subr_vmem.c revision 1.80 1 /* $NetBSD: subr_vmem.c,v 1.80 2013/01/29 21:26:24 para Exp $ */
2
3 /*-
4 * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * reference:
31 * - Magazines and Vmem: Extending the Slab Allocator
32 * to Many CPUs and Arbitrary Resources
33 * http://www.usenix.org/event/usenix01/bonwick.html
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.80 2013/01/29 21:26:24 para Exp $");
38
39 #if defined(_KERNEL)
40 #include "opt_ddb.h"
41 #endif /* defined(_KERNEL) */
42
43 #include <sys/param.h>
44 #include <sys/hash.h>
45 #include <sys/queue.h>
46 #include <sys/bitops.h>
47
48 #if defined(_KERNEL)
49 #include <sys/systm.h>
50 #include <sys/kernel.h> /* hz */
51 #include <sys/callout.h>
52 #include <sys/kmem.h>
53 #include <sys/pool.h>
54 #include <sys/vmem.h>
55 #include <sys/vmem_impl.h>
56 #include <sys/workqueue.h>
57 #include <sys/atomic.h>
58 #include <uvm/uvm.h>
59 #include <uvm/uvm_extern.h>
60 #include <uvm/uvm_km.h>
61 #include <uvm/uvm_page.h>
62 #include <uvm/uvm_pdaemon.h>
63 #else /* defined(_KERNEL) */
64 #include <stdio.h>
65 #include <errno.h>
66 #include <assert.h>
67 #include <stdlib.h>
68 #include <string.h>
69 #include "../sys/vmem.h"
70 #include "../sys/vmem_impl.h"
71 #endif /* defined(_KERNEL) */
72
73
74 #if defined(_KERNEL)
75 #include <sys/evcnt.h>
76 #define VMEM_EVCNT_DEFINE(name) \
77 struct evcnt vmem_evcnt_##name = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, \
78 "vmemev", #name); \
79 EVCNT_ATTACH_STATIC(vmem_evcnt_##name);
80 #define VMEM_EVCNT_INCR(ev) vmem_evcnt_##ev.ev_count++
81 #define VMEM_EVCNT_DECR(ev) vmem_evcnt_##ev.ev_count--
82
83 VMEM_EVCNT_DEFINE(bt_pages)
84 VMEM_EVCNT_DEFINE(bt_count)
85 VMEM_EVCNT_DEFINE(bt_inuse)
86
87 #define VMEM_CONDVAR_INIT(vm, wchan) cv_init(&vm->vm_cv, wchan)
88 #define VMEM_CONDVAR_DESTROY(vm) cv_destroy(&vm->vm_cv)
89 #define VMEM_CONDVAR_WAIT(vm) cv_wait(&vm->vm_cv, &vm->vm_lock)
90 #define VMEM_CONDVAR_BROADCAST(vm) cv_broadcast(&vm->vm_cv)
91
92 #else /* defined(_KERNEL) */
93
94 #define VMEM_EVCNT_INCR(ev) /* nothing */
95 #define VMEM_EVCNT_DECR(ev) /* nothing */
96
97 #define VMEM_CONDVAR_INIT(vm, wchan) /* nothing */
98 #define VMEM_CONDVAR_DESTROY(vm) /* nothing */
99 #define VMEM_CONDVAR_WAIT(vm) /* nothing */
100 #define VMEM_CONDVAR_BROADCAST(vm) /* nothing */
101
102 #define UNITTEST
103 #define KASSERT(a) assert(a)
104 #define mutex_init(a, b, c) /* nothing */
105 #define mutex_destroy(a) /* nothing */
106 #define mutex_enter(a) /* nothing */
107 #define mutex_tryenter(a) true
108 #define mutex_exit(a) /* nothing */
109 #define mutex_owned(a) /* nothing */
110 #define ASSERT_SLEEPABLE() /* nothing */
111 #define panic(...) printf(__VA_ARGS__); abort()
112 #endif /* defined(_KERNEL) */
113
114 #if defined(VMEM_SANITY)
115 static void vmem_check(vmem_t *);
116 #else /* defined(VMEM_SANITY) */
117 #define vmem_check(vm) /* nothing */
118 #endif /* defined(VMEM_SANITY) */
119
120 #define VMEM_HASHSIZE_MIN 1 /* XXX */
121 #define VMEM_HASHSIZE_MAX 65536 /* XXX */
122 #define VMEM_HASHSIZE_INIT 1
123
124 #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
125
126 #if defined(_KERNEL)
127 static bool vmem_bootstrapped = false;
128 static kmutex_t vmem_list_lock;
129 static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
130 #endif /* defined(_KERNEL) */
131
132 /* ---- misc */
133
134 #define VMEM_LOCK(vm) mutex_enter(&vm->vm_lock)
135 #define VMEM_TRYLOCK(vm) mutex_tryenter(&vm->vm_lock)
136 #define VMEM_UNLOCK(vm) mutex_exit(&vm->vm_lock)
137 #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl)
138 #define VMEM_LOCK_DESTROY(vm) mutex_destroy(&vm->vm_lock)
139 #define VMEM_ASSERT_LOCKED(vm) KASSERT(mutex_owned(&vm->vm_lock))
140
141 #define VMEM_ALIGNUP(addr, align) \
142 (-(-(addr) & -(align)))
143
144 #define VMEM_CROSS_P(addr1, addr2, boundary) \
145 ((((addr1) ^ (addr2)) & -(boundary)) != 0)
146
147 #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
148 #define SIZE2ORDER(size) ((int)ilog2(size))
149
150 #if !defined(_KERNEL)
151 #define xmalloc(sz, flags) malloc(sz)
152 #define xfree(p, sz) free(p)
153 #define bt_alloc(vm, flags) malloc(sizeof(bt_t))
154 #define bt_free(vm, bt) free(bt)
155 #else /* defined(_KERNEL) */
156
157 #define xmalloc(sz, flags) \
158 kmem_alloc(sz, ((flags) & VM_SLEEP) ? KM_SLEEP : KM_NOSLEEP);
159 #define xfree(p, sz) kmem_free(p, sz);
160
161 /*
162 * BT_RESERVE calculation:
163 * we allocate memory for boundry tags with vmem, therefor we have
164 * to keep a reserve of bts used to allocated memory for bts.
165 * This reserve is 4 for each arena involved in allocating vmems memory.
