subr_vmem.c revision 1.91 1 /* $NetBSD: subr_vmem.c,v 1.91 2014/04/02 16:14:50 para Exp $ */
2
3 /*-
4 * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * reference:
31 * - Magazines and Vmem: Extending the Slab Allocator
32 * to Many CPUs and Arbitrary Resources
33 * http://www.usenix.org/event/usenix01/bonwick.html
34 *
35 * locking & the boundary tag pool:
36 * - A pool(9) is used for vmem boundary tags
37 * - During a pool get call the global vmem_btag_refill_lock is taken,
38 * to serialize access to the allocation reserve, but no other
39 * vmem arena locks.
40 * - During pool_put calls no vmem mutexes are locked.
41 * - pool_drain doesn't hold the pool's mutex while releasing memory to
42 * its backing therefore no interferance with any vmem mutexes.
43 * - The boundary tag pool is forced to put page headers into pool pages
44 * (PR_PHINPAGE) and not off page to avoid pool recursion.
45 * (due to sizeof(bt_t) it should be the case anyway)
46 */
47
48 #include <sys/cdefs.h>
49 __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.91 2014/04/02 16:14:50 para Exp $");
50
51 #if defined(_KERNEL)
52 #include "opt_ddb.h"
53 #endif /* defined(_KERNEL) */
54
55 #include <sys/param.h>
56 #include <sys/hash.h>
57 #include <sys/queue.h>
58 #include <sys/bitops.h>
59
60 #if defined(_KERNEL)
61 #include <sys/systm.h>
62 #include <sys/kernel.h> /* hz */
63 #include <sys/callout.h>
64 #include <sys/kmem.h>
65 #include <sys/pool.h>
66 #include <sys/vmem.h>
67 #include <sys/vmem_impl.h>
68 #include <sys/workqueue.h>
69 #include <sys/atomic.h>
70 #include <uvm/uvm.h>
71 #include <uvm/uvm_extern.h>
72 #include <uvm/uvm_km.h>
73 #include <uvm/uvm_page.h>
74 #include <uvm/uvm_pdaemon.h>
75 #else /* defined(_KERNEL) */
76 #include <stdio.h>
77 #include <errno.h>
78 #include <assert.h>
79 #include <stdlib.h>
80 #include <string.h>
81 #include "../sys/vmem.h"
82 #include "../sys/vmem_impl.h"
83 #endif /* defined(_KERNEL) */
84
85
86 #if defined(_KERNEL)
87 #include <sys/evcnt.h>
88 #define VMEM_EVCNT_DEFINE(name) \
89 struct evcnt vmem_evcnt_##name = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, \
90 "vmem", #name); \
91 EVCNT_ATTACH_STATIC(vmem_evcnt_##name);
92 #define VMEM_EVCNT_INCR(ev) vmem_evcnt_##ev.ev_count++
93 #define VMEM_EVCNT_DECR(ev) vmem_evcnt_##ev.ev_count--
94
95 VMEM_EVCNT_DEFINE(static_bt_count)
96 VMEM_EVCNT_DEFINE(static_bt_inuse)
97
98 #define VMEM_CONDVAR_INIT(vm, wchan) cv_init(&vm->vm_cv, wchan)
99 #define VMEM_CONDVAR_DESTROY(vm) cv_destroy(&vm->vm_cv)
100 #define VMEM_CONDVAR_WAIT(vm) cv_wait(&vm->vm_cv, &vm->vm_lock)
101 #define VMEM_CONDVAR_BROADCAST(vm) cv_broadcast(&vm->vm_cv)
102
103 #else /* defined(_KERNEL) */
104
105 #define VMEM_EVCNT_INCR(ev) /* nothing */
106 #define VMEM_EVCNT_DECR(ev) /* nothing */
107
108 #define VMEM_CONDVAR_INIT(vm, wchan) /* nothing */
109 #define VMEM_CONDVAR_DESTROY(vm) /* nothing */
110 #define VMEM_CONDVAR_WAIT(vm) /* nothing */
111 #define VMEM_CONDVAR_BROADCAST(vm) /* nothing */
112
113 #define UNITTEST
114 #define KASSERT(a) assert(a)
115 #define mutex_init(a, b, c) /* nothing */
116 #define mutex_destroy(a) /* nothing */
117 #define mutex_enter(a) /* nothing */
118 #define mutex_tryenter(a) true
119 #define mutex_exit(a) /* nothing */
120 #define mutex_owned(a) /* nothing */
121 #define ASSERT_SLEEPABLE() /* nothing */
122 #define panic(...) printf(__VA_ARGS__); abort()
123 #endif /* defined(_KERNEL) */
124
125 #if defined(VMEM_SANITY)
126 static void vmem_check(vmem_t *);
127 #else /* defined(VMEM_SANITY) */
128 #define vmem_check(vm) /* nothing */
129 #endif /* defined(VMEM_SANITY) */
130
131 #define VMEM_HASHSIZE_MIN 1 /* XXX */
132 #define VMEM_HASHSIZE_MAX 65536 /* XXX */
133 #define VMEM_HASHSIZE_INIT 1
134
135 #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
136
137 #if defined(_KERNEL)
138 static bool vmem_bootstrapped = false;
139 static kmutex_t vmem_list_lock;
140 static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
141 #endif /* defined(_KERNEL) */
142
143 /* ---- misc */
144
145 #define VMEM_LOCK(vm) mutex_enter(&vm->vm_lock)
146 #define VMEM_TRYLOCK(vm) mutex_tryenter(&vm->vm_lock)
147 #define VMEM_UNLOCK(vm) mutex_exit(&vm->vm_lock)
148 #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl)
149 #define VMEM_LOCK_DESTROY(vm) mutex_destroy(&vm->vm_lock)
150 #define VMEM_ASSERT_LOCKED(vm) KASSERT(mutex_owned(&vm->vm_lock))
151
152 #define VMEM_ALIGNUP(addr, align) \
153 (-(-(addr) & -(align)))
154
155 #define VMEM_CROSS_P(addr1, addr2, boundary) \
156 ((((addr1) ^ (addr2)) & -(boundary)) != 0)
157
158 #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
159 #define SIZE2ORDER(size) ((int)ilog2(size))
160
161 #if !defined(_KERNEL)
162 #define xmalloc(sz, flags) malloc(sz)
163 #define xfree(p, sz) free(p)
164 #define bt_alloc(vm, flags) malloc(sizeof(bt_t))
165 #define bt_free(vm, bt) free(bt)
166 #else /* defined(_KERNEL) */
167
168 #define xmalloc(sz, flags) \
169 kmem_alloc(sz, ((flags) & VM_SLEEP) ? KM_SLEEP : KM_NOSLEEP);
170 #define xfree(p, sz) kmem_free(p, sz);
171
172 /*
173 * BT_RESERVE calculation:
174 * we allocate memory for boundry tags with vmem, therefor we have
175 * to keep a reserve of bts used to allocated memory for bts.
176 * This reserve is 4 for each arena involved in allocating vmems memory.
