subr_vmem.c revision 1.75.2.1 1 /* $NetBSD: subr_vmem.c,v 1.75.2.1 2012/11/20 03:02:43 tls Exp $ */
2
3 /*-
4 * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * reference:
31 * - Magazines and Vmem: Extending the Slab Allocator
32 * to Many CPUs and Arbitrary Resources
33 * http://www.usenix.org/event/usenix01/bonwick.html
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.75.2.1 2012/11/20 03:02:43 tls Exp $");
38
39 #if defined(_KERNEL)
40 #include "opt_ddb.h"
41 #define QCACHE
42 #endif /* defined(_KERNEL) */
43
44 #include <sys/param.h>
45 #include <sys/hash.h>
46 #include <sys/queue.h>
47 #include <sys/bitops.h>
48
49 #if defined(_KERNEL)
50 #include <sys/systm.h>
51 #include <sys/kernel.h> /* hz */
52 #include <sys/callout.h>
53 #include <sys/kmem.h>
54 #include <sys/pool.h>
55 #include <sys/vmem.h>
56 #include <sys/workqueue.h>
57 #include <sys/atomic.h>
58 #include <uvm/uvm.h>
59 #include <uvm/uvm_extern.h>
60 #include <uvm/uvm_km.h>
61 #include <uvm/uvm_page.h>
62 #include <uvm/uvm_pdaemon.h>
63 #else /* defined(_KERNEL) */
64 #include "../sys/vmem.h"
65 #endif /* defined(_KERNEL) */
66
67
68 #if defined(_KERNEL)
69 #include <sys/evcnt.h>
70 #define VMEM_EVCNT_DEFINE(name) \
71 struct evcnt vmem_evcnt_##name = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, \
72 "vmemev", #name); \
73 EVCNT_ATTACH_STATIC(vmem_evcnt_##name);
74 #define VMEM_EVCNT_INCR(ev) vmem_evcnt_##ev.ev_count++
75 #define VMEM_EVCNT_DECR(ev) vmem_evcnt_##ev.ev_count--
76
77 VMEM_EVCNT_DEFINE(bt_pages)
78 VMEM_EVCNT_DEFINE(bt_count)
79 VMEM_EVCNT_DEFINE(bt_inuse)
80
81 #define LOCK_DECL(name) \
82 kmutex_t name; char lockpad[COHERENCY_UNIT - sizeof(kmutex_t)]
83
84 #define CONDVAR_DECL(name) \
85 kcondvar_t name
86
87 #else /* defined(_KERNEL) */
88 #include <stdio.h>
89 #include <errno.h>
90 #include <assert.h>
91 #include <stdlib.h>
92 #include <string.h>
93
94 #define VMEM_EVCNT_INCR(ev) /* nothing */
95 #define VMEM_EVCNT_DECR(ev) /* nothing */
96
97 #define UNITTEST
98 #define KASSERT(a) assert(a)
99 #define LOCK_DECL(name) /* nothing */
100 #define CONDVAR_DECL(name) /* nothing */
101 #define VMEM_CONDVAR_INIT(vm, wchan) /* nothing */
102 #define VMEM_CONDVAR_BROADCAST(vm) /* nothing */
103 #define mutex_init(a, b, c) /* nothing */
104 #define mutex_destroy(a) /* nothing */
105 #define mutex_enter(a) /* nothing */
106 #define mutex_tryenter(a) true
107 #define mutex_exit(a) /* nothing */
108 #define mutex_owned(a) /* nothing */
109 #define ASSERT_SLEEPABLE() /* nothing */
110 #define panic(...) printf(__VA_ARGS__); abort()
111 #endif /* defined(_KERNEL) */
112
113 struct vmem;
114 struct vmem_btag;
115
116 #if defined(VMEM_SANITY)
117 static void vmem_check(vmem_t *);
118 #else /* defined(VMEM_SANITY) */
119 #define vmem_check(vm) /* nothing */
120 #endif /* defined(VMEM_SANITY) */
121
122 #define VMEM_MAXORDER (sizeof(vmem_size_t) * CHAR_BIT)
123
124 #define VMEM_HASHSIZE_MIN 1 /* XXX */
125 #define VMEM_HASHSIZE_MAX 65536 /* XXX */
126 #define VMEM_HASHSIZE_INIT 1
127
128 #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
129
130 CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
131 LIST_HEAD(vmem_freelist, vmem_btag);
132 LIST_HEAD(vmem_hashlist, vmem_btag);
133
134 #if defined(QCACHE)
135 #define VMEM_QCACHE_IDX_MAX 32
136
137 #define QC_NAME_MAX 16
138
139 struct qcache {
140 pool_cache_t qc_cache;
141 vmem_t *qc_vmem;
142 char qc_name[QC_NAME_MAX];
143 };
144 typedef struct qcache qcache_t;
145 #define QC_POOL_TO_QCACHE(pool) ((qcache_t *)(pool->pr_qcache))
146 #endif /* defined(QCACHE) */
147
148 #define VMEM_NAME_MAX 16
149
150 /* vmem arena */
151 struct vmem {
152 CONDVAR_DECL(vm_cv);
153 LOCK_DECL(vm_lock);
154 vm_flag_t vm_flags;
155 vmem_import_t *vm_importfn;
156 vmem_release_t *vm_releasefn;
157 size_t vm_nfreetags;
158 LIST_HEAD(, vmem_btag) vm_freetags;
159 void *vm_arg;
160 struct vmem_seglist vm_seglist;
161 struct vmem_freelist vm_freelist[VMEM_MAXORDER];
162 size_t vm_hashsize;
163 size_t vm_nbusytag;
164 struct vmem_hashlist *vm_hashlist;
165 struct vmem_hashlist vm_hash0;
166 size_t vm_quantum_mask;
167 int vm_quantum_shift;
168 size_t vm_size;
169 size_t vm_inuse;
170 char vm_name[VMEM_NAME_MAX+1];
171 LIST_ENTRY(vmem) vm_alllist;
172
173 #if defined(QCACHE)
174 /* quantum cache */
175 size_t vm_qcache_max;
176 struct pool_allocator vm_qcache_allocator;
177 qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
178 qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
179 #endif /* defined(QCACHE) */
180 };
181
182 #define VMEM_LOCK(vm) mutex_enter(&vm->vm_lock)
183 #define VMEM_TRYLOCK(vm) mutex_tryenter(&vm->vm_lock)
184 #define VMEM_UNLOCK(vm) mutex_exit(&vm->vm_lock)
185 #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl)
186 #define VMEM_LOCK_DESTROY(vm) mutex_destroy(&vm->vm_lock)
187 #define VMEM_ASSERT_LOCKED(vm) KASSERT(mutex_owned(&vm->vm_lock))
188
189 #if defined(_KERNEL)
190 #define VMEM_CONDVAR_INIT(vm, wchan) cv_init(&vm->vm_cv, wchan)
191 #define VMEM_CONDVAR_DESTROY(vm) cv_destroy(&vm->vm_cv)
192 #define VMEM_CONDVAR_WAIT(vm) cv_wait(&vm->vm_cv, &vm->vm_lock)
193 #define VMEM_CONDVAR_BROADCAST(vm) cv_broadcast(&vm->vm_cv)
194 #endif /* defined(_KERNEL) */
195
196 /* boundary tag */
197 struct vmem_btag {
198 CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
199 union {
200 LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
201 LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
202 } bt_u;
203 #define bt_hashlist bt_u.u_hashlist
204 #define bt_freelist bt_u.u_freelist
205 vmem_addr_t bt_start;
206 vmem_size_t bt_size;
207 int bt_type;
208 };
209
210 #define BT_TYPE_SPAN 1
211 #define BT_TYPE_SPAN_STATIC 2
212 #define BT_TYPE_FREE 3
213 #define BT_TYPE_BUSY 4
214 #define BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
215
216 #define BT_END(bt) ((bt)->bt_start + (bt)->bt_size - 1)
217
218 typedef struct vmem_btag bt_t;
219
220 #if defined(_KERNEL)
221 static kmutex_t vmem_list_lock;
222 static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
223 #endif /* defined(_KERNEL) */
224
225 /* ---- misc */
226
227 #define VMEM_ALIGNUP(addr, align) \
228 (-(-(addr) & -(align)))
229
230 #define VMEM_CROSS_P(addr1, addr2, boundary) \
231 ((((addr1) ^ (addr2)) & -(boundary)) != 0)
232
233 #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
234 #define SIZE2ORDER(size) ((int)ilog2(size))
235
236 #if !defined(_KERNEL)
237 #define xmalloc(sz, flags) malloc(sz)
238 #define xfree(p, sz) free(p)
239 #define bt_alloc(vm, flags) malloc(sizeof(bt_t))
240 #define bt_free(vm, bt) free(bt)
241 #else /* defined(_KERNEL) */
242
243 #define xmalloc(sz, flags) \
244 kmem_intr_alloc(sz, ((flags) & VM_SLEEP) ? KM_SLEEP : KM_NOSLEEP);
245 #define xfree(p, sz) kmem_intr_free(p, sz);
246
247 /*
248 * Memory for arenas initialized during bootstrap.
