subr_vmem.c revision 1.92.6.2 1 /* $NetBSD: subr_vmem.c,v 1.92.6.2 2016/03/19 11:30:31 skrll Exp $ */
2
3 /*-
4 * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * reference:
31 * - Magazines and Vmem: Extending the Slab Allocator
32 * to Many CPUs and Arbitrary Resources
33 * http://www.usenix.org/event/usenix01/bonwick.html
34 *
35 * locking & the boundary tag pool:
36 * - A pool(9) is used for vmem boundary tags
37 * - During a pool get call the global vmem_btag_refill_lock is taken,
38 * to serialize access to the allocation reserve, but no other
39 * vmem arena locks.
40 * - During pool_put calls no vmem mutexes are locked.
41 * - pool_drain doesn't hold the pool's mutex while releasing memory to
42 * its backing therefore no interferance with any vmem mutexes.
43 * - The boundary tag pool is forced to put page headers into pool pages
44 * (PR_PHINPAGE) and not off page to avoid pool recursion.
45 * (due to sizeof(bt_t) it should be the case anyway)
46 */
47
48 #include <sys/cdefs.h>
49 __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.92.6.2 2016/03/19 11:30:31 skrll Exp $");
50
51
52 #if defined(_KERNEL) && defined(_KERNEL_OPT)
53 #include "opt_ddb.h"
54 #endif /* defined(_KERNEL) && defined(_KERNEL_OPT) */
55
56 #include <sys/param.h>
57 #include <sys/hash.h>
58 #include <sys/queue.h>
59 #include <sys/bitops.h>
60
61 #if defined(_KERNEL)
62 #include <sys/systm.h>
63 #include <sys/kernel.h> /* hz */
64 #include <sys/callout.h>
65 #include <sys/kmem.h>
66 #include <sys/pool.h>
67 #include <sys/vmem.h>
68 #include <sys/vmem_impl.h>
69 #include <sys/workqueue.h>
70 #include <sys/atomic.h>
71 #include <uvm/uvm.h>
72 #include <uvm/uvm_extern.h>
73 #include <uvm/uvm_km.h>
74 #include <uvm/uvm_page.h>
75 #include <uvm/uvm_pdaemon.h>
76 #else /* defined(_KERNEL) */
77 #include <stdio.h>
78 #include <errno.h>
79 #include <assert.h>
80 #include <stdlib.h>
81 #include <string.h>
82 #include "../sys/vmem.h"
83 #include "../sys/vmem_impl.h"
84 #endif /* defined(_KERNEL) */
85
86
87 #if defined(_KERNEL)
88 #include <sys/evcnt.h>
89 #define VMEM_EVCNT_DEFINE(name) \
90 struct evcnt vmem_evcnt_##name = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, \
91 "vmem", #name); \
92 EVCNT_ATTACH_STATIC(vmem_evcnt_##name);
93 #define VMEM_EVCNT_INCR(ev) vmem_evcnt_##ev.ev_count++
94 #define VMEM_EVCNT_DECR(ev) vmem_evcnt_##ev.ev_count--
95
96 VMEM_EVCNT_DEFINE(static_bt_count)
97 VMEM_EVCNT_DEFINE(static_bt_inuse)
98
99 #define VMEM_CONDVAR_INIT(vm, wchan) cv_init(&vm->vm_cv, wchan)
100 #define VMEM_CONDVAR_DESTROY(vm) cv_destroy(&vm->vm_cv)
101 #define VMEM_CONDVAR_WAIT(vm) cv_wait(&vm->vm_cv, &vm->vm_lock)
102 #define VMEM_CONDVAR_BROADCAST(vm) cv_broadcast(&vm->vm_cv)
103
104 #else /* defined(_KERNEL) */
105
106 #define VMEM_EVCNT_INCR(ev) /* nothing */
107 #define VMEM_EVCNT_DECR(ev) /* nothing */
108
109 #define VMEM_CONDVAR_INIT(vm, wchan) /* nothing */
110 #define VMEM_CONDVAR_DESTROY(vm) /* nothing */
