static int bt_refill(vmem_t *vm, vm_flag_t flags);
277
278 static int
279 bt_refillglobal(vm_flag_t flags)
280 {
281 vmem_addr_t va;
282 bt_t *btp;
283 bt_t *bt;
284 int i;
285
286 mutex_enter(&vmem_refill_lock);
287
288 mutex_enter(&vmem_btag_lock);
289 if (vmem_btag_freelist_count > (BT_MINRESERVE * 16)) {
290 mutex_exit(&vmem_btag_lock);
291 mutex_exit(&vmem_refill_lock);
292 return 0;
293 }
294 mutex_exit(&vmem_btag_lock);
295
296 if (vmem_alloc(kmem_meta_arena, PAGE_SIZE,
297 (flags & ~VM_FITMASK) | VM_INSTANTFIT | VM_POPULATING, &va) != 0) {
298 mutex_exit(&vmem_refill_lock);
299 return ENOMEM;
300 }
301 VMEM_EVCNT_INCR(bt_pages);
302
303 mutex_enter(&vmem_btag_lock);
304 btp = (void *) va;
305 for (i = 0; i < (BT_PER_PAGE); i++) {
306 bt = btp;
307 memset(bt, 0, sizeof(*bt));
308 LIST_INSERT_HEAD(&vmem_btag_freelist, bt,
309 bt_freelist);
310 vmem_btag_freelist_count++;
311 vmem_btag_count++;
312 VMEM_EVCNT_INCR(bt_count);
313 btp++;
314 }
315 mutex_exit(&vmem_btag_lock);
316
317 bt_refill(kmem_arena, (flags & ~VM_FITMASK)
318 | VM_INSTANTFIT | VM_POPULATING);
319 bt_refill(kmem_va_meta_arena, (flags & ~VM_FITMASK)
320 | VM_INSTANTFIT | VM_POPULATING);
321 bt_refill(kmem_meta_arena, (flags & ~VM_FITMASK)
322 | VM_INSTANTFIT | VM_POPULATING);
323
324 mutex_exit(&vmem_refill_lock);
325
326 return 0;
327 }
328
329 static int
330 bt_refill(vmem_t *vm, vm_flag_t flags)
331 {
332 bt_t *bt;
333
334 if (!(flags & VM_POPULATING)) {
335 bt_refillglobal(flags);
336 }
337
338 VMEM_LOCK(vm);
339 mutex_enter(&vmem_btag_lock);
340 while (!LIST_EMPTY(&vmem_btag_freelist) &&
341 vm->vm_nfreetags < (BT_MINRESERVE * 2)) {
342 bt = LIST_FIRST(&vmem_btag_freelist);
343 LIST_REMOVE(bt, bt_freelist);
344 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
345 vm->vm_nfreetags++;
346 vmem_btag_freelist_count--;
347 }
348 mutex_exit(&vmem_btag_lock);
349
350 if (vm->vm_nfreetags == 0) {
351 VMEM_UNLOCK(vm);
352 return ENOMEM;
353 }
354 VMEM_UNLOCK(vm);
355
356 return 0;
357 }
358
359 static inline bt_t *
360 bt_alloc(vmem_t *vm, vm_flag_t flags)
361 {
362 bt_t *bt;
363 again:
364 VMEM_LOCK(vm);
365 if (vm->vm_nfreetags < BT_MINRESERVE &&
366 (flags & VM_POPULATING) == 0) {
367 VMEM_UNLOCK(vm);
368 if (bt_refill(vm, VM_NOSLEEP | VM_INSTANTFIT)) {
369 return NULL;
370 }
371 goto again;
372 }
373 bt = LIST_FIRST(&vm->vm_freetags);
374 LIST_REMOVE(bt, bt_freelist);
375 vm->vm_nfreetags--;
376 VMEM_UNLOCK(vm);
377 VMEM_EVCNT_INCR(bt_inuse);
378
379 return bt;
380 }
381
382 static inline void
383 bt_free(vmem_t *vm, bt_t *bt)
384 {
385
386 VMEM_LOCK(vm);
387 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
388 vm->vm_nfreetags++;
389 while (vm->vm_nfreetags > BT_MAXFREE) {
390 bt = LIST_FIRST(&vm->vm_freetags);
391 LIST_REMOVE(bt, bt_freelist);
392 vm->vm_nfreetags--;
393 mutex_enter(&vmem_btag_lock);
394 LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
395 vmem_btag_freelist_count++;
396 mutex_exit(&vmem_btag_lock);
397 }
398 VMEM_UNLOCK(vm);
399 VMEM_EVCNT_DECR(bt_inuse);
400 }
401
402 #endif /* defined(_KERNEL) */
403
404 /*
405 * freelist[0] ... [1, 1]
406 * freelist[1] ... [2, 3]
407 * freelist[2] ... [4, 7]
408 * freelist[3] ... [8, 15]
409 * :
410 * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
411 * :
412 */
413
414 static struct vmem_freelist *
415 bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
416 {
417 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
418 const int idx = SIZE2ORDER(qsize);
419
420 KASSERT(size != 0 && qsize != 0);
421 KASSERT((size & vm->vm_quantum_mask) == 0);
422 KASSERT(idx >= 0);
423 KASSERT(idx < VMEM_MAXORDER);
424
425 return &vm->vm_freelist[idx];
426 }
427
428 /*
429 * bt_freehead_toalloc: return the freelist for the given size and allocation
430 * strategy.
431 *
432 * for VM_INSTANTFIT, return the list in which any blocks are large enough
433 * for the requested size. otherwise, return the list which can have blocks
434 * large enough for the requested size.