166 * BT_MAXFREE: don't cache excessive counts of bts in arenas
167 */
168 #define STATIC_BT_COUNT 200
169 #define BT_MINRESERVE 4
170 #define BT_MAXFREE 64
171
172 static struct vmem_btag static_bts[STATIC_BT_COUNT];
173 static int static_bt_count = STATIC_BT_COUNT;
174
175 static struct vmem kmem_va_meta_arena_store;
176 vmem_t *kmem_va_meta_arena;
177 static struct vmem kmem_meta_arena_store;
178 vmem_t *kmem_meta_arena;
179
180 static kmutex_t vmem_refill_lock;
181 static kmutex_t vmem_btag_lock;
182 static LIST_HEAD(, vmem_btag) vmem_btag_freelist;
183 static size_t vmem_btag_freelist_count = 0;
184 static size_t vmem_btag_count = STATIC_BT_COUNT;
185
186 /* ---- boundary tag */
187
188 #define BT_PER_PAGE (PAGE_SIZE / sizeof(bt_t))
189
190 static int bt_refill(vmem_t *vm, vm_flag_t flags);
191
192 static int
193 bt_refillglobal(vm_flag_t flags)
194 {
195 vmem_addr_t va;
196 bt_t *btp;
197 bt_t *bt;
198 int i;
199
200 mutex_enter(&vmem_refill_lock);
201
202 mutex_enter(&vmem_btag_lock);
203 if (vmem_btag_freelist_count > 0) {
204 mutex_exit(&vmem_btag_lock);
205 mutex_exit(&vmem_refill_lock);
206 return 0;
207 } else {
208 mutex_exit(&vmem_btag_lock);
209 }
210
211 if (vmem_alloc(kmem_meta_arena, PAGE_SIZE,
212 (flags & ~VM_FITMASK) | VM_INSTANTFIT | VM_POPULATING, &va) != 0) {
213 mutex_exit(&vmem_btag_lock);
214 mutex_exit(&vmem_refill_lock);
215 return ENOMEM;
216 }
217 VMEM_EVCNT_INCR(bt_pages);
218
219 mutex_enter(&vmem_btag_lock);
220 btp = (void *) va;
221 for (i = 0; i < (BT_PER_PAGE); i++) {
222 bt = btp;
223 memset(bt, 0, sizeof(*bt));
224 LIST_INSERT_HEAD(&vmem_btag_freelist, bt,
225 bt_freelist);
226 vmem_btag_freelist_count++;
227 vmem_btag_count++;
228 VMEM_EVCNT_INCR(bt_count);
229 btp++;
230 }
231 mutex_exit(&vmem_btag_lock);
232
233 bt_refill(kmem_arena, (flags & ~VM_FITMASK)
234 | VM_INSTANTFIT | VM_POPULATING);
235 bt_refill(kmem_va_meta_arena, (flags & ~VM_FITMASK)
236 | VM_INSTANTFIT | VM_POPULATING);
237 bt_refill(kmem_meta_arena, (flags & ~VM_FITMASK)
238 | VM_INSTANTFIT | VM_POPULATING);
239
240 mutex_exit(&vmem_refill_lock);
241
242 return 0;
243 }
244
245 static int
246 bt_refill(vmem_t *vm, vm_flag_t flags)
247 {
248 bt_t *bt;
249
250 if (!(flags & VM_POPULATING)) {
251 bt_refillglobal(flags);
252 }
253
254 VMEM_LOCK(vm);
255 mutex_enter(&vmem_btag_lock);
256 while (!LIST_EMPTY(&vmem_btag_freelist) &&
257 vm->vm_nfreetags <= BT_MINRESERVE) {
258 bt = LIST_FIRST(&vmem_btag_freelist);
259 LIST_REMOVE(bt, bt_freelist);
260 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
261 vm->vm_nfreetags++;
262 vmem_btag_freelist_count--;
263 }
264 mutex_exit(&vmem_btag_lock);
265
266 if (vm->vm_nfreetags == 0) {
267 VMEM_UNLOCK(vm);
268 return ENOMEM;
269 }
270 VMEM_UNLOCK(vm);
271
272 return 0;
273 }
274
275 static inline bt_t *
276 bt_alloc(vmem_t *vm, vm_flag_t flags)
277 {
278 bt_t *bt;
279 again:
280 VMEM_LOCK(vm);
281 if (vm->vm_nfreetags <= BT_MINRESERVE &&
282 (flags & VM_POPULATING) == 0) {
283 VMEM_UNLOCK(vm);
284 if (bt_refill(vm, VM_NOSLEEP | VM_INSTANTFIT)) {
285 return NULL;
286 }
287 goto again;
288 }
289 bt = LIST_FIRST(&vm->vm_freetags);
290 LIST_REMOVE(bt, bt_freelist);
291 vm->vm_nfreetags--;
292 VMEM_UNLOCK(vm);
293 VMEM_EVCNT_INCR(bt_inuse);
294
295 return bt;
296 }
297
298 static inline void
299 bt_free(vmem_t *vm, bt_t *bt)
300 {
301
302 VMEM_LOCK(vm);
303 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
304 vm->vm_nfreetags++;
305 while (vm->vm_nfreetags > BT_MAXFREE) {
306 bt = LIST_FIRST(&vm->vm_freetags);
307 LIST_REMOVE(bt, bt_freelist);
308 vm->vm_nfreetags--;
309 mutex_enter(&vmem_btag_lock);
310 LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
311 vmem_btag_freelist_count++;
312 mutex_exit(&vmem_btag_lock);
313 }
314 VMEM_UNLOCK(vm);
315 VMEM_EVCNT_DECR(bt_inuse);
316 }
317
318 #endif /* defined(_KERNEL) */
319
320 /*
321 * freelist[0] ... [1, 1]
322 * freelist[1] ... [2, 3]
323 * freelist[2] ... [4, 7]
324 * freelist[3] ... [8, 15]
325 * :
326 * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
327 * :
328 */
329
330 static struct vmem_freelist *
331 bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
332 {
333 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
334 const int idx = SIZE2ORDER(qsize);
335
336 KASSERT(size != 0 && qsize != 0);
337 KASSERT((size & vm->vm_quantum_mask) == 0);
338 KASSERT(idx >= 0);
339 KASSERT(idx < VMEM_MAXORDER);
340
341 return &vm->vm_freelist[idx];
342 }
343
344 /*
345 * bt_freehead_toalloc: return the freelist for the given size and allocation
346 * strategy.
347 *
348 * for VM_INSTANTFIT, return the list in which any blocks are large enough
349 * for the requested size. otherwise, return the list which can have blocks
350 * large enough for the requested size.