111 #define VMEM_CONDVAR_WAIT(vm) /* nothing */
112 #define VMEM_CONDVAR_BROADCAST(vm) /* nothing */
113
114 #define UNITTEST
115 #define KASSERT(a) assert(a)
116 #define mutex_init(a, b, c) /* nothing */
117 #define mutex_destroy(a) /* nothing */
118 #define mutex_enter(a) /* nothing */
119 #define mutex_tryenter(a) true
120 #define mutex_exit(a) /* nothing */
121 #define mutex_owned(a) /* nothing */
122 #define ASSERT_SLEEPABLE() /* nothing */
123 #define panic(...) printf(__VA_ARGS__); abort()
124 #endif /* defined(_KERNEL) */
125
126 #if defined(VMEM_SANITY)
127 static void vmem_check(vmem_t *);
128 #else /* defined(VMEM_SANITY) */
129 #define vmem_check(vm) /* nothing */
130 #endif /* defined(VMEM_SANITY) */
131
132 #define VMEM_HASHSIZE_MIN 1 /* XXX */
133 #define VMEM_HASHSIZE_MAX 65536 /* XXX */
134 #define VMEM_HASHSIZE_INIT 1
135
136 #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
137
138 #if defined(_KERNEL)
139 static bool vmem_bootstrapped = false;
140 static kmutex_t vmem_list_lock;
141 static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
142 #endif /* defined(_KERNEL) */
143
144 /* ---- misc */
145
146 #define VMEM_LOCK(vm) mutex_enter(&vm->vm_lock)
147 #define VMEM_TRYLOCK(vm) mutex_tryenter(&vm->vm_lock)
148 #define VMEM_UNLOCK(vm) mutex_exit(&vm->vm_lock)
149 #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl)
150 #define VMEM_LOCK_DESTROY(vm) mutex_destroy(&vm->vm_lock)
151 #define VMEM_ASSERT_LOCKED(vm) KASSERT(mutex_owned(&vm->vm_lock))
152
153 #define VMEM_ALIGNUP(addr, align) \
154 (-(-(addr) & -(align)))
155
156 #define VMEM_CROSS_P(addr1, addr2, boundary) \
157 ((((addr1) ^ (addr2)) & -(boundary)) != 0)
158
159 #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
160 #define SIZE2ORDER(size) ((int)ilog2(size))
161
162 #if !defined(_KERNEL)
163 #define xmalloc(sz, flags) malloc(sz)
164 #define xfree(p, sz) free(p)
165 #define bt_alloc(vm, flags) malloc(sizeof(bt_t))
166 #define bt_free(vm, bt) free(bt)
167 #else /* defined(_KERNEL) */
168
169 #define xmalloc(sz, flags) \
170 kmem_alloc(sz, ((flags) & VM_SLEEP) ? KM_SLEEP : KM_NOSLEEP);
171 #define xfree(p, sz) kmem_free(p, sz);
172
173 /*
174 * BT_RESERVE calculation:
175 * we allocate memory for boundry tags with vmem, therefor we have
176 * to keep a reserve of bts used to allocated memory for bts.
177 * This reserve is 4 for each arena involved in allocating vmems memory.
178 * BT_MAXFREE: don't cache excessive counts of bts in arenas
179 */
180 #define STATIC_BT_COUNT 200
181 #define BT_MINRESERVE 4
182 #define BT_MAXFREE 64
183
184 static struct vmem_btag static_bts[STATIC_BT_COUNT];
185 static int static_bt_count = STATIC_BT_COUNT;
186
187 static struct vmem kmem_va_meta_arena_store;
188 vmem_t *kmem_va_meta_arena;
189 static struct vmem kmem_meta_arena_store;
190 vmem_t *kmem_meta_arena = NULL;
191
192 static kmutex_t vmem_btag_refill_lock;
193 static kmutex_t vmem_btag_lock;
