subr_vmem.c revision 1.84 1 /* $NetBSD: subr_vmem.c,v 1.84 2013/07/18 19:39:49 alnsn Exp $ */
2
3 /*-
4 * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * reference:
31 * - Magazines and Vmem: Extending the Slab Allocator
32 * to Many CPUs and Arbitrary Resources
33 * http://www.usenix.org/event/usenix01/bonwick.html
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.84 2013/07/18 19:39:49 alnsn Exp $");
38
39 #if defined(_KERNEL)
40 #include "opt_ddb.h"
41 #endif /* defined(_KERNEL) */
42
43 #include <sys/param.h>
44 #include <sys/hash.h>
45 #include <sys/queue.h>
46 #include <sys/bitops.h>
47
48 #if defined(_KERNEL)
49 #include <sys/systm.h>
50 #include <sys/kernel.h> /* hz */
51 #include <sys/callout.h>
52 #include <sys/kmem.h>
53 #include <sys/pool.h>
54 #include <sys/vmem.h>
55 #include <sys/vmem_impl.h>
56 #include <sys/workqueue.h>
57 #include <sys/atomic.h>
58 #include <uvm/uvm.h>
59 #include <uvm/uvm_extern.h>
60 #include <uvm/uvm_km.h>
61 #include <uvm/uvm_page.h>
62 #include <uvm/uvm_pdaemon.h>
63 #else /* defined(_KERNEL) */
64 #include <stdio.h>
65 #include <errno.h>
66 #include <assert.h>
67 #include <stdlib.h>
68 #include <string.h>
69 #include "../sys/vmem.h"
70 #include "../sys/vmem_impl.h"
71 #endif /* defined(_KERNEL) */
72
73
74 #if defined(_KERNEL)
75 #include <sys/evcnt.h>
76 #define VMEM_EVCNT_DEFINE(name) \
77 struct evcnt vmem_evcnt_##name = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, \
78 "vmemev", #name); \
79 EVCNT_ATTACH_STATIC(vmem_evcnt_##name);
80 #define VMEM_EVCNT_INCR(ev) vmem_evcnt_##ev.ev_count++
81 #define VMEM_EVCNT_DECR(ev) vmem_evcnt_##ev.ev_count--
82
83 VMEM_EVCNT_DEFINE(bt_pages)
84 VMEM_EVCNT_DEFINE(bt_count)
85 VMEM_EVCNT_DEFINE(bt_inuse)
86
87 #define VMEM_CONDVAR_INIT(vm, wchan) cv_init(&vm->vm_cv, wchan)
88 #define VMEM_CONDVAR_DESTROY(vm) cv_destroy(&vm->vm_cv)
89 #define VMEM_CONDVAR_WAIT(vm) cv_wait(&vm->vm_cv, &vm->vm_lock)
90 #define VMEM_CONDVAR_BROADCAST(vm) cv_broadcast(&vm->vm_cv)
91
92 #else /* defined(_KERNEL) */
93
94 #define VMEM_EVCNT_INCR(ev) /* nothing */
95 #define VMEM_EVCNT_DECR(ev) /* nothing */
96
97 #define VMEM_CONDVAR_INIT(vm, wchan) /* nothing */
98 #define VMEM_CONDVAR_DESTROY(vm) /* nothing */
99 #define VMEM_CONDVAR_WAIT(vm) /* nothing */
100 #define VMEM_CONDVAR_BROADCAST(vm) /* nothing */
101
102 #define UNITTEST
103 #define KASSERT(a) assert(a)
104 #define mutex_init(a, b, c) /* nothing */
105 #define mutex_destroy(a) /* nothing */
106 #define mutex_enter(a) /* nothing */
107 #define mutex_tryenter(a) true
108 #define mutex_exit(a) /* nothing */
109 #define mutex_owned(a) /* nothing */
110 #define ASSERT_SLEEPABLE() /* nothing */
111 #define panic(...) printf(__VA_ARGS__); abort()
112 #endif /* defined(_KERNEL) */
113
114 #if defined(VMEM_SANITY)
115 static void vmem_check(vmem_t *);
116 #else /* defined(VMEM_SANITY) */
117 #define vmem_check(vm) /* nothing */
118 #endif /* defined(VMEM_SANITY) */
119
120 #define VMEM_HASHSIZE_MIN 1 /* XXX */
121 #define VMEM_HASHSIZE_MAX 65536 /* XXX */
122 #define VMEM_HASHSIZE_INIT 1
123
124 #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
125
126 #if defined(_KERNEL)
127 static bool vmem_bootstrapped = false;
128 static kmutex_t vmem_list_lock;
129 static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
130 #endif /* defined(_KERNEL) */
131
132 /* ---- misc */
133
134 #define VMEM_LOCK(vm) mutex_enter(&vm->vm_lock)
135 #define VMEM_TRYLOCK(vm) mutex_tryenter(&vm->vm_lock)
136 #define VMEM_UNLOCK(vm) mutex_exit(&vm->vm_lock)
137 #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl)
138 #define VMEM_LOCK_DESTROY(vm) mutex_destroy(&vm->vm_lock)
139 #define VMEM_ASSERT_LOCKED(vm) KASSERT(mutex_owned(&vm->vm_lock))
140
141 #define VMEM_ALIGNUP(addr, align) \
142 (-(-(addr) & -(align)))
143
144 #define VMEM_CROSS_P(addr1, addr2, boundary) \
145 ((((addr1) ^ (addr2)) & -(boundary)) != 0)
146
147 #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
148 #define SIZE2ORDER(size) ((int)ilog2(size))
149
150 #if !defined(_KERNEL)
151 #define xmalloc(sz, flags) malloc(sz)
152 #define xfree(p, sz) free(p)
153 #define bt_alloc(vm, flags) malloc(sizeof(bt_t))
154 #define bt_free(vm, bt) free(bt)
155 #else /* defined(_KERNEL) */
156
157 #define xmalloc(sz, flags) \
158 kmem_alloc(sz, ((flags) & VM_SLEEP) ? KM_SLEEP : KM_NOSLEEP);
159 #define xfree(p, sz) kmem_free(p, sz);
160
161 /*
162 * BT_RESERVE calculation:
163 * we allocate memory for boundry tags with vmem, therefor we have
164 * to keep a reserve of bts used to allocated memory for bts.
165 * This reserve is 4 for each arena involved in allocating vmems memory.