177 * BT_MAXFREE: don't cache excessive counts of bts in arenas
178 */
179 #define STATIC_BT_COUNT 200
180 #define BT_MINRESERVE 4
181 #define BT_MAXFREE 64
182
183 static struct vmem_btag static_bts[STATIC_BT_COUNT];
184 static int static_bt_count = STATIC_BT_COUNT;
185
186 static struct vmem kmem_va_meta_arena_store;
187 vmem_t *kmem_va_meta_arena;
188 static struct vmem kmem_meta_arena_store;
189 vmem_t *kmem_meta_arena = NULL;
190
191 static kmutex_t vmem_btag_refill_lock;
192 static kmutex_t vmem_btag_lock;
193 static LIST_HEAD(, vmem_btag) vmem_btag_freelist;
194 static size_t vmem_btag_freelist_count = 0;
195 static struct pool vmem_btag_pool;
196
197 /* ---- boundary tag */
198
199 static int bt_refill(vmem_t *vm, vm_flag_t flags);
200
201 static void *
202 pool_page_alloc_vmem_meta(struct pool *pp, int flags)
203 {
204 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
205 vmem_addr_t va;
206 int ret;
207
208 ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
209 (vflags & ~VM_FITMASK) | VM_INSTANTFIT | VM_POPULATING, &va);
210
211 return ret ? NULL : (void *)va;
212 }
213
214 static void
215 pool_page_free_vmem_meta(struct pool *pp, void *v)
216 {
217
218 vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
219 }
220
221 /* allocator for vmem-pool metadata */
222 struct pool_allocator pool_allocator_vmem_meta = {
223 .pa_alloc = pool_page_alloc_vmem_meta,
224 .pa_free = pool_page_free_vmem_meta,
225 .pa_pagesz = 0
226 };
227
228 static int
229 bt_refill(vmem_t *vm, vm_flag_t flags)
230 {
231 bt_t *bt;
232
233 KASSERT(flags & VM_NOSLEEP);
234
235 VMEM_LOCK(vm);
236 if (vm->vm_nfreetags > BT_MINRESERVE) {
237 VMEM_UNLOCK(vm);
238 return 0;
239 }
240
241 mutex_enter(&vmem_btag_lock);
242 while (!LIST_EMPTY(&vmem_btag_freelist) &&
243 vm->vm_nfreetags <= BT_MINRESERVE) {
244 bt = LIST_FIRST(&vmem_btag_freelist);
245 LIST_REMOVE(bt, bt_freelist);
246 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
247 vm->vm_nfreetags++;
248 vmem_btag_freelist_count--;
249 VMEM_EVCNT_INCR(static_bt_inuse);
250 }
251 mutex_exit(&vmem_btag_lock);
252
253 while (vm->vm_nfreetags <= BT_MINRESERVE) {
254 VMEM_UNLOCK(vm);
255 mutex_enter(&vmem_btag_refill_lock);
256 bt = pool_get(&vmem_btag_pool, PR_NOWAIT);
257 mutex_exit(&vmem_btag_refill_lock);
258 VMEM_LOCK(vm);
259 if (bt == NULL)
260 break;
261 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
262 vm->vm_nfreetags++;
263 }
264
265 if (vm->vm_nfreetags == 0) {
266 VMEM_UNLOCK(vm);
267 return ENOMEM;
268 }
269
270 VMEM_UNLOCK(vm);
271
272 if (kmem_meta_arena != NULL) {
273 bt_refill(kmem_arena, (flags & ~VM_FITMASK)
274 | VM_INSTANTFIT | VM_POPULATING);
275 bt_refill(kmem_va_meta_arena, (flags & ~VM_FITMASK)
276 | VM_INSTANTFIT | VM_POPULATING);
277 bt_refill(kmem_meta_arena, (flags & ~VM_FITMASK)
278 | VM_INSTANTFIT | VM_POPULATING);
279 }
280
281 return 0;
282 }
283
284 static bt_t *
285 bt_alloc(vmem_t *vm, vm_flag_t flags)
286 {
287 bt_t *bt;
288 VMEM_LOCK(vm);
289 while (vm->vm_nfreetags <= BT_MINRESERVE && (flags & VM_POPULATING) == 0) {
290 VMEM_UNLOCK(vm);
291 if (bt_refill(vm, VM_NOSLEEP | VM_INSTANTFIT)) {
292 return NULL;
293 }
294 VMEM_LOCK(vm);
295 }
296 bt = LIST_FIRST(&vm->vm_freetags);
297 LIST_REMOVE(bt, bt_freelist);
298 vm->vm_nfreetags--;
299 VMEM_UNLOCK(vm);
300
301 return bt;
302 }
303
304 static void
305 bt_free(vmem_t *vm, bt_t *bt)
306 {
307
308 VMEM_LOCK(vm);
309 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
310 vm->vm_nfreetags++;
311 VMEM_UNLOCK(vm);
312 }
313
314 static void
315 bt_freetrim(vmem_t *vm, int freelimit)
316 {
317 bt_t *t;
318 LIST_HEAD(, vmem_btag) tofree;
319
320 LIST_INIT(&tofree);
321
322 VMEM_LOCK(vm);
323 while (vm->vm_nfreetags > freelimit) {
324 bt_t *bt = LIST_FIRST(&vm->vm_freetags);
325 LIST_REMOVE(bt, bt_freelist);
326 vm->vm_nfreetags--;
327 if (bt >= static_bts
328 && bt < &static_bts[STATIC_BT_COUNT]) {
329 mutex_enter(&vmem_btag_lock);
330 LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
331 vmem_btag_freelist_count++;
332 mutex_exit(&vmem_btag_lock);
333 VMEM_EVCNT_DECR(static_bt_inuse);
334 } else {
335 LIST_INSERT_HEAD(&tofree, bt, bt_freelist);
336 }
337 }
338
339 VMEM_UNLOCK(vm);
340 while (!LIST_EMPTY(&tofree)) {
341 t = LIST_FIRST(&tofree);
342 LIST_REMOVE(t, bt_freelist);
343 pool_put(&vmem_btag_pool, t);
344 }
345 }
346 #endif /* defined(_KERNEL) */
347
348 /*
349 * freelist[0] ... [1, 1]
350 * freelist[1] ... [2, 3]
351 * freelist[2] ... [4, 7]
352 * freelist[3] ... [8, 15]
353 * :
354 * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
355 * :
356 */
357
358 static struct vmem_freelist *
359 bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
360 {
361 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
362 const int idx = SIZE2ORDER(qsize);
363
364 KASSERT(size != 0 && qsize != 0);
365 KASSERT((size & vm->vm_quantum_mask) == 0);
366 KASSERT(idx >= 0);
367 KASSERT(idx < VMEM_MAXORDER);
368
369 return &vm->vm_freelist[idx];
370 }
371
372 /*
373 * bt_freehead_toalloc: return the freelist for the given size and allocation
374 * strategy.
375 *
376 * for VM_INSTANTFIT, return the list in which any blocks are large enough
377 * for the requested size. otherwise, return the list which can have blocks
378 * large enough for the requested size.
