subr_vmem.c revision 1.81 1 /* $NetBSD: subr_vmem.c,v 1.81 2013/02/08 09:30:01 skrll Exp $ */
2
3 /*-
4 * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * reference:
31 * - Magazines and Vmem: Extending the Slab Allocator
32 * to Many CPUs and Arbitrary Resources
33 * http://www.usenix.org/event/usenix01/bonwick.html
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.81 2013/02/08 09:30:01 skrll Exp $");
38
39 #if defined(_KERNEL)
40 #include "opt_ddb.h"
41 #endif /* defined(_KERNEL) */
42
43 #include <sys/param.h>
44 #include <sys/hash.h>
45 #include <sys/queue.h>
46 #include <sys/bitops.h>
47
48 #if defined(_KERNEL)
49 #include <sys/systm.h>
50 #include <sys/kernel.h> /* hz */
51 #include <sys/callout.h>
52 #include <sys/kmem.h>
53 #include <sys/pool.h>
54 #include <sys/vmem.h>
55 #include <sys/vmem_impl.h>
56 #include <sys/workqueue.h>
57 #include <sys/atomic.h>
58 #include <uvm/uvm.h>
59 #include <uvm/uvm_extern.h>
60 #include <uvm/uvm_km.h>
61 #include <uvm/uvm_page.h>
62 #include <uvm/uvm_pdaemon.h>
63 #else /* defined(_KERNEL) */
64 #include <stdio.h>
65 #include <errno.h>
66 #include <assert.h>
67 #include <stdlib.h>
68 #include <string.h>
69 #include "../sys/vmem.h"
70 #include "../sys/vmem_impl.h"
71 #endif /* defined(_KERNEL) */
72
73
74 #if defined(_KERNEL)
75 #include <sys/evcnt.h>
76 #define VMEM_EVCNT_DEFINE(name) \
77 struct evcnt vmem_evcnt_##name = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, \
78 "vmemev", #name); \
79 EVCNT_ATTACH_STATIC(vmem_evcnt_##name);
80 #define VMEM_EVCNT_INCR(ev) vmem_evcnt_##ev.ev_count++
81 #define VMEM_EVCNT_DECR(ev) vmem_evcnt_##ev.ev_count--
82
83 VMEM_EVCNT_DEFINE(bt_pages)
84 VMEM_EVCNT_DEFINE(bt_count)
85 VMEM_EVCNT_DEFINE(bt_inuse)
86
87 #define VMEM_CONDVAR_INIT(vm, wchan) cv_init(&vm->vm_cv, wchan)
88 #define VMEM_CONDVAR_DESTROY(vm) cv_destroy(&vm->vm_cv)
89 #define VMEM_CONDVAR_WAIT(vm) cv_wait(&vm->vm_cv, &vm->vm_lock)
90 #define VMEM_CONDVAR_BROADCAST(vm) cv_broadcast(&vm->vm_cv)
91
92 #else /* defined(_KERNEL) */
93
94 #define VMEM_EVCNT_INCR(ev) /* nothing */
95 #define VMEM_EVCNT_DECR(ev) /* nothing */
96
97 #define VMEM_CONDVAR_INIT(vm, wchan) /* nothing */
98 #define VMEM_CONDVAR_DESTROY(vm) /* nothing */
99 #define VMEM_CONDVAR_WAIT(vm) /* nothing */
100 #define VMEM_CONDVAR_BROADCAST(vm) /* nothing */
101
102 #define UNITTEST
103 #define KASSERT(a) assert(a)
104 #define mutex_init(a, b, c) /* nothing */
105 #define mutex_destroy(a) /* nothing */
106 #define mutex_enter(a) /* nothing */
107 #define mutex_tryenter(a) true
108 #define mutex_exit(a) /* nothing */
109 #define mutex_owned(a) /* nothing */
110 #define ASSERT_SLEEPABLE() /* nothing */
111 #define panic(...) printf(__VA_ARGS__); abort()
112 #endif /* defined(_KERNEL) */
113
114 #if defined(VMEM_SANITY)
115 static void vmem_check(vmem_t *);
116 #else /* defined(VMEM_SANITY) */
117 #define vmem_check(vm) /* nothing */
118 #endif /* defined(VMEM_SANITY) */
119
120 #define VMEM_HASHSIZE_MIN 1 /* XXX */
121 #define VMEM_HASHSIZE_MAX 65536 /* XXX */
122 #define VMEM_HASHSIZE_INIT 1
123
124 #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
125
126 #if defined(_KERNEL)
127 static bool vmem_bootstrapped = false;
128 static kmutex_t vmem_list_lock;
129 static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
130 #endif /* defined(_KERNEL) */
131
132 /* ---- misc */
133
134 #define VMEM_LOCK(vm) mutex_enter(&vm->vm_lock)
135 #define VMEM_TRYLOCK(vm) mutex_tryenter(&vm->vm_lock)
136 #define VMEM_UNLOCK(vm) mutex_exit(&vm->vm_lock)
137 #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl)
138 #define VMEM_LOCK_DESTROY(vm) mutex_destroy(&vm->vm_lock)
139 #define VMEM_ASSERT_LOCKED(vm) KASSERT(mutex_owned(&vm->vm_lock))
140
141 #define VMEM_ALIGNUP(addr, align) \
142 (-(-(addr) & -(align)))
143
144 #define VMEM_CROSS_P(addr1, addr2, boundary) \
145 ((((addr1) ^ (addr2)) & -(boundary)) != 0)
146
147 #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
148 #define SIZE2ORDER(size) ((int)ilog2(size))
149
150 #if !defined(_KERNEL)
151 #define xmalloc(sz, flags) malloc(sz)
152 #define xfree(p, sz) free(p)
153 #define bt_alloc(vm, flags) malloc(sizeof(bt_t))
154 #define bt_free(vm, bt) free(bt)
155 #else /* defined(_KERNEL) */
156
157 #define xmalloc(sz, flags) \
158 kmem_alloc(sz, ((flags) & VM_SLEEP) ? KM_SLEEP : KM_NOSLEEP);
159 #define xfree(p, sz) kmem_free(p, sz);
160
161 /*
162 * BT_RESERVE calculation:
163 * we allocate memory for boundry tags with vmem, therefor we have
164 * to keep a reserve of bts used to allocated memory for bts.
165 * This reserve is 4 for each arena involved in allocating vmems memory.