194 static LIST_HEAD(, vmem_btag) vmem_btag_freelist;
195 static size_t vmem_btag_freelist_count = 0;
196 static struct pool vmem_btag_pool;
197
198 static void
199 vmem_kick_pdaemon(void)
200 {
201 #if defined(_KERNEL)
202 mutex_spin_enter(&uvm_fpageqlock);
203 uvm_kick_pdaemon();
204 mutex_spin_exit(&uvm_fpageqlock);
205 #endif
206 }
207
208 /* ---- boundary tag */
209
210 static int bt_refill(vmem_t *vm);
211
212 static void *
213 pool_page_alloc_vmem_meta(struct pool *pp, int flags)
214 {
215 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
216 vmem_addr_t va;
217 int ret;
218
219 ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
220 (vflags & ~VM_FITMASK) | VM_INSTANTFIT | VM_POPULATING, &va);
221
222 return ret ? NULL : (void *)va;
223 }
224
225 static void
226 pool_page_free_vmem_meta(struct pool *pp, void *v)
227 {
228
229 vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
230 }
231
232 /* allocator for vmem-pool metadata */
233 struct pool_allocator pool_allocator_vmem_meta = {
234 .pa_alloc = pool_page_alloc_vmem_meta,
235 .pa_free = pool_page_free_vmem_meta,
236 .pa_pagesz = 0
237 };
238
239 static int
240 bt_refill(vmem_t *vm)
241 {
242 bt_t *bt;
243
244 VMEM_LOCK(vm);
245 if (vm->vm_nfreetags > BT_MINRESERVE) {
246 VMEM_UNLOCK(vm);
247 return 0;
248 }
249
250 mutex_enter(&vmem_btag_lock);
251 while (!LIST_EMPTY(&vmem_btag_freelist) &&
252 vm->vm_nfreetags <= BT_MINRESERVE) {
253 bt = LIST_FIRST(&vmem_btag_freelist);
254 LIST_REMOVE(bt, bt_freelist);
255 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
256 vm->vm_nfreetags++;
257 vmem_btag_freelist_count--;
258 VMEM_EVCNT_INCR(static_bt_inuse);
259 }
260 mutex_exit(&vmem_btag_lock);
261
262 while (vm->vm_nfreetags <= BT_MINRESERVE) {
263 VMEM_UNLOCK(vm);
264 mutex_enter(&vmem_btag_refill_lock);
265 bt = pool_get(&vmem_btag_pool, PR_NOWAIT);
266 mutex_exit(&vmem_btag_refill_lock);
267 VMEM_LOCK(vm);
268 if (bt == NULL)
269 break;
270 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
271 vm->vm_nfreetags++;
272 }
273
274 if (vm->vm_nfreetags <= BT_MINRESERVE) {
275 VMEM_UNLOCK(vm);
276 return ENOMEM;
277 }
278
279 VMEM_UNLOCK(vm);
280
281 if (kmem_meta_arena != NULL) {
282 (void)bt_refill(kmem_arena);
283 (void)bt_refill(kmem_va_meta_arena);
284 (void)bt_refill(kmem_meta_arena);
285 }
286
287 return 0;
288 }
289
290 static bt_t *
291 bt_alloc(vmem_t *vm, vm_flag_t flags)
292 {
293 bt_t *bt;
294 VMEM_LOCK(vm);
295 while (vm->vm_nfreetags <= BT_MINRESERVE && (flags & VM_POPULATING) == 0) {
296 VMEM_UNLOCK(vm);
297 if (bt_refill(vm)) {
298 if ((flags & VM_NOSLEEP) != 0) {
299 return NULL;
300 }
301
302 /*
303 * It would be nice to wait for something specific here
304 * but there are multiple ways that a retry could
305 * succeed and we can't wait for multiple things
306 * simultaneously. So we'll just sleep for an arbitrary
307 * short period of time and retry regardless.
308 * This should be a very rare case.