435 */
436
437 static struct vmem_freelist *
438 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
439 {
440 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
441 int idx = SIZE2ORDER(qsize);
442
443 KASSERT(size != 0 && qsize != 0);
444 KASSERT((size & vm->vm_quantum_mask) == 0);
445
446 if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
447 idx++;
448 /* check too large request? */
449 }
450 KASSERT(idx >= 0);
451 KASSERT(idx < VMEM_MAXORDER);
452
453 return &vm->vm_freelist[idx];
454 }
455
456 /* ---- boundary tag hash */
457
458 static struct vmem_hashlist *
459 bt_hashhead(vmem_t *vm, vmem_addr_t addr)
460 {
461 struct vmem_hashlist *list;
462 unsigned int hash;
463
464 hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
465 list = &vm->vm_hashlist[hash % vm->vm_hashsize];
466
467 return list;
468 }
469
470 static bt_t *
471 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
472 {
473 struct vmem_hashlist *list;
474 bt_t *bt;
475
476 list = bt_hashhead(vm, addr);
477 LIST_FOREACH(bt, list, bt_hashlist) {
478 if (bt->bt_start == addr) {
479 break;
480 }
481 }
482
483 return bt;
484 }
485
486 static void
487 bt_rembusy(vmem_t *vm, bt_t *bt)
488 {
489
490 KASSERT(vm->vm_nbusytag > 0);
491 vm->vm_inuse -= bt->bt_size;
492 vm->vm_nbusytag--;
493 LIST_REMOVE(bt, bt_hashlist);
494 }
495
496 static void
497 bt_insbusy(vmem_t *vm, bt_t *bt)
498 {
499 struct vmem_hashlist *list;
500
501 KASSERT(bt->bt_type == BT_TYPE_BUSY);
502
503 list = bt_hashhead(vm, bt->bt_start);
504 LIST_INSERT_HEAD(list, bt, bt_hashlist);
505 vm->vm_nbusytag++;
506 vm->vm_inuse += bt->bt_size;
507 }
508
509 /* ---- boundary tag list */
510
511 static void
512 bt_remseg(vmem_t *vm, bt_t *bt)
513 {
514
515 CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
516 }
517
518 static void
519 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
520 {
521
522 CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
523 }
524
525 static void
526 bt_insseg_tail(vmem_t *vm, bt_t *bt)
527 {
528
529 CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
530 }
531
532 static void
533 bt_remfree(vmem_t *vm, bt_t *bt)
534 {
535
536 KASSERT(bt->bt_type == BT_TYPE_FREE);
537
538 LIST_REMOVE(bt, bt_freelist);
539 }
540
541 static void
542 bt_insfree(vmem_t *vm, bt_t *bt)
543 {
544 struct vmem_freelist *list;
545
546 list = bt_freehead_tofree(vm, bt->bt_size);
547 LIST_INSERT_HEAD(list, bt, bt_freelist);
548 }
549
550 /* ---- vmem internal functions */
551
552 #if defined(QCACHE)
553 static inline vm_flag_t
554 prf_to_vmf(int prflags)
555 {
556 vm_flag_t vmflags;
557
558 KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
559 if ((prflags & PR_WAITOK) != 0) {
560 vmflags = VM_SLEEP;
561 } else {
562 vmflags = VM_NOSLEEP;
563 }
564 return vmflags;
565 }
566
567 static inline int
568 vmf_to_prf(vm_flag_t vmflags)
569 {
570 int prflags;
571
572 if ((vmflags & VM_SLEEP) != 0) {
573 prflags = PR_WAITOK;
574 } else {
575 prflags = PR_NOWAIT;
576 }
577 return prflags;
578 }
579
580 static size_t
581 qc_poolpage_size(size_t qcache_max)
582 {
583 int i;
584
585 for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
586 /* nothing */
587 }
588 return ORDER2SIZE(i);
589 }
590
591 static void *
592 qc_poolpage_alloc(struct pool *pool, int prflags)
593 {
594 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
595 vmem_t *vm = qc->qc_vmem;
596 vmem_addr_t addr;
597
598 if (vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
599 prf_to_vmf(prflags) | VM_INSTANTFIT, &addr) != 0)
600 return NULL;
601 return (void *)addr;
602 }
603
604 static void
605 qc_poolpage_free(struct pool *pool, void *addr)
606 {
607 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
608 vmem_t *vm = qc->qc_vmem;
609
610 vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
611 }
612
613 static void
614 qc_init(vmem_t *vm, size_t qcache_max, int ipl)
615 {
616 qcache_t *prevqc;
617 struct pool_allocator *pa;
618 int qcache_idx_max;
619 int i;
620
621 KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
622 if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
623 qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
624 }
625 vm->vm_qcache_max = qcache_max;
626 pa = &vm->vm_qcache_allocator;
627 memset(pa, 0, sizeof(*pa));
628 pa->pa_alloc = qc_poolpage_alloc;
629 pa->pa_free = qc_poolpage_free;
630 pa->pa_pagesz = qc_poolpage_size(qcache_max);
631
632 qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
633 prevqc = NULL;
634 for (i = qcache_idx_max; i > 0; i--) {
635 qcache_t *qc = &vm->vm_qcache_store[i - 1];
636 size_t size = i << vm->vm_quantum_shift;
637 pool_cache_t pc;
638
639 qc->qc_vmem = vm;
640 snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
641 vm->vm_name, size);
642
643 if (vm->vm_flags & VM_BOOTSTRAP) {
644 KASSERT(static_qc_pool_count > 0);
645 pc = &static_qc_pools[--static_qc_pool_count];
646 pool_cache_bootstrap(pc, size,
647 ORDER2SIZE(vm->vm_quantum_shift), 0,
648 PR_NOALIGN | PR_NOTOUCH | PR_RECURSIVE /* XXX */,
649 qc->qc_name, pa, ipl, NULL, NULL, NULL);
650 } else {
651 pc = pool_cache_init(size,
652 ORDER2SIZE(vm->vm_quantum_shift), 0,
653 PR_NOALIGN | PR_NOTOUCH /* XXX */,
654 qc->qc_name, pa, ipl, NULL, NULL, NULL);
655 }
656 qc->qc_cache = pc;
657 KASSERT(qc->qc_cache != NULL); /* XXX */
658 if (prevqc != NULL &&
659 qc->qc_cache->pc_pool.pr_itemsperpage ==
660 prevqc->qc_cache->pc_pool.pr_itemsperpage) {
661 if (vm->vm_flags & VM_BOOTSTRAP) {
662 pool_cache_bootstrap_destroy(pc);