379 */
380
381 static struct vmem_freelist *
382 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
383 {
384 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
385 int idx = SIZE2ORDER(qsize);
386
387 KASSERT(size != 0 && qsize != 0);
388 KASSERT((size & vm->vm_quantum_mask) == 0);
389
390 if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
391 idx++;
392 /* check too large request? */
393 }
394 KASSERT(idx >= 0);
395 KASSERT(idx < VMEM_MAXORDER);
396
397 return &vm->vm_freelist[idx];
398 }
399
400 /* ---- boundary tag hash */
401
402 static struct vmem_hashlist *
403 bt_hashhead(vmem_t *vm, vmem_addr_t addr)
404 {
405 struct vmem_hashlist *list;
406 unsigned int hash;
407
408 hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
409 list = &vm->vm_hashlist[hash % vm->vm_hashsize];
410
411 return list;
412 }
413
414 static bt_t *
415 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
416 {
417 struct vmem_hashlist *list;
418 bt_t *bt;
419
420 list = bt_hashhead(vm, addr);
421 LIST_FOREACH(bt, list, bt_hashlist) {
422 if (bt->bt_start == addr) {
423 break;
424 }
425 }
426
427 return bt;
428 }
429
430 static void
431 bt_rembusy(vmem_t *vm, bt_t *bt)
432 {
433
434 KASSERT(vm->vm_nbusytag > 0);
435 vm->vm_inuse -= bt->bt_size;
436 vm->vm_nbusytag--;
437 LIST_REMOVE(bt, bt_hashlist);
438 }
439
440 static void
441 bt_insbusy(vmem_t *vm, bt_t *bt)
442 {
443 struct vmem_hashlist *list;
444
445 KASSERT(bt->bt_type == BT_TYPE_BUSY);
446
447 list = bt_hashhead(vm, bt->bt_start);
448 LIST_INSERT_HEAD(list, bt, bt_hashlist);
449 vm->vm_nbusytag++;
450 vm->vm_inuse += bt->bt_size;
451 }
452
453 /* ---- boundary tag list */
454
455 static void
456 bt_remseg(vmem_t *vm, bt_t *bt)
457 {
458
459 TAILQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
460 }
461
462 static void
463 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
464 {
465
466 TAILQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
467 }
468
469 static void
470 bt_insseg_tail(vmem_t *vm, bt_t *bt)
471 {
472
473 TAILQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
474 }
475
476 static void
477 bt_remfree(vmem_t *vm, bt_t *bt)
478 {
479
480 KASSERT(bt->bt_type == BT_TYPE_FREE);
481
482 LIST_REMOVE(bt, bt_freelist);
483 }
484
485 static void
486 bt_insfree(vmem_t *vm, bt_t *bt)
487 {
488 struct vmem_freelist *list;
489
490 list = bt_freehead_tofree(vm, bt->bt_size);
491 LIST_INSERT_HEAD(list, bt, bt_freelist);
492 }
493
494 /* ---- vmem internal functions */
495
496 #if defined(QCACHE)
497 static inline vm_flag_t
498 prf_to_vmf(int prflags)
499 {
500 vm_flag_t vmflags;
501
502 KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
503 if ((prflags & PR_WAITOK) != 0) {
504 vmflags = VM_SLEEP;
505 } else {
506 vmflags = VM_NOSLEEP;
507 }
508 return vmflags;
509 }
510
511 static inline int
512 vmf_to_prf(vm_flag_t vmflags)
513 {
514 int prflags;
515
516 if ((vmflags & VM_SLEEP) != 0) {
517 prflags = PR_WAITOK;
518 } else {
519 prflags = PR_NOWAIT;
520 }
521 return prflags;
522 }
523
524 static size_t
525 qc_poolpage_size(size_t qcache_max)
526 {
527 int i;
528
529 for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
530 /* nothing */
531 }
532 return ORDER2SIZE(i);
533 }
534
535 static void *
536 qc_poolpage_alloc(struct pool *pool, int prflags)
537 {
538 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
539 vmem_t *vm = qc->qc_vmem;
540 vmem_addr_t addr;
541
542 if (vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
543 prf_to_vmf(prflags) | VM_INSTANTFIT, &addr) != 0)
544 return NULL;
545 return (void *)addr;
546 }
547
548 static void
549 qc_poolpage_free(struct pool *pool, void *addr)
550 {
551 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
552 vmem_t *vm = qc->qc_vmem;
553
554 vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
555 }
556
557 static void
558 qc_init(vmem_t *vm, size_t qcache_max, int ipl)
559 {
560 qcache_t *prevqc;
561 struct pool_allocator *pa;
562 int qcache_idx_max;
563 int i;
564
565 KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
566 if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
567 qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
568 }
569 vm->vm_qcache_max = qcache_max;
570 pa = &vm->vm_qcache_allocator;
571 memset(pa, 0, sizeof(*pa));
572 pa->pa_alloc = qc_poolpage_alloc;
573 pa->pa_free = qc_poolpage_free;
574 pa->pa_pagesz = qc_poolpage_size(qcache_max);
575
576 qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
577 prevqc = NULL;
578 for (i = qcache_idx_max; i > 0; i--) {
579 qcache_t *qc = &vm->vm_qcache_store[i - 1];
580 size_t size = i << vm->vm_quantum_shift;
581 pool_cache_t pc;
582
583 qc->qc_vmem = vm;
584 snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
585 vm->vm_name, size);
586
587 pc = pool_cache_init(size,
588 ORDER2SIZE(vm->vm_quantum_shift), 0,
589 PR_NOALIGN | PR_NOTOUCH | PR_RECURSIVE /* XXX */,
590 qc->qc_name, pa, ipl, NULL, NULL, NULL);
591
592 KASSERT(pc);
593
594 qc->qc_cache = pc;
595 KASSERT(qc->qc_cache != NULL); /* XXX */
596 if (prevqc != NULL &&
597 qc->qc_cache->pc_pool.pr_itemsperpage ==
598 prevqc->qc_cache->pc_pool.pr_itemsperpage) {
599 pool_cache_destroy(qc->qc_cache);
600 vm->vm_qcache[i - 1] = prevqc;
601 continue;
602 }
603 qc->qc_cache->pc_pool.pr_qcache = qc;
604 vm->vm_qcache[i - 1] = qc;
605 prevqc = qc;
606 }
607 }
608
609 static void
610 qc_destroy(vmem_t *vm)
611 {
612 const qcache_t *prevqc;
613 int i;
614 int qcache_idx_max;
615
616 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
617 prevqc = NULL;
618 for (i = 0; i < qcache_idx_max; i++) {
619 qcache_t *qc = vm->vm_qcache[i];
620
621 if (prevqc == qc) {
622 continue;
623 }
624 pool_cache_destroy(qc->qc_cache);
625 prevqc = qc;
626 }
627 }
628 #endif
629
630 #if defined(_KERNEL)
631 static void
632 vmem_bootstrap(void)
633 {
634
635 mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_VM);
636 mutex_init(&vmem_btag_lock, MUTEX_DEFAULT, IPL_VM);