166 * BT_MAXFREE: don't cache excessive counts of bts in arenas
167 */
168 #define STATIC_BT_COUNT 200
169 #define BT_MINRESERVE 4
170 #define BT_MAXFREE 64
171
172 static struct vmem_btag static_bts[STATIC_BT_COUNT];
173 static int static_bt_count = STATIC_BT_COUNT;
174
175 static struct vmem kmem_va_meta_arena_store;
176 vmem_t *kmem_va_meta_arena;
177 static struct vmem kmem_meta_arena_store;
178 vmem_t *kmem_meta_arena;
179
180 static kmutex_t vmem_refill_lock;
181 static kmutex_t vmem_btag_lock;
182 static LIST_HEAD(, vmem_btag) vmem_btag_freelist;
183 static size_t vmem_btag_freelist_count = 0;
184 static size_t vmem_btag_count = STATIC_BT_COUNT;
185
186 /* ---- boundary tag */
187
188 #define BT_PER_PAGE (PAGE_SIZE / sizeof(bt_t))
189
190 static int bt_refill(vmem_t *vm, vm_flag_t flags);
191
192 static int
193 bt_refillglobal(vm_flag_t flags)
194 {
195 vmem_addr_t va;
196 bt_t *btp;
197 bt_t *bt;
198 int i;
199
200 mutex_enter(&vmem_refill_lock);
201
202 mutex_enter(&vmem_btag_lock);
203 if (vmem_btag_freelist_count > 0) {
204 mutex_exit(&vmem_btag_lock);
205 mutex_exit(&vmem_refill_lock);
206 return 0;
207 }
208 mutex_exit(&vmem_btag_lock);
209
210 if (vmem_alloc(kmem_meta_arena, PAGE_SIZE,
211 (flags & ~VM_FITMASK) | VM_INSTANTFIT | VM_POPULATING, &va) != 0) {
212 mutex_exit(&vmem_refill_lock);
213 return ENOMEM;
214 }
215 VMEM_EVCNT_INCR(bt_pages);
216
217 mutex_enter(&vmem_btag_lock);
218 btp = (void *) va;
219 for (i = 0; i < (BT_PER_PAGE); i++) {
220 bt = btp;
221 memset(bt, 0, sizeof(*bt));
222 LIST_INSERT_HEAD(&vmem_btag_freelist, bt,
223 bt_freelist);
224 vmem_btag_freelist_count++;
225 vmem_btag_count++;
226 VMEM_EVCNT_INCR(bt_count);
227 btp++;
228 }
229 mutex_exit(&vmem_btag_lock);
230
231 bt_refill(kmem_arena, (flags & ~VM_FITMASK)
232 | VM_INSTANTFIT | VM_POPULATING);
233 bt_refill(kmem_va_meta_arena, (flags & ~VM_FITMASK)
234 | VM_INSTANTFIT | VM_POPULATING);
235 bt_refill(kmem_meta_arena, (flags & ~VM_FITMASK)
236 | VM_INSTANTFIT | VM_POPULATING);
237
238 mutex_exit(&vmem_refill_lock);
239
240 return 0;
241 }
242
243 static int
244 bt_refill(vmem_t *vm, vm_flag_t flags)
245 {
246 bt_t *bt;
247
248 if (!(flags & VM_POPULATING)) {
249 bt_refillglobal(flags);
250 }
251
252 VMEM_LOCK(vm);
253 mutex_enter(&vmem_btag_lock);
254 while (!LIST_EMPTY(&vmem_btag_freelist) &&
255 vm->vm_nfreetags <= BT_MINRESERVE) {
256 bt = LIST_FIRST(&vmem_btag_freelist);
257 LIST_REMOVE(bt, bt_freelist);
258 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
259 vm->vm_nfreetags++;
260 vmem_btag_freelist_count--;
261 }
262 mutex_exit(&vmem_btag_lock);
263
264 if (vm->vm_nfreetags == 0) {
265 VMEM_UNLOCK(vm);
266 return ENOMEM;
267 }
268 VMEM_UNLOCK(vm);
269
270 return 0;
271 }
272
273 static inline bt_t *
274 bt_alloc(vmem_t *vm, vm_flag_t flags)
275 {
276 bt_t *bt;
277 again:
278 VMEM_LOCK(vm);
279 if (vm->vm_nfreetags <= BT_MINRESERVE &&
280 (flags & VM_POPULATING) == 0) {
281 VMEM_UNLOCK(vm);
282 if (bt_refill(vm, VM_NOSLEEP | VM_INSTANTFIT)) {
283 return NULL;
284 }
285 goto again;
286 }
287 bt = LIST_FIRST(&vm->vm_freetags);
288 LIST_REMOVE(bt, bt_freelist);
289 vm->vm_nfreetags--;
290 VMEM_UNLOCK(vm);
291 VMEM_EVCNT_INCR(bt_inuse);
292
293 return bt;
294 }
295
296 static inline void
297 bt_free(vmem_t *vm, bt_t *bt)
298 {
299
300 VMEM_LOCK(vm);
301 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
302 vm->vm_nfreetags++;
303 while (vm->vm_nfreetags > BT_MAXFREE) {
304 bt = LIST_FIRST(&vm->vm_freetags);
305 LIST_REMOVE(bt, bt_freelist);
306 vm->vm_nfreetags--;
307 mutex_enter(&vmem_btag_lock);
308 LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
309 vmem_btag_freelist_count++;
310 mutex_exit(&vmem_btag_lock);
311 }
312 VMEM_UNLOCK(vm);
313 VMEM_EVCNT_DECR(bt_inuse);
314 }
315
316 #endif /* defined(_KERNEL) */
317
318 /*
319 * freelist[0] ... [1, 1]
320 * freelist[1] ... [2, 3]
321 * freelist[2] ... [4, 7]
322 * freelist[3] ... [8, 15]
323 * :
324 * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
325 * :
326 */
327
328 static struct vmem_freelist *
329 bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
330 {
331 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
332 const int idx = SIZE2ORDER(qsize);
333
334 KASSERT(size != 0 && qsize != 0);
335 KASSERT((size & vm->vm_quantum_mask) == 0);
336 KASSERT(idx >= 0);
337 KASSERT(idx < VMEM_MAXORDER);
338
339 return &vm->vm_freelist[idx];
340 }
341
342 /*
343 * bt_freehead_toalloc: return the freelist for the given size and allocation
344 * strategy.
345 *
346 * for VM_INSTANTFIT, return the list in which any blocks are large enough
347 * for the requested size. otherwise, return the list which can have blocks
348 * large enough for the requested size.