249 * There is memory for STATIC_VMEM_COUNT bootstrap arenas.
250 *
251 * BT_RESERVE calculation:
252 * we allocate memory for boundry tags with vmem, therefor we have
253 * to keep a reserve of bts used to allocated memory for bts.
254 * This reserve is 4 for each arena involved in allocating vmems memory.
255 * BT_MAXFREE: don't cache excessive counts of bts in arenas
256 */
257 #define STATIC_VMEM_COUNT 4
258 #define STATIC_BT_COUNT 200
259 #define BT_MINRESERVE 4
260 #define BT_MAXFREE 64
261 /* must be equal or greater then qcache multiplier for kmem_va_arena */
262 #define STATIC_QC_POOL_COUNT 8
263
264 static struct vmem static_vmems[STATIC_VMEM_COUNT];
265 static int static_vmem_count = STATIC_VMEM_COUNT;
266
267 static struct vmem_btag static_bts[STATIC_BT_COUNT];
268 static int static_bt_count = STATIC_BT_COUNT;
269
270 static struct pool_cache static_qc_pools[STATIC_QC_POOL_COUNT];
271 static int static_qc_pool_count = STATIC_QC_POOL_COUNT;
272
273 vmem_t *kmem_va_meta_arena;
274 vmem_t *kmem_meta_arena;
275
276 static kmutex_t vmem_btag_lock;
277 static LIST_HEAD(, vmem_btag) vmem_btag_freelist;
278 static size_t vmem_btag_freelist_count = 0;
279 static size_t vmem_btag_count = STATIC_BT_COUNT;
280
281 /* ---- boundary tag */
282
283 #define BT_PER_PAGE (PAGE_SIZE / sizeof(bt_t))
284
285 static int bt_refill(vmem_t *vm, vm_flag_t flags);
286
287 static int
288 bt_refillglobal(vm_flag_t flags)
289 {
290 vmem_addr_t va;
291 bt_t *btp;
292 bt_t *bt;
293 int i;
294
295 mutex_enter(&vmem_btag_lock);
296 if (vmem_btag_freelist_count > 0) {
297 mutex_exit(&vmem_btag_lock);
298 return 0;
299 }
300
301 if (vmem_alloc(kmem_meta_arena, PAGE_SIZE,
302 (flags & ~VM_FITMASK) | VM_INSTANTFIT | VM_POPULATING, &va) != 0) {
303 mutex_exit(&vmem_btag_lock);
304 return ENOMEM;
305 }
306 VMEM_EVCNT_INCR(bt_pages);
307
308 btp = (void *) va;
309 for (i = 0; i < (BT_PER_PAGE); i++) {
310 bt = btp;
311 memset(bt, 0, sizeof(*bt));
312 LIST_INSERT_HEAD(&vmem_btag_freelist, bt,
313 bt_freelist);
314 vmem_btag_freelist_count++;
315 vmem_btag_count++;
316 VMEM_EVCNT_INCR(bt_count);
317 btp++;
318 }
319 mutex_exit(&vmem_btag_lock);
320
321 bt_refill(kmem_arena, (flags & ~VM_FITMASK) | VM_INSTANTFIT);
322 bt_refill(kmem_va_meta_arena, (flags & ~VM_FITMASK) | VM_INSTANTFIT);
323 bt_refill(kmem_meta_arena, (flags & ~VM_FITMASK) | VM_INSTANTFIT);
324
325 return 0;
326 }
327
328 static int
329 bt_refill(vmem_t *vm, vm_flag_t flags)
330 {
331 bt_t *bt;
332
333 bt_refillglobal(flags);
334
335 VMEM_LOCK(vm);
336 mutex_enter(&vmem_btag_lock);
337 while (!LIST_EMPTY(&vmem_btag_freelist) &&
338 vm->vm_nfreetags <= BT_MINRESERVE) {
339 bt = LIST_FIRST(&vmem_btag_freelist);
340 LIST_REMOVE(bt, bt_freelist);
341 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
342 vm->vm_nfreetags++;
343 vmem_btag_freelist_count--;
344 }
345 mutex_exit(&vmem_btag_lock);
346
347 if (vm->vm_nfreetags == 0) {
348 VMEM_UNLOCK(vm);
349 return ENOMEM;
350 }
351 VMEM_UNLOCK(vm);
352
353 return 0;
354 }
355
356 static inline bt_t *
357 bt_alloc(vmem_t *vm, vm_flag_t flags)
358 {
359 bt_t *bt;
360 again:
361 VMEM_LOCK(vm);
362 if (vm->vm_nfreetags <= BT_MINRESERVE &&
363 (flags & VM_POPULATING) == 0) {
364 VMEM_UNLOCK(vm);
365 if (bt_refill(vm, VM_NOSLEEP | VM_INSTANTFIT)) {
366 return NULL;
367 }
368 goto again;
369 }
370 bt = LIST_FIRST(&vm->vm_freetags);
371 LIST_REMOVE(bt, bt_freelist);
372 vm->vm_nfreetags--;
373 VMEM_UNLOCK(vm);
374 VMEM_EVCNT_INCR(bt_inuse);
375
376 return bt;
377 }
378
379 static inline void
380 bt_free(vmem_t *vm, bt_t *bt)
381 {
382
383 VMEM_LOCK(vm);
384 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
385 vm->vm_nfreetags++;
386 while (vm->vm_nfreetags > BT_MAXFREE) {
387 bt = LIST_FIRST(&vm->vm_freetags);
388 LIST_REMOVE(bt, bt_freelist);
389 vm->vm_nfreetags--;
390 mutex_enter(&vmem_btag_lock);
391 LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
392 vmem_btag_freelist_count++;
393 mutex_exit(&vmem_btag_lock);
394 }
395 VMEM_UNLOCK(vm);
396 VMEM_EVCNT_DECR(bt_inuse);
397 }
398
399 #endif /* defined(_KERNEL) */
400
401 /*
402 * freelist[0] ... [1, 1]
403 * freelist[1] ... [2, 3]
404 * freelist[2] ... [4, 7]
405 * freelist[3] ... [8, 15]
406 * :
407 * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
408 * :
409 */
410
411 static struct vmem_freelist *
412 bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
413 {
414 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
415 const int idx = SIZE2ORDER(qsize);
416
417 KASSERT(size != 0 && qsize != 0);
418 KASSERT((size & vm->vm_quantum_mask) == 0);
419 KASSERT(idx >= 0);
420 KASSERT(idx < VMEM_MAXORDER);
421
422 return &vm->vm_freelist[idx];
423 }
424
425 /*
426 * bt_freehead_toalloc: return the freelist for the given size and allocation
427 * strategy.