637 mutex_init(&vmem_btag_refill_lock, MUTEX_DEFAULT, IPL_VM);
638
639 while (static_bt_count-- > 0) {
640 bt_t *bt = &static_bts[static_bt_count];
641 LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
642 VMEM_EVCNT_INCR(static_bt_count);
643 vmem_btag_freelist_count++;
644 }
645 vmem_bootstrapped = TRUE;
646 }
647
648 void
649 vmem_subsystem_init(vmem_t *vm)
650 {
651
652 kmem_va_meta_arena = vmem_init(&kmem_va_meta_arena_store, "vmem-va",
653 0, 0, PAGE_SIZE, vmem_alloc, vmem_free, vm,
654 0, VM_NOSLEEP | VM_BOOTSTRAP | VM_LARGEIMPORT,
655 IPL_VM);
656
657 kmem_meta_arena = vmem_init(&kmem_meta_arena_store, "vmem-meta",
658 0, 0, PAGE_SIZE,
659 uvm_km_kmem_alloc, uvm_km_kmem_free, kmem_va_meta_arena,
660 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
661
662 pool_init(&vmem_btag_pool, sizeof(bt_t), 0, 0, PR_PHINPAGE,
663 "vmembt", &pool_allocator_vmem_meta, IPL_VM);
664 }
665 #endif /* defined(_KERNEL) */
666
667 static int
668 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
669 int spanbttype)
670 {
671 bt_t *btspan;
672 bt_t *btfree;
673
674 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
675 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
676 KASSERT(spanbttype == BT_TYPE_SPAN ||
677 spanbttype == BT_TYPE_SPAN_STATIC);
678
679 btspan = bt_alloc(vm, flags);
680 if (btspan == NULL) {
681 return ENOMEM;
682 }
683 btfree = bt_alloc(vm, flags);
684 if (btfree == NULL) {
685 bt_free(vm, btspan);
686 return ENOMEM;
687 }
688
689 btspan->bt_type = spanbttype;
690 btspan->bt_start = addr;
691 btspan->bt_size = size;
692
693 btfree->bt_type = BT_TYPE_FREE;
694 btfree->bt_start = addr;
695 btfree->bt_size = size;
696
697 VMEM_LOCK(vm);
698 bt_insseg_tail(vm, btspan);
699 bt_insseg(vm, btfree, btspan);
700 bt_insfree(vm, btfree);
701 vm->vm_size += size;
702 VMEM_UNLOCK(vm);
703
704 return 0;
705 }
706
707 static void
708 vmem_destroy1(vmem_t *vm)
709 {
710
711 #if defined(QCACHE)
712 qc_destroy(vm);
713 #endif /* defined(QCACHE) */
714 if (vm->vm_hashlist != NULL) {
715 int i;
716
717 for (i = 0; i < vm->vm_hashsize; i++) {
718 bt_t *bt;
719
720 while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
721 KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
722 bt_free(vm, bt);
723 }
724 }
725 if (vm->vm_hashlist != &vm->vm_hash0) {
726 xfree(vm->vm_hashlist,
727 sizeof(struct vmem_hashlist *) * vm->vm_hashsize);
728 }
729 }
730
731 bt_freetrim(vm, 0);
732
733 VMEM_CONDVAR_DESTROY(vm);
734 VMEM_LOCK_DESTROY(vm);
735 xfree(vm, sizeof(*vm));
736 }
737
738 static int
739 vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
740 {
741 vmem_addr_t addr;
742 int rc;
743
744 if (vm->vm_importfn == NULL) {
745 return EINVAL;
746 }
747
748 if (vm->vm_flags & VM_LARGEIMPORT) {
749 size *= 16;
750 }
751
752 if (vm->vm_flags & VM_XIMPORT) {
753 rc = ((vmem_ximport_t *)vm->vm_importfn)(vm->vm_arg, size,
754 &size, flags, &addr);
755 } else {
756 rc = (vm->vm_importfn)(vm->vm_arg, size, flags, &addr);
757 }
758 if (rc) {
759 return ENOMEM;
760 }
761
762 if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) != 0) {
763 (*vm->vm_releasefn)(vm->vm_arg, addr, size);
764 return ENOMEM;
765 }
766
767 return 0;
768 }
769
770 static int
771 vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
772 {
773 bt_t *bt;
774 int i;
775 struct vmem_hashlist *newhashlist;
776 struct vmem_hashlist *oldhashlist;
777 size_t oldhashsize;
778
779 KASSERT(newhashsize > 0);
780
781 newhashlist =
782 xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
783 if (newhashlist == NULL) {
784 return ENOMEM;
785 }
786 for (i = 0; i < newhashsize; i++) {
787 LIST_INIT(&newhashlist[i]);
788 }
789
790 if (!VMEM_TRYLOCK(vm)) {
791 xfree(newhashlist,
792 sizeof(struct vmem_hashlist *) * newhashsize);
793 return EBUSY;
794 }
795 oldhashlist = vm->vm_hashlist;
796 oldhashsize = vm->vm_hashsize;
797 vm->vm_hashlist = newhashlist;
798 vm->vm_hashsize = newhashsize;
799 if (oldhashlist == NULL) {
800 VMEM_UNLOCK(vm);
801 return 0;
802 }
803 for (i = 0; i < oldhashsize; i++) {
804 while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
805 bt_rembusy(vm, bt); /* XXX */
806 bt_insbusy(vm, bt);
807 }
808 }
809 VMEM_UNLOCK(vm);
810
811 if (oldhashlist != &vm->vm_hash0) {
812 xfree(oldhashlist,
813 sizeof(struct vmem_hashlist *) * oldhashsize);
814 }
815
816 return 0;
817 }
818
819 /*
820 * vmem_fit: check if a bt can satisfy the given restrictions.
821 *
822 * it's a caller's responsibility to ensure the region is big enough
823 * before calling us.
824 */
825
826 static int
827 vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align,
828 vmem_size_t phase, vmem_size_t nocross,
829 vmem_addr_t minaddr, vmem_addr_t maxaddr, vmem_addr_t *addrp)
830 {
831 vmem_addr_t start;
832 vmem_addr_t end;
833
834 KASSERT(size > 0);
835 KASSERT(bt->bt_size >= size); /* caller's responsibility */
836
837 /*
838 * XXX assumption: vmem_addr_t and vmem_size_t are
839 * unsigned integer of the same size.
840 */
841
842 start = bt->bt_start;
843 if (start < minaddr) {
844 start = minaddr;
845 }
846 end = BT_END(bt);
847 if (end > maxaddr) {
848 end = maxaddr;
849 }
850 if (start > end) {
851 return ENOMEM;
852 }
853
854 start = VMEM_ALIGNUP(start - phase, align) + phase;
855 if (start < bt->bt_start) {
856 start += align;
857 }
858 if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
859 KASSERT(align < nocross);
860 start = VMEM_ALIGNUP(start - phase, nocross) + phase;
861 }
862 if (start <= end && end - start >= size - 1) {
863 KASSERT((start & (align - 1)) == phase);
864 KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
865 KASSERT(minaddr <= start);
866 KASSERT(maxaddr == 0 || start + size - 1 <= maxaddr);
867 KASSERT(bt->bt_start <= start);
868 KASSERT(BT_END(bt) - start >= size - 1);
869 *addrp = start;
870 return 0;
871 }
872 return ENOMEM;
873 }
874
875 /* ---- vmem API */
876
877 /*
878 * vmem_create_internal: creates a vmem arena.