349 */
350
351 static struct vmem_freelist *
352 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
353 {
354 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
355 int idx = SIZE2ORDER(qsize);
356
357 KASSERT(size != 0 && qsize != 0);
358 KASSERT((size & vm->vm_quantum_mask) == 0);
359
360 if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
361 idx++;
362 /* check too large request? */
363 }
364 KASSERT(idx >= 0);
365 KASSERT(idx < VMEM_MAXORDER);
366
367 return &vm->vm_freelist[idx];
368 }
369
370 /* ---- boundary tag hash */
371
372 static struct vmem_hashlist *
373 bt_hashhead(vmem_t *vm, vmem_addr_t addr)
374 {
375 struct vmem_hashlist *list;
376 unsigned int hash;
377
378 hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
379 list = &vm->vm_hashlist[hash % vm->vm_hashsize];
380
381 return list;
382 }
383
384 static bt_t *
385 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
386 {
387 struct vmem_hashlist *list;
388 bt_t *bt;
389
390 list = bt_hashhead(vm, addr);
391 LIST_FOREACH(bt, list, bt_hashlist) {
392 if (bt->bt_start == addr) {
393 break;
394 }
395 }
396
397 return bt;
398 }
399
400 static void
401 bt_rembusy(vmem_t *vm, bt_t *bt)
402 {
403
404 KASSERT(vm->vm_nbusytag > 0);
405 vm->vm_inuse -= bt->bt_size;
406 vm->vm_nbusytag--;
407 LIST_REMOVE(bt, bt_hashlist);
408 }
409
410 static void
411 bt_insbusy(vmem_t *vm, bt_t *bt)
412 {
413 struct vmem_hashlist *list;
414
415 KASSERT(bt->bt_type == BT_TYPE_BUSY);
416
417 list = bt_hashhead(vm, bt->bt_start);
418 LIST_INSERT_HEAD(list, bt, bt_hashlist);
419 vm->vm_nbusytag++;
420 vm->vm_inuse += bt->bt_size;
421 }
422
423 /* ---- boundary tag list */
424
425 static void
426 bt_remseg(vmem_t *vm, bt_t *bt)
427 {
428
429 CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
430 }
431
432 static void
433 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
434 {
435
436 CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
437 }
438
439 static void
440 bt_insseg_tail(vmem_t *vm, bt_t *bt)
441 {
442
443 CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
444 }
445
446 static void
447 bt_remfree(vmem_t *vm, bt_t *bt)
448 {
449
450 KASSERT(bt->bt_type == BT_TYPE_FREE);
451
452 LIST_REMOVE(bt, bt_freelist);
453 }
454
455 static void
456 bt_insfree(vmem_t *vm, bt_t *bt)
457 {
458 struct vmem_freelist *list;
459
460 list = bt_freehead_tofree(vm, bt->bt_size);
461 LIST_INSERT_HEAD(list, bt, bt_freelist);
462 }
463
464 /* ---- vmem internal functions */
465
466 #if defined(QCACHE)
467 static inline vm_flag_t
468 prf_to_vmf(int prflags)
469 {
470 vm_flag_t vmflags;
471
472 KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
473 if ((prflags & PR_WAITOK) != 0) {
474 vmflags = VM_SLEEP;
475 } else {
476 vmflags = VM_NOSLEEP;
477 }
478 return vmflags;
479 }
480
481 static inline int
482 vmf_to_prf(vm_flag_t vmflags)
483 {
484 int prflags;
485
486 if ((vmflags & VM_SLEEP) != 0) {
487 prflags = PR_WAITOK;
488 } else {
489 prflags = PR_NOWAIT;
490 }
491 return prflags;
492 }
493
494 static size_t
495 qc_poolpage_size(size_t qcache_max)
496 {
497 int i;
498
499 for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
500 /* nothing */
501 }
502 return ORDER2SIZE(i);
503 }
504
505 static void *
506 qc_poolpage_alloc(struct pool *pool, int prflags)
507 {
508 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
509 vmem_t *vm = qc->qc_vmem;
510 vmem_addr_t addr;
511
512 if (vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
513 prf_to_vmf(prflags) | VM_INSTANTFIT, &addr) != 0)
514 return NULL;
515 return (void *)addr;
516 }
517
518 static void
519 qc_poolpage_free(struct pool *pool, void *addr)
520 {
521 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
522 vmem_t *vm = qc->qc_vmem;
523
524 vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
525 }
526
527 static void
528 qc_init(vmem_t *vm, size_t qcache_max, int ipl)
529 {
530 qcache_t *prevqc;
531 struct pool_allocator *pa;
532 int qcache_idx_max;
533 int i;
534
535 KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
536 if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
537 qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
538 }
539 vm->vm_qcache_max = qcache_max;
540 pa = &vm->vm_qcache_allocator;
541 memset(pa, 0, sizeof(*pa));
542 pa->pa_alloc = qc_poolpage_alloc;
543 pa->pa_free = qc_poolpage_free;
544 pa->pa_pagesz = qc_poolpage_size(qcache_max);
545
546 qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
547 prevqc = NULL;
548 for (i = qcache_idx_max; i > 0; i--) {
549 qcache_t *qc = &vm->vm_qcache_store[i - 1];
550 size_t size = i << vm->vm_quantum_shift;
551 pool_cache_t pc;
552
553 qc->qc_vmem = vm;
554 snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
555 vm->vm_name, size);
556
557 pc = pool_cache_init(size,
558 ORDER2SIZE(vm->vm_quantum_shift), 0,
559 PR_NOALIGN | PR_NOTOUCH | PR_RECURSIVE /* XXX */,
560 qc->qc_name, pa, ipl, NULL, NULL, NULL);
561
562 KASSERT(pc);
563
564 qc->qc_cache = pc;
565 KASSERT(qc->qc_cache != NULL); /* XXX */
566 if (prevqc != NULL &&
567 qc->qc_cache->pc_pool.pr_itemsperpage ==
568 prevqc->qc_cache->pc_pool.pr_itemsperpage) {
569 pool_cache_destroy(qc->qc_cache);
570 vm->vm_qcache[i - 1] = prevqc;
571 continue;
572 }
573 qc->qc_cache->pc_pool.pr_qcache = qc;
574 vm->vm_qcache[i - 1] = qc;
575 prevqc = qc;
576 }
577 }
578
579 static void
580 qc_destroy(vmem_t *vm)
581 {
582 const qcache_t *prevqc;
583 int i;
584 int qcache_idx_max;
585
586 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
587 prevqc = NULL;
588 for (i = 0; i < qcache_idx_max; i++) {
589 qcache_t *qc = vm->vm_qcache[i];
590
591 if (prevqc == qc) {
592 continue;
593 }
594 pool_cache_destroy(qc->qc_cache);
595 prevqc = qc;
596 }
597 }
598 #endif
599
600 #if defined(_KERNEL)
601 static void
602 vmem_bootstrap(void)
603 {
604
605 mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_VM);
606 mutex_init(&vmem_refill_lock, MUTEX_DEFAULT, IPL_VM);
607 mutex_init(&vmem_btag_lock, MUTEX_DEFAULT, IPL_VM);
608
609 while (static_bt_count-- > 0) {