351 */
352
353 static struct vmem_freelist *
354 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
355 {
356 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
357 int idx = SIZE2ORDER(qsize);
358
359 KASSERT(size != 0 && qsize != 0);
360 KASSERT((size & vm->vm_quantum_mask) == 0);
361
362 if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
363 idx++;
364 /* check too large request? */
365 }
366 KASSERT(idx >= 0);
367 KASSERT(idx < VMEM_MAXORDER);
368
369 return &vm->vm_freelist[idx];
370 }
371
372 /* ---- boundary tag hash */
373
374 static struct vmem_hashlist *
375 bt_hashhead(vmem_t *vm, vmem_addr_t addr)
376 {
377 struct vmem_hashlist *list;
378 unsigned int hash;
379
380 hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
381 list = &vm->vm_hashlist[hash % vm->vm_hashsize];
382
383 return list;
384 }
385
386 static bt_t *
387 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
388 {
389 struct vmem_hashlist *list;
390 bt_t *bt;
391
392 list = bt_hashhead(vm, addr);
393 LIST_FOREACH(bt, list, bt_hashlist) {
394 if (bt->bt_start == addr) {
395 break;
396 }
397 }
398
399 return bt;
400 }
401
402 static void
403 bt_rembusy(vmem_t *vm, bt_t *bt)
404 {
405
406 KASSERT(vm->vm_nbusytag > 0);
407 vm->vm_inuse -= bt->bt_size;
408 vm->vm_nbusytag--;
409 LIST_REMOVE(bt, bt_hashlist);
410 }
411
412 static void
413 bt_insbusy(vmem_t *vm, bt_t *bt)
414 {
415 struct vmem_hashlist *list;
416
417 KASSERT(bt->bt_type == BT_TYPE_BUSY);
418
419 list = bt_hashhead(vm, bt->bt_start);
420 LIST_INSERT_HEAD(list, bt, bt_hashlist);
421 vm->vm_nbusytag++;
422 vm->vm_inuse += bt->bt_size;
423 }
424
425 /* ---- boundary tag list */
426
427 static void
428 bt_remseg(vmem_t *vm, bt_t *bt)
429 {
430
431 CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
432 }
433
434 static void
435 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
436 {
437
438 CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
439 }
440
441 static void
442 bt_insseg_tail(vmem_t *vm, bt_t *bt)
443 {
444
445 CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
446 }
447
448 static void
449 bt_remfree(vmem_t *vm, bt_t *bt)
450 {
451
452 KASSERT(bt->bt_type == BT_TYPE_FREE);
453
454 LIST_REMOVE(bt, bt_freelist);
455 }
456
457 static void
458 bt_insfree(vmem_t *vm, bt_t *bt)
459 {
460 struct vmem_freelist *list;
461
462 list = bt_freehead_tofree(vm, bt->bt_size);
463 LIST_INSERT_HEAD(list, bt, bt_freelist);
464 }
465
466 /* ---- vmem internal functions */
467
468 #if defined(QCACHE)
469 static inline vm_flag_t
470 prf_to_vmf(int prflags)
471 {
472 vm_flag_t vmflags;
473
474 KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
475 if ((prflags & PR_WAITOK) != 0) {
476 vmflags = VM_SLEEP;
477 } else {
478 vmflags = VM_NOSLEEP;
479 }
480 return vmflags;
481 }
482
483 static inline int
484 vmf_to_prf(vm_flag_t vmflags)
485 {
486 int prflags;
487
488 if ((vmflags & VM_SLEEP) != 0) {
489 prflags = PR_WAITOK;
490 } else {
491 prflags = PR_NOWAIT;
492 }
493 return prflags;
494 }
495
496 static size_t
497 qc_poolpage_size(size_t qcache_max)
498 {
499 int i;
500
501 for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
502 /* nothing */
503 }
504 return ORDER2SIZE(i);
505 }
506
507 static void *
508 qc_poolpage_alloc(struct pool *pool, int prflags)
509 {
510 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
511 vmem_t *vm = qc->qc_vmem;
512 vmem_addr_t addr;
513
514 if (vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
515 prf_to_vmf(prflags) | VM_INSTANTFIT, &addr) != 0)
516 return NULL;
517 return (void *)addr;
518 }
519
520 static void
521 qc_poolpage_free(struct pool *pool, void *addr)
522 {
523 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
524 vmem_t *vm = qc->qc_vmem;
525
526 vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
527 }
528
529 static void
530 qc_init(vmem_t *vm, size_t qcache_max, int ipl)
531 {
532 qcache_t *prevqc;
533 struct pool_allocator *pa;
534 int qcache_idx_max;
535 int i;
536
537 KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
538 if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
539 qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
540 }
541 vm->vm_qcache_max = qcache_max;
542 pa = &vm->vm_qcache_allocator;
543 memset(pa, 0, sizeof(*pa));
544 pa->pa_alloc = qc_poolpage_alloc;
545 pa->pa_free = qc_poolpage_free;
546 pa->pa_pagesz = qc_poolpage_size(qcache_max);
547
548 qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
549 prevqc = NULL;
550 for (i = qcache_idx_max; i > 0; i--) {
551 qcache_t *qc = &vm->vm_qcache_store[i - 1];
552 size_t size = i << vm->vm_quantum_shift;
553 pool_cache_t pc;
554
555 qc->qc_vmem = vm;
556 snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
557 vm->vm_name, size);
558
559 pc = pool_cache_init(size,
560 ORDER2SIZE(vm->vm_quantum_shift), 0,
561 PR_NOALIGN | PR_NOTOUCH | PR_RECURSIVE /* XXX */,
562 qc->qc_name, pa, ipl, NULL, NULL, NULL);
563
564 KASSERT(pc);
565
566 qc->qc_cache = pc;
567 KASSERT(qc->qc_cache != NULL); /* XXX */
568 if (prevqc != NULL &&
569 qc->qc_cache->pc_pool.pr_itemsperpage ==
570 prevqc->qc_cache->pc_pool.pr_itemsperpage) {
571 pool_cache_destroy(qc->qc_cache);
572 vm->vm_qcache[i - 1] = prevqc;
573 continue;
574 }
575 qc->qc_cache->pc_pool.pr_qcache = qc;
576 vm->vm_qcache[i - 1] = qc;
577 prevqc = qc;
578 }
579 }
580
581 static void
582 qc_destroy(vmem_t *vm)
583 {
584 const qcache_t *prevqc;
585 int i;
586 int qcache_idx_max;
587
588 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
589 prevqc = NULL;
590 for (i = 0; i < qcache_idx_max; i++) {
591 qcache_t *qc = vm->vm_qcache[i];
592
593 if (prevqc == qc) {
594 continue;
595 }
596 pool_cache_destroy(qc->qc_cache);
597 prevqc = qc;
598 }
599 }
600 #endif
601
602 #if defined(_KERNEL)
603 static void
604 vmem_bootstrap(void)
605 {
606
607 mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_VM);
608 mutex_init(&vmem_refill_lock, MUTEX_DEFAULT, IPL_VM);
609 mutex_init(&vmem_btag_lock, MUTEX_DEFAULT, IPL_VM);
610
611 while (static_bt_count-- > 0) {