879 */
880
881 vmem_t *
882 vmem_init(vmem_t *vm, const char *name,
883 vmem_addr_t base, vmem_size_t size, vmem_size_t quantum,
884 vmem_import_t *importfn, vmem_release_t *releasefn,
885 vmem_t *arg, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
886 {
887 int i;
888
889 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
890 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
891 KASSERT(quantum > 0);
892
893 #if defined(_KERNEL)
894 /* XXX: SMP, we get called early... */
895 if (!vmem_bootstrapped) {
896 vmem_bootstrap();
897 }
898 #endif /* defined(_KERNEL) */
899
900 if (vm == NULL) {
901 vm = xmalloc(sizeof(*vm), flags);
902 }
903 if (vm == NULL) {
904 return NULL;
905 }
906
907 VMEM_CONDVAR_INIT(vm, "vmem");
908 VMEM_LOCK_INIT(vm, ipl);
909 vm->vm_flags = flags;
910 vm->vm_nfreetags = 0;
911 LIST_INIT(&vm->vm_freetags);
912 strlcpy(vm->vm_name, name, sizeof(vm->vm_name));
913 vm->vm_quantum_mask = quantum - 1;
914 vm->vm_quantum_shift = SIZE2ORDER(quantum);
915 KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
916 vm->vm_importfn = importfn;
917 vm->vm_releasefn = releasefn;
918 vm->vm_arg = arg;
919 vm->vm_nbusytag = 0;
920 vm->vm_size = 0;
921 vm->vm_inuse = 0;
922 #if defined(QCACHE)
923 qc_init(vm, qcache_max, ipl);
924 #endif /* defined(QCACHE) */
925
926 TAILQ_INIT(&vm->vm_seglist);
927 for (i = 0; i < VMEM_MAXORDER; i++) {
928 LIST_INIT(&vm->vm_freelist[i]);
929 }
930 memset(&vm->vm_hash0, 0, sizeof(struct vmem_hashlist));
931 vm->vm_hashsize = 1;
932 vm->vm_hashlist = &vm->vm_hash0;
933
934 if (size != 0) {
935 if (vmem_add(vm, base, size, flags) != 0) {
936 vmem_destroy1(vm);
937 return NULL;
938 }
939 }
940
941 #if defined(_KERNEL)
942 if (flags & VM_BOOTSTRAP) {
943 bt_refill(vm, VM_NOSLEEP);
944 }
945
946 mutex_enter(&vmem_list_lock);
947 LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
948 mutex_exit(&vmem_list_lock);
949 #endif /* defined(_KERNEL) */
950
951 return vm;
952 }
953
954
955
956 /*
957 * vmem_create: create an arena.
958 *
959 * => must not be called from interrupt context.
960 */
961
962 vmem_t *
963 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
964 vmem_size_t quantum, vmem_import_t *importfn, vmem_release_t *releasefn,
965 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
966 {
967
968 KASSERT((flags & (VM_XIMPORT)) == 0);
969
970 return vmem_init(NULL, name, base, size, quantum,
971 importfn, releasefn, source, qcache_max, flags, ipl);
972 }
973
974 /*
975 * vmem_xcreate: create an arena takes alternative import func.
976 *
977 * => must not be called from interrupt context.
978 */
979
980 vmem_t *
981 vmem_xcreate(const char *name, vmem_addr_t base, vmem_size_t size,
982 vmem_size_t quantum, vmem_ximport_t *importfn, vmem_release_t *releasefn,
983 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
984 {
985
986 KASSERT((flags & (VM_XIMPORT)) == 0);
987
988 return vmem_init(NULL, name, base, size, quantum,
989 (vmem_import_t *)importfn, releasefn, source,
990 qcache_max, flags | VM_XIMPORT, ipl);
991 }
992
993 void
994 vmem_destroy(vmem_t *vm)
995 {
996
997 #if defined(_KERNEL)
998 mutex_enter(&vmem_list_lock);
999 LIST_REMOVE(vm, vm_alllist);
1000 mutex_exit(&vmem_list_lock);
1001 #endif /* defined(_KERNEL) */
1002
1003 vmem_destroy1(vm);
1004 }
1005
1006 vmem_size_t
1007 vmem_roundup_size(vmem_t *vm, vmem_size_t size)
1008 {
1009
1010 return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
1011 }
1012
1013 /*
1014 * vmem_alloc: allocate resource from the arena.
1015 */
1016
1017 int
1018 vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags, vmem_addr_t *addrp)
1019 {
1020 const vm_flag_t strat __diagused = flags & VM_FITMASK;
1021
1022 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1023 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1024
1025 KASSERT(size > 0);
1026 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1027 if ((flags & VM_SLEEP) != 0) {
1028 ASSERT_SLEEPABLE();
1029 }
1030
1031 #if defined(QCACHE)
1032 if (size <= vm->vm_qcache_max) {
1033 void *p;
1034 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1035 qcache_t *qc = vm->vm_qcache[qidx - 1];
1036
1037 p = pool_cache_get(qc->qc_cache, vmf_to_prf(flags));
1038 if (addrp != NULL)
1039 *addrp = (vmem_addr_t)p;
1040 return (p == NULL) ? ENOMEM : 0;
1041 }
1042 #endif /* defined(QCACHE) */
1043
1044 return vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
1045 flags, addrp);
1046 }
1047
1048 int
1049 vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align,
1050 const vmem_size_t phase, const vmem_size_t nocross,
1051 const vmem_addr_t minaddr, const vmem_addr_t maxaddr, const vm_flag_t flags,
1052 vmem_addr_t *addrp)
1053 {
1054 struct vmem_freelist *list;
1055 struct vmem_freelist *first;
1056 struct vmem_freelist *end;
1057 bt_t *bt;
1058 bt_t *btnew;
1059 bt_t *btnew2;
1060 const vmem_size_t size = vmem_roundup_size(vm, size0);
1061 vm_flag_t strat = flags & VM_FITMASK;
1062 vmem_addr_t start;
1063 int rc;
1064
1065 KASSERT(size0 > 0);
1066 KASSERT(size > 0);
1067 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1068 if ((flags & VM_SLEEP) != 0) {
1069 ASSERT_SLEEPABLE();
1070 }
1071 KASSERT((align & vm->vm_quantum_mask) == 0);
1072 KASSERT((align & (align - 1)) == 0);
1073 KASSERT((phase & vm->vm_quantum_mask) == 0);
1074 KASSERT((nocross & vm->vm_quantum_mask) == 0);
1075 KASSERT((nocross & (nocross - 1)) == 0);
1076 KASSERT((align == 0 && phase == 0) || phase < align);
1077 KASSERT(nocross == 0 || nocross >= size);
1078 KASSERT(minaddr <= maxaddr);
1079 KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
1080
1081 if (align == 0) {
1082 align = vm->vm_quantum_mask + 1;
1083 }
1084
1085 /*
1086 * allocate boundary tags before acquiring the vmem lock.
1087 */
1088 btnew = bt_alloc(vm, flags);
1089 if (btnew == NULL) {
1090 return ENOMEM;
1091 }
1092 btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
1093 if (btnew2 == NULL) {
1094 bt_free(vm, btnew);
1095 return ENOMEM;
1096 }
1097
1098 /*
1099 * choose a free block from which we allocate.
1100 */
1101 retry_strat:
1102 first = bt_freehead_toalloc(vm, size, strat);
1103 end = &vm->vm_freelist[VMEM_MAXORDER];
1104 retry:
1105 bt = NULL;
1106 VMEM_LOCK(vm);
1107 vmem_check(vm);
1108 if (strat == VM_INSTANTFIT) {
1109 /*
1110 * just choose the first block which satisfies our restrictions.