166 * BT_MAXFREE: don't cache excessive counts of bts in arenas
167 */
168 #define STATIC_BT_COUNT 200
169 #define BT_MINRESERVE 4
170 #define BT_MAXFREE 64
171
172 static struct vmem_btag static_bts[STATIC_BT_COUNT];
173 static int static_bt_count = STATIC_BT_COUNT;
174
175 static struct vmem kmem_va_meta_arena_store;
176 vmem_t *kmem_va_meta_arena;
177 static struct vmem kmem_meta_arena_store;
178 vmem_t *kmem_meta_arena;
179
180 static kmutex_t vmem_refill_lock;
181 static kmutex_t vmem_btag_lock;
182 static LIST_HEAD(, vmem_btag) vmem_btag_freelist;
183 static size_t vmem_btag_freelist_count = 0;
184 static size_t vmem_btag_count = STATIC_BT_COUNT;
185
186 /* ---- boundary tag */
187
188 #define BT_PER_PAGE (PAGE_SIZE / sizeof(bt_t))
189
190 static int bt_refill(vmem_t *vm, vm_flag_t flags);
191
192 static int
193 bt_refillglobal(vm_flag_t flags)
194 {
195 vmem_addr_t va;
196 bt_t *btp;
197 bt_t *bt;
198 int i;
199
200 mutex_enter(&vmem_refill_lock);
201
202 mutex_enter(&vmem_btag_lock);
203 if (vmem_btag_freelist_count > 0) {
204 mutex_exit(&vmem_btag_lock);
205 mutex_exit(&vmem_refill_lock);
206 return 0;
207 }
208 mutex_exit(&vmem_btag_lock);
209
210 if (vmem_alloc(kmem_meta_arena, PAGE_SIZE,
211 (flags & ~VM_FITMASK) | VM_INSTANTFIT | VM_POPULATING, &va) != 0) {
212 mutex_exit(&vmem_refill_lock);
213 return ENOMEM;
214 }
215 VMEM_EVCNT_INCR(bt_pages);
216
217 mutex_enter(&vmem_btag_lock);
218 btp = (void *) va;
219 for (i = 0; i < (BT_PER_PAGE); i++) {
220 bt = btp;
221 memset(bt, 0, sizeof(*bt));
222 LIST_INSERT_HEAD(&vmem_btag_freelist, bt,
223 bt_freelist);
224 vmem_btag_freelist_count++;
225 vmem_btag_count++;
226 VMEM_EVCNT_INCR(bt_count);
227 btp++;
228 }
229 mutex_exit(&vmem_btag_lock);
230
231 bt_refill(kmem_arena, (flags & ~VM_FITMASK)
232 | VM_INSTANTFIT | VM_POPULATING);
233 bt_refill(kmem_va_meta_arena, (flags & ~VM_FITMASK)
234 | VM_INSTANTFIT | VM_POPULATING);
235 bt_refill(kmem_meta_arena, (flags & ~VM_FITMASK)
236 | VM_INSTANTFIT | VM_POPULATING);
237
238 mutex_exit(&vmem_refill_lock);
239
240 return 0;
241 }
242
243 static int
244 bt_refill(vmem_t *vm, vm_flag_t flags)
245 {
246 bt_t *bt;
247
248 if (!(flags & VM_POPULATING)) {
249 bt_refillglobal(flags);
250 }
251
252 VMEM_LOCK(vm);
253 mutex_enter(&vmem_btag_lock);
254 while (!LIST_EMPTY(&vmem_btag_freelist) &&
255 vm->vm_nfreetags <= BT_MINRESERVE) {
256 bt = LIST_FIRST(&vmem_btag_freelist);
257 LIST_REMOVE(bt, bt_freelist);
258 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
259 vm->vm_nfreetags++;
260 vmem_btag_freelist_count--;
261 }
262 mutex_exit(&vmem_btag_lock);
263
264 if (vm->vm_nfreetags == 0) {
265 VMEM_UNLOCK(vm);
266 return ENOMEM;
267 }
268 VMEM_UNLOCK(vm);
269
270 return 0;
271 }
272
273 static inline bt_t *
274 bt_alloc(vmem_t *vm, vm_flag_t flags)
275 {
276 bt_t *bt;
277 again:
278 VMEM_LOCK(vm);
279 if (vm->vm_nfreetags <= BT_MINRESERVE &&
280 (flags & VM_POPULATING) == 0) {
281 VMEM_UNLOCK(vm);
282 if (bt_refill(vm, VM_NOSLEEP | VM_INSTANTFIT)) {
283 return NULL;
284 }
285 goto again;
286 }
287 bt = LIST_FIRST(&vm->vm_freetags);
288 LIST_REMOVE(bt, bt_freelist);
289 vm->vm_nfreetags--;
290 VMEM_UNLOCK(vm);
291 VMEM_EVCNT_INCR(bt_inuse);
292
293 return bt;
294 }
295
296 static inline void
297 bt_free(vmem_t *vm, bt_t *bt)
298 {
299
300 VMEM_LOCK(vm);
301 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
302 vm->vm_nfreetags++;
303 while (vm->vm_nfreetags > BT_MAXFREE) {
304 bt = LIST_FIRST(&vm->vm_freetags);
305 LIST_REMOVE(bt, bt_freelist);
306 vm->vm_nfreetags--;
307 mutex_enter(&vmem_btag_lock);
308 LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
309 vmem_btag_freelist_count++;
310 mutex_exit(&vmem_btag_lock);
311 }
312 VMEM_UNLOCK(vm);
313 VMEM_EVCNT_DECR(bt_inuse);
314 }
315
316 #endif /* defined(_KERNEL) */
317
318 /*
319 * freelist[0] ... [1, 1]
320 * freelist[1] ... [2, 3]
321 * freelist[2] ... [4, 7]
322 * freelist[3] ... [8, 15]
323 * :
324 * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
325 * :
326 */
327
328 static struct vmem_freelist *
329 bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
330 {
331 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
332 const int idx = SIZE2ORDER(qsize);
333
334 KASSERT(size != 0 && qsize != 0);
335 KASSERT((size & vm->vm_quantum_mask) == 0);
336 KASSERT(idx >= 0);
337 KASSERT(idx < VMEM_MAXORDER);
338
339 return &vm->vm_freelist[idx];
340 }
341
342 /*
343 * bt_freehead_toalloc: return the freelist for the given size and allocation
344 * strategy.
345 *
346 * for VM_INSTANTFIT, return the list in which any blocks are large enough
347 * for the requested size. otherwise, return the list which can have blocks
348 * large enough for the requested size.