309 */
310
311 vmem_kick_pdaemon();
312 kpause("btalloc", false, 1, NULL);
313 }
314 VMEM_LOCK(vm);
315 }
316 bt = LIST_FIRST(&vm->vm_freetags);
317 LIST_REMOVE(bt, bt_freelist);
318 vm->vm_nfreetags--;
319 VMEM_UNLOCK(vm);
320
321 return bt;
322 }
323
324 static void
325 bt_free(vmem_t *vm, bt_t *bt)
326 {
327
328 VMEM_LOCK(vm);
329 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
330 vm->vm_nfreetags++;
331 VMEM_UNLOCK(vm);
332 }
333
334 static void
335 bt_freetrim(vmem_t *vm, int freelimit)
336 {
337 bt_t *t;
338 LIST_HEAD(, vmem_btag) tofree;
339
340 LIST_INIT(&tofree);
341
342 VMEM_LOCK(vm);
343 while (vm->vm_nfreetags > freelimit) {
344 bt_t *bt = LIST_FIRST(&vm->vm_freetags);
345 LIST_REMOVE(bt, bt_freelist);
346 vm->vm_nfreetags--;
347 if (bt >= static_bts
348 && bt < &static_bts[STATIC_BT_COUNT]) {
349 mutex_enter(&vmem_btag_lock);
350 LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
351 vmem_btag_freelist_count++;
352 mutex_exit(&vmem_btag_lock);
353 VMEM_EVCNT_DECR(static_bt_inuse);
354 } else {
355 LIST_INSERT_HEAD(&tofree, bt, bt_freelist);
356 }
357 }
358
359 VMEM_UNLOCK(vm);
360 while (!LIST_EMPTY(&tofree)) {
361 t = LIST_FIRST(&tofree);
362 LIST_REMOVE(t, bt_freelist);
363 pool_put(&vmem_btag_pool, t);
364 }
365 }
366 #endif /* defined(_KERNEL) */
367
368 /*
369 * freelist[0] ... [1, 1]
370 * freelist[1] ... [2, 3]
371 * freelist[2] ... [4, 7]
372 * freelist[3] ... [8, 15]
373 * :
374 * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
375 * :
376 */
377
378 static struct vmem_freelist *
379 bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
380 {
381 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
382 const int idx = SIZE2ORDER(qsize);
383
384 KASSERT(size != 0 && qsize != 0);
385 KASSERT((size & vm->vm_quantum_mask) == 0);
386 KASSERT(idx >= 0);
387 KASSERT(idx < VMEM_MAXORDER);
388
389 return &vm->vm_freelist[idx];
390 }
391
392 /*
393 * bt_freehead_toalloc: return the freelist for the given size and allocation
394 * strategy.
395 *
396 * for VM_INSTANTFIT, return the list in which any blocks are large enough
397 * for the requested size. otherwise, return the list which can have blocks
398 * large enough for the requested size.
399 */
400
401 static struct vmem_freelist *
402 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
403 {
404 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
405 int idx = SIZE2ORDER(qsize);
406
407 KASSERT(size != 0 && qsize != 0);
408 KASSERT((size & vm->vm_quantum_mask) == 0);
409
410 if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
411 idx++;
412 /* check too large request? */
413 }
414 KASSERT(idx >= 0);
415 KASSERT(idx < VMEM_MAXORDER);
416
417 return &vm->vm_freelist[idx];
418 }
419
420 /* ---- boundary tag hash */
421
422 static struct vmem_hashlist *
423 bt_hashhead(vmem_t *vm, vmem_addr_t addr)
424 {
425 struct vmem_hashlist *list;
426 unsigned int hash;
427
428 hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
429 list = &vm->vm_hashlist[hash % vm->vm_hashsize];
430
431 return list;
432 }
433
434 static bt_t *
435 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
436 {
437 struct vmem_hashlist *list;
438 bt_t *bt;
439
440 list = bt_hashhead(vm, addr);
441 LIST_FOREACH(bt, list, bt_hashlist) {
442 if (bt->bt_start == addr) {
443 break;
444 }
445 }
446
447 return bt;
448 }
449
450 static void
451 bt_rembusy(vmem_t *vm, bt_t *bt)
452 {
453
454 KASSERT(vm->vm_nbusytag > 0);
455 vm->vm_inuse -= bt->bt_size;
456 vm->vm_nbusytag--;
457 LIST_REMOVE(bt, bt_hashlist);