610 bt_t *bt = &static_bts[static_bt_count];
611 LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
612 VMEM_EVCNT_INCR(bt_count);
613 vmem_btag_freelist_count++;
614 }
615 vmem_bootstrapped = TRUE;
616 }
617
618 void
619 vmem_subsystem_init(vmem_t *vm)
620 {
621
622 kmem_va_meta_arena = vmem_init(&kmem_va_meta_arena_store, "vmem-va",
623 0, 0, PAGE_SIZE, vmem_alloc, vmem_free, vm,
624 0, VM_NOSLEEP | VM_BOOTSTRAP | VM_LARGEIMPORT,
625 IPL_VM);
626
627 kmem_meta_arena = vmem_init(&kmem_meta_arena_store, "vmem-meta",
628 0, 0, PAGE_SIZE,
629 uvm_km_kmem_alloc, uvm_km_kmem_free, kmem_va_meta_arena,
630 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
631 }
632 #endif /* defined(_KERNEL) */
633
634 static int
635 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
636 int spanbttype)
637 {
638 bt_t *btspan;
639 bt_t *btfree;
640
641 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
642 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
643 KASSERT(spanbttype == BT_TYPE_SPAN ||
644 spanbttype == BT_TYPE_SPAN_STATIC);
645
646 btspan = bt_alloc(vm, flags);
647 if (btspan == NULL) {
648 return ENOMEM;
649 }
650 btfree = bt_alloc(vm, flags);
651 if (btfree == NULL) {
652 bt_free(vm, btspan);
653 return ENOMEM;
654 }
655
656 btspan->bt_type = spanbttype;
657 btspan->bt_start = addr;
658 btspan->bt_size = size;
659
660 btfree->bt_type = BT_TYPE_FREE;
661 btfree->bt_start = addr;
662 btfree->bt_size = size;
663
664 VMEM_LOCK(vm);
665 bt_insseg_tail(vm, btspan);
666 bt_insseg(vm, btfree, btspan);
667 bt_insfree(vm, btfree);
668 vm->vm_size += size;
669 VMEM_UNLOCK(vm);
670
671 return 0;
672 }
673
674 static void
675 vmem_destroy1(vmem_t *vm)
676 {
677
678 #if defined(QCACHE)
679 qc_destroy(vm);
680 #endif /* defined(QCACHE) */
681 if (vm->vm_hashlist != NULL) {
682 int i;
683
684 for (i = 0; i < vm->vm_hashsize; i++) {
685 bt_t *bt;
686
687 while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
688 KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
689 bt_free(vm, bt);
690 }
691 }
692 if (vm->vm_hashlist != &vm->vm_hash0) {
693 xfree(vm->vm_hashlist,
694 sizeof(struct vmem_hashlist *) * vm->vm_hashsize);
695 }
696 }
697
698 while (vm->vm_nfreetags > 0) {
699 bt_t *bt = LIST_FIRST(&vm->vm_freetags);
700 LIST_REMOVE(bt, bt_freelist);
701 vm->vm_nfreetags--;
702 mutex_enter(&vmem_btag_lock);
703 #if defined (_KERNEL)
704 LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
705 vmem_btag_freelist_count++;
706 #endif /* defined(_KERNEL) */
707 mutex_exit(&vmem_btag_lock);
708 }
709
710 VMEM_CONDVAR_DESTROY(vm);
711 VMEM_LOCK_DESTROY(vm);
712 xfree(vm, sizeof(*vm));
713 }
714
715 static int
716 vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
717 {
718 vmem_addr_t addr;
719 int rc;
720
721 if (vm->vm_importfn == NULL) {
722 return EINVAL;
723 }
724
725 if (vm->vm_flags & VM_LARGEIMPORT) {
726 size *= 16;
727 }
728
729 if (vm->vm_flags & VM_XIMPORT) {
730 rc = ((vmem_ximport_t *)vm->vm_importfn)(vm->vm_arg, size,
731 &size, flags, &addr);
732 } else {
733 rc = (vm->vm_importfn)(vm->vm_arg, size, flags, &addr);
734 }
735 if (rc) {
736 return ENOMEM;
737 }
738
739 if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) != 0) {
740 (*vm->vm_releasefn)(vm->vm_arg, addr, size);
741 return ENOMEM;
742 }
743
744 return 0;
745 }
746
747 static int
748 vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
749 {
750 bt_t *bt;
751 int i;
752 struct vmem_hashlist *newhashlist;
753 struct vmem_hashlist *oldhashlist;
754 size_t oldhashsize;
755
756 KASSERT(newhashsize > 0);
757
758 newhashlist =
759 xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
760 if (newhashlist == NULL) {
761 return ENOMEM;
762 }
763 for (i = 0; i < newhashsize; i++) {
764 LIST_INIT(&newhashlist[i]);
765 }
766
767 if (!VMEM_TRYLOCK(vm)) {
768 xfree(newhashlist,
769 sizeof(struct vmem_hashlist *) * newhashsize);
770 return EBUSY;
771 }
772 oldhashlist = vm->vm_hashlist;
773 oldhashsize = vm->vm_hashsize;
774 vm->vm_hashlist = newhashlist;
775 vm->vm_hashsize = newhashsize;
776 if (oldhashlist == NULL) {
777 VMEM_UNLOCK(vm);
778 return 0;
779 }
780 for (i = 0; i < oldhashsize; i++) {
781 while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
782 bt_rembusy(vm, bt); /* XXX */
783 bt_insbusy(vm, bt);
784 }
785 }
786 VMEM_UNLOCK(vm);
787
788 if (oldhashlist != &vm->vm_hash0) {
789 xfree(oldhashlist,
790 sizeof(struct vmem_hashlist *) * oldhashsize);
791 }
792
793 return 0;
794 }
795
796 /*
797 * vmem_fit: check if a bt can satisfy the given restrictions.
798 *
799 * it's a caller's responsibility to ensure the region is big enough
800 * before calling us.
801 */
802
803 static int
804 vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align,
805 vmem_size_t phase, vmem_size_t nocross,
806 vmem_addr_t minaddr, vmem_addr_t maxaddr, vmem_addr_t *addrp)
807 {
808 vmem_addr_t start;
809 vmem_addr_t end;
810
811 KASSERT(size > 0);
812 KASSERT(bt->bt_size >= size); /* caller's responsibility */
813
814 /*
815 * XXX assumption: vmem_addr_t and vmem_size_t are
816 * unsigned integer of the same size.
817 */
818
819 start = bt->bt_start;
820 if (start < minaddr) {
821 start = minaddr;
822 }
823 end = BT_END(bt);
824 if (end > maxaddr) {
825 end = maxaddr;
826 }
827 if (start > end) {
828 return ENOMEM;
829 }
830
831 start = VMEM_ALIGNUP(start - phase, align) + phase;
832 if (start < bt->bt_start) {
833 start += align;
834 }
835 if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
836 KASSERT(align < nocross);
837 start = VMEM_ALIGNUP(start - phase, nocross) + phase;
838 }
839 if (start <= end && end - start >= size - 1) {
840 KASSERT((start & (align - 1)) == phase);
841 KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
842 KASSERT(minaddr <= start);
843 KASSERT(maxaddr == 0 || start + size - 1 <= maxaddr);
844 KASSERT(bt->bt_start <= start);
845 KASSERT(BT_END(bt) - start >= size - 1);
846 *addrp = start;
847 return 0;
848 }
849 return ENOMEM;
850 }
851
852 /* ---- vmem API */
853
854 /*
855 * vmem_create_internal: creates a vmem arena.