349 */
350
351 static struct vmem_freelist *
352 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
353 {
354 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
355 int idx = SIZE2ORDER(qsize);
356
357 KASSERT(size != 0 && qsize != 0);
358 KASSERT((size & vm->vm_quantum_mask) == 0);
359
360 if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
361 idx++;
362 /* check too large request? */
363 }
364 KASSERT(idx >= 0);
365 KASSERT(idx < VMEM_MAXORDER);
366
367 return &vm->vm_freelist[idx];
368 }
369
370 /* ---- boundary tag hash */
371
372 static struct vmem_hashlist *
373 bt_hashhead(vmem_t *vm, vmem_addr_t addr)
374 {
375 struct vmem_hashlist *list;
376 unsigned int hash;
377
378 hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
379 list = &vm->vm_hashlist[hash % vm->vm_hashsize];
380
381 return list;
382 }
383
384 static bt_t *
385 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
386 {
387 struct vmem_hashlist *list;
388 bt_t *bt;
389
390 list = bt_hashhead(vm, addr);
391 LIST_FOREACH(bt, list, bt_hashlist) {
392 if (bt->bt_start == addr) {
393 break;
394 }
395 }
396
397 return bt;
398 }
399
400 static void
401 bt_rembusy(vmem_t *vm, bt_t *bt)
402 {
403
404 KASSERT(vm->vm_nbusytag > 0);
405 vm->vm_inuse -= bt->bt_size;
406 vm->vm_nbusytag--;
407 LIST_REMOVE(bt, bt_hashlist);
408 }
409
410 static void
411 bt_insbusy(vmem_t *vm, bt_t *bt)
412 {
413 struct vmem_hashlist *list;
414
415 KASSERT(bt->bt_type == BT_TYPE_BUSY);
416
417 list = bt_hashhead(vm, bt->bt_start);
418 LIST_INSERT_HEAD(list, bt, bt_hashlist);
419 vm->vm_nbusytag++;
420 vm->vm_inuse += bt->bt_size;
421 }
422
423 /* ---- boundary tag list */
424
425 static void
426 bt_remseg(vmem_t *vm, bt_t *bt)
427 {
428
429 CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
430 }
431
432 static void
433 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
434 {
435
436 CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
437 }
438
439 static void
440 bt_insseg_tail(vmem_t *vm, bt_t *bt)
441 {
442
443 CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
444 }
445
446 static void
447 bt_remfree(vmem_t *vm, bt_t *bt)
448 {
449
450 KASSERT(bt->bt_type == BT_TYPE_FREE);
451
452 LIST_REMOVE(bt, bt_freelist);
453 }
454
455 static void
456 bt_insfree(vmem_t *vm, bt_t *bt)
457 {
458 struct vmem_freelist *list;
459
460 list = bt_freehead_tofree(vm, bt->bt_size);
461 LIST_INSERT_HEAD(list, bt, bt_freelist);
462 }
463
464 /* ---- vmem internal functions */
465
466 #if defined(QCACHE)
467 static inline vm_flag_t
468 prf_to_vmf(int prflags)
469 {
470 vm_flag_t vmflags;
471
472 KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
473 if ((prflags & PR_WAITOK) != 0) {
474 vmflags = VM_SLEEP;
475 } else {
476 vmflags = VM_NOSLEEP;
477 }
478 return vmflags;
479 }
480
481 static inline int
482 vmf_to_prf(vm_flag_t vmflags)
483 {
484 int prflags;
485
486 if ((vmflags & VM_SLEEP) != 0) {
487 prflags = PR_WAITOK;
488 } else {
489 prflags = PR_NOWAIT;
490 }
491 return prflags;
492 }
493
494 static size_t
495 qc_poolpage_size(size_t qcache_max)
496 {
497 int i;
498
499 for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
500 /* nothing */
501 }
502 return ORDER2SIZE(i);
503 }
504
505 static void *
506 qc_poolpage_alloc(struct pool *pool, int prflags)
507 {
508 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
509 vmem_t *vm = qc->qc_vmem;
510 vmem_addr_t addr;
511
512 if (vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
513 prf_to_vmf(prflags) | VM_INSTANTFIT, &addr) != 0)
514 return NULL;
515 return (void *)addr;
516 }
517
518 static void
519 qc_poolpage_free(struct pool *pool, void *addr)
520 {
521 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
522 vmem_t *vm = qc->qc_vmem;
523
524 vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
525 }
526
527 static void
528 qc_init(vmem_t *vm, size_t qcache_max, int ipl)
529 {
530 qcache_t *prevqc;
531 struct pool_allocator *pa;
532 int qcache_idx_max;
533 int i;
534
535 KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
536 if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
537 qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
538 }
539 vm->vm_qcache_max = qcache_max;
540 pa = &vm->vm_qcache_allocator;
541 memset(pa, 0, sizeof(*pa));
542 pa->pa_alloc = qc_poolpage_alloc;
543 pa->pa_free = qc_poolpage_free;
544 pa->pa_pagesz = qc_poolpage_size(qcache_max);
545
546 qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
547 prevqc = NULL;
548 for (i = qcache_idx_max; i > 0; i--) {
549 qcache_t *qc = &vm->vm_qcache_store[i - 1];
550 size_t size = i << vm->vm_quantum_shift;
551 pool_cache_t pc;
552
553 qc->qc_vmem = vm;
554 snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
555 vm->vm_name, size);
556 qc->qc_name[sizeof(qc->qc_name) - 1] = '\0';
557
558 pc = pool_cache_init(size,
559 ORDER2SIZE(vm->vm_quantum_shift), 0,
560 PR_NOALIGN | PR_NOTOUCH | PR_RECURSIVE /* XXX */,
561 qc->qc_name, pa, ipl, NULL, NULL, NULL);
562
563 KASSERT(pc);
564
565 qc->qc_cache = pc;
566 KASSERT(qc->qc_cache != NULL); /* XXX */
567 if (prevqc != NULL &&
568 qc->qc_cache->pc_pool.pr_itemsperpage ==
569 prevqc->qc_cache->pc_pool.pr_itemsperpage) {
570 pool_cache_destroy(qc->qc_cache);
571 vm->vm_qcache[i - 1] = prevqc;
572 continue;
573 }
574 qc->qc_cache->pc_pool.pr_qcache = qc;
575 vm->vm_qcache[i - 1] = qc;
576 prevqc = qc;
577 }
578 }
579
580 static void
581 qc_destroy(vmem_t *vm)
582 {
583 const qcache_t *prevqc;
584 int i;
585 int qcache_idx_max;
586
587 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
588 prevqc = NULL;
589 for (i = 0; i < qcache_idx_max; i++) {
590 qcache_t *qc = vm->vm_qcache[i];
591
592 if (prevqc == qc) {
593 continue;
594 }
595 pool_cache_destroy(qc->qc_cache);
596 prevqc = qc;
597 }
598 }
599 #endif
600
601 #if defined(_KERNEL)
602 static void
603 vmem_bootstrap(void)
604 {
605
606 mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_VM);
607 mutex_init(&vmem_refill_lock, MUTEX_DEFAULT, IPL_VM);
608 mutex_init(&vmem_btag_lock, MUTEX_DEFAULT, IPL_VM);
609
610 while (static_bt_count-- > 0) {