458 }
459
460 static void
461 bt_insbusy(vmem_t *vm, bt_t *bt)
462 {
463 struct vmem_hashlist *list;
464
465 KASSERT(bt->bt_type == BT_TYPE_BUSY);
466
467 list = bt_hashhead(vm, bt->bt_start);
468 LIST_INSERT_HEAD(list, bt, bt_hashlist);
469 vm->vm_nbusytag++;
470 vm->vm_inuse += bt->bt_size;
471 }
472
473 /* ---- boundary tag list */
474
475 static void
476 bt_remseg(vmem_t *vm, bt_t *bt)
477 {
478
479 TAILQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
480 }
481
482 static void
483 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
484 {
485
486 TAILQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
487 }
488
489 static void
490 bt_insseg_tail(vmem_t *vm, bt_t *bt)
491 {
492
493 TAILQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
494 }
495
496 static void
497 bt_remfree(vmem_t *vm, bt_t *bt)
498 {
499
500 KASSERT(bt->bt_type == BT_TYPE_FREE);
501
502 LIST_REMOVE(bt, bt_freelist);
503 }
504
505 static void
506 bt_insfree(vmem_t *vm, bt_t *bt)
507 {
508 struct vmem_freelist *list;
509
510 list = bt_freehead_tofree(vm, bt->bt_size);
511 LIST_INSERT_HEAD(list, bt, bt_freelist);
512 }
513
514 /* ---- vmem internal functions */
515
516 #if defined(QCACHE)
517 static inline vm_flag_t
518 prf_to_vmf(int prflags)
519 {
520 vm_flag_t vmflags;
521
522 KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
523 if ((prflags & PR_WAITOK) != 0) {
524 vmflags = VM_SLEEP;
525 } else {
526 vmflags = VM_NOSLEEP;
527 }
528 return vmflags;
529 }
530
531 static inline int
532 vmf_to_prf(vm_flag_t vmflags)
533 {
534 int prflags;
535
536 if ((vmflags & VM_SLEEP) != 0) {
537 prflags = PR_WAITOK;
538 } else {
539 prflags = PR_NOWAIT;
540 }
541 return prflags;
542 }
543
544 static size_t
545 qc_poolpage_size(size_t qcache_max)
546 {
547 int i;
548
549 for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
550 /* nothing */
551 }
552 return ORDER2SIZE(i);
553 }
554
555 static void *
556 qc_poolpage_alloc(struct pool *pool, int prflags)
557 {
558 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
559 vmem_t *vm = qc->qc_vmem;
560 vmem_addr_t addr;
561
562 if (vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
563 prf_to_vmf(prflags) | VM_INSTANTFIT, &addr) != 0)
564 return NULL;
565 return (void *)addr;
566 }
567
568 static void
569 qc_poolpage_free(struct pool *pool, void *addr)
570 {
571 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
572 vmem_t *vm = qc->qc_vmem;
573
574 vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
575 }
576
577 static void
578 qc_init(vmem_t *vm, size_t qcache_max, int ipl)
579 {
580 qcache_t *prevqc;
581 struct pool_allocator *pa;
582 int qcache_idx_max;
583 int i;
584
585 KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
586 if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
587 qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
588 }
589 vm->vm_qcache_max = qcache_max;
590 pa = &vm->vm_qcache_allocator;
591 memset(pa, 0, sizeof(*pa));
592 pa->pa_alloc = qc_poolpage_alloc;
593 pa->pa_free = qc_poolpage_free;
594 pa->pa_pagesz = qc_poolpage_size(qcache_max);
595
596 qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
597 prevqc = NULL;
598 for (i = qcache_idx_max; i > 0; i--) {
599 qcache_t *qc = &vm->vm_qcache_store[i - 1];
600 size_t size = i << vm->vm_quantum_shift;
601 pool_cache_t pc;
602
603 qc->qc_vmem = vm;
604 snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
605 vm->vm_name, size);
606
607 pc = pool_cache_init(size,
608 ORDER2SIZE(vm->vm_quantum_shift), 0,