612 bt_t *bt = &static_bts[static_bt_count];
613 LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
614 VMEM_EVCNT_INCR(bt_count);
615 vmem_btag_freelist_count++;
616 }
617 vmem_bootstrapped = TRUE;
618 }
619
620 void
621 vmem_subsystem_init(vmem_t *vm)
622 {
623
624 kmem_va_meta_arena = vmem_init(&kmem_va_meta_arena_store, "vmem-va",
625 0, 0, PAGE_SIZE, vmem_alloc, vmem_free, vm,
626 0, VM_NOSLEEP | VM_BOOTSTRAP | VM_LARGEIMPORT,
627 IPL_VM);
628
629 kmem_meta_arena = vmem_init(&kmem_meta_arena_store, "vmem-meta",
630 0, 0, PAGE_SIZE,
631 uvm_km_kmem_alloc, uvm_km_kmem_free, kmem_va_meta_arena,
632 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
633 }
634 #endif /* defined(_KERNEL) */
635
636 static int
637 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
638 int spanbttype)
639 {
640 bt_t *btspan;
641 bt_t *btfree;
642
643 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
644 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
645 KASSERT(spanbttype == BT_TYPE_SPAN ||
646 spanbttype == BT_TYPE_SPAN_STATIC);
647
648 btspan = bt_alloc(vm, flags);
649 if (btspan == NULL) {
650 return ENOMEM;
651 }
652 btfree = bt_alloc(vm, flags);
653 if (btfree == NULL) {
654 bt_free(vm, btspan);
655 return ENOMEM;
656 }
657
658 btspan->bt_type = spanbttype;
659 btspan->bt_start = addr;
660 btspan->bt_size = size;
661
662 btfree->bt_type = BT_TYPE_FREE;
663 btfree->bt_start = addr;
664 btfree->bt_size = size;
665
666 VMEM_LOCK(vm);
667 bt_insseg_tail(vm, btspan);
668 bt_insseg(vm, btfree, btspan);
669 bt_insfree(vm, btfree);
670 vm->vm_size += size;
671 VMEM_UNLOCK(vm);
672
673 return 0;
674 }
675
676 static void
677 vmem_destroy1(vmem_t *vm)
678 {
679
680 #if defined(QCACHE)
681 qc_destroy(vm);
682 #endif /* defined(QCACHE) */
683 if (vm->vm_hashlist != NULL) {
684 int i;
685
686 for (i = 0; i < vm->vm_hashsize; i++) {
687 bt_t *bt;
688
689 while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
690 KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
691 bt_free(vm, bt);
692 }
693 }
694 if (vm->vm_hashlist != &vm->vm_hash0) {
695 xfree(vm->vm_hashlist,
696 sizeof(struct vmem_hashlist *) * vm->vm_hashsize);
697 }
698 }
699
700 while (vm->vm_nfreetags > 0) {
701 bt_t *bt = LIST_FIRST(&vm->vm_freetags);
702 LIST_REMOVE(bt, bt_freelist);
703 vm->vm_nfreetags--;
704 mutex_enter(&vmem_btag_lock);
705 #if defined (_KERNEL)
706 LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
707 vmem_btag_freelist_count++;
708 #endif /* defined(_KERNEL) */
709 mutex_exit(&vmem_btag_lock);
710 }
711
712 VMEM_CONDVAR_DESTROY(vm);
713 VMEM_LOCK_DESTROY(vm);
714 xfree(vm, sizeof(*vm));
715 }
716
717 static int
718 vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
719 {
720 vmem_addr_t addr;
721 int rc;
722
723 if (vm->vm_importfn == NULL) {
724 return EINVAL;
725 }
726
727 if (vm->vm_flags & VM_LARGEIMPORT) {
728 size *= 16;
729 }
730
731 if (vm->vm_flags & VM_XIMPORT) {
732 rc = ((vmem_ximport_t *)vm->vm_importfn)(vm->vm_arg, size,
733 &size, flags, &addr);
734 } else {
735 rc = (vm->vm_importfn)(vm->vm_arg, size, flags, &addr);
736 }
737 if (rc) {
738 return ENOMEM;
739 }
740
741 if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) != 0) {
742 (*vm->vm_releasefn)(vm->vm_arg, addr, size);
743 return ENOMEM;
744 }
745
746 return 0;
747 }
748
749 static int
750 vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
751 {
752 bt_t *bt;
753 int i;
754 struct vmem_hashlist *newhashlist;
755 struct vmem_hashlist *oldhashlist;
756 size_t oldhashsize;
757
758 KASSERT(newhashsize > 0);
759
760 newhashlist =
761 xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
762 if (newhashlist == NULL) {
763 return ENOMEM;
764 }
765 for (i = 0; i < newhashsize; i++) {
766 LIST_INIT(&newhashlist[i]);
767 }
768
769 if (!VMEM_TRYLOCK(vm)) {
770 xfree(newhashlist,
771 sizeof(struct vmem_hashlist *) * newhashsize);
772 return EBUSY;
773 }
774 oldhashlist = vm->vm_hashlist;
775 oldhashsize = vm->vm_hashsize;
776 vm->vm_hashlist = newhashlist;
777 vm->vm_hashsize = newhashsize;
778 if (oldhashlist == NULL) {
779 VMEM_UNLOCK(vm);
780 return 0;
781 }
782 for (i = 0; i < oldhashsize; i++) {
783 while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
784 bt_rembusy(vm, bt); /* XXX */
785 bt_insbusy(vm, bt);
786 }
787 }
788 VMEM_UNLOCK(vm);
789
790 if (oldhashlist != &vm->vm_hash0) {
791 xfree(oldhashlist,
792 sizeof(struct vmem_hashlist *) * oldhashsize);
793 }
794
795 return 0;
796 }
797
798 /*
799 * vmem_fit: check if a bt can satisfy the given restrictions.
800 *
801 * it's a caller's responsibility to ensure the region is big enough
802 * before calling us.
803 */
804
805 static int
806 vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align,
807 vmem_size_t phase, vmem_size_t nocross,
808 vmem_addr_t minaddr, vmem_addr_t maxaddr, vmem_addr_t *addrp)
809 {
810 vmem_addr_t start;
811 vmem_addr_t end;
812
813 KASSERT(size > 0);
814 KASSERT(bt->bt_size >= size); /* caller's responsibility */
815
816 /*
817 * XXX assumption: vmem_addr_t and vmem_size_t are
818 * unsigned integer of the same size.
819 */
820
821 start = bt->bt_start;
822 if (start < minaddr) {
823 start = minaddr;
824 }
825 end = BT_END(bt);
826 if (end > maxaddr) {
827 end = maxaddr;
828 }
829 if (start > end) {
830 return ENOMEM;
831 }
832
833 start = VMEM_ALIGNUP(start - phase, align) + phase;
834 if (start < bt->bt_start) {
835 start += align;
836 }
837 if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
838 KASSERT(align < nocross);
839 start = VMEM_ALIGNUP(start - phase, nocross) + phase;
840 }
841 if (start <= end && end - start >= size - 1) {
842 KASSERT((start & (align - 1)) == phase);
843 KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
844 KASSERT(minaddr <= start);
845 KASSERT(maxaddr == 0 || start + size - 1 <= maxaddr);
846 KASSERT(bt->bt_start <= start);
847 KASSERT(BT_END(bt) - start >= size - 1);
848 *addrp = start;
849 return 0;
850 }
851 return ENOMEM;
852 }
853
854 /* ---- vmem API */
855
856 /*
857 * vmem_create_internal: creates a vmem arena.