611 bt_t *bt = &static_bts[static_bt_count];
612 LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
613 VMEM_EVCNT_INCR(bt_count);
614 vmem_btag_freelist_count++;
615 }
616 vmem_bootstrapped = TRUE;
617 }
618
619 void
620 vmem_subsystem_init(vmem_t *vm)
621 {
622
623 kmem_va_meta_arena = vmem_init(&kmem_va_meta_arena_store, "vmem-va",
624 0, 0, PAGE_SIZE, vmem_alloc, vmem_free, vm,
625 0, VM_NOSLEEP | VM_BOOTSTRAP | VM_LARGEIMPORT,
626 IPL_VM);
627
628 kmem_meta_arena = vmem_init(&kmem_meta_arena_store, "vmem-meta",
629 0, 0, PAGE_SIZE,
630 uvm_km_kmem_alloc, uvm_km_kmem_free, kmem_va_meta_arena,
631 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
632 }
633 #endif /* defined(_KERNEL) */
634
635 static int
636 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
637 int spanbttype)
638 {
639 bt_t *btspan;
640 bt_t *btfree;
641
642 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
643 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
644 KASSERT(spanbttype == BT_TYPE_SPAN ||
645 spanbttype == BT_TYPE_SPAN_STATIC);
646
647 btspan = bt_alloc(vm, flags);
648 if (btspan == NULL) {
649 return ENOMEM;
650 }
651 btfree = bt_alloc(vm, flags);
652 if (btfree == NULL) {
653 bt_free(vm, btspan);
654 return ENOMEM;
655 }
656
657 btspan->bt_type = spanbttype;
658 btspan->bt_start = addr;
659 btspan->bt_size = size;
660
661 btfree->bt_type = BT_TYPE_FREE;
662 btfree->bt_start = addr;
663 btfree->bt_size = size;
664
665 VMEM_LOCK(vm);
666 bt_insseg_tail(vm, btspan);
667 bt_insseg(vm, btfree, btspan);
668 bt_insfree(vm, btfree);
669 vm->vm_size += size;
670 VMEM_UNLOCK(vm);
671
672 return 0;
673 }
674
675 static void
676 vmem_destroy1(vmem_t *vm)
677 {
678
679 #if defined(QCACHE)
680 qc_destroy(vm);
681 #endif /* defined(QCACHE) */
682 if (vm->vm_hashlist != NULL) {
683 int i;
684
685 for (i = 0; i < vm->vm_hashsize; i++) {
686 bt_t *bt;
687
688 while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
689 KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
690 bt_free(vm, bt);
691 }
692 }
693 if (vm->vm_hashlist != &vm->vm_hash0) {
694 xfree(vm->vm_hashlist,
695 sizeof(struct vmem_hashlist *) * vm->vm_hashsize);
696 }
697 }
698
699 while (vm->vm_nfreetags > 0) {
700 bt_t *bt = LIST_FIRST(&vm->vm_freetags);
701 LIST_REMOVE(bt, bt_freelist);
702 vm->vm_nfreetags--;
703 mutex_enter(&vmem_btag_lock);
704 #if defined (_KERNEL)
705 LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
706 vmem_btag_freelist_count++;
707 #endif /* defined(_KERNEL) */
708 mutex_exit(&vmem_btag_lock);
709 }
710
711 VMEM_CONDVAR_DESTROY(vm);
712 VMEM_LOCK_DESTROY(vm);
713 xfree(vm, sizeof(*vm));
714 }
715
716 static int
717 vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
718 {
719 vmem_addr_t addr;
720 int rc;
721
722 if (vm->vm_importfn == NULL) {
723 return EINVAL;
724 }
725
726 if (vm->vm_flags & VM_LARGEIMPORT) {
727 size *= 16;
728 }
729
730 if (vm->vm_flags & VM_XIMPORT) {
731 rc = ((vmem_ximport_t *)vm->vm_importfn)(vm->vm_arg, size,
732 &size, flags, &addr);
733 } else {
734 rc = (vm->vm_importfn)(vm->vm_arg, size, flags, &addr);
735 }
736 if (rc) {
737 return ENOMEM;
738 }
739
740 if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) != 0) {
741 (*vm->vm_releasefn)(vm->vm_arg, addr, size);
742 return ENOMEM;
743 }
744
745 return 0;
746 }
747
748 static int
749 vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
750 {
751 bt_t *bt;
752 int i;
753 struct vmem_hashlist *newhashlist;
754 struct vmem_hashlist *oldhashlist;
755 size_t oldhashsize;
756
757 KASSERT(newhashsize > 0);
758
759 newhashlist =
760 xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
761 if (newhashlist == NULL) {
762 return ENOMEM;
763 }
764 for (i = 0; i < newhashsize; i++) {
765 LIST_INIT(&newhashlist[i]);
766 }
767
768 if (!VMEM_TRYLOCK(vm)) {
769 xfree(newhashlist,
770 sizeof(struct vmem_hashlist *) * newhashsize);
771 return EBUSY;
772 }
773 oldhashlist = vm->vm_hashlist;
774 oldhashsize = vm->vm_hashsize;
775 vm->vm_hashlist = newhashlist;
776 vm->vm_hashsize = newhashsize;
777 if (oldhashlist == NULL) {
778 VMEM_UNLOCK(vm);
779 return 0;
780 }
781 for (i = 0; i < oldhashsize; i++) {
782 while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
783 bt_rembusy(vm, bt); /* XXX */
784 bt_insbusy(vm, bt);
785 }
786 }
787 VMEM_UNLOCK(vm);
788
789 if (oldhashlist != &vm->vm_hash0) {
790 xfree(oldhashlist,
791 sizeof(struct vmem_hashlist *) * oldhashsize);
792 }
793
794 return 0;
795 }
796
797 /*
798 * vmem_fit: check if a bt can satisfy the given restrictions.
799 *
800 * it's a caller's responsibility to ensure the region is big enough
801 * before calling us.
802 */
803
804 static int
805 vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align,
806 vmem_size_t phase, vmem_size_t nocross,
807 vmem_addr_t minaddr, vmem_addr_t maxaddr, vmem_addr_t *addrp)
808 {
809 vmem_addr_t start;
810 vmem_addr_t end;
811
812 KASSERT(size > 0);
813 KASSERT(bt->bt_size >= size); /* caller's responsibility */
814
815 /*
816 * XXX assumption: vmem_addr_t and vmem_size_t are
817 * unsigned integer of the same size.
818 */
819
820 start = bt->bt_start;
821 if (start < minaddr) {
822 start = minaddr;
823 }
824 end = BT_END(bt);
825 if (end > maxaddr) {
826 end = maxaddr;
827 }
828 if (start > end) {
829 return ENOMEM;
830 }
831
832 start = VMEM_ALIGNUP(start - phase, align) + phase;
833 if (start < bt->bt_start) {
834 start += align;
835 }
836 if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
837 KASSERT(align < nocross);
838 start = VMEM_ALIGNUP(start - phase, nocross) + phase;
839 }
840 if (start <= end && end - start >= size - 1) {
841 KASSERT((start & (align - 1)) == phase);
842 KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
843 KASSERT(minaddr <= start);
844 KASSERT(maxaddr == 0 || start + size - 1 <= maxaddr);
845 KASSERT(bt->bt_start <= start);
846 KASSERT(BT_END(bt) - start >= size - 1);
847 *addrp = start;
848 return 0;
849 }
850 return ENOMEM;
851 }
852
853 /* ---- vmem API */
854
855 /*
856 * vmem_create_internal: creates a vmem arena.