663 //static_qc_pool_count++;
664 } else {
665 pool_cache_destroy(qc->qc_cache);
666 }
667 vm->vm_qcache[i - 1] = prevqc;
668 continue;
669 }
670 qc->qc_cache->pc_pool.pr_qcache = qc;
671 vm->vm_qcache[i - 1] = qc;
672 prevqc = qc;
673 }
674 }
675
676 static void
677 qc_destroy(vmem_t *vm)
678 {
679 const qcache_t *prevqc;
680 int i;
681 int qcache_idx_max;
682
683 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
684 prevqc = NULL;
685 for (i = 0; i < qcache_idx_max; i++) {
686 qcache_t *qc = vm->vm_qcache[i];
687
688 if (prevqc == qc) {
689 continue;
690 }
691 if (vm->vm_flags & VM_BOOTSTRAP) {
692 pool_cache_bootstrap_destroy(qc->qc_cache);
693 } else {
694 pool_cache_destroy(qc->qc_cache);
695 }
696 prevqc = qc;
697 }
698 }
699 #endif
700
701 #if defined(_KERNEL)
702 void
703 vmem_bootstrap(void)
704 {
705
706 mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_VM);
707 mutex_init(&vmem_refill_lock, MUTEX_DEFAULT, IPL_VM);
708 mutex_init(&vmem_btag_lock, MUTEX_DEFAULT, IPL_VM);
709
710 while (static_bt_count-- > 0) {
711 bt_t *bt = &static_bts[static_bt_count];
712 LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
713 VMEM_EVCNT_INCR(bt_count);
714 vmem_btag_freelist_count++;
715 }
716 }
717
718 void
719 vmem_init(vmem_t *vm)
720 {
721
722 kmem_va_meta_arena = vmem_create("vmem-va", 0, 0, PAGE_SIZE,
723 vmem_alloc, vmem_free, vm,
724 0, VM_NOSLEEP | VM_BOOTSTRAP | VM_LARGEIMPORT,
725 IPL_VM);
726
727 kmem_meta_arena = vmem_create("vmem-meta", 0, 0, PAGE_SIZE,
728 uvm_km_kmem_alloc, uvm_km_kmem_free, kmem_va_meta_arena,
729 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
730 }
731 #endif /* defined(_KERNEL) */
732
733 static int
734 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
735 int spanbttype)
736 {
737 bt_t *btspan;
738 bt_t *btfree;
739
740 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
741 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
742 KASSERT(spanbttype == BT_TYPE_SPAN ||
743 spanbttype == BT_TYPE_SPAN_STATIC);
744
745 btspan = bt_alloc(vm, flags);
746 if (btspan == NULL) {
747 return ENOMEM;
748 }
749 btfree = bt_alloc(vm, flags);
750 if (btfree == NULL) {
751 bt_free(vm, btspan);
752 return ENOMEM;
753 }
754
755 btspan->bt_type = spanbttype;
756 btspan->bt_start = addr;
757 btspan->bt_size = size;
758
759 btfree->bt_type = BT_TYPE_FREE;
760 btfree->bt_start = addr;
761 btfree->bt_size = size;
762
763 VMEM_LOCK(vm);
764 bt_insseg_tail(vm, btspan);
765 bt_insseg(vm, btfree, btspan);
766 bt_insfree(vm, btfree);
767 vm->vm_size += size;
768 VMEM_UNLOCK(vm);
769
770 return 0;
771 }
772
773 static void
774 vmem_destroy1(vmem_t *vm)
775 {
776
777 #if defined(QCACHE)
778 qc_destroy(vm);
779 #endif /* defined(QCACHE) */
780 if (vm->vm_hashlist != NULL) {
781 int i;
782
783 for (i = 0; i < vm->vm_hashsize; i++) {
784 bt_t *bt;
785
786 while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
787 KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
788 bt_free(vm, bt);
789 }
790 }
791 if (vm->vm_hashlist != &vm->vm_hash0) {
792 xfree(vm->vm_hashlist,
793 sizeof(struct vmem_hashlist *) * vm->vm_hashsize);
794 }
795 }
796
797 while (vm->vm_nfreetags > 0) {
798 bt_t *bt = LIST_FIRST(&vm->vm_freetags);
799 LIST_REMOVE(bt, bt_freelist);
800 vm->vm_nfreetags--;
801 mutex_enter(&vmem_btag_lock);
802 #if defined (_KERNEL)
803 LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
804 vmem_btag_freelist_count++;
805 #endif /* defined(_KERNEL) */
806 mutex_exit(&vmem_btag_lock);
807 }
808
809 VMEM_LOCK_DESTROY(vm);
810 xfree(vm, sizeof(*vm));
811 }
812
813 static int
814 vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
815 {
816 vmem_addr_t addr;
817 int rc;
818
819 if (vm->vm_importfn == NULL) {
820 return EINVAL;
821 }
822
823 if (vm->vm_flags & VM_LARGEIMPORT) {
824 size *= 8;
825 }
826
827 if (vm->vm_flags & VM_XIMPORT) {
828 rc = ((vmem_ximport_t *)vm->vm_importfn)(vm->vm_arg, size,
829 &size, flags, &addr);
830 } else {
831 rc = (vm->vm_importfn)(vm->vm_arg, size, flags, &addr);
832 }
833 if (rc) {
834 return ENOMEM;
835 }
836
837 if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) != 0) {
838 (*vm->vm_releasefn)(vm->vm_arg, addr, size);
839 return ENOMEM;
840 }
841
842 return 0;
843 }
844
845 static int
846 vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
847 {
848 bt_t *bt;
849 int i;
850 struct vmem_hashlist *newhashlist;
851 struct vmem_hashlist *oldhashlist;
852 size_t oldhashsize;
853
854 KASSERT(newhashsize > 0);
855
856 newhashlist =
857 xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
858 if (newhashlist == NULL) {
859 return ENOMEM;
860 }
861 for (i = 0; i < newhashsize; i++) {
862 LIST_INIT(&newhashlist[i]);
863 }
864
865 if (!VMEM_TRYLOCK(vm)) {
866 xfree(newhashlist,
867 sizeof(struct vmem_hashlist *) * newhashsize);
868 return EBUSY;
869 }
870 oldhashlist = vm->vm_hashlist;
871 oldhashsize = vm->vm_hashsize;
872 vm->vm_hashlist = newhashlist;
873 vm->vm_hashsize = newhashsize;
874 if (oldhashlist == NULL) {
875 VMEM_UNLOCK(vm);
876 return 0;
877 }
878 for (i = 0; i < oldhashsize; i++) {
879 while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
880 bt_rembusy(vm, bt); /* XXX */
881 bt_insbusy(vm, bt);
882 }
883 }
884 VMEM_UNLOCK(vm);
885
886 if (oldhashlist != &vm->vm_hash0) {
887 xfree(oldhashlist,
888 sizeof(struct vmem_hashlist *) * oldhashsize);
889 }
890
891 return 0;
892 }
893
894 /*
895 * vmem_fit: check if a bt can satisfy the given restrictions.