858 */
859
860 vmem_t *
861 vmem_init(vmem_t *vm, const char *name,
862 vmem_addr_t base, vmem_size_t size, vmem_size_t quantum,
863 vmem_import_t *importfn, vmem_release_t *releasefn,
864 vmem_t *arg, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
865 {
866 int i;
867
868 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
869 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
870 KASSERT(quantum > 0);
871
872 #if defined(_KERNEL)
873 /* XXX: SMP, we get called early... */
874 if (!vmem_bootstrapped) {
875 vmem_bootstrap();
876 }
877 #endif /* defined(_KERNEL) */
878
879 if (vm == NULL) {
880 vm = xmalloc(sizeof(*vm), flags);
881 }
882 if (vm == NULL) {
883 return NULL;
884 }
885
886 VMEM_CONDVAR_INIT(vm, "vmem");
887 VMEM_LOCK_INIT(vm, ipl);
888 vm->vm_flags = flags;
889 vm->vm_nfreetags = 0;
890 LIST_INIT(&vm->vm_freetags);
891 strlcpy(vm->vm_name, name, sizeof(vm->vm_name));
892 vm->vm_quantum_mask = quantum - 1;
893 vm->vm_quantum_shift = SIZE2ORDER(quantum);
894 KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
895 vm->vm_importfn = importfn;
896 vm->vm_releasefn = releasefn;
897 vm->vm_arg = arg;
898 vm->vm_nbusytag = 0;
899 vm->vm_size = 0;
900 vm->vm_inuse = 0;
901 #if defined(QCACHE)
902 qc_init(vm, qcache_max, ipl);
903 #endif /* defined(QCACHE) */
904
905 CIRCLEQ_INIT(&vm->vm_seglist);
906 for (i = 0; i < VMEM_MAXORDER; i++) {
907 LIST_INIT(&vm->vm_freelist[i]);
908 }
909 memset(&vm->vm_hash0, 0, sizeof(struct vmem_hashlist));
910 vm->vm_hashsize = 1;
911 vm->vm_hashlist = &vm->vm_hash0;
912
913 if (size != 0) {
914 if (vmem_add(vm, base, size, flags) != 0) {
915 vmem_destroy1(vm);
916 return NULL;
917 }
918 }
919
920 #if defined(_KERNEL)
921 if (flags & VM_BOOTSTRAP) {
922 bt_refill(vm, VM_NOSLEEP);
923 }
924
925 mutex_enter(&vmem_list_lock);
926 LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
927 mutex_exit(&vmem_list_lock);
928 #endif /* defined(_KERNEL) */
929
930 return vm;
931 }
932
933
934
935 /*
936 * vmem_create: create an arena.
937 *
938 * => must not be called from interrupt context.
939 */
940
941 vmem_t *
942 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
943 vmem_size_t quantum, vmem_import_t *importfn, vmem_release_t *releasefn,
944 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
945 {
946
947 KASSERT((flags & (VM_XIMPORT)) == 0);
948
949 return vmem_init(NULL, name, base, size, quantum,
950 importfn, releasefn, source, qcache_max, flags, ipl);
951 }
952
953 /*
954 * vmem_xcreate: create an arena takes alternative import func.
955 *
956 * => must not be called from interrupt context.
957 */
958
959 vmem_t *
960 vmem_xcreate(const char *name, vmem_addr_t base, vmem_size_t size,
961 vmem_size_t quantum, vmem_ximport_t *importfn, vmem_release_t *releasefn,
962 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
963 {
964
965 KASSERT((flags & (VM_XIMPORT)) == 0);
966
967 return vmem_init(NULL, name, base, size, quantum,
968 (vmem_import_t *)importfn, releasefn, source,
969 qcache_max, flags | VM_XIMPORT, ipl);
970 }
971
972 void
973 vmem_destroy(vmem_t *vm)
974 {
975
976 #if defined(_KERNEL)
977 mutex_enter(&vmem_list_lock);
978 LIST_REMOVE(vm, vm_alllist);
979 mutex_exit(&vmem_list_lock);
980 #endif /* defined(_KERNEL) */
981
982 vmem_destroy1(vm);
983 }
984
985 vmem_size_t
986 vmem_roundup_size(vmem_t *vm, vmem_size_t size)
987 {
988
989 return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
990 }
991
992 /*
993 * vmem_alloc:
994 *
995 * => caller must ensure appropriate spl,
996 * if the arena can be accessed from interrupt context.
997 */
998
999 int
1000 vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags, vmem_addr_t *addrp)
1001 {
1002 const vm_flag_t strat __unused = flags & VM_FITMASK;
1003
1004 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1005 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1006
1007 KASSERT(size > 0);
1008 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1009 if ((flags & VM_SLEEP) != 0) {
1010 ASSERT_SLEEPABLE();
1011 }
1012
1013 #if defined(QCACHE)
1014 if (size <= vm->vm_qcache_max) {
1015 void *p;
1016 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1017 qcache_t *qc = vm->vm_qcache[qidx - 1];
1018
1019 p = pool_cache_get(qc->qc_cache, vmf_to_prf(flags));
1020 if (addrp != NULL)
1021 *addrp = (vmem_addr_t)p;
1022 return (p == NULL) ? ENOMEM : 0;
1023 }
1024 #endif /* defined(QCACHE) */
1025
1026 return vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
1027 flags, addrp);
1028 }
1029
1030 int
1031 vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align,
1032 const vmem_size_t phase, const vmem_size_t nocross,
1033 const vmem_addr_t minaddr, const vmem_addr_t maxaddr, const vm_flag_t flags,
1034 vmem_addr_t *addrp)
1035 {
1036 struct vmem_freelist *list;
1037 struct vmem_freelist *first;
1038 struct vmem_freelist *end;
1039 bt_t *bt;
1040 bt_t *btnew;
1041 bt_t *btnew2;
1042 const vmem_size_t size = vmem_roundup_size(vm, size0);
1043 vm_flag_t strat = flags & VM_FITMASK;
1044 vmem_addr_t start;
1045 int rc;
1046
1047 KASSERT(size0 > 0);
1048 KASSERT(size > 0);
1049 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1050 if ((flags & VM_SLEEP) != 0) {
1051 ASSERT_SLEEPABLE();
1052 }
1053 KASSERT((align & vm->vm_quantum_mask) == 0);
1054 KASSERT((align & (align - 1)) == 0);
1055 KASSERT((phase & vm->vm_quantum_mask) == 0);
1056 KASSERT((nocross & vm->vm_quantum_mask) == 0);
1057 KASSERT((nocross & (nocross - 1)) == 0);
1058 KASSERT((align == 0 && phase == 0) || phase < align);
1059 KASSERT(nocross == 0 || nocross >= size);
1060 KASSERT(minaddr <= maxaddr);
1061 KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
1062
1063 if (align == 0) {
1064 align = vm->vm_quantum_mask + 1;
1065 }
1066
1067 /*
1068 * allocate boundary tags before acquiring the vmem lock.
1069 */
1070 btnew = bt_alloc(vm, flags);
1071 if (btnew == NULL) {
1072 return ENOMEM;
1073 }
1074 btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
1075 if (btnew2 == NULL) {
1076 bt_free(vm, btnew);
1077 return ENOMEM;
1078 }
1079
1080 /*
1081 * choose a free block from which we allocate.
1082 */
1083 retry_strat:
1084 first = bt_freehead_toalloc(vm, size, strat);
1085 end = &vm->vm_freelist[VMEM_MAXORDER];
1086 retry:
1087 bt = NULL;
1088 VMEM_LOCK(vm);
1089 vmem_check(vm);
1090 if (strat == VM_INSTANTFIT) {
1091 /*
1092 * just choose the first block which satisfies our restrictions.