857 */
858
859 vmem_t *
860 vmem_init(vmem_t *vm, const char *name,
861 vmem_addr_t base, vmem_size_t size, vmem_size_t quantum,
862 vmem_import_t *importfn, vmem_release_t *releasefn,
863 vmem_t *arg, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
864 {
865 int i;
866
867 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
868 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
869 KASSERT(quantum > 0);
870
871 #if defined(_KERNEL)
872 /* XXX: SMP, we get called early... */
873 if (!vmem_bootstrapped) {
874 vmem_bootstrap();
875 }
876 #endif /* defined(_KERNEL) */
877
878 if (vm == NULL) {
879 vm = xmalloc(sizeof(*vm), flags);
880 }
881 if (vm == NULL) {
882 return NULL;
883 }
884
885 VMEM_CONDVAR_INIT(vm, "vmem");
886 VMEM_LOCK_INIT(vm, ipl);
887 vm->vm_flags = flags;
888 vm->vm_nfreetags = 0;
889 LIST_INIT(&vm->vm_freetags);
890 strlcpy(vm->vm_name, name, sizeof(vm->vm_name));
891 vm->vm_quantum_mask = quantum - 1;
892 vm->vm_quantum_shift = SIZE2ORDER(quantum);
893 KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
894 vm->vm_importfn = importfn;
895 vm->vm_releasefn = releasefn;
896 vm->vm_arg = arg;
897 vm->vm_nbusytag = 0;
898 vm->vm_size = 0;
899 vm->vm_inuse = 0;
900 #if defined(QCACHE)
901 qc_init(vm, qcache_max, ipl);
902 #endif /* defined(QCACHE) */
903
904 CIRCLEQ_INIT(&vm->vm_seglist);
905 for (i = 0; i < VMEM_MAXORDER; i++) {
906 LIST_INIT(&vm->vm_freelist[i]);
907 }
908 memset(&vm->vm_hash0, 0, sizeof(struct vmem_hashlist));
909 vm->vm_hashsize = 1;
910 vm->vm_hashlist = &vm->vm_hash0;
911
912 if (size != 0) {
913 if (vmem_add(vm, base, size, flags) != 0) {
914 vmem_destroy1(vm);
915 return NULL;
916 }
917 }
918
919 #if defined(_KERNEL)
920 if (flags & VM_BOOTSTRAP) {
921 bt_refill(vm, VM_NOSLEEP);
922 }
923
924 mutex_enter(&vmem_list_lock);
925 LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
926 mutex_exit(&vmem_list_lock);
927 #endif /* defined(_KERNEL) */
928
929 return vm;
930 }
931
932
933
934 /*
935 * vmem_create: create an arena.
936 *
937 * => must not be called from interrupt context.
938 */
939
940 vmem_t *
941 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
942 vmem_size_t quantum, vmem_import_t *importfn, vmem_release_t *releasefn,
943 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
944 {
945
946 KASSERT((flags & (VM_XIMPORT)) == 0);
947
948 return vmem_init(NULL, name, base, size, quantum,
949 importfn, releasefn, source, qcache_max, flags, ipl);
950 }
951
952 /*
953 * vmem_xcreate: create an arena takes alternative import func.
954 *
955 * => must not be called from interrupt context.
956 */
957
958 vmem_t *
959 vmem_xcreate(const char *name, vmem_addr_t base, vmem_size_t size,
960 vmem_size_t quantum, vmem_ximport_t *importfn, vmem_release_t *releasefn,
961 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
962 {
963
964 KASSERT((flags & (VM_XIMPORT)) == 0);
965
966 return vmem_init(NULL, name, base, size, quantum,
967 (vmem_import_t *)importfn, releasefn, source,
968 qcache_max, flags | VM_XIMPORT, ipl);
969 }
970
971 void
972 vmem_destroy(vmem_t *vm)
973 {
974
975 #if defined(_KERNEL)
976 mutex_enter(&vmem_list_lock);
977 LIST_REMOVE(vm, vm_alllist);
978 mutex_exit(&vmem_list_lock);
979 #endif /* defined(_KERNEL) */
980
981 vmem_destroy1(vm);
982 }
983
984 vmem_size_t
985 vmem_roundup_size(vmem_t *vm, vmem_size_t size)
986 {
987
988 return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
989 }
990
991 /*
992 * vmem_alloc: allocate resource from the arena.
993 */
994
995 int
996 vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags, vmem_addr_t *addrp)
997 {
998 const vm_flag_t strat __unused = flags & VM_FITMASK;
999
1000 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1001 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1002
1003 KASSERT(size > 0);
1004 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1005 if ((flags & VM_SLEEP) != 0) {
1006 ASSERT_SLEEPABLE();
1007 }
1008
1009 #if defined(QCACHE)
1010 if (size <= vm->vm_qcache_max) {
1011 void *p;
1012 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1013 qcache_t *qc = vm->vm_qcache[qidx - 1];
1014
1015 p = pool_cache_get(qc->qc_cache, vmf_to_prf(flags));
1016 if (addrp != NULL)
1017 *addrp = (vmem_addr_t)p;
1018 return (p == NULL) ? ENOMEM : 0;
1019 }
1020 #endif /* defined(QCACHE) */
1021
1022 return vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
1023 flags, addrp);
1024 }
1025
1026 int
1027 vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align,
1028 const vmem_size_t phase, const vmem_size_t nocross,
1029 const vmem_addr_t minaddr, const vmem_addr_t maxaddr, const vm_flag_t flags,
1030 vmem_addr_t *addrp)
1031 {
1032 struct vmem_freelist *list;
1033 struct vmem_freelist *first;
1034 struct vmem_freelist *end;
1035 bt_t *bt;
1036 bt_t *btnew;
1037 bt_t *btnew2;
1038 const vmem_size_t size = vmem_roundup_size(vm, size0);
1039 vm_flag_t strat = flags & VM_FITMASK;
1040 vmem_addr_t start;
1041 int rc;
1042
1043 KASSERT(size0 > 0);
1044 KASSERT(size > 0);
1045 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1046 if ((flags & VM_SLEEP) != 0) {
1047 ASSERT_SLEEPABLE();
1048 }
1049 KASSERT((align & vm->vm_quantum_mask) == 0);
1050 KASSERT((align & (align - 1)) == 0);
1051 KASSERT((phase & vm->vm_quantum_mask) == 0);
1052 KASSERT((nocross & vm->vm_quantum_mask) == 0);
1053 KASSERT((nocross & (nocross - 1)) == 0);
1054 KASSERT((align == 0 && phase == 0) || phase < align);
1055 KASSERT(nocross == 0 || nocross >= size);
1056 KASSERT(minaddr <= maxaddr);
1057 KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
1058
1059 if (align == 0) {
1060 align = vm->vm_quantum_mask + 1;
1061 }
1062
1063 /*
1064 * allocate boundary tags before acquiring the vmem lock.
1065 */
1066 btnew = bt_alloc(vm, flags);
1067 if (btnew == NULL) {
1068 return ENOMEM;
1069 }
1070 btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
1071 if (btnew2 == NULL) {
1072 bt_free(vm, btnew);
1073 return ENOMEM;
1074 }
1075
1076 /*
1077 * choose a free block from which we allocate.
1078 */
1079 retry_strat:
1080 first = bt_freehead_toalloc(vm, size, strat);
1081 end = &vm->vm_freelist[VMEM_MAXORDER];
1082 retry:
1083 bt = NULL;
1084 VMEM_LOCK(vm);
1085 vmem_check(vm);
1086 if (strat == VM_INSTANTFIT) {
1087 /*
1088 * just choose the first block which satisfies our restrictions.