428 *
429 * for VM_INSTANTFIT, return the list in which any blocks are large enough
430 * for the requested size. otherwise, return the list which can have blocks
431 * large enough for the requested size.
432 */
433
434 static struct vmem_freelist *
435 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
436 {
437 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
438 int idx = SIZE2ORDER(qsize);
439
440 KASSERT(size != 0 && qsize != 0);
441 KASSERT((size & vm->vm_quantum_mask) == 0);
442
443 if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
444 idx++;
445 /* check too large request? */
446 }
447 KASSERT(idx >= 0);
448 KASSERT(idx < VMEM_MAXORDER);
449
450 return &vm->vm_freelist[idx];
451 }
452
453 /* ---- boundary tag hash */
454
455 static struct vmem_hashlist *
456 bt_hashhead(vmem_t *vm, vmem_addr_t addr)
457 {
458 struct vmem_hashlist *list;
459 unsigned int hash;
460
461 hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
462 list = &vm->vm_hashlist[hash % vm->vm_hashsize];
463
464 return list;
465 }
466
467 static bt_t *
468 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
469 {
470 struct vmem_hashlist *list;
471 bt_t *bt;
472
473 list = bt_hashhead(vm, addr);
474 LIST_FOREACH(bt, list, bt_hashlist) {
475 if (bt->bt_start == addr) {
476 break;
477 }
478 }
479
480 return bt;
481 }
482
483 static void
484 bt_rembusy(vmem_t *vm, bt_t *bt)
485 {
486
487 KASSERT(vm->vm_nbusytag > 0);
488 vm->vm_inuse -= bt->bt_size;
489 vm->vm_nbusytag--;
490 LIST_REMOVE(bt, bt_hashlist);
491 }
492
493 static void
494 bt_insbusy(vmem_t *vm, bt_t *bt)
495 {
496 struct vmem_hashlist *list;
497
498 KASSERT(bt->bt_type == BT_TYPE_BUSY);
499
500 list = bt_hashhead(vm, bt->bt_start);
501 LIST_INSERT_HEAD(list, bt, bt_hashlist);
502 vm->vm_nbusytag++;
503 vm->vm_inuse += bt->bt_size;
504 }
505
506 /* ---- boundary tag list */
507
508 static void
509 bt_remseg(vmem_t *vm, bt_t *bt)
510 {
511
512 CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
513 }
514
515 static void
516 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
517 {
518
519 CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
520 }
521
522 static void
523 bt_insseg_tail(vmem_t *vm, bt_t *bt)
524 {
525
526 CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
527 }
528
529 static void
530 bt_remfree(vmem_t *vm, bt_t *bt)
531 {
532
533 KASSERT(bt->bt_type == BT_TYPE_FREE);
534
535 LIST_REMOVE(bt, bt_freelist);
536 }
537
538 static void
539 bt_insfree(vmem_t *vm, bt_t *bt)
540 {
541 struct vmem_freelist *list;
542
543 list = bt_freehead_tofree(vm, bt->bt_size);
544 LIST_INSERT_HEAD(list, bt, bt_freelist);
545 }
546
547 /* ---- vmem internal functions */
548
549 #if defined(QCACHE)
550 static inline vm_flag_t
551 prf_to_vmf(int prflags)
552 {
553 vm_flag_t vmflags;
554
555 KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
556 if ((prflags & PR_WAITOK) != 0) {
557 vmflags = VM_SLEEP;
558 } else {
559 vmflags = VM_NOSLEEP;
560 }
561 return vmflags;
562 }
563
564 static inline int
565 vmf_to_prf(vm_flag_t vmflags)
566 {
567 int prflags;
568
569 if ((vmflags & VM_SLEEP) != 0) {
570 prflags = PR_WAITOK;
571 } else {
572 prflags = PR_NOWAIT;
573 }
574 return prflags;
575 }
576
577 static size_t
578 qc_poolpage_size(size_t qcache_max)
579 {
580 int i;
581
582 for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
583 /* nothing */
584 }
585 return ORDER2SIZE(i);
586 }
587
588 static void *
589 qc_poolpage_alloc(struct pool *pool, int prflags)
590 {
591 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
592 vmem_t *vm = qc->qc_vmem;
593 vmem_addr_t addr;
594
595 if (vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
596 prf_to_vmf(prflags) | VM_INSTANTFIT, &addr) != 0)
597 return NULL;
598 return (void *)addr;
599 }
600
601 static void
602 qc_poolpage_free(struct pool *pool, void *addr)
603 {
604 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
605 vmem_t *vm = qc->qc_vmem;
606
607 vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
608 }
609
610 static void
611 qc_init(vmem_t *vm, size_t qcache_max, int ipl)
612 {
613 qcache_t *prevqc;
614 struct pool_allocator *pa;
615 int qcache_idx_max;
616 int i;
617
618 KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
619 if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
620 qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
621 }
622 vm->vm_qcache_max = qcache_max;
623 pa = &vm->vm_qcache_allocator;
624 memset(pa, 0, sizeof(*pa));
625 pa->pa_alloc = qc_poolpage_alloc;
626 pa->pa_free = qc_poolpage_free;
627 pa->pa_pagesz = qc_poolpage_size(qcache_max);
628
629 qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
630 prevqc = NULL;
631 for (i = qcache_idx_max; i > 0; i--) {
632 qcache_t *qc = &vm->vm_qcache_store[i - 1];
633 size_t size = i << vm->vm_quantum_shift;
634 pool_cache_t pc;
635
636 qc->qc_vmem = vm;
637 snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
638 vm->vm_name, size);
639
640 if (vm->vm_flags & VM_BOOTSTRAP) {
641 KASSERT(static_qc_pool_count > 0);
642 pc = &static_qc_pools[--static_qc_pool_count];
643 pool_cache_bootstrap(pc, size,
644 ORDER2SIZE(vm->vm_quantum_shift), 0,
645 PR_NOALIGN | PR_NOTOUCH | PR_RECURSIVE /* XXX */,
646 qc->qc_name, pa, ipl, NULL, NULL, NULL);
647 } else {
648 pc = pool_cache_init(size,
649 ORDER2SIZE(vm->vm_quantum_shift), 0,
650 PR_NOALIGN | PR_NOTOUCH /* XXX */,
651 qc->qc_name, pa, ipl, NULL, NULL, NULL);
652 }
653 qc->qc_cache = pc;
654 KASSERT(qc->qc_cache != NULL); /* XXX */
655 if (prevqc != NULL &&
656 qc->qc_cache->pc_pool.pr_itemsperpage ==
657 prevqc->qc_cache->pc_pool.pr_itemsperpage) {
658 if (vm->vm_flags & VM_BOOTSTRAP) {
659 pool_cache_bootstrap_destroy(pc);
660 //static_qc_pool_count++;
661 } else {
662 pool_cache_destroy(qc->qc_cache);
663 }
664 vm->vm_qcache[i - 1] = prevqc;
665 continue;