1093 *
1094 * note that we don't need to check the size of the blocks
1095 * because any blocks found on these list should be larger than
1096 * the given size.
1097 */
1098 for (list = first; list < end; list++) {
1099 bt = LIST_FIRST(list);
1100 if (bt != NULL) {
1101 rc = vmem_fit(bt, size, align, phase,
1102 nocross, minaddr, maxaddr, &start);
1103 if (rc == 0) {
1104 goto gotit;
1105 }
1106 /*
1107 * don't bother to follow the bt_freelist link
1108 * here. the list can be very long and we are
1109 * told to run fast. blocks from the later free
1110 * lists are larger and have better chances to
1111 * satisfy our restrictions.
1112 */
1113 }
1114 }
1115 } else { /* VM_BESTFIT */
1116 /*
1117 * we assume that, for space efficiency, it's better to
1118 * allocate from a smaller block. thus we will start searching
1119 * from the lower-order list than VM_INSTANTFIT.
1120 * however, don't bother to find the smallest block in a free
1121 * list because the list can be very long. we can revisit it
1122 * if/when it turns out to be a problem.
1123 *
1124 * note that the 'first' list can contain blocks smaller than
1125 * the requested size. thus we need to check bt_size.
1126 */
1127 for (list = first; list < end; list++) {
1128 LIST_FOREACH(bt, list, bt_freelist) {
1129 if (bt->bt_size >= size) {
1130 rc = vmem_fit(bt, size, align, phase,
1131 nocross, minaddr, maxaddr, &start);
1132 if (rc == 0) {
1133 goto gotit;
1134 }
1135 }
1136 }
1137 }
1138 }
1139 VMEM_UNLOCK(vm);
1140 #if 1
1141 if (strat == VM_INSTANTFIT) {
1142 strat = VM_BESTFIT;
1143 goto retry_strat;
1144 }
1145 #endif
1146 if (align != vm->vm_quantum_mask + 1 || phase != 0 || nocross != 0) {
1147
1148 /*
1149 * XXX should try to import a region large enough to
1150 * satisfy restrictions?
1151 */
1152
1153 goto fail;
1154 }
1155 /* XXX eeek, minaddr & maxaddr not respected */
1156 if (vmem_import(vm, size, flags) == 0) {
1157 goto retry;
1158 }
1159 /* XXX */
1160
1161 if ((flags & VM_SLEEP) != 0) {
1162 #if defined(_KERNEL) && !defined(_RUMPKERNEL)
1163 mutex_spin_enter(&uvm_fpageqlock);
1164 uvm_kick_pdaemon();
1165 mutex_spin_exit(&uvm_fpageqlock);
1166 #endif
1167 VMEM_LOCK(vm);
1168 VMEM_CONDVAR_WAIT(vm);
1169 VMEM_UNLOCK(vm);
1170 goto retry;
1171 }
1172 fail:
1173 bt_free(vm, btnew);
1174 bt_free(vm, btnew2);
1175 return ENOMEM;
1176
1177 gotit:
1178 KASSERT(bt->bt_type == BT_TYPE_FREE);
1179 KASSERT(bt->bt_size >= size);
1180 bt_remfree(vm, bt);
1181 vmem_check(vm);
1182 if (bt->bt_start != start) {
1183 btnew2->bt_type = BT_TYPE_FREE;
1184 btnew2->bt_start = bt->bt_start;
1185 btnew2->bt_size = start - bt->bt_start;
1186 bt->bt_start = start;
1187 bt->bt_size -= btnew2->bt_size;
1188 bt_insfree(vm, btnew2);
1189 bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
1190 btnew2 = NULL;
1191 vmem_check(vm);
1192 }
1193 KASSERT(bt->bt_start == start);
1194 if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
1195 /* split */
1196 btnew->bt_type = BT_TYPE_BUSY;
1197 btnew->bt_start = bt->bt_start;
1198 btnew->bt_size = size;
1199 bt->bt_start = bt->bt_start + size;
1200 bt->bt_size -= size;
1201 bt_insfree(vm, bt);
1202 bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
1203 bt_insbusy(vm, btnew);
1204 vmem_check(vm);
1205 VMEM_UNLOCK(vm);
1206 } else {
1207 bt->bt_type = BT_TYPE_BUSY;
1208 bt_insbusy(vm, bt);
1209 vmem_check(vm);
1210 VMEM_UNLOCK(vm);
1211 bt_free(vm, btnew);
1212 btnew = bt;
1213 }
1214 if (btnew2 != NULL) {
1215 bt_free(vm, btnew2);
1216 }
1217 KASSERT(btnew->bt_size >= size);
1218 btnew->bt_type = BT_TYPE_BUSY;
1219
1220 if (addrp != NULL)
1221 *addrp = btnew->bt_start;
1222 return 0;
1223 }
1224
1225 /*
1226 * vmem_free:
1227 *
1228 * => caller must ensure appropriate spl,
1229 * if the arena can be accessed from interrupt context.
1230 */
1231
1232 void
1233 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1234 {
1235
1236 KASSERT(size > 0);
1237
1238 #if defined(QCACHE)
1239 if (size <= vm->vm_qcache_max) {
1240 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1241 qcache_t *qc = vm->vm_qcache[qidx - 1];
1242
1243 pool_cache_put(qc->qc_cache, (void *)addr);
1244 return;
1245 }
1246 #endif /* defined(QCACHE) */
1247
1248 vmem_xfree(vm, addr, size);
1249 }
1250
1251 void
1252 vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1253 {
1254 bt_t *bt;
1255 bt_t *t;
1256 LIST_HEAD(, vmem_btag) tofree;
1257
1258 LIST_INIT(&tofree);
1259
1260 KASSERT(size > 0);
1261
1262 VMEM_LOCK(vm);
1263
1264 bt = bt_lookupbusy(vm, addr);
1265 KASSERT(bt != NULL);
1266 KASSERT(bt->bt_start == addr);
1267 KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1268 bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1269 KASSERT(bt->bt_type == BT_TYPE_BUSY);
1270 bt_rembusy(vm, bt);
1271 bt->bt_type = BT_TYPE_FREE;
1272
1273 /* coalesce */
1274 t = CIRCLEQ_NEXT(bt, bt_seglist);
1275 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1276 KASSERT(BT_END(bt) < t->bt_start); /* YYY */
1277 bt_remfree(vm, t);
1278 bt_remseg(vm, t);
1279 bt->bt_size += t->bt_size;
1280 LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1281 }
1282 t = CIRCLEQ_PREV(bt, bt_seglist);
1283 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1284 KASSERT(BT_END(t) < bt->bt_start); /* YYY */
1285 bt_remfree(vm, t);
1286 bt_remseg(vm, t);
1287 bt->bt_size += t->bt_size;
1288 bt->bt_start = t->bt_start;
1289 LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1290 }
1291
1292 t = CIRCLEQ_PREV(bt, bt_seglist);
1293 KASSERT(t != NULL);
1294 KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1295 if (vm->vm_releasefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1296 t->bt_size == bt->bt_size) {
1297 vmem_addr_t spanaddr;
1298 vmem_size_t spansize;
1299
1300 KASSERT(t->bt_start == bt->bt_start);
1301 spanaddr = bt->bt_start;
1302 spansize = bt->bt_size;
1303 bt_remseg(vm, bt);
1304 LIST_INSERT_HEAD(&tofree, bt, bt_freelist);
1305 bt_remseg(vm, t);
1306 LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1307 vm->vm_size -= spansize;
1308 VMEM_CONDVAR_BROADCAST(vm);
1309 VMEM_UNLOCK(vm);
1310 (*vm->vm_releasefn)(vm->vm_arg, spanaddr, spansize);
1311 } else {
1312 bt_insfree(vm, bt);
1313 VMEM_CONDVAR_BROADCAST(vm);
1314 VMEM_UNLOCK(vm);
1315 }
1316
1317 while (!LIST_EMPTY(&tofree)) {
1318 t = LIST_FIRST(&tofree);
1319 LIST_REMOVE(t, bt_freelist);
1320 bt_free(vm, t);
1321 }
1322 }
1323
1324 /*
1325 * vmem_add:
1326 *
1327 * => caller must ensure appropriate spl,
1328 * if the arena can be accessed from interrupt context.