1111 *
1112 * note that we don't need to check the size of the blocks
1113 * because any blocks found on these list should be larger than
1114 * the given size.
1115 */
1116 for (list = first; list < end; list++) {
1117 bt = LIST_FIRST(list);
1118 if (bt != NULL) {
1119 rc = vmem_fit(bt, size, align, phase,
1120 nocross, minaddr, maxaddr, &start);
1121 if (rc == 0) {
1122 goto gotit;
1123 }
1124 /*
1125 * don't bother to follow the bt_freelist link
1126 * here. the list can be very long and we are
1127 * told to run fast. blocks from the later free
1128 * lists are larger and have better chances to
1129 * satisfy our restrictions.
1130 */
1131 }
1132 }
1133 } else { /* VM_BESTFIT */
1134 /*
1135 * we assume that, for space efficiency, it's better to
1136 * allocate from a smaller block. thus we will start searching
1137 * from the lower-order list than VM_INSTANTFIT.
1138 * however, don't bother to find the smallest block in a free
1139 * list because the list can be very long. we can revisit it
1140 * if/when it turns out to be a problem.
1141 *
1142 * note that the 'first' list can contain blocks smaller than
1143 * the requested size. thus we need to check bt_size.
1144 */
1145 for (list = first; list < end; list++) {
1146 LIST_FOREACH(bt, list, bt_freelist) {
1147 if (bt->bt_size >= size) {
1148 rc = vmem_fit(bt, size, align, phase,
1149 nocross, minaddr, maxaddr, &start);
1150 if (rc == 0) {
1151 goto gotit;
1152 }
1153 }
1154 }
1155 }
1156 }
1157 VMEM_UNLOCK(vm);
1158 #if 1
1159 if (strat == VM_INSTANTFIT) {
1160 strat = VM_BESTFIT;
1161 goto retry_strat;
1162 }
1163 #endif
1164 if (align != vm->vm_quantum_mask + 1 || phase != 0 || nocross != 0) {
1165
1166 /*
1167 * XXX should try to import a region large enough to
1168 * satisfy restrictions?
1169 */
1170
1171 goto fail;
1172 }
1173 /* XXX eeek, minaddr & maxaddr not respected */
1174 if (vmem_import(vm, size, flags) == 0) {
1175 goto retry;
1176 }
1177 /* XXX */
1178
1179 if ((flags & VM_SLEEP) != 0) {
1180 #if defined(_KERNEL)
1181 mutex_spin_enter(&uvm_fpageqlock);
1182 uvm_kick_pdaemon();
1183 mutex_spin_exit(&uvm_fpageqlock);
1184 #endif
1185 VMEM_LOCK(vm);
1186 VMEM_CONDVAR_WAIT(vm);
1187 VMEM_UNLOCK(vm);
1188 goto retry;
1189 }
1190 fail:
1191 bt_free(vm, btnew);
1192 bt_free(vm, btnew2);
1193 return ENOMEM;
1194
1195 gotit:
1196 KASSERT(bt->bt_type == BT_TYPE_FREE);
1197 KASSERT(bt->bt_size >= size);
1198 bt_remfree(vm, bt);
1199 vmem_check(vm);
1200 if (bt->bt_start != start) {
1201 btnew2->bt_type = BT_TYPE_FREE;
1202 btnew2->bt_start = bt->bt_start;
1203 btnew2->bt_size = start - bt->bt_start;
1204 bt->bt_start = start;
1205 bt->bt_size -= btnew2->bt_size;
1206 bt_insfree(vm, btnew2);
1207 bt_insseg(vm, btnew2, TAILQ_PREV(bt, vmem_seglist, bt_seglist));
1208 btnew2 = NULL;
1209 vmem_check(vm);
1210 }
1211 KASSERT(bt->bt_start == start);
1212 if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
1213 /* split */
1214 btnew->bt_type = BT_TYPE_BUSY;
1215 btnew->bt_start = bt->bt_start;
1216 btnew->bt_size = size;
1217 bt->bt_start = bt->bt_start + size;
1218 bt->bt_size -= size;
1219 bt_insfree(vm, bt);
1220 bt_insseg(vm, btnew, TAILQ_PREV(bt, vmem_seglist, bt_seglist));
1221 bt_insbusy(vm, btnew);
1222 vmem_check(vm);
1223 VMEM_UNLOCK(vm);
1224 } else {
1225 bt->bt_type = BT_TYPE_BUSY;
1226 bt_insbusy(vm, bt);
1227 vmem_check(vm);
1228 VMEM_UNLOCK(vm);
1229 bt_free(vm, btnew);
1230 btnew = bt;
1231 }
1232 if (btnew2 != NULL) {
1233 bt_free(vm, btnew2);
1234 }
1235 KASSERT(btnew->bt_size >= size);
1236 btnew->bt_type = BT_TYPE_BUSY;
1237
1238 if (addrp != NULL)
1239 *addrp = btnew->bt_start;
1240 return 0;
1241 }
1242
1243 /*
1244 * vmem_free: free the resource to the arena.
1245 */
1246
1247 void
1248 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1249 {
1250
1251 KASSERT(size > 0);
1252
1253 #if defined(QCACHE)
1254 if (size <= vm->vm_qcache_max) {
1255 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1256 qcache_t *qc = vm->vm_qcache[qidx - 1];
1257
1258 pool_cache_put(qc->qc_cache, (void *)addr);
1259 return;
1260 }
1261 #endif /* defined(QCACHE) */
1262
1263 vmem_xfree(vm, addr, size);
1264 }
1265
1266 void
1267 vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1268 {
1269 bt_t *bt;
1270 bt_t *t;
1271 LIST_HEAD(, vmem_btag) tofree;
1272
1273 LIST_INIT(&tofree);
1274
1275 KASSERT(size > 0);
1276
1277 VMEM_LOCK(vm);
1278
1279 bt = bt_lookupbusy(vm, addr);
1280 KASSERT(bt != NULL);
1281 KASSERT(bt->bt_start == addr);
1282 KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1283 bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1284 KASSERT(bt->bt_type == BT_TYPE_BUSY);
1285 bt_rembusy(vm, bt);
1286 bt->bt_type = BT_TYPE_FREE;
1287
1288 /* coalesce */
1289 t = TAILQ_NEXT(bt, bt_seglist);
1290 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1291 KASSERT(BT_END(bt) < t->bt_start); /* YYY */
1292 bt_remfree(vm, t);
1293 bt_remseg(vm, t);
1294 bt->bt_size += t->bt_size;
1295 LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1296 }
1297 t = TAILQ_PREV(bt, vmem_seglist, bt_seglist);
1298 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1299 KASSERT(BT_END(t) < bt->bt_start); /* YYY */
1300 bt_remfree(vm, t);
1301 bt_remseg(vm, t);
1302 bt->bt_size += t->bt_size;
1303 bt->bt_start = t->bt_start;
1304 LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1305 }
1306
1307 t = TAILQ_PREV(bt, vmem_seglist, bt_seglist);
1308 KASSERT(t != NULL);
1309 KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1310 if (vm->vm_releasefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1311 t->bt_size == bt->bt_size) {
1312 vmem_addr_t spanaddr;
1313 vmem_size_t spansize;
1314
1315 KASSERT(t->bt_start == bt->bt_start);
1316 spanaddr = bt->bt_start;
1317 spansize = bt->bt_size;
1318 bt_remseg(vm, bt);
1319 LIST_INSERT_HEAD(&tofree, bt, bt_freelist);
1320 bt_remseg(vm, t);
1321 LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1322 vm->vm_size -= spansize;
1323 VMEM_CONDVAR_BROADCAST(vm);
1324 VMEM_UNLOCK(vm);
1325 (*vm->vm_releasefn)(vm->vm_arg, spanaddr, spansize);
1326 } else {
1327 bt_insfree(vm, bt);
1328 VMEM_CONDVAR_BROADCAST(vm);
1329 VMEM_UNLOCK(vm);
1330 }
1331
1332 while (!LIST_EMPTY(&tofree)) {
1333 t = LIST_FIRST(&tofree);
1334 LIST_REMOVE(t, bt_freelist);
1335 bt_free(vm, t);
1336 }
1337
1338 bt_freetrim(vm, BT_MAXFREE);
1339 }
1340
1341 /*
1342 * vmem_add:
1343 *
1344 * => caller must ensure appropriate spl,
1345 * if the arena can be accessed from interrupt context.