666 }
667 qc->qc_cache->pc_pool.pr_qcache = qc;
668 vm->vm_qcache[i - 1] = qc;
669 prevqc = qc;
670 }
671 }
672
673 static void
674 qc_destroy(vmem_t *vm)
675 {
676 const qcache_t *prevqc;
677 int i;
678 int qcache_idx_max;
679
680 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
681 prevqc = NULL;
682 for (i = 0; i < qcache_idx_max; i++) {
683 qcache_t *qc = vm->vm_qcache[i];
684
685 if (prevqc == qc) {
686 continue;
687 }
688 if (vm->vm_flags & VM_BOOTSTRAP) {
689 pool_cache_bootstrap_destroy(qc->qc_cache);
690 } else {
691 pool_cache_destroy(qc->qc_cache);
692 }
693 prevqc = qc;
694 }
695 }
696 #endif
697
698 #if defined(_KERNEL)
699 void
700 vmem_bootstrap(void)
701 {
702
703 mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_VM);
704 mutex_init(&vmem_btag_lock, MUTEX_DEFAULT, IPL_VM);
705
706 while (static_bt_count-- > 0) {
707 bt_t *bt = &static_bts[static_bt_count];
708 LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
709 VMEM_EVCNT_INCR(bt_count);
710 vmem_btag_freelist_count++;
711 }
712 }
713
714 void
715 vmem_init(vmem_t *vm)
716 {
717
718 kmem_va_meta_arena = vmem_create("vmem-va", 0, 0, PAGE_SIZE,
719 vmem_alloc, vmem_free, vm,
720 0, VM_NOSLEEP | VM_BOOTSTRAP | VM_LARGEIMPORT,
721 IPL_VM);
722
723 kmem_meta_arena = vmem_create("vmem-meta", 0, 0, PAGE_SIZE,
724 uvm_km_kmem_alloc, uvm_km_kmem_free, kmem_va_meta_arena,
725 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
726 }
727 #endif /* defined(_KERNEL) */
728
729 static int
730 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
731 int spanbttype)
732 {
733 bt_t *btspan;
734 bt_t *btfree;
735
736 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
737 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
738 KASSERT(spanbttype == BT_TYPE_SPAN ||
739 spanbttype == BT_TYPE_SPAN_STATIC);
740
741 btspan = bt_alloc(vm, flags);
742 if (btspan == NULL) {
743 return ENOMEM;
744 }
745 btfree = bt_alloc(vm, flags);
746 if (btfree == NULL) {
747 bt_free(vm, btspan);
748 return ENOMEM;
749 }
750
751 btspan->bt_type = spanbttype;
752 btspan->bt_start = addr;
753 btspan->bt_size = size;
754
755 btfree->bt_type = BT_TYPE_FREE;
756 btfree->bt_start = addr;
757 btfree->bt_size = size;
758
759 VMEM_LOCK(vm);
760 bt_insseg_tail(vm, btspan);
761 bt_insseg(vm, btfree, btspan);
762 bt_insfree(vm, btfree);
763 vm->vm_size += size;
764 VMEM_UNLOCK(vm);
765
766 return 0;
767 }
768
769 static void
770 vmem_destroy1(vmem_t *vm)
771 {
772
773 #if defined(QCACHE)
774 qc_destroy(vm);
775 #endif /* defined(QCACHE) */
776 if (vm->vm_hashlist != NULL) {
777 int i;
778
779 for (i = 0; i < vm->vm_hashsize; i++) {
780 bt_t *bt;
781
782 while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
783 KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
784 bt_free(vm, bt);
785 }
786 }
787 if (vm->vm_hashlist != &vm->vm_hash0) {
788 xfree(vm->vm_hashlist,
789 sizeof(struct vmem_hashlist *) * vm->vm_hashsize);
790 }
791 }
792
793 while (vm->vm_nfreetags > 0) {
794 bt_t *bt = LIST_FIRST(&vm->vm_freetags);
795 LIST_REMOVE(bt, bt_freelist);
796 vm->vm_nfreetags--;
797 mutex_enter(&vmem_btag_lock);
798 #if defined (_KERNEL)
799 LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
800 vmem_btag_freelist_count++;
801 #endif /* defined(_KERNEL) */
802 mutex_exit(&vmem_btag_lock);
803 }
804
805 VMEM_LOCK_DESTROY(vm);
806 xfree(vm, sizeof(*vm));
807 }
808
809 static int
810 vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
811 {
812 vmem_addr_t addr;
813 int rc;
814
815 if (vm->vm_importfn == NULL) {
816 return EINVAL;
817 }
818
819 if (vm->vm_flags & VM_LARGEIMPORT) {
820 size *= 8;
821 }
822
823 if (vm->vm_flags & VM_XIMPORT) {
824 rc = ((vmem_ximport_t *)vm->vm_importfn)(vm->vm_arg, size,
825 &size, flags, &addr);
826 } else {
827 rc = (vm->vm_importfn)(vm->vm_arg, size, flags, &addr);
828 }
829 if (rc) {
830 return ENOMEM;
831 }
832
833 if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) != 0) {
834 (*vm->vm_releasefn)(vm->vm_arg, addr, size);
835 return ENOMEM;
836 }
837
838 return 0;
839 }
840
841 static int
842 vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
843 {
844 bt_t *bt;
845 int i;
846 struct vmem_hashlist *newhashlist;
847 struct vmem_hashlist *oldhashlist;
848 size_t oldhashsize;
849
850 KASSERT(newhashsize > 0);
851
852 newhashlist =
853 xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
854 if (newhashlist == NULL) {
855 return ENOMEM;
856 }
857 for (i = 0; i < newhashsize; i++) {
858 LIST_INIT(&newhashlist[i]);
859 }
860
861 if (!VMEM_TRYLOCK(vm)) {
862 xfree(newhashlist,
863 sizeof(struct vmem_hashlist *) * newhashsize);
864 return EBUSY;
865 }
866 oldhashlist = vm->vm_hashlist;
867 oldhashsize = vm->vm_hashsize;
868 vm->vm_hashlist = newhashlist;
869 vm->vm_hashsize = newhashsize;
870 if (oldhashlist == NULL) {
871 VMEM_UNLOCK(vm);
872 return 0;
873 }
874 for (i = 0; i < oldhashsize; i++) {
875 while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
876 bt_rembusy(vm, bt); /* XXX */
877 bt_insbusy(vm, bt);
878 }
879 }
880 VMEM_UNLOCK(vm);
881
882 if (oldhashlist != &vm->vm_hash0) {
883 xfree(oldhashlist,
884 sizeof(struct vmem_hashlist *) * oldhashsize);
885 }
886
887 return 0;
888 }
889
890 /*
891 * vmem_fit: check if a bt can satisfy the given restrictions.
892 *
893 * it's a caller's responsibility to ensure the region is big enough
894 * before calling us.
895 */
896
897 static int
898 vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align,
899 vmem_size_t phase, vmem_size_t nocross,
900 vmem_addr_t minaddr, vmem_addr_t maxaddr, vmem_addr_t *addrp)
901 {
902 vmem_addr_t start;
903 vmem_addr_t end;
904
905 KASSERT(size > 0);
906 KASSERT(bt->bt_size >= size); /* caller's responsibility */
907
908 /*
909 * XXX assumption: vmem_addr_t and vmem_size_t are
910 * unsigned integer of the same size.