896 *
897 * it's a caller's responsibility to ensure the region is big enough
898 * before calling us.
899 */
900
901 static int
902 vmem_fit(const bt_t const *bt, vmem_size_t size, vmem_size_t align,
903 vmem_size_t phase, vmem_size_t nocross,
904 vmem_addr_t minaddr, vmem_addr_t maxaddr, vmem_addr_t *addrp)
905 {
906 vmem_addr_t start;
907 vmem_addr_t end;
908
909 KASSERT(size > 0);
910 KASSERT(bt->bt_size >= size); /* caller's responsibility */
911
912 /*
913 * XXX assumption: vmem_addr_t and vmem_size_t are
914 * unsigned integer of the same size.
915 */
916
917 start = bt->bt_start;
918 if (start < minaddr) {
919 start = minaddr;
920 }
921 end = BT_END(bt);
922 if (end > maxaddr) {
923 end = maxaddr;
924 }
925 if (start > end) {
926 return ENOMEM;
927 }
928
929 start = VMEM_ALIGNUP(start - phase, align) + phase;
930 if (start < bt->bt_start) {
931 start += align;
932 }
933 if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
934 KASSERT(align < nocross);
935 start = VMEM_ALIGNUP(start - phase, nocross) + phase;
936 }
937 if (start <= end && end - start >= size - 1) {
938 KASSERT((start & (align - 1)) == phase);
939 KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
940 KASSERT(minaddr <= start);
941 KASSERT(maxaddr == 0 || start + size - 1 <= maxaddr);
942 KASSERT(bt->bt_start <= start);
943 KASSERT(BT_END(bt) - start >= size - 1);
944 *addrp = start;
945 return 0;
946 }
947 return ENOMEM;
948 }
949
950
951 /*
952 * vmem_create_internal: creates a vmem arena.
953 */
954
955 static vmem_t *
956 vmem_create_internal(const char *name, vmem_addr_t base, vmem_size_t size,
957 vmem_size_t quantum, vmem_import_t *importfn, vmem_release_t *releasefn,
958 void *arg, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
959 {
960 vmem_t *vm = NULL;
961 int i;
962
963 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
964 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
965 KASSERT(quantum > 0);
966
967 if (flags & VM_BOOTSTRAP) {
968 #if defined(_KERNEL)
969 KASSERT(static_vmem_count > 0);
970 vm = &static_vmems[--static_vmem_count];
971 #endif /* defined(_KERNEL) */
972 } else {
973 vm = xmalloc(sizeof(*vm), flags);
974 }
975 if (vm == NULL) {
976 return NULL;
977 }
978
979 VMEM_CONDVAR_INIT(vm, "vmem");
980 VMEM_LOCK_INIT(vm, ipl);
981 vm->vm_flags = flags;
982 vm->vm_nfreetags = 0;
983 LIST_INIT(&vm->vm_freetags);
984 strlcpy(vm->vm_name, name, sizeof(vm->vm_name));
985 vm->vm_quantum_mask = quantum - 1;
986 vm->vm_quantum_shift = SIZE2ORDER(quantum);
987 KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
988 vm->vm_importfn = importfn;
989 vm->vm_releasefn = releasefn;
990 vm->vm_arg = arg;
991 vm->vm_nbusytag = 0;
992 vm->vm_size = 0;
993 vm->vm_inuse = 0;
994 #if defined(QCACHE)
995 qc_init(vm, qcache_max, ipl);
996 #endif /* defined(QCACHE) */
997
998 CIRCLEQ_INIT(&vm->vm_seglist);
999 for (i = 0; i < VMEM_MAXORDER; i++) {
1000 LIST_INIT(&vm->vm_freelist[i]);
1001 }
1002 vm->vm_hashlist = NULL;
1003 if (flags & VM_BOOTSTRAP) {
1004 vm->vm_hashsize = 1;
1005 vm->vm_hashlist = &vm->vm_hash0;
1006 } else if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
1007 vmem_destroy1(vm);
1008 return NULL;
1009 }
1010
1011 if (size != 0) {
1012 if (vmem_add(vm, base, size, flags) != 0) {
1013 vmem_destroy1(vm);
1014 return NULL;
1015 }
1016 }
1017
1018 #if defined(_KERNEL)
1019 if (flags & VM_BOOTSTRAP) {
1020 bt_refill(vm, VM_NOSLEEP);
1021 }
1022
1023 mutex_enter(&vmem_list_lock);
1024 LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
1025 mutex_exit(&vmem_list_lock);
1026 #endif /* defined(_KERNEL) */
1027
1028 return vm;
1029 }
1030
1031
1032 /* ---- vmem API */
1033
1034 /*
1035 * vmem_create: create an arena.
1036 *
1037 * => must not be called from interrupt context.
1038 */
1039
1040 vmem_t *
1041 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
1042 vmem_size_t quantum, vmem_import_t *importfn, vmem_release_t *releasefn,
1043 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
1044 {
1045
1046 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1047 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1048 KASSERT((flags & (VM_XIMPORT)) == 0);
1049
1050 return vmem_create_internal(name, base, size, quantum,
1051 importfn, releasefn, source, qcache_max, flags, ipl);
1052 }
1053
1054 /*
1055 * vmem_xcreate: create an arena takes alternative import func.
1056 *
1057 * => must not be called from interrupt context.
1058 */
1059
1060 vmem_t *
1061 vmem_xcreate(const char *name, vmem_addr_t base, vmem_size_t size,
1062 vmem_size_t quantum, vmem_ximport_t *importfn, vmem_release_t *releasefn,
1063 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
1064 {
1065
1066 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1067 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1068 KASSERT((flags & (VM_XIMPORT)) == 0);
1069
1070 return vmem_create_internal(name, base, size, quantum,
1071 (vmem_import_t *)importfn, releasefn, source,
1072 qcache_max, flags | VM_XIMPORT, ipl);
1073 }
1074
1075 void
1076 vmem_destroy(vmem_t *vm)
1077 {
1078
1079 #if defined(_KERNEL)
1080 mutex_enter(&vmem_list_lock);
1081 LIST_REMOVE(vm, vm_alllist);
1082 mutex_exit(&vmem_list_lock);
1083 #endif /* defined(_KERNEL) */
1084
1085 vmem_destroy1(vm);
1086 }
1087
1088 vmem_size_t
1089 vmem_roundup_size(vmem_t *vm, vmem_size_t size)
1090 {
1091
1092 return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
1093 }
1094
1095 /*
1096 * vmem_alloc:
1097 *
1098 * => caller must ensure appropriate spl,
1099 * if the arena can be accessed from interrupt context.