609 PR_NOALIGN | PR_NOTOUCH | PR_RECURSIVE /* XXX */,
610 qc->qc_name, pa, ipl, NULL, NULL, NULL);
611
612 KASSERT(pc);
613
614 qc->qc_cache = pc;
615 KASSERT(qc->qc_cache != NULL); /* XXX */
616 if (prevqc != NULL &&
617 qc->qc_cache->pc_pool.pr_itemsperpage ==
618 prevqc->qc_cache->pc_pool.pr_itemsperpage) {
619 pool_cache_destroy(qc->qc_cache);
620 vm->vm_qcache[i - 1] = prevqc;
621 continue;
622 }
623 qc->qc_cache->pc_pool.pr_qcache = qc;
624 vm->vm_qcache[i - 1] = qc;
625 prevqc = qc;
626 }
627 }
628
629 static void
630 qc_destroy(vmem_t *vm)
631 {
632 const qcache_t *prevqc;
633 int i;
634 int qcache_idx_max;
635
636 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
637 prevqc = NULL;
638 for (i = 0; i < qcache_idx_max; i++) {
639 qcache_t *qc = vm->vm_qcache[i];
640
641 if (prevqc == qc) {
642 continue;
643 }
644 pool_cache_destroy(qc->qc_cache);
645 prevqc = qc;
646 }
647 }
648 #endif
649
650 #if defined(_KERNEL)
651 static void
652 vmem_bootstrap(void)
653 {
654
655 mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_VM);
656 mutex_init(&vmem_btag_lock, MUTEX_DEFAULT, IPL_VM);
657 mutex_init(&vmem_btag_refill_lock, MUTEX_DEFAULT, IPL_VM);
658
659 while (static_bt_count-- > 0) {
660 bt_t *bt = &static_bts[static_bt_count];
661 LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
662 VMEM_EVCNT_INCR(static_bt_count);
663 vmem_btag_freelist_count++;
664 }
665 vmem_bootstrapped = TRUE;
666 }
667
668 void
669 vmem_subsystem_init(vmem_t *vm)
670 {
671
672 kmem_va_meta_arena = vmem_init(&kmem_va_meta_arena_store, "vmem-va",
673 0, 0, PAGE_SIZE, vmem_alloc, vmem_free, vm,
674 0, VM_NOSLEEP | VM_BOOTSTRAP | VM_LARGEIMPORT,
675 IPL_VM);
676
677 kmem_meta_arena = vmem_init(&kmem_meta_arena_store, "vmem-meta",
678 0, 0, PAGE_SIZE,
679 uvm_km_kmem_alloc, uvm_km_kmem_free, kmem_va_meta_arena,
680 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
681
682 pool_init(&vmem_btag_pool, sizeof(bt_t), 0, 0, PR_PHINPAGE,
683 "vmembt", &pool_allocator_vmem_meta, IPL_VM);
684 }
685 #endif /* defined(_KERNEL) */
686
687 static int
688 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
689 int spanbttype)
690 {
691 bt_t *btspan;
692 bt_t *btfree;
693
694 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
695 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
696 KASSERT(spanbttype == BT_TYPE_SPAN ||
697 spanbttype == BT_TYPE_SPAN_STATIC);
698
699 btspan = bt_alloc(vm, flags);
700 if (btspan == NULL) {
701 return ENOMEM;
702 }
703 btfree = bt_alloc(vm, flags);
704 if (btfree == NULL) {
705 bt_free(vm, btspan);
706 return ENOMEM;
707 }
708
709 btspan->bt_type = spanbttype;
710 btspan->bt_start = addr;
711 btspan->bt_size = size;
712
713 btfree->bt_type = BT_TYPE_FREE;
714 btfree->bt_start = addr;
715 btfree->bt_size = size;
716
717 VMEM_LOCK(vm);
718 bt_insseg_tail(vm, btspan);
719 bt_insseg(vm, btfree, btspan);
720 bt_insfree(vm, btfree);
721 vm->vm_size += size;
722 VMEM_UNLOCK(vm);
723
724 return 0;
725 }
726
727 static void
728 vmem_destroy1(vmem_t *vm)
729 {
730
731 #if defined(QCACHE)
732 qc_destroy(vm);
733 #endif /* defined(QCACHE) */
734 if (vm->vm_hashlist != NULL) {
735 int i;
736
737 for (i = 0; i < vm->vm_hashsize; i++) {
738 bt_t *bt;
739
740 while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
741 KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
742 bt_free(vm, bt);
743 }
744 }
745 if (vm->vm_hashlist != &vm->vm_hash0) {
746 xfree(vm->vm_hashlist,
747 sizeof(struct vmem_hashlist *) * vm->vm_hashsize);
748 }
749 }
750