1089 *
1090 * note that we don't need to check the size of the blocks
1091 * because any blocks found on these list should be larger than
1092 * the given size.
1093 */
1094 for (list = first; list < end; list++) {
1095 bt = LIST_FIRST(list);
1096 if (bt != NULL) {
1097 rc = vmem_fit(bt, size, align, phase,
1098 nocross, minaddr, maxaddr, &start);
1099 if (rc == 0) {
1100 goto gotit;
1101 }
1102 /*
1103 * don't bother to follow the bt_freelist link
1104 * here. the list can be very long and we are
1105 * told to run fast. blocks from the later free
1106 * lists are larger and have better chances to
1107 * satisfy our restrictions.
1108 */
1109 }
1110 }
1111 } else { /* VM_BESTFIT */
1112 /*
1113 * we assume that, for space efficiency, it's better to
1114 * allocate from a smaller block. thus we will start searching
1115 * from the lower-order list than VM_INSTANTFIT.
1116 * however, don't bother to find the smallest block in a free
1117 * list because the list can be very long. we can revisit it
1118 * if/when it turns out to be a problem.
1119 *
1120 * note that the 'first' list can contain blocks smaller than
1121 * the requested size. thus we need to check bt_size.
1122 */
1123 for (list = first; list < end; list++) {
1124 LIST_FOREACH(bt, list, bt_freelist) {
1125 if (bt->bt_size >= size) {
1126 rc = vmem_fit(bt, size, align, phase,
1127 nocross, minaddr, maxaddr, &start);
1128 if (rc == 0) {
1129 goto gotit;
1130 }
1131 }
1132 }
1133 }
1134 }
1135 VMEM_UNLOCK(vm);
1136 #if 1
1137 if (strat == VM_INSTANTFIT) {
1138 strat = VM_BESTFIT;
1139 goto retry_strat;
1140 }
1141 #endif
1142 if (align != vm->vm_quantum_mask + 1 || phase != 0 || nocross != 0) {
1143
1144 /*
1145 * XXX should try to import a region large enough to
1146 * satisfy restrictions?
1147 */
1148
1149 goto fail;
1150 }
1151 /* XXX eeek, minaddr & maxaddr not respected */
1152 if (vmem_import(vm, size, flags) == 0) {
1153 goto retry;
1154 }
1155 /* XXX */
1156
1157 if ((flags & VM_SLEEP) != 0) {
1158 #if defined(_KERNEL) && !defined(_RUMPKERNEL)
1159 mutex_spin_enter(&uvm_fpageqlock);
1160 uvm_kick_pdaemon();
1161 mutex_spin_exit(&uvm_fpageqlock);
1162 #endif
1163 VMEM_LOCK(vm);
1164 VMEM_CONDVAR_WAIT(vm);
1165 VMEM_UNLOCK(vm);
1166 goto retry;
1167 }
1168 fail:
1169 bt_free(vm, btnew);
1170 bt_free(vm, btnew2);
1171 return ENOMEM;
1172
1173 gotit:
1174 KASSERT(bt->bt_type == BT_TYPE_FREE);
1175 KASSERT(bt->bt_size >= size);
1176 bt_remfree(vm, bt);
1177 vmem_check(vm);
1178 if (bt->bt_start != start) {
1179 btnew2->bt_type = BT_TYPE_FREE;
1180 btnew2->bt_start = bt->bt_start;
1181 btnew2->bt_size = start - bt->bt_start;
1182 bt->bt_start = start;
1183 bt->bt_size -= btnew2->bt_size;
1184 bt_insfree(vm, btnew2);
1185 bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
1186 btnew2 = NULL;
1187 vmem_check(vm);
1188 }
1189 KASSERT(bt->bt_start == start);
1190 if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
1191 /* split */
1192 btnew->bt_type = BT_TYPE_BUSY;
1193 btnew->bt_start = bt->bt_start;
1194 btnew->bt_size = size;
1195 bt->bt_start = bt->bt_start + size;
1196 bt->bt_size -= size;
1197 bt_insfree(vm, bt);
1198 bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
1199 bt_insbusy(vm, btnew);
1200 vmem_check(vm);
1201 VMEM_UNLOCK(vm);
1202 } else {
1203 bt->bt_type = BT_TYPE_BUSY;
1204 bt_insbusy(vm, bt);
1205 vmem_check(vm);
1206 VMEM_UNLOCK(vm);
1207 bt_free(vm, btnew);
1208 btnew = bt;
1209 }
1210 if (btnew2 != NULL) {
1211 bt_free(vm, btnew2);
1212 }
1213 KASSERT(btnew->bt_size >= size);
1214 btnew->bt_type = BT_TYPE_BUSY;
1215
1216 if (addrp != NULL)
1217 *addrp = btnew->bt_start;
1218 return 0;
1219 }
1220
1221 /*
1222 * vmem_free: free the resource to the arena.
1223 */
1224
1225 void
1226 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1227 {
1228
1229 KASSERT(size > 0);
1230
1231 #if defined(QCACHE)
1232 if (size <= vm->vm_qcache_max) {
1233 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1234 qcache_t *qc = vm->vm_qcache[qidx - 1];
1235
1236 pool_cache_put(qc->qc_cache, (void *)addr);
1237 return;
1238 }
1239 #endif /* defined(QCACHE) */
1240
1241 vmem_xfree(vm, addr, size);
1242 }
1243
1244 void
1245 vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1246 {
1247 bt_t *bt;
1248 bt_t *t;
1249 LIST_HEAD(, vmem_btag) tofree;
1250
1251 LIST_INIT(&tofree);
1252
1253 KASSERT(size > 0);
1254
1255 VMEM_LOCK(vm);
1256
1257 bt = bt_lookupbusy(vm, addr);
1258 KASSERT(bt != NULL);
1259 KASSERT(bt->bt_start == addr);
1260 KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1261 bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1262 KASSERT(bt->bt_type == BT_TYPE_BUSY);
1263 bt_rembusy(vm, bt);
1264 bt->bt_type = BT_TYPE_FREE;
1265
1266 /* coalesce */
1267 t = CIRCLEQ_NEXT(bt, bt_seglist);
1268 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1269 KASSERT(BT_END(bt) < t->bt_start); /* YYY */
1270 bt_remfree(vm, t);
1271 bt_remseg(vm, t);
1272 bt->bt_size += t->bt_size;
1273 LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1274 }
1275 t = CIRCLEQ_PREV(bt, bt_seglist);
1276 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1277 KASSERT(BT_END(t) < bt->bt_start); /* YYY */
1278 bt_remfree(vm, t);
1279 bt_remseg(vm, t);
1280 bt->bt_size += t->bt_size;
1281 bt->bt_start = t->bt_start;
1282 LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1283 }
1284
1285 t = CIRCLEQ_PREV(bt, bt_seglist);
1286 KASSERT(t != NULL);
1287 KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1288 if (vm->vm_releasefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1289 t->bt_size == bt->bt_size) {
1290 vmem_addr_t spanaddr;
1291 vmem_size_t spansize;
1292
1293 KASSERT(t->bt_start == bt->bt_start);
1294 spanaddr = bt->bt_start;
1295 spansize = bt->bt_size;
1296 bt_remseg(vm, bt);
1297 LIST_INSERT_HEAD(&tofree, bt, bt_freelist);
1298 bt_remseg(vm, t);
1299 LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1300 vm->vm_size -= spansize;
1301 VMEM_CONDVAR_BROADCAST(vm);
1302 VMEM_UNLOCK(vm);
1303 (*vm->vm_releasefn)(vm->vm_arg, spanaddr, spansize);
1304 } else {
1305 bt_insfree(vm, bt);
1306 VMEM_CONDVAR_BROADCAST(vm);
1307 VMEM_UNLOCK(vm);
1308 }
1309
1310 while (!LIST_EMPTY(&tofree)) {
1311 t = LIST_FIRST(&tofree);
1312 LIST_REMOVE(t, bt_freelist);
1313 bt_free(vm, t);
1314 }
1315 }
1316
1317 /*
1318 * vmem_add:
1319 *
1320 * => caller must ensure appropriate spl,
1321 * if the arena can be accessed from interrupt context.