856 */
857
858 vmem_t *
859 vmem_init(vmem_t *vm, const char *name,
860 vmem_addr_t base, vmem_size_t size, vmem_size_t quantum,
861 vmem_import_t *importfn, vmem_release_t *releasefn,
862 vmem_t *arg, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
863 {
864 int i;
865
866 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
867 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
868 KASSERT(quantum > 0);
869
870 #if defined(_KERNEL)
871 /* XXX: SMP, we get called early... */
872 if (!vmem_bootstrapped) {
873 vmem_bootstrap();
874 }
875 #endif /* defined(_KERNEL) */
876
877 if (vm == NULL) {
878 vm = xmalloc(sizeof(*vm), flags);
879 }
880 if (vm == NULL) {
881 return NULL;
882 }
883
884 VMEM_CONDVAR_INIT(vm, "vmem");
885 VMEM_LOCK_INIT(vm, ipl);
886 vm->vm_flags = flags;
887 vm->vm_nfreetags = 0;
888 LIST_INIT(&vm->vm_freetags);
889 strlcpy(vm->vm_name, name, sizeof(vm->vm_name));
890 vm->vm_quantum_mask = quantum - 1;
891 vm->vm_quantum_shift = SIZE2ORDER(quantum);
892 KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
893 vm->vm_importfn = importfn;
894 vm->vm_releasefn = releasefn;
895 vm->vm_arg = arg;
896 vm->vm_nbusytag = 0;
897 vm->vm_size = 0;
898 vm->vm_inuse = 0;
899 #if defined(QCACHE)
900 qc_init(vm, qcache_max, ipl);
901 #endif /* defined(QCACHE) */
902
903 CIRCLEQ_INIT(&vm->vm_seglist);
904 for (i = 0; i < VMEM_MAXORDER; i++) {
905 LIST_INIT(&vm->vm_freelist[i]);
906 }
907 memset(&vm->vm_hash0, 0, sizeof(struct vmem_hashlist));
908 vm->vm_hashsize = 1;
909 vm->vm_hashlist = &vm->vm_hash0;
910
911 if (size != 0) {
912 if (vmem_add(vm, base, size, flags) != 0) {
913 vmem_destroy1(vm);
914 return NULL;
915 }
916 }
917
918 #if defined(_KERNEL)
919 if (flags & VM_BOOTSTRAP) {
920 bt_refill(vm, VM_NOSLEEP);
921 }
922
923 mutex_enter(&vmem_list_lock);
924 LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
925 mutex_exit(&vmem_list_lock);
926 #endif /* defined(_KERNEL) */
927
928 return vm;
929 }
930
931
932
933 /*
934 * vmem_create: create an arena.
935 *
936 * => must not be called from interrupt context.
937 */
938
939 vmem_t *
940 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
941 vmem_size_t quantum, vmem_import_t *importfn, vmem_release_t *releasefn,
942 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
943 {
944
945 KASSERT((flags & (VM_XIMPORT)) == 0);
946
947 return vmem_init(NULL, name, base, size, quantum,
948 importfn, releasefn, source, qcache_max, flags, ipl);
949 }
950
951 /*
952 * vmem_xcreate: create an arena takes alternative import func.
953 *
954 * => must not be called from interrupt context.
955 */
956
957 vmem_t *
958 vmem_xcreate(const char *name, vmem_addr_t base, vmem_size_t size,
959 vmem_size_t quantum, vmem_ximport_t *importfn, vmem_release_t *releasefn,
960 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
961 {
962
963 KASSERT((flags & (VM_XIMPORT)) == 0);
964
965 return vmem_init(NULL, name, base, size, quantum,
966 (vmem_import_t *)importfn, releasefn, source,
967 qcache_max, flags | VM_XIMPORT, ipl);
968 }
969
970 void
971 vmem_destroy(vmem_t *vm)
972 {
973
974 #if defined(_KERNEL)
975 mutex_enter(&vmem_list_lock);
976 LIST_REMOVE(vm, vm_alllist);
977 mutex_exit(&vmem_list_lock);
978 #endif /* defined(_KERNEL) */
979
980 vmem_destroy1(vm);
981 }
982
983 vmem_size_t
984 vmem_roundup_size(vmem_t *vm, vmem_size_t size)
985 {
986
987 return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
988 }
989
990 /*
991 * vmem_alloc:
992 *
993 * => caller must ensure appropriate spl,
994 * if the arena can be accessed from interrupt context.
995 */
996
997 int
998 vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags, vmem_addr_t *addrp)
999 {
1000 const vm_flag_t strat __unused = flags & VM_FITMASK;
1001
1002 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1003 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1004
1005 KASSERT(size > 0);
1006 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1007 if ((flags & VM_SLEEP) != 0) {
1008 ASSERT_SLEEPABLE();
1009 }
1010
1011 #if defined(QCACHE)
1012 if (size <= vm->vm_qcache_max) {
1013 void *p;
1014 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1015 qcache_t *qc = vm->vm_qcache[qidx - 1];
1016
1017 p = pool_cache_get(qc->qc_cache, vmf_to_prf(flags));
1018 if (addrp != NULL)
1019 *addrp = (vmem_addr_t)p;
1020 return (p == NULL) ? ENOMEM : 0;
1021 }
1022 #endif /* defined(QCACHE) */
1023
1024 return vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
1025 flags, addrp);
1026 }
1027
1028 int
1029 vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align,
1030 const vmem_size_t phase, const vmem_size_t nocross,
1031 const vmem_addr_t minaddr, const vmem_addr_t maxaddr, const vm_flag_t flags,
1032 vmem_addr_t *addrp)
1033 {
1034 struct vmem_freelist *list;
1035 struct vmem_freelist *first;
1036 struct vmem_freelist *end;
1037 bt_t *bt;
1038 bt_t *btnew;
1039 bt_t *btnew2;
1040 const vmem_size_t size = vmem_roundup_size(vm, size0);
1041 vm_flag_t strat = flags & VM_FITMASK;
1042 vmem_addr_t start;
1043 int rc;
1044
1045 KASSERT(size0 > 0);
1046 KASSERT(size > 0);
1047 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1048 if ((flags & VM_SLEEP) != 0) {
1049 ASSERT_SLEEPABLE();
1050 }
1051 KASSERT((align & vm->vm_quantum_mask) == 0);
1052 KASSERT((align & (align - 1)) == 0);
1053 KASSERT((phase & vm->vm_quantum_mask) == 0);
1054 KASSERT((nocross & vm->vm_quantum_mask) == 0);
1055 KASSERT((nocross & (nocross - 1)) == 0);
1056 KASSERT((align == 0 && phase == 0) || phase < align);
1057 KASSERT(nocross == 0 || nocross >= size);
1058 KASSERT(minaddr <= maxaddr);
1059 KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
1060
1061 if (align == 0) {
1062 align = vm->vm_quantum_mask + 1;
1063 }
1064
1065 /*
1066 * allocate boundary tags before acquiring the vmem lock.
1067 */
1068 btnew = bt_alloc(vm, flags);
1069 if (btnew == NULL) {
1070 return ENOMEM;
1071 }
1072 btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
1073 if (btnew2 == NULL) {
1074 bt_free(vm, btnew);
1075 return ENOMEM;
1076 }
1077
1078 /*
1079 * choose a free block from which we allocate.
1080 */
1081 retry_strat:
1082 first = bt_freehead_toalloc(vm, size, strat);
1083 end = &vm->vm_freelist[VMEM_MAXORDER];
1084 retry:
1085 bt = NULL;
1086 VMEM_LOCK(vm);
1087 vmem_check(vm);
1088 if (strat == VM_INSTANTFIT) {
1089 /*
1090 * just choose the first block which satisfies our restrictions.