1100 */
1101
1102 int
1103 vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags, vmem_addr_t *addrp)
1104 {
1105 const vm_flag_t strat __unused = flags & VM_FITMASK;
1106
1107 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1108 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1109
1110 KASSERT(size > 0);
1111 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1112 if ((flags & VM_SLEEP) != 0) {
1113 ASSERT_SLEEPABLE();
1114 }
1115
1116 #if defined(QCACHE)
1117 if (size <= vm->vm_qcache_max) {
1118 void *p;
1119 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1120 qcache_t *qc = vm->vm_qcache[qidx - 1];
1121
1122 p = pool_cache_get(qc->qc_cache, vmf_to_prf(flags));
1123 if (addrp != NULL)
1124 *addrp = (vmem_addr_t)p;
1125 return (p == NULL) ? ENOMEM : 0;
1126 }
1127 #endif /* defined(QCACHE) */
1128
1129 return vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
1130 flags, addrp);
1131 }
1132
1133 int
1134 vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align,
1135 const vmem_size_t phase, const vmem_size_t nocross,
1136 const vmem_addr_t minaddr, const vmem_addr_t maxaddr, const vm_flag_t flags,
1137 vmem_addr_t *addrp)
1138 {
1139 struct vmem_freelist *list;
1140 struct vmem_freelist *first;
1141 struct vmem_freelist *end;
1142 bt_t *bt;
1143 bt_t *btnew;
1144 bt_t *btnew2;
1145 const vmem_size_t size = vmem_roundup_size(vm, size0);
1146 vm_flag_t strat = flags & VM_FITMASK;
1147 vmem_addr_t start;
1148 int rc;
1149
1150 KASSERT(size0 > 0);
1151 KASSERT(size > 0);
1152 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1153 if ((flags & VM_SLEEP) != 0) {
1154 ASSERT_SLEEPABLE();
1155 }
1156 KASSERT((align & vm->vm_quantum_mask) == 0);
1157 KASSERT((align & (align - 1)) == 0);
1158 KASSERT((phase & vm->vm_quantum_mask) == 0);
1159 KASSERT((nocross & vm->vm_quantum_mask) == 0);
1160 KASSERT((nocross & (nocross - 1)) == 0);
1161 KASSERT((align == 0 && phase == 0) || phase < align);
1162 KASSERT(nocross == 0 || nocross >= size);
1163 KASSERT(minaddr <= maxaddr);
1164 KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
1165
1166 if (align == 0) {
1167 align = vm->vm_quantum_mask + 1;
1168 }
1169
1170 /*
1171 * allocate boundary tags before acquiring the vmem lock.
1172 */
1173 btnew = bt_alloc(vm, flags);
1174 if (btnew == NULL) {
1175 return ENOMEM;
1176 }
1177 btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
1178 if (btnew2 == NULL) {
1179 bt_free(vm, btnew);
1180 return ENOMEM;
1181 }
1182
1183 /*
1184 * choose a free block from which we allocate.
1185 */
1186 retry_strat:
1187 first = bt_freehead_toalloc(vm, size, strat);
1188 end = &vm->vm_freelist[VMEM_MAXORDER];
1189 retry:
1190 bt = NULL;
1191 VMEM_LOCK(vm);
1192 vmem_check(vm);
1193 if (strat == VM_INSTANTFIT) {
1194 /*
1195 * just choose the first block which satisfies our restrictions.
1196 *
1197 * note that we don't need to check the size of the blocks
1198 * because any blocks found on these list should be larger than
1199 * the given size.
1200 */
1201 for (list = first; list < end; list++) {
1202 bt = LIST_FIRST(list);
1203 if (bt != NULL) {
1204 rc = vmem_fit(bt, size, align, phase,
1205 nocross, minaddr, maxaddr, &start);
1206 if (rc == 0) {
1207 goto gotit;
1208 }
1209 /*
1210 * don't bother to follow the bt_freelist link
1211 * here. the list can be very long and we are
1212 * told to run fast. blocks from the later free
1213 * lists are larger and have better chances to
1214 * satisfy our restrictions.
1215 */
1216 }
1217 }
1218 } else { /* VM_BESTFIT */
1219 /*
1220 * we assume that, for space efficiency, it's better to
1221 * allocate from a smaller block. thus we will start searching
1222 * from the lower-order list than VM_INSTANTFIT.
1223 * however, don't bother to find the smallest block in a free
1224 * list because the list can be very long. we can revisit it
1225 * if/when it turns out to be a problem.
1226 *
1227 * note that the 'first' list can contain blocks smaller than
1228 * the requested size. thus we need to check bt_size.
1229 */
1230 for (list = first; list < end; list++) {
1231 LIST_FOREACH(bt, list, bt_freelist) {
1232 if (bt->bt_size >= size) {
1233 rc = vmem_fit(bt, size, align, phase,
1234 nocross, minaddr, maxaddr, &start);
1235 if (rc == 0) {
1236 goto gotit;
1237 }
1238 }
1239 }
1240 }
1241 }
1242 VMEM_UNLOCK(vm);
1243 #if 1
1244 if (strat == VM_INSTANTFIT) {
1245 strat = VM_BESTFIT;
1246 goto retry_strat;
1247 }
1248 #endif
1249 if (align != vm->vm_quantum_mask + 1 || phase != 0 || nocross != 0) {
1250
1251 /*
1252 * XXX should try to import a region large enough to
1253 * satisfy restrictions?