1322 */
1323
1324 int
1325 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1326 {
1327
1328 return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1329 }
1330
1331 /*
1332 * vmem_size: information about arenas size
1333 *
1334 * => return free/allocated size in arena
1335 */
1336 vmem_size_t
1337 vmem_size(vmem_t *vm, int typemask)
1338 {
1339
1340 switch (typemask) {
1341 case VMEM_ALLOC:
1342 return vm->vm_inuse;
1343 case VMEM_FREE:
1344 return vm->vm_size - vm->vm_inuse;
1345 case VMEM_FREE|VMEM_ALLOC:
1346 return vm->vm_size;
1347 default:
1348 panic("vmem_size");
1349 }
1350 }
1351
1352 /* ---- rehash */
1353
1354 #if defined(_KERNEL)
1355 static struct callout vmem_rehash_ch;
1356 static int vmem_rehash_interval;
1357 static struct workqueue *vmem_rehash_wq;
1358 static struct work vmem_rehash_wk;
1359
1360 static void
1361 vmem_rehash_all(struct work *wk, void *dummy)
1362 {
1363 vmem_t *vm;
1364
1365 KASSERT(wk == &vmem_rehash_wk);
1366 mutex_enter(&vmem_list_lock);
1367 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1368 size_t desired;
1369 size_t current;
1370
1371 if (!VMEM_TRYLOCK(vm)) {
1372 continue;
1373 }
1374 desired = vm->vm_nbusytag;
1375 current = vm->vm_hashsize;
1376 VMEM_UNLOCK(vm);
1377
1378 if (desired > VMEM_HASHSIZE_MAX) {
1379 desired = VMEM_HASHSIZE_MAX;
1380 } else if (desired < VMEM_HASHSIZE_MIN) {
1381 desired = VMEM_HASHSIZE_MIN;
1382 }
1383 if (desired > current * 2 || desired * 2 < current) {
1384 vmem_rehash(vm, desired, VM_NOSLEEP);
1385 }
1386 }
1387 mutex_exit(&vmem_list_lock);
1388
1389 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1390 }
1391
1392 static void
1393 vmem_rehash_all_kick(void *dummy)
1394 {
1395
1396 workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1397 }
1398
1399 void
1400 vmem_rehash_start(void)
1401 {
1402 int error;
1403
1404 error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1405 vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
1406 if (error) {
1407 panic("%s: workqueue_create %d\n", __func__, error);
1408 }
1409 callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
1410 callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1411
1412 vmem_rehash_interval = hz * 10;
1413 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1414 }
1415 #endif /* defined(_KERNEL) */
1416
1417 /* ---- debug */
1418
1419 #if defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY)
1420
1421 static void bt_dump(const bt_t *, void (*)(const char *, ...)
1422 __printflike(1, 2));
1423
1424 static const char *
1425 bt_type_string(int type)
1426 {
1427 static const char * const table[] = {
1428 [BT_TYPE_BUSY] = "busy",
1429 [BT_TYPE_FREE] = "free",
1430 [BT_TYPE_SPAN] = "span",
1431 [BT_TYPE_SPAN_STATIC] = "static span",
1432 };
1433
1434 if (type >= __arraycount(table)) {
1435 return "BOGUS";
1436 }
1437 return table[type];
1438 }
1439
1440 static void
1441 bt_dump(const bt_t *bt, void (*pr)(const char *, ...))
1442 {
1443
1444 (*pr)("\t%p: %" PRIu64 ", %" PRIu64 ", %d(%s)\n",
1445 bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1446 bt->bt_type, bt_type_string(bt->bt_type));
1447 }
1448
1449 static void
1450 vmem_dump(const vmem_t *vm , void (*pr)(const char *, ...) __printflike(1, 2))
1451 {
1452 const bt_t *bt;
1453 int i;
1454
1455 (*pr)("vmem %p '%s'\n", vm, vm->vm_name);
1456 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1457 bt_dump(bt, pr);
1458 }
1459
1460 for (i = 0; i < VMEM_MAXORDER; i++) {
1461 const struct vmem_freelist *fl = &vm->vm_freelist[i];
1462
1463 if (LIST_EMPTY(fl)) {
1464 continue;
1465 }
1466
1467 (*pr)("freelist[%d]\n", i);
1468 LIST_FOREACH(bt, fl, bt_freelist) {
1469 bt_dump(bt, pr);
1470 }
1471 }
1472 }
1473
1474 #endif /* defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) */
1475
1476 #if defined(DDB)
1477 static bt_t *
1478 vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
1479 {
1480 bt_t *bt;
1481
1482 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1483 if (BT_ISSPAN_P(bt)) {
1484 continue;
1485 }
1486 if (bt->bt_start <= addr && addr <= BT_END(bt)) {
1487 return bt;
1488 }
1489 }
1490
1491 return NULL;
1492 }
1493
1494 void
1495 vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1496 {
1497 vmem_t *vm;
1498
1499 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1500 bt_t *bt;
1501
1502 bt = vmem_whatis_lookup(vm, addr);
1503 if (bt == NULL) {
1504 continue;
1505 }
1506 (*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1507 (void *)addr, (void *)bt->bt_start,
1508 (size_t)(addr - bt->bt_start), vm->vm_name,
1509 (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1510 }
1511 }
1512
1513 void
1514 vmem_printall(const char *modif, void (*pr)(const char *, ...))
1515 {
1516 const vmem_t *vm;
1517
1518 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1519 vmem_dump(vm, pr);
1520 }
1521 }
1522
1523 void
1524 vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...))
1525 {
1526 const vmem_t *vm = (const void *)addr;
1527
1528 vmem_dump(vm, pr);
1529 }
1530 #endif /* defined(DDB) */
1531
1532 #if defined(_KERNEL)
1533 #define vmem_printf printf
1534 #else
1535 #include <stdio.h>
1536 #include <stdarg.h>
1537
1538 static void
1539 vmem_printf(const char *fmt, ...)