1091 *
1092 * note that we don't need to check the size of the blocks
1093 * because any blocks found on these list should be larger than
1094 * the given size.
1095 */
1096 for (list = first; list < end; list++) {
1097 bt = LIST_FIRST(list);
1098 if (bt != NULL) {
1099 rc = vmem_fit(bt, size, align, phase,
1100 nocross, minaddr, maxaddr, &start);
1101 if (rc == 0) {
1102 goto gotit;
1103 }
1104 /*
1105 * don't bother to follow the bt_freelist link
1106 * here. the list can be very long and we are
1107 * told to run fast. blocks from the later free
1108 * lists are larger and have better chances to
1109 * satisfy our restrictions.
1110 */
1111 }
1112 }
1113 } else { /* VM_BESTFIT */
1114 /*
1115 * we assume that, for space efficiency, it's better to
1116 * allocate from a smaller block. thus we will start searching
1117 * from the lower-order list than VM_INSTANTFIT.
1118 * however, don't bother to find the smallest block in a free
1119 * list because the list can be very long. we can revisit it
1120 * if/when it turns out to be a problem.
1121 *
1122 * note that the 'first' list can contain blocks smaller than
1123 * the requested size. thus we need to check bt_size.
1124 */
1125 for (list = first; list < end; list++) {
1126 LIST_FOREACH(bt, list, bt_freelist) {
1127 if (bt->bt_size >= size) {
1128 rc = vmem_fit(bt, size, align, phase,
1129 nocross, minaddr, maxaddr, &start);
1130 if (rc == 0) {
1131 goto gotit;
1132 }
1133 }
1134 }
1135 }
1136 }
1137 VMEM_UNLOCK(vm);
1138 #if 1
1139 if (strat == VM_INSTANTFIT) {
1140 strat = VM_BESTFIT;
1141 goto retry_strat;
1142 }
1143 #endif
1144 if (align != vm->vm_quantum_mask + 1 || phase != 0 || nocross != 0) {
1145
1146 /*
1147 * XXX should try to import a region large enough to
1148 * satisfy restrictions?
1149 */
1150
1151 goto fail;
1152 }
1153 /* XXX eeek, minaddr & maxaddr not respected */
1154 if (vmem_import(vm, size, flags) == 0) {
1155 goto retry;
1156 }
1157 /* XXX */
1158
1159 if ((flags & VM_SLEEP) != 0) {
1160 #if defined(_KERNEL) && !defined(_RUMPKERNEL)
1161 mutex_spin_enter(&uvm_fpageqlock);
1162 uvm_kick_pdaemon();
1163 mutex_spin_exit(&uvm_fpageqlock);
1164 #endif
1165 VMEM_LOCK(vm);
1166 VMEM_CONDVAR_WAIT(vm);
1167 VMEM_UNLOCK(vm);
1168 goto retry;
1169 }
1170 fail:
1171 bt_free(vm, btnew);
1172 bt_free(vm, btnew2);
1173 return ENOMEM;
1174
1175 gotit:
1176 KASSERT(bt->bt_type == BT_TYPE_FREE);
1177 KASSERT(bt->bt_size >= size);
1178 bt_remfree(vm, bt);
1179 vmem_check(vm);
1180 if (bt->bt_start != start) {
1181 btnew2->bt_type = BT_TYPE_FREE;
1182 btnew2->bt_start = bt->bt_start;
1183 btnew2->bt_size = start - bt->bt_start;
1184 bt->bt_start = start;
1185 bt->bt_size -= btnew2->bt_size;
1186 bt_insfree(vm, btnew2);
1187 bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
1188 btnew2 = NULL;
1189 vmem_check(vm);
1190 }
1191 KASSERT(bt->bt_start == start);
1192 if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
1193 /* split */
1194 btnew->bt_type = BT_TYPE_BUSY;
1195 btnew->bt_start = bt->bt_start;
1196 btnew->bt_size = size;
1197 bt->bt_start = bt->bt_start + size;
1198 bt->bt_size -= size;
1199 bt_insfree(vm, bt);
1200 bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
1201 bt_insbusy(vm, btnew);
1202 vmem_check(vm);
1203 VMEM_UNLOCK(vm);
1204 } else {
1205 bt->bt_type = BT_TYPE_BUSY;
1206 bt_insbusy(vm, bt);
1207 vmem_check(vm);
1208 VMEM_UNLOCK(vm);
1209 bt_free(vm, btnew);
1210 btnew = bt;
1211 }
1212 if (btnew2 != NULL) {
1213 bt_free(vm, btnew2);
1214 }
1215 KASSERT(btnew->bt_size >= size);
1216 btnew->bt_type = BT_TYPE_BUSY;
1217
1218 if (addrp != NULL)
1219 *addrp = btnew->bt_start;
1220 return 0;
1221 }
1222
1223 /*
1224 * vmem_free:
1225 *
1226 * => caller must ensure appropriate spl,
1227 * if the arena can be accessed from interrupt context.
1228 */
1229
1230 void
1231 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1232 {
1233
1234 KASSERT(size > 0);
1235
1236 #if defined(QCACHE)
1237 if (size <= vm->vm_qcache_max) {
1238 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1239 qcache_t *qc = vm->vm_qcache[qidx - 1];
1240
1241 pool_cache_put(qc->qc_cache, (void *)addr);
1242 return;
1243 }
1244 #endif /* defined(QCACHE) */
1245
1246 vmem_xfree(vm, addr, size);
1247 }
1248
1249 void
1250 vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1251 {
1252 bt_t *bt;
1253 bt_t *t;
1254 LIST_HEAD(, vmem_btag) tofree;
1255
1256 LIST_INIT(&tofree);
1257
1258 KASSERT(size > 0);
1259
1260 VMEM_LOCK(vm);
1261
1262 bt = bt_lookupbusy(vm, addr);
1263 KASSERT(bt != NULL);
1264 KASSERT(bt->bt_start == addr);
1265 KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1266 bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1267 KASSERT(bt->bt_type == BT_TYPE_BUSY);
1268 bt_rembusy(vm, bt);
1269 bt->bt_type = BT_TYPE_FREE;
1270
1271 /* coalesce */
1272 t = CIRCLEQ_NEXT(bt, bt_seglist);
1273 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1274 KASSERT(BT_END(bt) < t->bt_start); /* YYY */
1275 bt_remfree(vm, t);
1276 bt_remseg(vm, t);
1277 bt->bt_size += t->bt_size;
1278 LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1279 }
1280 t = CIRCLEQ_PREV(bt, bt_seglist);
1281 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1282 KASSERT(BT_END(t) < bt->bt_start); /* YYY */
1283 bt_remfree(vm, t);
1284 bt_remseg(vm, t);
1285 bt->bt_size += t->bt_size;
1286 bt->bt_start = t->bt_start;
1287 LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1288 }
1289
1290 t = CIRCLEQ_PREV(bt, bt_seglist);
1291 KASSERT(t != NULL);
1292 KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1293 if (vm->vm_releasefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1294 t->bt_size == bt->bt_size) {
1295 vmem_addr_t spanaddr;
1296 vmem_size_t spansize;
1297
1298 KASSERT(t->bt_start == bt->bt_start);
1299 spanaddr = bt->bt_start;
1300 spansize = bt->bt_size;
1301 bt_remseg(vm, bt);
1302 LIST_INSERT_HEAD(&tofree, bt, bt_freelist);
1303 bt_remseg(vm, t);
1304 LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1305 vm->vm_size -= spansize;
1306 VMEM_CONDVAR_BROADCAST(vm);
1307 VMEM_UNLOCK(vm);
1308 (*vm->vm_releasefn)(vm->vm_arg, spanaddr, spansize);
1309 } else {
1310 bt_insfree(vm, bt);
1311 VMEM_CONDVAR_BROADCAST(vm);
1312 VMEM_UNLOCK(vm);
1313 }
1314
1315 while (!LIST_EMPTY(&tofree)) {
1316 t = LIST_FIRST(&tofree);
1317 LIST_REMOVE(t, bt_freelist);
1318 bt_free(vm, t);
1319 }
1320 }
1321
1322 /*
1323 * vmem_add:
1324 *
1325 * => caller must ensure appropriate spl,
1326 * if the arena can be accessed from interrupt context.