1254 */
1255
1256 goto fail;
1257 }
1258 /* XXX eeek, minaddr & maxaddr not respected */
1259 if (vmem_import(vm, size, flags) == 0) {
1260 goto retry;
1261 }
1262 /* XXX */
1263
1264 if ((flags & VM_SLEEP) != 0) {
1265 #if defined(_KERNEL) && !defined(_RUMPKERNEL)
1266 mutex_spin_enter(&uvm_fpageqlock);
1267 uvm_kick_pdaemon();
1268 mutex_spin_exit(&uvm_fpageqlock);
1269 #endif
1270 VMEM_LOCK(vm);
1271 VMEM_CONDVAR_WAIT(vm);
1272 VMEM_UNLOCK(vm);
1273 goto retry;
1274 }
1275 fail:
1276 bt_free(vm, btnew);
1277 bt_free(vm, btnew2);
1278 return ENOMEM;
1279
1280 gotit:
1281 KASSERT(bt->bt_type == BT_TYPE_FREE);
1282 KASSERT(bt->bt_size >= size);
1283 bt_remfree(vm, bt);
1284 vmem_check(vm);
1285 if (bt->bt_start != start) {
1286 btnew2->bt_type = BT_TYPE_FREE;
1287 btnew2->bt_start = bt->bt_start;
1288 btnew2->bt_size = start - bt->bt_start;
1289 bt->bt_start = start;
1290 bt->bt_size -= btnew2->bt_size;
1291 bt_insfree(vm, btnew2);
1292 bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
1293 btnew2 = NULL;
1294 vmem_check(vm);
1295 }
1296 KASSERT(bt->bt_start == start);
1297 if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
1298 /* split */
1299 btnew->bt_type = BT_TYPE_BUSY;
1300 btnew->bt_start = bt->bt_start;
1301 btnew->bt_size = size;
1302 bt->bt_start = bt->bt_start + size;
1303 bt->bt_size -= size;
1304 bt_insfree(vm, bt);
1305 bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
1306 bt_insbusy(vm, btnew);
1307 vmem_check(vm);
1308 VMEM_UNLOCK(vm);
1309 } else {
1310 bt->bt_type = BT_TYPE_BUSY;
1311 bt_insbusy(vm, bt);
1312 vmem_check(vm);
1313 VMEM_UNLOCK(vm);
1314 bt_free(vm, btnew);
1315 btnew = bt;
1316 }
1317 if (btnew2 != NULL) {
1318 bt_free(vm, btnew2);
1319 }
1320 KASSERT(btnew->bt_size >= size);
1321 btnew->bt_type = BT_TYPE_BUSY;
1322
1323 if (addrp != NULL)
1324 *addrp = btnew->bt_start;
1325 return 0;
1326 }
1327
1328 /*
1329 * vmem_free:
1330 *
1331 * => caller must ensure appropriate spl,
1332 * if the arena can be accessed from interrupt context.
1333 */
1334
1335 void
1336 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1337 {
1338
1339 KASSERT(size > 0);
1340
1341 #if defined(QCACHE)
1342 if (size <= vm->vm_qcache_max) {
1343 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1344 qcache_t *qc = vm->vm_qcache[qidx - 1];
1345
1346 pool_cache_put(qc->qc_cache, (void *)addr);
1347 return;
1348 }
1349 #endif /* defined(QCACHE) */
1350
1351 vmem_xfree(vm, addr, size);
1352 }
1353
1354 void
1355 vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1356 {
1357 bt_t *bt;
1358 bt_t *t;
1359 LIST_HEAD(, vmem_btag) tofree;
1360
1361 LIST_INIT(&tofree);
1362
1363 KASSERT(size > 0);
1364
1365 VMEM_LOCK(vm);
1366
1367 bt = bt_lookupbusy(vm, addr);
1368 KASSERT(bt != NULL);
1369 KASSERT(bt->bt_start == addr);
1370 KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1371 bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1372 KASSERT(bt->bt_type == BT_TYPE_BUSY);
1373 bt_rembusy(vm, bt);
1374 bt->bt_type = BT_TYPE_FREE;
1375
1376 /* coalesce */
1377 t = CIRCLEQ_NEXT(bt, bt_seglist);
1378 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1379 KASSERT(BT_END(bt) < t->bt_start); /* YYY */
1380 bt_remfree(vm, t);
1381 bt_remseg(vm, t);
1382 bt->bt_size += t->bt_size;
1383 LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1384 }
1385 t = CIRCLEQ_PREV(bt, bt_seglist);
1386 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1387 KASSERT(BT_END(t) < bt->bt_start); /* YYY */
1388 bt_remfree(vm, t);
1389 bt_remseg(vm, t);
1390 bt->bt_size += t->bt_size;
1391 bt->bt_start = t->bt_start;
1392 LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1393 }
1394
1395 t = CIRCLEQ_PREV(bt, bt_seglist);
1396 KASSERT(t != NULL);
1397 KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1398 if (vm->vm_releasefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1399 t->bt_size == bt->bt_size) {
1400 vmem_addr_t spanaddr;
1401 vmem_size_t spansize;
1402
1403 KASSERT(t->bt_start == bt->bt_start);
1404 spanaddr = bt->bt_start;
1405 spansize = bt->bt_size;
1406 bt_remseg(vm, bt);
1407 LIST_INSERT_HEAD(&tofree, bt, bt_freelist);
1408 bt_remseg(vm, t);
1409 LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1410 vm->vm_size -= spansize;
1411 VMEM_CONDVAR_BROADCAST(vm);
1412 VMEM_UNLOCK(vm);
1413 (*vm->vm_releasefn)(vm->vm_arg, spanaddr, spansize);
1414 } else {
1415 bt_insfree(vm, bt);
1416 VMEM_CONDVAR_BROADCAST(vm);
1417 VMEM_UNLOCK(vm);
1418 }
1419
1420 while (!LIST_EMPTY(&tofree)) {
1421 t = LIST_FIRST(&tofree);
1422 LIST_REMOVE(t, bt_freelist);
1423 bt_free(vm, t);
1424 }
1425 }
1426
1427 /*
1428 * vmem_add:
1429 *
1430 * => caller must ensure appropriate spl,
1431 * if the arena can be accessed from interrupt context.