1540 {
1541 va_list ap;
1542 va_start(ap, fmt);
1543 vprintf(fmt, ap);
1544 va_end(ap);
1545 }
1546 #endif
1547
1548 #if defined(VMEM_SANITY)
1549
1550 static bool
1551 vmem_check_sanity(vmem_t *vm)
1552 {
1553 const bt_t *bt, *bt2;
1554
1555 KASSERT(vm != NULL);
1556
1557 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1558 if (bt->bt_start > BT_END(bt)) {
1559 printf("corrupted tag\n");
1560 bt_dump(bt, vmem_printf);
1561 return false;
1562 }
1563 }
1564 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1565 CIRCLEQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
1566 if (bt == bt2) {
1567 continue;
1568 }
1569 if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
1570 continue;
1571 }
1572 if (bt->bt_start <= BT_END(bt2) &&
1573 bt2->bt_start <= BT_END(bt)) {
1574 printf("overwrapped tags\n");
1575 bt_dump(bt, vmem_printf);
1576 bt_dump(bt2, vmem_printf);
1577 return false;
1578 }
1579 }
1580 }
1581
1582 return true;
1583 }
1584
1585 static void
1586 vmem_check(vmem_t *vm)
1587 {
1588
1589 if (!vmem_check_sanity(vm)) {
1590 panic("insanity vmem %p", vm);
1591 }
1592 }
1593
1594 #endif /* defined(VMEM_SANITY) */
1595
1596 #if defined(UNITTEST)
1597 int
1598 main(void)
1599 {
1600 int rc;
1601 vmem_t *vm;
1602 vmem_addr_t p;
1603 struct reg {
1604 vmem_addr_t p;
1605 vmem_size_t sz;
1606 bool x;
1607 } *reg = NULL;
1608 int nreg = 0;
1609 int nalloc = 0;
1610 int nfree = 0;
1611 vmem_size_t total = 0;
1612 #if 1
1613 vm_flag_t strat = VM_INSTANTFIT;
1614 #else
1615 vm_flag_t strat = VM_BESTFIT;
1616 #endif
1617
1618 vm = vmem_create("test", 0, 0, 1, NULL, NULL, NULL, 0, VM_SLEEP,
1619 #ifdef _KERNEL
1620 IPL_NONE
1621 #else
1622 0
1623 #endif
1624 );
1625 if (vm == NULL) {
1626 printf("vmem_create\n");
1627 exit(EXIT_FAILURE);
1628 }
1629 vmem_dump(vm, vmem_printf);
1630
1631 rc = vmem_add(vm, 0, 50, VM_SLEEP);
1632 assert(rc == 0);
1633 rc = vmem_add(vm, 100, 200, VM_SLEEP);
1634 assert(rc == 0);
1635 rc = vmem_add(vm, 2000, 1, VM_SLEEP);
1636 assert(rc == 0);
1637 rc = vmem_add(vm, 40000, 65536, VM_SLEEP);
1638 assert(rc == 0);
1639 rc = vmem_add(vm, 10000, 10000, VM_SLEEP);
1640 assert(rc == 0);
1641 rc = vmem_add(vm, 500, 1000, VM_SLEEP);
1642 assert(rc == 0);
1643 rc = vmem_add(vm, 0xffffff00, 0x100, VM_SLEEP);
1644 assert(rc == 0);
1645 rc = vmem_xalloc(vm, 0x101, 0, 0, 0,
1646 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1647 assert(rc != 0);
1648 rc = vmem_xalloc(vm, 50, 0, 0, 0, 0, 49, strat|VM_SLEEP, &p);
1649 assert(rc == 0 && p == 0);
1650 vmem_xfree(vm, p, 50);
1651 rc = vmem_xalloc(vm, 25, 0, 0, 0, 0, 24, strat|VM_SLEEP, &p);
1652 assert(rc == 0 && p == 0);
1653 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1654 0xffffff01, 0xffffffff, strat|VM_SLEEP, &p);
1655 assert(rc != 0);
1656 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1657 0xffffff00, 0xfffffffe, strat|VM_SLEEP, &p);
1658 assert(rc != 0);
1659 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1660 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1661 assert(rc == 0);
1662 vmem_dump(vm, vmem_printf);
1663 for (;;) {
1664 struct reg *r;
1665 int t = rand() % 100;
1666
1667 if (t > 45) {
1668 /* alloc */
1669 vmem_size_t sz = rand() % 500 + 1;
1670 bool x;
1671 vmem_size_t align, phase, nocross;
1672 vmem_addr_t minaddr, maxaddr;
1673
1674 if (t > 70) {
1675 x = true;
1676 /* XXX */
1677 align = 1 << (rand() % 15);
1678 phase = rand() % 65536;
1679 nocross = 1 << (rand() % 15);
1680 if (align <= phase) {
1681 phase = 0;
1682 }
1683 if (VMEM_CROSS_P(phase, phase + sz - 1,
1684 nocross)) {
1685 nocross = 0;
1686 }
1687 do {
1688 minaddr = rand() % 50000;
1689 maxaddr = rand() % 70000;
1690 } while (minaddr > maxaddr);
1691 printf("=== xalloc %" PRIu64
1692 " align=%" PRIu64 ", phase=%" PRIu64
1693 ", nocross=%" PRIu64 ", min=%" PRIu64
1694 ", max=%" PRIu64 "\n",
1695 (uint64_t)sz,
1696 (uint64_t)align,
1697 (uint64_t)phase,
1698 (uint64_t)nocross,
1699 (uint64_t)minaddr,
1700 (uint64_t)maxaddr);
1701 rc = vmem_xalloc(vm, sz, align, phase, nocross,
1702 minaddr, maxaddr, strat|VM_SLEEP, &p);
1703 } else {
1704 x = false;
1705 printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1706 rc = vmem_alloc(vm, sz, strat|VM_SLEEP, &p);
1707 }
1708 printf("-> %" PRIu64 "\n", (uint64_t)p);
1709 vmem_dump(vm, vmem_printf);
1710 if (rc != 0) {
1711 if (x) {
1712 continue;
1713 }
1714 break;
1715 }
1716 nreg++;
1717 reg = realloc(reg, sizeof(*reg) * nreg);
1718 r = ®[nreg - 1];
1719 r->p = p;
1720 r->sz = sz;
1721 r->x = x;
1722 total += sz;
1723 nalloc++;
1724 } else if (nreg != 0) {
1725 /* free */
1726 r = ®[rand() % nreg];
1727 printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1728 (uint64_t)r->p, (uint64_t)r->sz);
1729 if (r->x) {
1730 vmem_xfree(vm, r->p, r->sz);
1731 } else {
1732 vmem_free(vm, r->p, r->sz);
1733 }
1734 total -= r->sz;
1735 vmem_dump(vm, vmem_printf);
1736 *r = reg[nreg - 1];
1737 nreg--;
1738 nfree++;
1739 }
1740 printf("total=%" PRIu64 "\n", (uint64_t)total);
1741 }
1742 fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1743 (uint64_t)total, nalloc, nfree);
1744 exit(EXIT_SUCCESS);
1745 }
1746 #endif /* defined(UNITTEST) */
1747