1327 */
1328
1329 int
1330 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1331 {
1332
1333 return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1334 }
1335
1336 /*
1337 * vmem_size: information about arenas size
1338 *
1339 * => return free/allocated size in arena
1340 */
1341 vmem_size_t
1342 vmem_size(vmem_t *vm, int typemask)
1343 {
1344
1345 switch (typemask) {
1346 case VMEM_ALLOC:
1347 return vm->vm_inuse;
1348 case VMEM_FREE:
1349 return vm->vm_size - vm->vm_inuse;
1350 case VMEM_FREE|VMEM_ALLOC:
1351 return vm->vm_size;
1352 default:
1353 panic("vmem_size");
1354 }
1355 }
1356
1357 /* ---- rehash */
1358
1359 #if defined(_KERNEL)
1360 static struct callout vmem_rehash_ch;
1361 static int vmem_rehash_interval;
1362 static struct workqueue *vmem_rehash_wq;
1363 static struct work vmem_rehash_wk;
1364
1365 static void
1366 vmem_rehash_all(struct work *wk, void *dummy)
1367 {
1368 vmem_t *vm;
1369
1370 KASSERT(wk == &vmem_rehash_wk);
1371 mutex_enter(&vmem_list_lock);
1372 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1373 size_t desired;
1374 size_t current;
1375
1376 if (!VMEM_TRYLOCK(vm)) {
1377 continue;
1378 }
1379 desired = vm->vm_nbusytag;
1380 current = vm->vm_hashsize;
1381 VMEM_UNLOCK(vm);
1382
1383 if (desired > VMEM_HASHSIZE_MAX) {
1384 desired = VMEM_HASHSIZE_MAX;
1385 } else if (desired < VMEM_HASHSIZE_MIN) {
1386 desired = VMEM_HASHSIZE_MIN;
1387 }
1388 if (desired > current * 2 || desired * 2 < current) {
1389 vmem_rehash(vm, desired, VM_NOSLEEP);
1390 }
1391 }
1392 mutex_exit(&vmem_list_lock);
1393
1394 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1395 }
1396
1397 static void
1398 vmem_rehash_all_kick(void *dummy)
1399 {
1400
1401 workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1402 }
1403
1404 void
1405 vmem_rehash_start(void)
1406 {
1407 int error;
1408
1409 error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1410 vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
1411 if (error) {
1412 panic("%s: workqueue_create %d\n", __func__, error);
1413 }
1414 callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
1415 callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1416
1417 vmem_rehash_interval = hz * 10;
1418 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1419 }
1420 #endif /* defined(_KERNEL) */
1421
1422 /* ---- debug */
1423
1424 #if defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY)
1425
1426 static void bt_dump(const bt_t *, void (*)(const char *, ...));
1427
1428 static const char *
1429 bt_type_string(int type)
1430 {
1431 static const char * const table[] = {
1432 [BT_TYPE_BUSY] = "busy",
1433 [BT_TYPE_FREE] = "free",
1434 [BT_TYPE_SPAN] = "span",
1435 [BT_TYPE_SPAN_STATIC] = "static span",
1436 };
1437
1438 if (type >= __arraycount(table)) {
1439 return "BOGUS";
1440 }
1441 return table[type];
1442 }
1443
1444 static void
1445 bt_dump(const bt_t *bt, void (*pr)(const char *, ...))
1446 {
1447
1448 (*pr)("\t%p: %" PRIu64 ", %" PRIu64 ", %d(%s)\n",
1449 bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1450 bt->bt_type, bt_type_string(bt->bt_type));
1451 }
1452
1453 static void
1454 vmem_dump(const vmem_t *vm , void (*pr)(const char *, ...))
1455 {
1456 const bt_t *bt;
1457 int i;
1458
1459 (*pr)("vmem %p '%s'\n", vm, vm->vm_name);
1460 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1461 bt_dump(bt, pr);
1462 }
1463
1464 for (i = 0; i < VMEM_MAXORDER; i++) {
1465 const struct vmem_freelist *fl = &vm->vm_freelist[i];
1466
1467 if (LIST_EMPTY(fl)) {
1468 continue;
1469 }
1470
1471 (*pr)("freelist[%d]\n", i);
1472 LIST_FOREACH(bt, fl, bt_freelist) {
1473 bt_dump(bt, pr);
1474 }
1475 }
1476 }
1477
1478 #endif /* defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) */
1479
1480 #if defined(DDB)
1481 static bt_t *
1482 vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
1483 {
1484 bt_t *bt;
1485
1486 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1487 if (BT_ISSPAN_P(bt)) {
1488 continue;
1489 }
1490 if (bt->bt_start <= addr && addr <= BT_END(bt)) {
1491 return bt;
1492 }
1493 }
1494
1495 return NULL;
1496 }
1497
1498 void
1499 vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1500 {
1501 vmem_t *vm;
1502
1503 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1504 bt_t *bt;
1505
1506 bt = vmem_whatis_lookup(vm, addr);
1507 if (bt == NULL) {
1508 continue;
1509 }
1510 (*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1511 (void *)addr, (void *)bt->bt_start,
1512 (size_t)(addr - bt->bt_start), vm->vm_name,
1513 (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1514 }
1515 }
1516
1517 void
1518 vmem_printall(const char *modif, void (*pr)(const char *, ...))
1519 {
1520 const vmem_t *vm;
1521
1522 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1523 vmem_dump(vm, pr);
1524 }
1525 }
1526
1527 void
1528 vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...))
1529 {
1530 const vmem_t *vm = (const void *)addr;
1531
1532 vmem_dump(vm, pr);
1533 }
1534 #endif /* defined(DDB) */
1535
1536 #if defined(_KERNEL)
1537 #define vmem_printf printf
1538 #else
1539 #include <stdio.h>
1540 #include <stdarg.h>
1541
1542 static void
1543 vmem_printf(const char *fmt, ...)