751 bt_freetrim(vm, 0);
752
753 VMEM_CONDVAR_DESTROY(vm);
754 VMEM_LOCK_DESTROY(vm);
755 xfree(vm, sizeof(*vm));
756 }
757
758 static int
759 vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
760 {
761 vmem_addr_t addr;
762 int rc;
763
764 if (vm->vm_importfn == NULL) {
765 return EINVAL;
766 }
767
768 if (vm->vm_flags & VM_LARGEIMPORT) {
769 size *= 16;
770 }
771
772 if (vm->vm_flags & VM_XIMPORT) {
773 rc = ((vmem_ximport_t *)vm->vm_importfn)(vm->vm_arg, size,
774 &size, flags, &addr);
775 } else {
776 rc = (vm->vm_importfn)(vm->vm_arg, size, flags, &addr);
777 }
778 if (rc) {
779 return ENOMEM;
780 }
781
782 if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) != 0) {
783 (*vm->vm_releasefn)(vm->vm_arg, addr, size);
784 return ENOMEM;
785 }
786
787 return 0;
788 }
789
790 static int
791 vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
792 {
793 bt_t *bt;
794 int i;
795 struct vmem_hashlist *newhashlist;
796 struct vmem_hashlist *oldhashlist;
797 size_t oldhashsize;
798
799 KASSERT(newhashsize > 0);
800
801 newhashlist =
802 xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
803 if (newhashlist == NULL) {
804 return ENOMEM;
805 }
806 for (i = 0; i < newhashsize; i++) {
807 LIST_INIT(&newhashlist[i]);
808 }
809
810 if (!VMEM_TRYLOCK(vm)) {
811 xfree(newhashlist,
812 sizeof(struct vmem_hashlist *) * newhashsize);
813 return EBUSY;
814 }
815 oldhashlist = vm->vm_hashlist;
816 oldhashsize = vm->vm_hashsize;
817 vm->vm_hashlist = newhashlist;
818 vm->vm_hashsize = newhashsize;
819 if (oldhashlist == NULL) {
820 VMEM_UNLOCK(vm);
821 return 0;
822 }
823 for (i = 0; i < oldhashsize; i++) {
824 while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
825 bt_rembusy(vm, bt); /* XXX */
826 bt_insbusy(vm, bt);
827 }
828 }
829 VMEM_UNLOCK(vm);
830
831 if (oldhashlist != &vm->vm_hash0) {
832 xfree(oldhashlist,
833 sizeof(struct vmem_hashlist *) * oldhashsize);
834 }
835
836 return 0;
837 }
838
839 /*
840 * vmem_fit: check if a bt can satisfy the given restrictions.
841 *
842 * it's a caller's responsibility to ensure the region is big enough
843 * before calling us.
844 */
845
846 static int
847 vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align,
848 vmem_size_t phase, vmem_size_t nocross,
849 vmem_addr_t minaddr, vmem_addr_t maxaddr, vmem_addr_t *addrp)
850 {
851 vmem_addr_t start;
852 vmem_addr_t end;
853
854 KASSERT(size > 0);
855 KASSERT(bt->bt_size >= size); /* caller's responsibility */
856
857 /*
858 * XXX assumption: vmem_addr_t and vmem_size_t are
859 * unsigned integer of the same size.
860 */
861
862 start = bt->bt_start;
863 if (start < minaddr) {
864 start = minaddr;
865 }
866 end = BT_END(bt);
867 if (end > maxaddr) {
868 end = maxaddr;
869 }
870 if (start > end) {
871 return ENOMEM;
872 }
873
874 start = VMEM_ALIGNUP(start - phase, align) + phase;
875 if (start < bt->bt_start) {
876 start += align;
877 }
878 if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
879 KASSERT(align < nocross);
880 start = VMEM_ALIGNUP(start - phase, nocross) + phase;
881 }
882 if (start <= end && end - start >= size - 1) {
883 KASSERT((start & (align - 1)) == phase);
884 KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
885 KASSERT(minaddr <= start);
886 KASSERT(maxaddr == 0 || start + size - 1 <= maxaddr);
887 KASSERT(bt->bt_start <= start);
888 KASSERT(BT_END(bt) - start >= size - 1);
889 *addrp = start;
890 return 0;
891 }
892 return ENOMEM;
893 }
894
895 /* ---- vmem API */
896
897 /*
898 * vmem_create_internal: creates a vmem arena.