1329 */
1330
1331 int
1332 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1333 {
1334
1335 return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1336 }
1337
1338 /*
1339 * vmem_size: information about arenas size
1340 *
1341 * => return free/allocated size in arena
1342 */
1343 vmem_size_t
1344 vmem_size(vmem_t *vm, int typemask)
1345 {
1346
1347 switch (typemask) {
1348 case VMEM_ALLOC:
1349 return vm->vm_inuse;
1350 case VMEM_FREE:
1351 return vm->vm_size - vm->vm_inuse;
1352 case VMEM_FREE|VMEM_ALLOC:
1353 return vm->vm_size;
1354 default:
1355 panic("vmem_size");
1356 }
1357 }
1358
1359 /* ---- rehash */
1360
1361 #if defined(_KERNEL)
1362 static struct callout vmem_rehash_ch;
1363 static int vmem_rehash_interval;
1364 static struct workqueue *vmem_rehash_wq;
1365 static struct work vmem_rehash_wk;
1366
1367 static void
1368 vmem_rehash_all(struct work *wk, void *dummy)
1369 {
1370 vmem_t *vm;
1371
1372 KASSERT(wk == &vmem_rehash_wk);
1373 mutex_enter(&vmem_list_lock);
1374 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1375 size_t desired;
1376 size_t current;
1377
1378 if (!VMEM_TRYLOCK(vm)) {
1379 continue;
1380 }
1381 desired = vm->vm_nbusytag;
1382 current = vm->vm_hashsize;
1383 VMEM_UNLOCK(vm);
1384
1385 if (desired > VMEM_HASHSIZE_MAX) {
1386 desired = VMEM_HASHSIZE_MAX;
1387 } else if (desired < VMEM_HASHSIZE_MIN) {
1388 desired = VMEM_HASHSIZE_MIN;
1389 }
1390 if (desired > current * 2 || desired * 2 < current) {
1391 vmem_rehash(vm, desired, VM_NOSLEEP);
1392 }
1393 }
1394 mutex_exit(&vmem_list_lock);
1395
1396 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1397 }
1398
1399 static void
1400 vmem_rehash_all_kick(void *dummy)
1401 {
1402
1403 workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1404 }
1405
1406 void
1407 vmem_rehash_start(void)
1408 {
1409 int error;
1410
1411 error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1412 vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
1413 if (error) {
1414 panic("%s: workqueue_create %d\n", __func__, error);
1415 }
1416 callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
1417 callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1418
1419 vmem_rehash_interval = hz * 10;
1420 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1421 }
1422 #endif /* defined(_KERNEL) */
1423
1424 /* ---- debug */
1425
1426 #if defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY)
1427
1428 static void bt_dump(const bt_t *, void (*)(const char *, ...));
1429
1430 static const char *
1431 bt_type_string(int type)
1432 {
1433 static const char * const table[] = {
1434 [BT_TYPE_BUSY] = "busy",
1435 [BT_TYPE_FREE] = "free",
1436 [BT_TYPE_SPAN] = "span",
1437 [BT_TYPE_SPAN_STATIC] = "static span",
1438 };
1439
1440 if (type >= __arraycount(table)) {
1441 return "BOGUS";
1442 }
1443 return table[type];
1444 }
1445
1446 static void
1447 bt_dump(const bt_t *bt, void (*pr)(const char *, ...))
1448 {
1449
1450 (*pr)("\t%p: %" PRIu64 ", %" PRIu64 ", %d(%s)\n",
1451 bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1452 bt->bt_type, bt_type_string(bt->bt_type));
1453 }
1454
1455 static void
1456 vmem_dump(const vmem_t *vm , void (*pr)(const char *, ...))
1457 {
1458 const bt_t *bt;
1459 int i;
1460
1461 (*pr)("vmem %p '%s'\n", vm, vm->vm_name);
1462 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1463 bt_dump(bt, pr);
1464 }
1465
1466 for (i = 0; i < VMEM_MAXORDER; i++) {
1467 const struct vmem_freelist *fl = &vm->vm_freelist[i];
1468
1469 if (LIST_EMPTY(fl)) {
1470 continue;
1471 }
1472
1473 (*pr)("freelist[%d]\n", i);
1474 LIST_FOREACH(bt, fl, bt_freelist) {
1475 bt_dump(bt, pr);
1476 }
1477 }
1478 }
1479
1480 #endif /* defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) */
1481
1482 #if defined(DDB)
1483 static bt_t *
1484 vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
1485 {
1486 bt_t *bt;
1487
1488 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1489 if (BT_ISSPAN_P(bt)) {
1490 continue;
1491 }
1492 if (bt->bt_start <= addr && addr <= BT_END(bt)) {
1493 return bt;
1494 }
1495 }
1496
1497 return NULL;
1498 }
1499
1500 void
1501 vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1502 {
1503 vmem_t *vm;
1504
1505 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1506 bt_t *bt;
1507
1508 bt = vmem_whatis_lookup(vm, addr);
1509 if (bt == NULL) {
1510 continue;
1511 }
1512 (*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1513 (void *)addr, (void *)bt->bt_start,
1514 (size_t)(addr - bt->bt_start), vm->vm_name,
1515 (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1516 }
1517 }
1518
1519 void
1520 vmem_printall(const char *modif, void (*pr)(const char *, ...))
1521 {
1522 const vmem_t *vm;
1523
1524 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1525 vmem_dump(vm, pr);
1526 }
1527 }
1528
1529 void
1530 vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...))
1531 {
1532 const vmem_t *vm = (const void *)addr;
1533
1534 vmem_dump(vm, pr);
1535 }
1536 #endif /* defined(DDB) */
1537
1538 #if defined(_KERNEL)
1539 #define vmem_printf printf
1540 #else
1541 #include <stdio.h>
1542 #include <stdarg.h>
1543
1544 static void
1545 vmem_printf(const char *fmt, ...)