911 */
912
913 start = bt->bt_start;
914 if (start < minaddr) {
915 start = minaddr;
916 }
917 end = BT_END(bt);
918 if (end > maxaddr) {
919 end = maxaddr;
920 }
921 if (start > end) {
922 return ENOMEM;
923 }
924
925 start = VMEM_ALIGNUP(start - phase, align) + phase;
926 if (start < bt->bt_start) {
927 start += align;
928 }
929 if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
930 KASSERT(align < nocross);
931 start = VMEM_ALIGNUP(start - phase, nocross) + phase;
932 }
933 if (start <= end && end - start >= size - 1) {
934 KASSERT((start & (align - 1)) == phase);
935 KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
936 KASSERT(minaddr <= start);
937 KASSERT(maxaddr == 0 || start + size - 1 <= maxaddr);
938 KASSERT(bt->bt_start <= start);
939 KASSERT(BT_END(bt) - start >= size - 1);
940 *addrp = start;
941 return 0;
942 }
943 return ENOMEM;
944 }
945
946
947 /*
948 * vmem_create_internal: creates a vmem arena.
949 */
950
951 static vmem_t *
952 vmem_create_internal(const char *name, vmem_addr_t base, vmem_size_t size,
953 vmem_size_t quantum, vmem_import_t *importfn, vmem_release_t *releasefn,
954 void *arg, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
955 {
956 vmem_t *vm = NULL;
957 int i;
958
959 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
960 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
961 KASSERT(quantum > 0);
962
963 if (flags & VM_BOOTSTRAP) {
964 #if defined(_KERNEL)
965 KASSERT(static_vmem_count > 0);
966 vm = &static_vmems[--static_vmem_count];
967 #endif /* defined(_KERNEL) */
968 } else {
969 vm = xmalloc(sizeof(*vm), flags);
970 }
971 if (vm == NULL) {
972 return NULL;
973 }
974
975 VMEM_CONDVAR_INIT(vm, "vmem");
976 VMEM_LOCK_INIT(vm, ipl);
977 vm->vm_flags = flags;
978 vm->vm_nfreetags = 0;
979 LIST_INIT(&vm->vm_freetags);
980 strlcpy(vm->vm_name, name, sizeof(vm->vm_name));
981 vm->vm_quantum_mask = quantum - 1;
982 vm->vm_quantum_shift = SIZE2ORDER(quantum);
983 KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
984 vm->vm_importfn = importfn;
985 vm->vm_releasefn = releasefn;
986 vm->vm_arg = arg;
987 vm->vm_nbusytag = 0;
988 vm->vm_size = 0;
989 vm->vm_inuse = 0;
990 #if defined(QCACHE)
991 qc_init(vm, qcache_max, ipl);
992 #endif /* defined(QCACHE) */
993
994 CIRCLEQ_INIT(&vm->vm_seglist);
995 for (i = 0; i < VMEM_MAXORDER; i++) {
996 LIST_INIT(&vm->vm_freelist[i]);
997 }
998 vm->vm_hashlist = NULL;
999 if (flags & VM_BOOTSTRAP) {
1000 vm->vm_hashsize = 1;
1001 vm->vm_hashlist = &vm->vm_hash0;
1002 } else if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
1003 vmem_destroy1(vm);
1004 return NULL;
1005 }
1006
1007 if (size != 0) {
1008 if (vmem_add(vm, base, size, flags) != 0) {
1009 vmem_destroy1(vm);
1010 return NULL;
1011 }
1012 }
1013
1014 #if defined(_KERNEL)
1015 if (flags & VM_BOOTSTRAP) {
1016 bt_refill(vm, VM_NOSLEEP);
1017 }
1018
1019 mutex_enter(&vmem_list_lock);
1020 LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
1021 mutex_exit(&vmem_list_lock);
1022 #endif /* defined(_KERNEL) */
1023
1024 return vm;
1025 }
1026
1027
1028 /* ---- vmem API */
1029
1030 /*
1031 * vmem_create: create an arena.
1032 *
1033 * => must not be called from interrupt context.
1034 */
1035
1036 vmem_t *
1037 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
1038 vmem_size_t quantum, vmem_import_t *importfn, vmem_release_t *releasefn,
1039 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
1040 {
1041
1042 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1043 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1044 KASSERT((flags & (VM_XIMPORT)) == 0);
1045
1046 return vmem_create_internal(name, base, size, quantum,
1047 importfn, releasefn, source, qcache_max, flags, ipl);
1048 }
1049
1050 /*
1051 * vmem_xcreate: create an arena takes alternative import func.
1052 *
1053 * => must not be called from interrupt context.
1054 */
1055
1056 vmem_t *
1057 vmem_xcreate(const char *name, vmem_addr_t base, vmem_size_t size,
1058 vmem_size_t quantum, vmem_ximport_t *importfn, vmem_release_t *releasefn,
1059 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
1060 {
1061
1062 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1063 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1064 KASSERT((flags & (VM_XIMPORT)) == 0);
1065
1066 return vmem_create_internal(name, base, size, quantum,
1067 (vmem_import_t *)importfn, releasefn, source,
1068 qcache_max, flags | VM_XIMPORT, ipl);
1069 }
1070
1071 void
1072 vmem_destroy(vmem_t *vm)
1073 {
1074
1075 #if defined(_KERNEL)
1076 mutex_enter(&vmem_list_lock);
1077 LIST_REMOVE(vm, vm_alllist);
1078 mutex_exit(&vmem_list_lock);
1079 #endif /* defined(_KERNEL) */
1080
1081 vmem_destroy1(vm);
1082 }
1083
1084 vmem_size_t
1085 vmem_roundup_size(vmem_t *vm, vmem_size_t size)
1086 {
1087
1088 return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
1089 }
1090
1091 /*
1092 * vmem_alloc:
1093 *
1094 * => caller must ensure appropriate spl,
1095 * if the arena can be accessed from interrupt context.
1096 */
1097
1098 int
1099 vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags, vmem_addr_t *addrp)
1100 {
1101 const vm_flag_t strat __unused = flags & VM_FITMASK;
1102
1103 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1104 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1105
1106 KASSERT(size > 0);
1107 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1108 if ((flags & VM_SLEEP) != 0) {
1109 ASSERT_SLEEPABLE();
1110 }
1111
1112 #if defined(QCACHE)
1113 if (size <= vm->vm_qcache_max) {
1114 void *p;
1115 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1116 qcache_t *qc = vm->vm_qcache[qidx - 1];
1117
1118 p = pool_cache_get(qc->qc_cache, vmf_to_prf(flags));
1119 if (addrp != NULL)
1120 *addrp = (vmem_addr_t)p;
1121 return (p == NULL) ? ENOMEM : 0;
1122 }
1123 #endif /* defined(QCACHE) */
1124
1125 return vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
1126 flags, addrp);
1127 }
1128
1129 int
1130 vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align,
1131 const vmem_size_t phase, const vmem_size_t nocross,
1132 const vmem_addr_t minaddr, const vmem_addr_t maxaddr, const vm_flag_t flags,
1133 vmem_addr_t *addrp)
1134 {
1135 struct vmem_freelist *list;
1136 struct vmem_freelist *first;
1137 struct vmem_freelist *end;
1138 bt_t *bt;
1139 bt_t *btnew;
1140 bt_t *btnew2;
1141 const vmem_size_t size = vmem_roundup_size(vm, size0);
1142 vm_flag_t strat = flags & VM_FITMASK;
1143 vmem_addr_t start;
1144 int rc;
1145
1146 KASSERT(size0 > 0);
1147 KASSERT(size > 0);
1148 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1149 if ((flags & VM_SLEEP) != 0) {
1150 ASSERT_SLEEPABLE();
1151 }
1152 KASSERT((align & vm->vm_quantum_mask) == 0);
1153 KASSERT((align & (align - 1)) == 0);
1154 KASSERT((phase & vm->vm_quantum_mask) == 0);
1155 KASSERT((nocross & vm->vm_quantum_mask) == 0);
1156 KASSERT((nocross & (nocross - 1)) == 0);
1157 KASSERT((align == 0 && phase == 0) || phase < align);
1158 KASSERT(nocross == 0 || nocross >= size);
1159 KASSERT(minaddr <= maxaddr);
1160 KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
1161
1162 if (align == 0) {
1163 align = vm->vm_quantum_mask + 1;
1164 }
1165
1166 /*
1167 * allocate boundary tags before acquiring the vmem lock.