1346 */
1347
1348 int
1349 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1350 {
1351
1352 return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1353 }
1354
1355 /*
1356 * vmem_size: information about arenas size
1357 *
1358 * => return free/allocated size in arena
1359 */
1360 vmem_size_t
1361 vmem_size(vmem_t *vm, int typemask)
1362 {
1363
1364 switch (typemask) {
1365 case VMEM_ALLOC:
1366 return vm->vm_inuse;
1367 case VMEM_FREE:
1368 return vm->vm_size - vm->vm_inuse;
1369 case VMEM_FREE|VMEM_ALLOC:
1370 return vm->vm_size;
1371 default:
1372 panic("vmem_size");
1373 }
1374 }
1375
1376 /* ---- rehash */
1377
1378 #if defined(_KERNEL)
1379 static struct callout vmem_rehash_ch;
1380 static int vmem_rehash_interval;
1381 static struct workqueue *vmem_rehash_wq;
1382 static struct work vmem_rehash_wk;
1383
1384 static void
1385 vmem_rehash_all(struct work *wk, void *dummy)
1386 {
1387 vmem_t *vm;
1388
1389 KASSERT(wk == &vmem_rehash_wk);
1390 mutex_enter(&vmem_list_lock);
1391 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1392 size_t desired;
1393 size_t current;
1394
1395 if (!VMEM_TRYLOCK(vm)) {
1396 continue;
1397 }
1398 desired = vm->vm_nbusytag;
1399 current = vm->vm_hashsize;
1400 VMEM_UNLOCK(vm);
1401
1402 if (desired > VMEM_HASHSIZE_MAX) {
1403 desired = VMEM_HASHSIZE_MAX;
1404 } else if (desired < VMEM_HASHSIZE_MIN) {
1405 desired = VMEM_HASHSIZE_MIN;
1406 }
1407 if (desired > current * 2 || desired * 2 < current) {
1408 vmem_rehash(vm, desired, VM_NOSLEEP);
1409 }
1410 }
1411 mutex_exit(&vmem_list_lock);
1412
1413 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1414 }
1415
1416 static void
1417 vmem_rehash_all_kick(void *dummy)
1418 {
1419
1420 workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1421 }
1422
1423 void
1424 vmem_rehash_start(void)
1425 {
1426 int error;
1427
1428 error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1429 vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
1430 if (error) {
1431 panic("%s: workqueue_create %d\n", __func__, error);
1432 }
1433 callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
1434 callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1435
1436 vmem_rehash_interval = hz * 10;
1437 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1438 }
1439 #endif /* defined(_KERNEL) */
1440
1441 /* ---- debug */
1442
1443 #if defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY)
1444
1445 static void bt_dump(const bt_t *, void (*)(const char *, ...)
1446 __printflike(1, 2));
1447
1448 static const char *
1449 bt_type_string(int type)
1450 {
1451 static const char * const table[] = {
1452 [BT_TYPE_BUSY] = "busy",
1453 [BT_TYPE_FREE] = "free",
1454 [BT_TYPE_SPAN] = "span",
1455 [BT_TYPE_SPAN_STATIC] = "static span",
1456 };
1457
1458 if (type >= __arraycount(table)) {
1459 return "BOGUS";
1460 }
1461 return table[type];
1462 }
1463
1464 static void
1465 bt_dump(const bt_t *bt, void (*pr)(const char *, ...))
1466 {
1467
1468 (*pr)("\t%p: %" PRIu64 ", %" PRIu64 ", %d(%s)\n",
1469 bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1470 bt->bt_type, bt_type_string(bt->bt_type));
1471 }
1472
1473 static void
1474 vmem_dump(const vmem_t *vm , void (*pr)(const char *, ...) __printflike(1, 2))
1475 {
1476 const bt_t *bt;
1477 int i;
1478
1479 (*pr)("vmem %p '%s'\n", vm, vm->vm_name);
1480 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1481 bt_dump(bt, pr);
1482 }
1483
1484 for (i = 0; i < VMEM_MAXORDER; i++) {
1485 const struct vmem_freelist *fl = &vm->vm_freelist[i];
1486
1487 if (LIST_EMPTY(fl)) {
1488 continue;
1489 }
1490
1491 (*pr)("freelist[%d]\n", i);
1492 LIST_FOREACH(bt, fl, bt_freelist) {
1493 bt_dump(bt, pr);
1494 }
1495 }
1496 }
1497
1498 #endif /* defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) */
1499
1500 #if defined(DDB)
1501 static bt_t *
1502 vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
1503 {
1504 bt_t *bt;
1505
1506 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1507 if (BT_ISSPAN_P(bt)) {
1508 continue;
1509 }
1510 if (bt->bt_start <= addr && addr <= BT_END(bt)) {
1511 return bt;
1512 }
1513 }
1514
1515 return NULL;
1516 }
1517
1518 void
1519 vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1520 {
1521 vmem_t *vm;
1522
1523 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1524 bt_t *bt;
1525
1526 bt = vmem_whatis_lookup(vm, addr);
1527 if (bt == NULL) {
1528 continue;
1529 }
1530 (*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1531 (void *)addr, (void *)bt->bt_start,
1532 (size_t)(addr - bt->bt_start), vm->vm_name,
1533 (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1534 }
1535 }
1536
1537 void
1538 vmem_printall(const char *modif, void (*pr)(const char *, ...))
1539 {
1540 const vmem_t *vm;
1541
1542 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1543 vmem_dump(vm, pr);
1544 }
1545 }
1546
1547 void
1548 vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...))
1549 {
1550 const vmem_t *vm = (const void *)addr;
1551
1552 vmem_dump(vm, pr);
1553 }
1554 #endif /* defined(DDB) */
1555
1556 #if defined(_KERNEL)
1557 #define vmem_printf printf
1558 #else
1559 #include <stdio.h>
1560 #include <stdarg.h>
1561
1562 static void
1563 vmem_printf(const char *fmt, ...)