1546 {
1547 va_list ap;
1548 va_start(ap, fmt);
1549 vprintf(fmt, ap);
1550 va_end(ap);
1551 }
1552 #endif
1553
1554 #if defined(VMEM_SANITY)
1555
1556 static bool
1557 vmem_check_sanity(vmem_t *vm)
1558 {
1559 const bt_t *bt, *bt2;
1560
1561 KASSERT(vm != NULL);
1562
1563 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1564 if (bt->bt_start > BT_END(bt)) {
1565 printf("corrupted tag\n");
1566 bt_dump(bt, vmem_printf);
1567 return false;
1568 }
1569 }
1570 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1571 CIRCLEQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
1572 if (bt == bt2) {
1573 continue;
1574 }
1575 if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
1576 continue;
1577 }
1578 if (bt->bt_start <= BT_END(bt2) &&
1579 bt2->bt_start <= BT_END(bt)) {
1580 printf("overwrapped tags\n");
1581 bt_dump(bt, vmem_printf);
1582 bt_dump(bt2, vmem_printf);
1583 return false;
1584 }
1585 }
1586 }
1587
1588 return true;
1589 }
1590
1591 static void
1592 vmem_check(vmem_t *vm)
1593 {
1594
1595 if (!vmem_check_sanity(vm)) {
1596 panic("insanity vmem %p", vm);
1597 }
1598 }
1599
1600 #endif /* defined(VMEM_SANITY) */
1601
1602 #if defined(UNITTEST)
1603 int
1604 main(void)
1605 {
1606 int rc;
1607 vmem_t *vm;
1608 vmem_addr_t p;
1609 struct reg {
1610 vmem_addr_t p;
1611 vmem_size_t sz;
1612 bool x;
1613 } *reg = NULL;
1614 int nreg = 0;
1615 int nalloc = 0;
1616 int nfree = 0;
1617 vmem_size_t total = 0;
1618 #if 1
1619 vm_flag_t strat = VM_INSTANTFIT;
1620 #else
1621 vm_flag_t strat = VM_BESTFIT;
1622 #endif
1623
1624 vm = vmem_create("test", 0, 0, 1, NULL, NULL, NULL, 0, VM_SLEEP,
1625 #ifdef _KERNEL
1626 IPL_NONE
1627 #else
1628 0
1629 #endif
1630 );
1631 if (vm == NULL) {
1632 printf("vmem_create\n");
1633 exit(EXIT_FAILURE);
1634 }
1635 vmem_dump(vm, vmem_printf);
1636
1637 rc = vmem_add(vm, 0, 50, VM_SLEEP);
1638 assert(rc == 0);
1639 rc = vmem_add(vm, 100, 200, VM_SLEEP);
1640 assert(rc == 0);
1641 rc = vmem_add(vm, 2000, 1, VM_SLEEP);
1642 assert(rc == 0);
1643 rc = vmem_add(vm, 40000, 65536, VM_SLEEP);
1644 assert(rc == 0);
1645 rc = vmem_add(vm, 10000, 10000, VM_SLEEP);
1646 assert(rc == 0);
1647 rc = vmem_add(vm, 500, 1000, VM_SLEEP);
1648 assert(rc == 0);
1649 rc = vmem_add(vm, 0xffffff00, 0x100, VM_SLEEP);
1650 assert(rc == 0);
1651 rc = vmem_xalloc(vm, 0x101, 0, 0, 0,
1652 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1653 assert(rc != 0);
1654 rc = vmem_xalloc(vm, 50, 0, 0, 0, 0, 49, strat|VM_SLEEP, &p);
1655 assert(rc == 0 && p == 0);
1656 vmem_xfree(vm, p, 50);
1657 rc = vmem_xalloc(vm, 25, 0, 0, 0, 0, 24, strat|VM_SLEEP, &p);
1658 assert(rc == 0 && p == 0);
1659 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1660 0xffffff01, 0xffffffff, strat|VM_SLEEP, &p);
1661 assert(rc != 0);
1662 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1663 0xffffff00, 0xfffffffe, strat|VM_SLEEP, &p);
1664 assert(rc != 0);
1665 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1666 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1667 assert(rc == 0);
1668 vmem_dump(vm, vmem_printf);
1669 for (;;) {
1670 struct reg *r;
1671 int t = rand() % 100;
1672
1673 if (t > 45) {
1674 /* alloc */
1675 vmem_size_t sz = rand() % 500 + 1;
1676 bool x;
1677 vmem_size_t align, phase, nocross;
1678 vmem_addr_t minaddr, maxaddr;
1679
1680 if (t > 70) {
1681 x = true;
1682 /* XXX */
1683 align = 1 << (rand() % 15);
1684 phase = rand() % 65536;
1685 nocross = 1 << (rand() % 15);
1686 if (align <= phase) {
1687 phase = 0;
1688 }
1689 if (VMEM_CROSS_P(phase, phase + sz - 1,
1690 nocross)) {
1691 nocross = 0;
1692 }
1693 do {
1694 minaddr = rand() % 50000;
1695 maxaddr = rand() % 70000;
1696 } while (minaddr > maxaddr);
1697 printf("=== xalloc %" PRIu64
1698 " align=%" PRIu64 ", phase=%" PRIu64
1699 ", nocross=%" PRIu64 ", min=%" PRIu64
1700 ", max=%" PRIu64 "\n",
1701 (uint64_t)sz,
1702 (uint64_t)align,
1703 (uint64_t)phase,
1704 (uint64_t)nocross,
1705 (uint64_t)minaddr,
1706 (uint64_t)maxaddr);
1707 rc = vmem_xalloc(vm, sz, align, phase, nocross,
1708 minaddr, maxaddr, strat|VM_SLEEP, &p);
1709 } else {
1710 x = false;
1711 printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1712 rc = vmem_alloc(vm, sz, strat|VM_SLEEP, &p);
1713 }
1714 printf("-> %" PRIu64 "\n", (uint64_t)p);
1715 vmem_dump(vm, vmem_printf);
1716 if (rc != 0) {
1717 if (x) {
1718 continue;
1719 }
1720 break;
1721 }
1722 nreg++;
1723 reg = realloc(reg, sizeof(*reg) * nreg);
1724 r = ®[nreg - 1];
1725 r->p = p;
1726 r->sz = sz;
1727 r->x = x;
1728 total += sz;
1729 nalloc++;
1730 } else if (nreg != 0) {
1731 /* free */
1732 r = ®[rand() % nreg];
1733 printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1734 (uint64_t)r->p, (uint64_t)r->sz);
1735 if (r->x) {
1736 vmem_xfree(vm, r->p, r->sz);
1737 } else {
1738 vmem_free(vm, r->p, r->sz);
1739 }
1740 total -= r->sz;
1741 vmem_dump(vm, vmem_printf);
1742 *r = reg[nreg - 1];
1743 nreg--;
1744 nfree++;
1745 }
1746 printf("total=%" PRIu64 "\n", (uint64_t)total);
1747 }
1748 fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1749 (uint64_t)total, nalloc, nfree);
1750 exit(EXIT_SUCCESS);
1751 }
1752 #endif /* defined(UNITTEST) */
1753