1544 {
1545 va_list ap;
1546 va_start(ap, fmt);
1547 vprintf(fmt, ap);
1548 va_end(ap);
1549 }
1550 #endif
1551
1552 #if defined(VMEM_SANITY)
1553
1554 static bool
1555 vmem_check_sanity(vmem_t *vm)
1556 {
1557 const bt_t *bt, *bt2;
1558
1559 KASSERT(vm != NULL);
1560
1561 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1562 if (bt->bt_start > BT_END(bt)) {
1563 printf("corrupted tag\n");
1564 bt_dump(bt, vmem_printf);
1565 return false;
1566 }
1567 }
1568 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1569 CIRCLEQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
1570 if (bt == bt2) {
1571 continue;
1572 }
1573 if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
1574 continue;
1575 }
1576 if (bt->bt_start <= BT_END(bt2) &&
1577 bt2->bt_start <= BT_END(bt)) {
1578 printf("overwrapped tags\n");
1579 bt_dump(bt, vmem_printf);
1580 bt_dump(bt2, vmem_printf);
1581 return false;
1582 }
1583 }
1584 }
1585
1586 return true;
1587 }
1588
1589 static void
1590 vmem_check(vmem_t *vm)
1591 {
1592
1593 if (!vmem_check_sanity(vm)) {
1594 panic("insanity vmem %p", vm);
1595 }
1596 }
1597
1598 #endif /* defined(VMEM_SANITY) */
1599
1600 #if defined(UNITTEST)
1601 int
1602 main(void)
1603 {
1604 int rc;
1605 vmem_t *vm;
1606 vmem_addr_t p;
1607 struct reg {
1608 vmem_addr_t p;
1609 vmem_size_t sz;
1610 bool x;
1611 } *reg = NULL;
1612 int nreg = 0;
1613 int nalloc = 0;
1614 int nfree = 0;
1615 vmem_size_t total = 0;
1616 #if 1
1617 vm_flag_t strat = VM_INSTANTFIT;
1618 #else
1619 vm_flag_t strat = VM_BESTFIT;
1620 #endif
1621
1622 vm = vmem_create("test", 0, 0, 1, NULL, NULL, NULL, 0, VM_SLEEP,
1623 #ifdef _KERNEL
1624 IPL_NONE
1625 #else
1626 0
1627 #endif
1628 );
1629 if (vm == NULL) {
1630 printf("vmem_create\n");
1631 exit(EXIT_FAILURE);
1632 }
1633 vmem_dump(vm, vmem_printf);
1634
1635 rc = vmem_add(vm, 0, 50, VM_SLEEP);
1636 assert(rc == 0);
1637 rc = vmem_add(vm, 100, 200, VM_SLEEP);
1638 assert(rc == 0);
1639 rc = vmem_add(vm, 2000, 1, VM_SLEEP);
1640 assert(rc == 0);
1641 rc = vmem_add(vm, 40000, 65536, VM_SLEEP);
1642 assert(rc == 0);
1643 rc = vmem_add(vm, 10000, 10000, VM_SLEEP);
1644 assert(rc == 0);
1645 rc = vmem_add(vm, 500, 1000, VM_SLEEP);
1646 assert(rc == 0);
1647 rc = vmem_add(vm, 0xffffff00, 0x100, VM_SLEEP);
1648 assert(rc == 0);
1649 rc = vmem_xalloc(vm, 0x101, 0, 0, 0,
1650 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1651 assert(rc != 0);
1652 rc = vmem_xalloc(vm, 50, 0, 0, 0, 0, 49, strat|VM_SLEEP, &p);
1653 assert(rc == 0 && p == 0);
1654 vmem_xfree(vm, p, 50);
1655 rc = vmem_xalloc(vm, 25, 0, 0, 0, 0, 24, strat|VM_SLEEP, &p);
1656 assert(rc == 0 && p == 0);
1657 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1658 0xffffff01, 0xffffffff, strat|VM_SLEEP, &p);
1659 assert(rc != 0);
1660 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1661 0xffffff00, 0xfffffffe, strat|VM_SLEEP, &p);
1662 assert(rc != 0);
1663 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1664 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1665 assert(rc == 0);
1666 vmem_dump(vm, vmem_printf);
1667 for (;;) {
1668 struct reg *r;
1669 int t = rand() % 100;
1670
1671 if (t > 45) {
1672 /* alloc */
1673 vmem_size_t sz = rand() % 500 + 1;
1674 bool x;
1675 vmem_size_t align, phase, nocross;
1676 vmem_addr_t minaddr, maxaddr;
1677
1678 if (t > 70) {
1679 x = true;
1680 /* XXX */
1681 align = 1 << (rand() % 15);
1682 phase = rand() % 65536;
1683 nocross = 1 << (rand() % 15);
1684 if (align <= phase) {
1685 phase = 0;
1686 }
1687 if (VMEM_CROSS_P(phase, phase + sz - 1,
1688 nocross)) {
1689 nocross = 0;
1690 }
1691 do {
1692 minaddr = rand() % 50000;
1693 maxaddr = rand() % 70000;
1694 } while (minaddr > maxaddr);
1695 printf("=== xalloc %" PRIu64
1696 " align=%" PRIu64 ", phase=%" PRIu64
1697 ", nocross=%" PRIu64 ", min=%" PRIu64
1698 ", max=%" PRIu64 "\n",
1699 (uint64_t)sz,
1700 (uint64_t)align,
1701 (uint64_t)phase,
1702 (uint64_t)nocross,
1703 (uint64_t)minaddr,
1704 (uint64_t)maxaddr);
1705 rc = vmem_xalloc(vm, sz, align, phase, nocross,
1706 minaddr, maxaddr, strat|VM_SLEEP, &p);
1707 } else {
1708 x = false;
1709 printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1710 rc = vmem_alloc(vm, sz, strat|VM_SLEEP, &p);
1711 }
1712 printf("-> %" PRIu64 "\n", (uint64_t)p);
1713 vmem_dump(vm, vmem_printf);
1714 if (rc != 0) {
1715 if (x) {
1716 continue;
1717 }
1718 break;
1719 }
1720 nreg++;
1721 reg = realloc(reg, sizeof(*reg) * nreg);
1722 r = ®[nreg - 1];
1723 r->p = p;
1724 r->sz = sz;
1725 r->x = x;
1726 total += sz;
1727 nalloc++;
1728 } else if (nreg != 0) {
1729 /* free */
1730 r = ®[rand() % nreg];
1731 printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1732 (uint64_t)r->p, (uint64_t)r->sz);
1733 if (r->x) {
1734 vmem_xfree(vm, r->p, r->sz);
1735 } else {
1736 vmem_free(vm, r->p, r->sz);
1737 }
1738 total -= r->sz;
1739 vmem_dump(vm, vmem_printf);
1740 *r = reg[nreg - 1];
1741 nreg--;
1742 nfree++;
1743 }
1744 printf("total=%" PRIu64 "\n", (uint64_t)total);
1745 }
1746 fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1747 (uint64_t)total, nalloc, nfree);
1748 exit(EXIT_SUCCESS);
1749 }
1750 #endif /* defined(UNITTEST) */
1751