1564 {
1565 va_list ap;
1566 va_start(ap, fmt);
1567 vprintf(fmt, ap);
1568 va_end(ap);
1569 }
1570 #endif
1571
1572 #if defined(VMEM_SANITY)
1573
1574 static bool
1575 vmem_check_sanity(vmem_t *vm)
1576 {
1577 const bt_t *bt, *bt2;
1578
1579 KASSERT(vm != NULL);
1580
1581 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1582 if (bt->bt_start > BT_END(bt)) {
1583 printf("corrupted tag\n");
1584 bt_dump(bt, vmem_printf);
1585 return false;
1586 }
1587 }
1588 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1589 TAILQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
1590 if (bt == bt2) {
1591 continue;
1592 }
1593 if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
1594 continue;
1595 }
1596 if (bt->bt_start <= BT_END(bt2) &&
1597 bt2->bt_start <= BT_END(bt)) {
1598 printf("overwrapped tags\n");
1599 bt_dump(bt, vmem_printf);
1600 bt_dump(bt2, vmem_printf);
1601 return false;
1602 }
1603 }
1604 }
1605
1606 return true;
1607 }
1608
1609 static void
1610 vmem_check(vmem_t *vm)
1611 {
1612
1613 if (!vmem_check_sanity(vm)) {
1614 panic("insanity vmem %p", vm);
1615 }
1616 }
1617
1618 #endif /* defined(VMEM_SANITY) */
1619
1620 #if defined(UNITTEST)
1621 int
1622 main(void)
1623 {
1624 int rc;
1625 vmem_t *vm;
1626 vmem_addr_t p;
1627 struct reg {
1628 vmem_addr_t p;
1629 vmem_size_t sz;
1630 bool x;
1631 } *reg = NULL;
1632 int nreg = 0;
1633 int nalloc = 0;
1634 int nfree = 0;
1635 vmem_size_t total = 0;
1636 #if 1
1637 vm_flag_t strat = VM_INSTANTFIT;
1638 #else
1639 vm_flag_t strat = VM_BESTFIT;
1640 #endif
1641
1642 vm = vmem_create("test", 0, 0, 1, NULL, NULL, NULL, 0, VM_SLEEP,
1643 #ifdef _KERNEL
1644 IPL_NONE
1645 #else
1646 0
1647 #endif
1648 );
1649 if (vm == NULL) {
1650 printf("vmem_create\n");
1651 exit(EXIT_FAILURE);
1652 }
1653 vmem_dump(vm, vmem_printf);
1654
1655 rc = vmem_add(vm, 0, 50, VM_SLEEP);
1656 assert(rc == 0);
1657 rc = vmem_add(vm, 100, 200, VM_SLEEP);
1658 assert(rc == 0);
1659 rc = vmem_add(vm, 2000, 1, VM_SLEEP);
1660 assert(rc == 0);
1661 rc = vmem_add(vm, 40000, 65536, VM_SLEEP);
1662 assert(rc == 0);
1663 rc = vmem_add(vm, 10000, 10000, VM_SLEEP);
1664 assert(rc == 0);
1665 rc = vmem_add(vm, 500, 1000, VM_SLEEP);
1666 assert(rc == 0);
1667 rc = vmem_add(vm, 0xffffff00, 0x100, VM_SLEEP);
1668 assert(rc == 0);
1669 rc = vmem_xalloc(vm, 0x101, 0, 0, 0,
1670 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1671 assert(rc != 0);
1672 rc = vmem_xalloc(vm, 50, 0, 0, 0, 0, 49, strat|VM_SLEEP, &p);
1673 assert(rc == 0 && p == 0);
1674 vmem_xfree(vm, p, 50);
1675 rc = vmem_xalloc(vm, 25, 0, 0, 0, 0, 24, strat|VM_SLEEP, &p);
1676 assert(rc == 0 && p == 0);
1677 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1678 0xffffff01, 0xffffffff, strat|VM_SLEEP, &p);
1679 assert(rc != 0);
1680 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1681 0xffffff00, 0xfffffffe, strat|VM_SLEEP, &p);
1682 assert(rc != 0);
1683 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1684 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1685 assert(rc == 0);
1686 vmem_dump(vm, vmem_printf);
1687 for (;;) {
1688 struct reg *r;
1689 int t = rand() % 100;
1690
1691 if (t > 45) {
1692 /* alloc */
1693 vmem_size_t sz = rand() % 500 + 1;
1694 bool x;
1695 vmem_size_t align, phase, nocross;
1696 vmem_addr_t minaddr, maxaddr;
1697
1698 if (t > 70) {
1699 x = true;
1700 /* XXX */
1701 align = 1 << (rand() % 15);
1702 phase = rand() % 65536;
1703 nocross = 1 << (rand() % 15);
1704 if (align <= phase) {
1705 phase = 0;
1706 }
1707 if (VMEM_CROSS_P(phase, phase + sz - 1,
1708 nocross)) {
1709 nocross = 0;
1710 }
1711 do {
1712 minaddr = rand() % 50000;
1713 maxaddr = rand() % 70000;
1714 } while (minaddr > maxaddr);
1715 printf("=== xalloc %" PRIu64
1716 " align=%" PRIu64 ", phase=%" PRIu64
1717 ", nocross=%" PRIu64 ", min=%" PRIu64
1718 ", max=%" PRIu64 "\n",
1719 (uint64_t)sz,
1720 (uint64_t)align,
1721 (uint64_t)phase,
1722 (uint64_t)nocross,
1723 (uint64_t)minaddr,
1724 (uint64_t)maxaddr);
1725 rc = vmem_xalloc(vm, sz, align, phase, nocross,
1726 minaddr, maxaddr, strat|VM_SLEEP, &p);
1727 } else {
1728 x = false;
1729 printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1730 rc = vmem_alloc(vm, sz, strat|VM_SLEEP, &p);
1731 }
1732 printf("-> %" PRIu64 "\n", (uint64_t)p);
1733 vmem_dump(vm, vmem_printf);
1734 if (rc != 0) {
1735 if (x) {
1736 continue;
1737 }
1738 break;
1739 }
1740 nreg++;
1741 reg = realloc(reg, sizeof(*reg) * nreg);
1742 r = ®[nreg - 1];
1743 r->p = p;
1744 r->sz = sz;
1745 r->x = x;
1746 total += sz;
1747 nalloc++;
1748 } else if (nreg != 0) {
1749 /* free */
1750 r = ®[rand() % nreg];
1751 printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1752 (uint64_t)r->p, (uint64_t)r->sz);
1753 if (r->x) {
1754 vmem_xfree(vm, r->p, r->sz);
1755 } else {
1756 vmem_free(vm, r->p, r->sz);
1757 }
1758 total -= r->sz;
1759 vmem_dump(vm, vmem_printf);
1760 *r = reg[nreg - 1];
1761 nreg--;
1762 nfree++;
1763 }
1764 printf("total=%" PRIu64 "\n", (uint64_t)total);
1765 }
1766 fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1767 (uint64_t)total, nalloc, nfree);
1768 exit(EXIT_SUCCESS);
1769 }
1770 #endif /* defined(UNITTEST) */
1771