1168 */
1169 btnew = bt_alloc(vm, flags);
1170 if (btnew == NULL) {
1171 return ENOMEM;
1172 }
1173 btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
1174 if (btnew2 == NULL) {
1175 bt_free(vm, btnew);
1176 return ENOMEM;
1177 }
1178
1179 /*
1180 * choose a free block from which we allocate.
1181 */
1182 retry_strat:
1183 first = bt_freehead_toalloc(vm, size, strat);
1184 end = &vm->vm_freelist[VMEM_MAXORDER];
1185 retry:
1186 bt = NULL;
1187 VMEM_LOCK(vm);
1188 vmem_check(vm);
1189 if (strat == VM_INSTANTFIT) {
1190 /*
1191 * just choose the first block which satisfies our restrictions.
1192 *
1193 * note that we don't need to check the size of the blocks
1194 * because any blocks found on these list should be larger than
1195 * the given size.
1196 */
1197 for (list = first; list < end; list++) {
1198 bt = LIST_FIRST(list);
1199 if (bt != NULL) {
1200 rc = vmem_fit(bt, size, align, phase,
1201 nocross, minaddr, maxaddr, &start);
1202 if (rc == 0) {
1203 goto gotit;
1204 }
1205 /*
1206 * don't bother to follow the bt_freelist link
1207 * here. the list can be very long and we are
1208 * told to run fast. blocks from the later free
1209 * lists are larger and have better chances to
1210 * satisfy our restrictions.
1211 */
1212 }
1213 }
1214 } else { /* VM_BESTFIT */
1215 /*
1216 * we assume that, for space efficiency, it's better to
1217 * allocate from a smaller block. thus we will start searching
1218 * from the lower-order list than VM_INSTANTFIT.
1219 * however, don't bother to find the smallest block in a free
1220 * list because the list can be very long. we can revisit it
1221 * if/when it turns out to be a problem.
1222 *
1223 * note that the 'first' list can contain blocks smaller than
1224 * the requested size. thus we need to check bt_size.
1225 */
1226 for (list = first; list < end; list++) {
1227 LIST_FOREACH(bt, list, bt_freelist) {
1228 if (bt->bt_size >= size) {
1229 rc = vmem_fit(bt, size, align, phase,
1230 nocross, minaddr, maxaddr, &start);
1231 if (rc == 0) {
1232 goto gotit;
1233 }
1234 }
1235 }
1236 }
1237 }
1238 VMEM_UNLOCK(vm);
1239 #if 1
1240 if (strat == VM_INSTANTFIT) {
1241 strat = VM_BESTFIT;
1242 goto retry_strat;
1243 }
1244 #endif
1245 if (align != vm->vm_quantum_mask + 1 || phase != 0 || nocross != 0) {
1246
1247 /*
1248 * XXX should try to import a region large enough to
1249 * satisfy restrictions?
1250 */
1251
1252 goto fail;
1253 }
1254 /* XXX eeek, minaddr & maxaddr not respected */
1255 if (vmem_import(vm, size, flags) == 0) {
1256 goto retry;
1257 }
1258 /* XXX */
1259
1260 if ((flags & VM_SLEEP) != 0) {
1261 #if defined(_KERNEL) && !defined(_RUMPKERNEL)
1262 mutex_spin_enter(&uvm_fpageqlock);
1263 uvm_kick_pdaemon();
1264 mutex_spin_exit(&uvm_fpageqlock);
1265 #endif
1266 VMEM_LOCK(vm);
1267 VMEM_CONDVAR_WAIT(vm);
1268 VMEM_UNLOCK(vm);
1269 goto retry;
1270 }
1271 fail:
1272 bt_free(vm, btnew);
1273 bt_free(vm, btnew2);
1274 return ENOMEM;
1275
1276 gotit:
1277 KASSERT(bt->bt_type == BT_TYPE_FREE);
1278 KASSERT(bt->bt_size >= size);
1279 bt_remfree(vm, bt);
1280 vmem_check(vm);
1281 if (bt->bt_start != start) {
1282 btnew2->bt_type = BT_TYPE_FREE;
1283 btnew2->bt_start = bt->bt_start;
1284 btnew2->bt_size = start - bt->bt_start;
1285 bt->bt_start = start;
1286 bt->bt_size -= btnew2->bt_size;
1287 bt_insfree(vm, btnew2);
1288 bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
1289 btnew2 = NULL;
1290 vmem_check(vm);
1291 }
1292 KASSERT(bt->bt_start == start);
1293 if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
1294 /* split */
1295 btnew->bt_type = BT_TYPE_BUSY;
1296 btnew->bt_start = bt->bt_start;
1297 btnew->bt_size = size;
1298 bt->bt_start = bt->bt_start + size;
1299 bt->bt_size -= size;
1300 bt_insfree(vm, bt);
1301 bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
1302 bt_insbusy(vm, btnew);
1303 vmem_check(vm);
1304 VMEM_UNLOCK(vm);
1305 } else {
1306 bt->bt_type = BT_TYPE_BUSY;
1307 bt_insbusy(vm, bt);
1308 vmem_check(vm);
1309 VMEM_UNLOCK(vm);
1310 bt_free(vm, btnew);
1311 btnew = bt;
1312 }
1313 if (btnew2 != NULL) {
1314 bt_free(vm, btnew2);
1315 }
1316 KASSERT(btnew->bt_size >= size);
1317 btnew->bt_type = BT_TYPE_BUSY;
1318
1319 if (addrp != NULL)
1320 *addrp = btnew->bt_start;
1321 return 0;
1322 }
1323
1324 /*
1325 * vmem_free:
1326 *
1327 * => caller must ensure appropriate spl,
1328 * if the arena can be accessed from interrupt context.