1432 */
1433
1434 int
1435 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1436 {
1437
1438 return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1439 }
1440
1441 /*
1442 * vmem_size: information about arenas size
1443 *
1444 * => return free/allocated size in arena
1445 */
1446 vmem_size_t
1447 vmem_size(vmem_t *vm, int typemask)
1448 {
1449
1450 switch (typemask) {
1451 case VMEM_ALLOC:
1452 return vm->vm_inuse;
1453 case VMEM_FREE:
1454 return vm->vm_size - vm->vm_inuse;
1455 case VMEM_FREE|VMEM_ALLOC:
1456 return vm->vm_size;
1457 default:
1458 panic("vmem_size");
1459 }
1460 }
1461
1462 /* ---- rehash */
1463
1464 #if defined(_KERNEL)
1465 static struct callout vmem_rehash_ch;
1466 static int vmem_rehash_interval;
1467 static struct workqueue *vmem_rehash_wq;
1468 static struct work vmem_rehash_wk;
1469
1470 static void
1471 vmem_rehash_all(struct work *wk, void *dummy)
1472 {
1473 vmem_t *vm;
1474
1475 KASSERT(wk == &vmem_rehash_wk);
1476 mutex_enter(&vmem_list_lock);
1477 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1478 size_t desired;
1479 size_t current;
1480
1481 if (!VMEM_TRYLOCK(vm)) {
1482 continue;
1483 }
1484 desired = vm->vm_nbusytag;
1485 current = vm->vm_hashsize;
1486 VMEM_UNLOCK(vm);
1487
1488 if (desired > VMEM_HASHSIZE_MAX) {
1489 desired = VMEM_HASHSIZE_MAX;
1490 } else if (desired < VMEM_HASHSIZE_MIN) {
1491 desired = VMEM_HASHSIZE_MIN;
1492 }
1493 if (desired > current * 2 || desired * 2 < current) {
1494 vmem_rehash(vm, desired, VM_NOSLEEP);
1495 }
1496 }
1497 mutex_exit(&vmem_list_lock);
1498
1499 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1500 }
1501
1502 static void
1503 vmem_rehash_all_kick(void *dummy)
1504 {
1505
1506 workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1507 }
1508
1509 void
1510 vmem_rehash_start(void)
1511 {
1512 int error;
1513
1514 error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1515 vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
1516 if (error) {
1517 panic("%s: workqueue_create %d\n", __func__, error);
1518 }
1519 callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
1520 callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1521
1522 vmem_rehash_interval = hz * 10;
1523 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1524 }
1525 #endif /* defined(_KERNEL) */
1526
1527 /* ---- debug */
1528
1529 #if defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY)
1530
1531 static void bt_dump(const bt_t *, void (*)(const char *, ...));
1532
1533 static const char *
1534 bt_type_string(int type)
1535 {
1536 static const char * const table[] = {
1537 [BT_TYPE_BUSY] = "busy",
1538 [BT_TYPE_FREE] = "free",
1539 [BT_TYPE_SPAN] = "span",
1540 [BT_TYPE_SPAN_STATIC] = "static span",
1541 };
1542
1543 if (type >= __arraycount(table)) {
1544 return "BOGUS";
1545 }
1546 return table[type];
1547 }
1548
1549 static void
1550 bt_dump(const bt_t *bt, void (*pr)(const char *, ...))
1551 {
1552
1553 (*pr)("\t%p: %" PRIu64 ", %" PRIu64 ", %d(%s)\n",
1554 bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1555 bt->bt_type, bt_type_string(bt->bt_type));
1556 }
1557
1558 static void
1559 vmem_dump(const vmem_t *vm , void (*pr)(const char *, ...))
1560 {
1561 const bt_t *bt;
1562 int i;
1563
1564 (*pr)("vmem %p '%s'\n", vm, vm->vm_name);
1565 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1566 bt_dump(bt, pr);
1567 }
1568
1569 for (i = 0; i < VMEM_MAXORDER; i++) {
1570 const struct vmem_freelist *fl = &vm->vm_freelist[i];
1571
1572 if (LIST_EMPTY(fl)) {
1573 continue;
1574 }
1575
1576 (*pr)("freelist[%d]\n", i);
1577 LIST_FOREACH(bt, fl, bt_freelist) {
1578 bt_dump(bt, pr);
1579 }
1580 }
1581 }
1582
1583 #endif /* defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) */
1584
1585 #if defined(DDB)
1586 static bt_t *
1587 vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
1588 {
1589 bt_t *bt;
1590
1591 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1592 if (BT_ISSPAN_P(bt)) {
1593 continue;
1594 }
1595 if (bt->bt_start <= addr && addr <= BT_END(bt)) {
1596 return bt;
1597 }
1598 }
1599
1600 return NULL;
1601 }
1602
1603 void
1604 vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1605 {
1606 vmem_t *vm;
1607
1608 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1609 bt_t *bt;
1610
1611 bt = vmem_whatis_lookup(vm, addr);
1612 if (bt == NULL) {
1613 continue;
1614 }
1615 (*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1616 (void *)addr, (void *)bt->bt_start,
1617 (size_t)(addr - bt->bt_start), vm->vm_name,
1618 (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1619 }
1620 }
1621
1622 void
1623 vmem_printall(const char *modif, void (*pr)(const char *, ...))
1624 {
1625 const vmem_t *vm;
1626
1627 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1628 vmem_dump(vm, pr);
1629 }
1630 }
1631
1632 void
1633 vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...))
1634 {
1635 const vmem_t *vm = (const void *)addr;
1636
1637 vmem_dump(vm, pr);
1638 }
1639 #endif /* defined(DDB) */
1640
1641 #if defined(_KERNEL)
1642 #define vmem_printf printf
1643 #else
1644 #include <stdio.h>
1645 #include <stdarg.h>
1646
1647 static void
1648 vmem_printf(const char *fmt, ...)
1649 {
1650 va_list ap;
1651 va_start(ap, fmt);
1652 vprintf(fmt, ap);
1653 va_end(ap);
1654 }
1655 #endif
1656
1657 #if defined(VMEM_SANITY)
1658
1659 static bool
1660 vmem_check_sanity(vmem_t *vm)
1661 {
1662 const bt_t *bt, *bt2;
1663
1664 KASSERT(vm != NULL);
1665
1666 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1667 if (bt->bt_start > BT_END(bt)) {
1668 printf("corrupted tag\n");
1669 bt_dump(bt, vmem_printf);
1670 return false;
1671 }
1672 }
1673 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1674 CIRCLEQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
1675 if (bt == bt2) {
1676 continue;
1677 }
1678 if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
1679 continue;
1680 }
1681 if (bt->bt_start <= BT_END(bt2) &&
1682 bt2->bt_start <= BT_END(bt)) {
1683 printf("overwrapped tags\n");
1684 bt_dump(bt, vmem_printf);
1685 bt_dump(bt2, vmem_printf);
1686 return false;
1687 }
1688 }
1689 }
1690
1691 return true;
1692 }
1693
1694 static void
1695 vmem_check(vmem_t *vm)
1696 {
1697
1698 if (!vmem_check_sanity(vm)) {
1699 panic("insanity vmem %p", vm);
1700 }
1701 }
1702
1703 #endif /* defined(VMEM_SANITY) */
1704
1705 #if defined(UNITTEST)
1706 int
1707 main(void)
1708 {
1709 int rc;
1710 vmem_t *vm;
1711 vmem_addr_t p;
1712 struct reg {
1713 vmem_addr_t p;
1714 vmem_size_t sz;
1715 bool x;
1716 } *reg = NULL;
1717 int nreg = 0;
1718 int nalloc = 0;
1719 int nfree = 0;
1720 vmem_size_t total = 0;
1721 #if 1
1722 vm_flag_t strat = VM_INSTANTFIT;
1723 #else
1724 vm_flag_t strat = VM_BESTFIT;
1725 #endif
1726
1727 vm = vmem_create("test", 0, 0, 1, NULL, NULL, NULL, 0, VM_SLEEP,
1728 #ifdef _KERNEL
1729 IPL_NONE
1730 #else
1731 0
1732 #endif
1733 );
1734 if (vm == NULL) {
1735 printf("vmem_create\n");
1736 exit(EXIT_FAILURE);
1737 }
1738 vmem_dump(vm, vmem_printf);
1739
1740 rc = vmem_add(vm, 0, 50, VM_SLEEP);
1741 assert(rc == 0);
1742 rc = vmem_add(vm, 100, 200, VM_SLEEP);
1743 assert(rc == 0);
1744 rc = vmem_add(vm, 2000, 1, VM_SLEEP);
1745 assert(rc == 0);
1746 rc = vmem_add(vm, 40000, 65536, VM_SLEEP);
1747 assert(rc == 0);
1748 rc = vmem_add(vm, 10000, 10000, VM_SLEEP);
1749 assert(rc == 0);
1750 rc = vmem_add(vm, 500, 1000, VM_SLEEP);
1751 assert(rc == 0);
1752 rc = vmem_add(vm, 0xffffff00, 0x100, VM_SLEEP);
1753 assert(rc == 0);
1754 rc = vmem_xalloc(vm, 0x101, 0, 0, 0,
1755 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1756 assert(rc != 0);
1757 rc = vmem_xalloc(vm, 50, 0, 0, 0, 0, 49, strat|VM_SLEEP, &p);
1758 assert(rc == 0 && p == 0);
1759 vmem_xfree(vm, p, 50);
1760 rc = vmem_xalloc(vm, 25, 0, 0, 0, 0, 24, strat|VM_SLEEP, &p);
1761 assert(rc == 0 && p == 0);
1762 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1763 0xffffff01, 0xffffffff, strat|VM_SLEEP, &p);
1764 assert(rc != 0);
1765 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1766 0xffffff00, 0xfffffffe, strat|VM_SLEEP, &p);
1767 assert(rc != 0);
1768 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1769 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1770 assert(rc == 0);
1771 vmem_dump(vm, vmem_printf);
1772 for (;;) {
1773 struct reg *r;
1774 int t = rand() % 100;
1775
1776 if (t > 45) {
1777 /* alloc */
1778 vmem_size_t sz = rand() % 500 + 1;
1779 bool x;
1780 vmem_size_t align, phase, nocross;
1781 vmem_addr_t minaddr, maxaddr;
1782
1783 if (t > 70) {
1784 x = true;
1785 /* XXX */
1786 align = 1 << (rand() % 15);
1787 phase = rand() % 65536;
1788 nocross = 1 << (rand() % 15);
1789 if (align <= phase) {
1790 phase = 0;
1791 }
1792 if (VMEM_CROSS_P(phase, phase + sz - 1,
1793 nocross)) {
1794 nocross = 0;
1795 }
1796 do {
1797 minaddr = rand() % 50000;
1798 maxaddr = rand() % 70000;
1799 } while (minaddr > maxaddr);
1800 printf("=== xalloc %" PRIu64
1801 " align=%" PRIu64 ", phase=%" PRIu64
1802 ", nocross=%" PRIu64 ", min=%" PRIu64
1803 ", max=%" PRIu64 "\n",
1804 (uint64_t)sz,
1805 (uint64_t)align,
1806 (uint64_t)phase,
1807 (uint64_t)nocross,
1808 (uint64_t)minaddr,
1809 (uint64_t)maxaddr);
1810 rc = vmem_xalloc(vm, sz, align, phase, nocross,
1811 minaddr, maxaddr, strat|VM_SLEEP, &p);
1812 } else {
1813 x = false;
1814 printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1815 rc = vmem_alloc(vm, sz, strat|VM_SLEEP, &p);
1816 }
1817 printf("-> %" PRIu64 "\n", (uint64_t)p);
1818 vmem_dump(vm, vmem_printf);
1819 if (rc != 0) {
1820 if (x) {
1821 continue;
1822 }
1823 break;
1824 }
1825 nreg++;
1826 reg = realloc(reg, sizeof(*reg) * nreg);
1827 r = ®[nreg - 1];
1828 r->p = p;
1829 r->sz = sz;
1830 r->x = x;
1831 total += sz;
1832 nalloc++;
1833 } else if (nreg != 0) {
1834 /* free */
1835 r = ®[rand() % nreg];
1836 printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1837 (uint64_t)r->p, (uint64_t)r->sz);
1838 if (r->x) {
1839 vmem_xfree(vm, r->p, r->sz);
1840 } else {
1841 vmem_free(vm, r->p, r->sz);
1842 }
1843 total -= r->sz;
1844 vmem_dump(vm, vmem_printf);
1845 *r = reg[nreg - 1];
1846 nreg--;
1847 nfree++;
1848 }
1849 printf("total=%" PRIu64 "\n", (uint64_t)total);
1850 }
1851 fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1852 (uint64_t)total, nalloc, nfree);
1853 exit(EXIT_SUCCESS);
1854 }
1855 #endif /* defined(UNITTEST) */
1856