1329 */
1330
1331 void
1332 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1333 {
1334
1335 KASSERT(size > 0);
1336
1337 #if defined(QCACHE)
1338 if (size <= vm->vm_qcache_max) {
1339 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1340 qcache_t *qc = vm->vm_qcache[qidx - 1];
1341
1342 pool_cache_put(qc->qc_cache, (void *)addr);
1343 return;
1344 }
1345 #endif /* defined(QCACHE) */
1346
1347 vmem_xfree(vm, addr, size);
1348 }
1349
1350 void
1351 vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1352 {
1353 bt_t *bt;
1354 bt_t *t;
1355 LIST_HEAD(, vmem_btag) tofree;
1356
1357 LIST_INIT(&tofree);
1358
1359 KASSERT(size > 0);
1360
1361 VMEM_LOCK(vm);
1362
1363 bt = bt_lookupbusy(vm, addr);
1364 KASSERT(bt != NULL);
1365 KASSERT(bt->bt_start == addr);
1366 KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1367 bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1368 KASSERT(bt->bt_type == BT_TYPE_BUSY);
1369 bt_rembusy(vm, bt);
1370 bt->bt_type = BT_TYPE_FREE;
1371
1372 /* coalesce */
1373 t = CIRCLEQ_NEXT(bt, bt_seglist);
1374 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1375 KASSERT(BT_END(bt) < t->bt_start); /* YYY */
1376 bt_remfree(vm, t);
1377 bt_remseg(vm, t);
1378 bt->bt_size += t->bt_size;
1379 LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1380 }
1381 t = CIRCLEQ_PREV(bt, bt_seglist);
1382 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1383 KASSERT(BT_END(t) < bt->bt_start); /* YYY */
1384 bt_remfree(vm, t);
1385 bt_remseg(vm, t);
1386 bt->bt_size += t->bt_size;
1387 bt->bt_start = t->bt_start;
1388 LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1389 }
1390
1391 t = CIRCLEQ_PREV(bt, bt_seglist);
1392 KASSERT(t != NULL);
1393 KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1394 if (vm->vm_releasefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1395 t->bt_size == bt->bt_size) {
1396 vmem_addr_t spanaddr;
1397 vmem_size_t spansize;
1398
1399 KASSERT(t->bt_start == bt->bt_start);
1400 spanaddr = bt->bt_start;
1401 spansize = bt->bt_size;
1402 bt_remseg(vm, bt);
1403 LIST_INSERT_HEAD(&tofree, bt, bt_freelist);
1404 bt_remseg(vm, t);
1405 LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1406 vm->vm_size -= spansize;
1407 VMEM_CONDVAR_BROADCAST(vm);
1408 VMEM_UNLOCK(vm);
1409 (*vm->vm_releasefn)(vm->vm_arg, spanaddr, spansize);
1410 } else {
1411 bt_insfree(vm, bt);
1412 VMEM_CONDVAR_BROADCAST(vm);
1413 VMEM_UNLOCK(vm);
1414 }
1415
1416 while (!LIST_EMPTY(&tofree)) {
1417 t = LIST_FIRST(&tofree);
1418 LIST_REMOVE(t, bt_freelist);
1419 bt_free(vm, t);
1420 }
1421 }
1422
1423 /*
1424 * vmem_add:
1425 *
1426 * => caller must ensure appropriate spl,
1427 * if the arena can be accessed from interrupt context.
1428 */
1429
1430 int
1431 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1432 {
1433
1434 return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1435 }
1436
1437 /*
1438 * vmem_size: information about arenas size
1439 *
1440 * => return free/allocated size in arena
1441 */
1442 vmem_size_t
1443 vmem_size(vmem_t *vm, int typemask)
1444 {
1445
1446 switch (typemask) {
1447 case VMEM_ALLOC:
1448 return vm->vm_inuse;
1449 case VMEM_FREE:
1450 return vm->vm_size - vm->vm_inuse;
1451 case VMEM_FREE|VMEM_ALLOC:
1452 return vm->vm_size;
1453 default:
1454 panic("vmem_size");
1455 }
1456 }
1457
1458 /* ---- rehash */
1459
1460 #if defined(_KERNEL)
1461 static struct callout vmem_rehash_ch;
1462 static int vmem_rehash_interval;
1463 static struct workqueue *vmem_rehash_wq;
1464 static struct work vmem_rehash_wk;
1465
1466 static void
1467 vmem_rehash_all(struct work *wk, void *dummy)
1468 {
1469 vmem_t *vm;
1470
1471 KASSERT(wk == &vmem_rehash_wk);
1472 mutex_enter(&vmem_list_lock);
1473 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1474 size_t desired;
1475 size_t current;
1476
1477 if (!VMEM_TRYLOCK(vm)) {
1478 continue;
1479 }
1480 desired = vm->vm_nbusytag;
1481 current = vm->vm_hashsize;
1482 VMEM_UNLOCK(vm);
1483
1484 if (desired > VMEM_HASHSIZE_MAX) {
1485 desired = VMEM_HASHSIZE_MAX;
1486 } else if (desired < VMEM_HASHSIZE_MIN) {
1487 desired = VMEM_HASHSIZE_MIN;
1488 }
1489 if (desired > current * 2 || desired * 2 < current) {
1490 vmem_rehash(vm, desired, VM_NOSLEEP);
1491 }
1492 }
1493 mutex_exit(&vmem_list_lock);
1494
1495 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1496 }
1497
1498 static void
1499 vmem_rehash_all_kick(void *dummy)
1500 {
1501
1502 workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1503 }
1504
1505 void
1506 vmem_rehash_start(void)
1507 {
1508 int error;
1509
1510 error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1511 vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
1512 if (error) {
1513 panic("%s: workqueue_create %d\n", __func__, error);
1514 }
1515 callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
1516 callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1517
1518 vmem_rehash_interval = hz * 10;
1519 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1520 }
1521 #endif /* defined(_KERNEL) */
1522
1523 /* ---- debug */
1524
1525 #if defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY)
1526
1527 static void bt_dump(const bt_t *, void (*)(const char *, ...));
1528
1529 static const char *
1530 bt_type_string(int type)
1531 {
1532 static const char * const table[] = {
1533 [BT_TYPE_BUSY] = "busy",
1534 [BT_TYPE_FREE] = "free",
1535 [BT_TYPE_SPAN] = "span",
1536 [BT_TYPE_SPAN_STATIC] = "static span",
1537 };
1538
1539 if (type >= __arraycount(table)) {
1540 return "BOGUS";
1541 }
1542 return table[type];
1543 }
1544
1545 static void
1546 bt_dump(const bt_t *bt, void (*pr)(const char *, ...))
1547 {
1548
1549 (*pr)("\t%p: %" PRIu64 ", %" PRIu64 ", %d(%s)\n",
1550 bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1551 bt->bt_type, bt_type_string(bt->bt_type));
1552 }
1553
1554 static void
1555 vmem_dump(const vmem_t *vm , void (*pr)(const char *, ...))
1556 {
1557 const bt_t *bt;
1558 int i;
1559
1560 (*pr)("vmem %p '%s'\n", vm, vm->vm_name);
1561 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1562 bt_dump(bt, pr);
1563 }
1564
1565 for (i = 0; i < VMEM_MAXORDER; i++) {
1566 const struct vmem_freelist *fl = &vm->vm_freelist[i];
1567
1568 if (LIST_EMPTY(fl)) {
1569 continue;
1570 }
1571
1572 (*pr)("freelist[%d]\n", i);
1573 LIST_FOREACH(bt, fl, bt_freelist) {
1574 bt_dump(bt, pr);
1575 }
1576 }
1577 }
1578
1579 #endif /* defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) */
1580
1581 #if defined(DDB)
1582 static bt_t *
1583 vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
1584 {
1585 bt_t *bt;
1586
1587 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1588 if (BT_ISSPAN_P(bt)) {
1589 continue;
1590 }
1591 if (bt->bt_start <= addr && addr <= BT_END(bt)) {
1592 return bt;
1593 }
1594 }
1595
1596 return NULL;
1597 }
1598
1599 void
1600 vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1601 {
1602 vmem_t *vm;
1603
1604 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1605 bt_t *bt;
1606
1607 bt = vmem_whatis_lookup(vm, addr);
1608 if (bt == NULL) {
1609 continue;
1610 }
1611 (*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1612 (void *)addr, (void *)bt->bt_start,
1613 (size_t)(addr - bt->bt_start), vm->vm_name,
1614 (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1615 }
1616 }
1617
1618 void
1619 vmem_printall(const char *modif, void (*pr)(const char *, ...))
1620 {
1621 const vmem_t *vm;
1622
1623 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1624 vmem_dump(vm, pr);
1625 }
1626 }
1627
1628 void
1629 vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...))
1630 {
1631 const vmem_t *vm = (const void *)addr;
1632
1633 vmem_dump(vm, pr);
1634 }
1635 #endif /* defined(DDB) */
1636
1637 #if defined(_KERNEL)
1638 #define vmem_printf printf
1639 #else
1640 #include <stdio.h>
1641 #include <stdarg.h>
1642
1643 static void
1644 vmem_printf(const char *fmt, ...)
1645 {
1646 va_list ap;
1647 va_start(ap, fmt);
1648 vprintf(fmt, ap);
1649 va_end(ap);
1650 }
1651 #endif
1652
1653 #if defined(VMEM_SANITY)
1654
1655 static bool
1656 vmem_check_sanity(vmem_t *vm)
1657 {
1658 const bt_t *bt, *bt2;
1659
1660 KASSERT(vm != NULL);
1661
1662 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1663 if (bt->bt_start > BT_END(bt)) {
1664 printf("corrupted tag\n");
1665 bt_dump(bt, vmem_printf);
1666 return false;
1667 }
1668 }
1669 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1670 CIRCLEQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
1671 if (bt == bt2) {
1672 continue;
1673 }
1674 if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
1675 continue;
1676 }
1677 if (bt->bt_start <= BT_END(bt2) &&
1678 bt2->bt_start <= BT_END(bt)) {
1679 printf("overwrapped tags\n");
1680 bt_dump(bt, vmem_printf);
1681 bt_dump(bt2, vmem_printf);
1682 return false;
1683 }
1684 }
1685 }
1686
1687 return true;
1688 }
1689
1690 static void
1691 vmem_check(vmem_t *vm)
1692 {
1693
1694 if (!vmem_check_sanity(vm)) {
1695 panic("insanity vmem %p", vm);
1696 }
1697 }
1698
1699 #endif /* defined(VMEM_SANITY) */
1700
1701 #if defined(UNITTEST)
1702 int
1703 main(void)
1704 {
1705 int rc;
1706 vmem_t *vm;
1707 vmem_addr_t p;
1708 struct reg {
1709 vmem_addr_t p;
1710 vmem_size_t sz;
1711 bool x;
1712 } *reg = NULL;
1713 int nreg = 0;
1714 int nalloc = 0;
1715 int nfree = 0;
1716 vmem_size_t total = 0;
1717 #if 1
1718 vm_flag_t strat = VM_INSTANTFIT;
1719 #else
1720 vm_flag_t strat = VM_BESTFIT;
1721 #endif
1722
1723 vm = vmem_create("test", 0, 0, 1, NULL, NULL, NULL, 0, VM_SLEEP,
1724 #ifdef _KERNEL
1725 IPL_NONE
1726 #else
1727 0
1728 #endif
1729 );
1730 if (vm == NULL) {
1731 printf("vmem_create\n");
1732 exit(EXIT_FAILURE);
1733 }
1734 vmem_dump(vm, vmem_printf);
1735
1736 rc = vmem_add(vm, 0, 50, VM_SLEEP);
1737 assert(rc == 0);
1738 rc = vmem_add(vm, 100, 200, VM_SLEEP);
1739 assert(rc == 0);
1740 rc = vmem_add(vm, 2000, 1, VM_SLEEP);
1741 assert(rc == 0);
1742 rc = vmem_add(vm, 40000, 65536, VM_SLEEP);
1743 assert(rc == 0);
1744 rc = vmem_add(vm, 10000, 10000, VM_SLEEP);
1745 assert(rc == 0);
1746 rc = vmem_add(vm, 500, 1000, VM_SLEEP);
1747 assert(rc == 0);
1748 rc = vmem_add(vm, 0xffffff00, 0x100, VM_SLEEP);
1749 assert(rc == 0);
1750 rc = vmem_xalloc(vm, 0x101, 0, 0, 0,
1751 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1752 assert(rc != 0);
1753 rc = vmem_xalloc(vm, 50, 0, 0, 0, 0, 49, strat|VM_SLEEP, &p);
1754 assert(rc == 0 && p == 0);
1755 vmem_xfree(vm, p, 50);
1756 rc = vmem_xalloc(vm, 25, 0, 0, 0, 0, 24, strat|VM_SLEEP, &p);
1757 assert(rc == 0 && p == 0);
1758 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1759 0xffffff01, 0xffffffff, strat|VM_SLEEP, &p);
1760 assert(rc != 0);
1761 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1762 0xffffff00, 0xfffffffe, strat|VM_SLEEP, &p);
1763 assert(rc != 0);
1764 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1765 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1766 assert(rc == 0);
1767 vmem_dump(vm, vmem_printf);
1768 for (;;) {
1769 struct reg *r;
1770 int t = rand() % 100;
1771
1772 if (t > 45) {
1773 /* alloc */
1774 vmem_size_t sz = rand() % 500 + 1;
1775 bool x;
1776 vmem_size_t align, phase, nocross;
1777 vmem_addr_t minaddr, maxaddr;
1778
1779 if (t > 70) {
1780 x = true;
1781 /* XXX */
1782 align = 1 << (rand() % 15);
1783 phase = rand() % 65536;
1784 nocross = 1 << (rand() % 15);
1785 if (align <= phase) {
1786 phase = 0;
1787 }
1788 if (VMEM_CROSS_P(phase, phase + sz - 1,
1789 nocross)) {
1790 nocross = 0;
1791 }
1792 do {
1793 minaddr = rand() % 50000;
1794 maxaddr = rand() % 70000;
1795 } while (minaddr > maxaddr);
1796 printf("=== xalloc %" PRIu64
1797 " align=%" PRIu64 ", phase=%" PRIu64
1798 ", nocross=%" PRIu64 ", min=%" PRIu64
1799 ", max=%" PRIu64 "\n",
1800 (uint64_t)sz,
1801 (uint64_t)align,
1802 (uint64_t)phase,
1803 (uint64_t)nocross,
1804 (uint64_t)minaddr,
1805 (uint64_t)maxaddr);
1806 rc = vmem_xalloc(vm, sz, align, phase, nocross,
1807 minaddr, maxaddr, strat|VM_SLEEP, &p);
1808 } else {
1809 x = false;
1810 printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1811 rc = vmem_alloc(vm, sz, strat|VM_SLEEP, &p);
1812 }
1813 printf("-> %" PRIu64 "\n", (uint64_t)p);
1814 vmem_dump(vm, vmem_printf);
1815 if (rc != 0) {
1816 if (x) {
1817 continue;
1818 }
1819 break;
1820 }
1821 nreg++;
1822 reg = realloc(reg, sizeof(*reg) * nreg);
1823 r = ®[nreg - 1];
1824 r->p = p;
1825 r->sz = sz;
1826 r->x = x;
1827 total += sz;
1828 nalloc++;
1829 } else if (nreg != 0) {
1830 /* free */
1831 r = ®[rand() % nreg];
1832 printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1833 (uint64_t)r->p, (uint64_t)r->sz);
1834 if (r->x) {
1835 vmem_xfree(vm, r->p, r->sz);
1836 } else {
1837 vmem_free(vm, r->p, r->sz);
1838 }
1839 total -= r->sz;
1840 vmem_dump(vm, vmem_printf);
1841 *r = reg[nreg - 1];
1842 nreg--;
1843 nfree++;
1844 }
1845 printf("total=%" PRIu64 "\n", (uint64_t)total);
1846 }
1847 fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1848 (uint64_t)total, nalloc, nfree);
1849 exit(EXIT_SUCCESS);
1850 }
1851 #endif /* defined(UNITTEST) */
1852