899 */
900
901 vmem_t *
902 vmem_init(vmem_t *vm, const char *name,
903 vmem_addr_t base, vmem_size_t size, vmem_size_t quantum,
904 vmem_import_t *importfn, vmem_release_t *releasefn,
905 vmem_t *arg, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
906 {
907 int i;
908
909 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
910 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
911 KASSERT(quantum > 0);
912
913 #if defined(_KERNEL)
914 /* XXX: SMP, we get called early... */
915 if (!vmem_bootstrapped) {
916 vmem_bootstrap();
917 }
918 #endif /* defined(_KERNEL) */
919
920 if (vm == NULL) {
921 vm = xmalloc(sizeof(*vm), flags);
922 }
923 if (vm == NULL) {
924 return NULL;
925 }
926
927 VMEM_CONDVAR_INIT(vm, "vmem");
928 VMEM_LOCK_INIT(vm, ipl);
929 vm->vm_flags = flags;
930 vm->vm_nfreetags = 0;
931 LIST_INIT(&vm->vm_freetags);
932 strlcpy(vm->vm_name, name, sizeof(vm->vm_name));
933 vm->vm_quantum_mask = quantum - 1;
934 vm->vm_quantum_shift = SIZE2ORDER(quantum);
935 KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
936 vm->vm_importfn = importfn;
937 vm->vm_releasefn = releasefn;
938 vm->vm_arg = arg;
939 vm->vm_nbusytag = 0;
940 vm->vm_size = 0;
941 vm->vm_inuse = 0;
942 #if defined(QCACHE)
943 qc_init(vm, qcache_max, ipl);
944 #endif /* defined(QCACHE) */
945
946 TAILQ_INIT(&vm->vm_seglist);
947 for (i = 0; i < VMEM_MAXORDER; i++) {
948 LIST_INIT(&vm->vm_freelist[i]);
949 }
950 memset(&vm->vm_hash0, 0, sizeof(struct vmem_hashlist));
951 vm->vm_hashsize = 1;
952 vm->vm_hashlist = &vm->vm_hash0;
953
954 if (size != 0) {
955 if (vmem_add(vm, base, size, flags) != 0) {
956 vmem_destroy1(vm);
957 return NULL;
958 }
959 }
960
961 #if defined(_KERNEL)
962 if (flags & VM_BOOTSTRAP) {
963 bt_refill(vm);
964 }
965
966 mutex_enter(&vmem_list_lock);
967 LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
968 mutex_exit(&vmem_list_lock);
969 #endif /* defined(_KERNEL) */
970
971 return vm;
972 }
973
974
975
976 /*
977 * vmem_create: create an arena.
978 *
979 * => must not be called from interrupt context.
980 */
981
982 vmem_t *
983 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
984 vmem_size_t quantum, vmem_import_t *importfn, vmem_release_t *releasefn,
985 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
986 {
987
988 KASSERT((flags & (VM_XIMPORT)) == 0);
989
990 return vmem_init(NULL, name, base, size, quantum,
991 importfn, releasefn, source, qcache_max, flags, ipl);
992 }
993
994 /*
995 * vmem_xcreate: create an arena takes alternative import func.
996 *
997 * => must not be called from interrupt context.
998 */
999
1000 vmem_t *
1001 vmem_xcreate(const char *name, vmem_addr_t base, vmem_size_t size,
1002 vmem_size_t quantum, vmem_ximport_t *importfn, vmem_release_t *releasefn,
1003 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
1004 {
1005
1006 KASSERT((flags & (VM_XIMPORT)) == 0);
1007
1008 return vmem_init(NULL, name, base, size, quantum,
1009 (vmem_import_t *)importfn, releasefn, source,
1010 qcache_max, flags | VM_XIMPORT, ipl);
1011 }
1012
1013 void
1014 vmem_destroy(vmem_t *vm)
1015 {
1016
1017 #if defined(_KERNEL)
1018 mutex_enter(&vmem_list_lock);
1019 LIST_REMOVE(vm, vm_alllist);
1020 mutex_exit(&vmem_list_lock);
1021 #endif /* defined(_KERNEL) */
1022
1023 vmem_destroy1(vm);
1024 }
1025
1026 vmem_size_t
1027 vmem_roundup_size(vmem_t *vm, vmem_size_t size)
1028 {
1029
1030 return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
1031 }
1032
1033 /*
1034 * vmem_alloc: allocate resource from the arena.
1035 */
1036
1037 int
1038 vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags, vmem_addr_t *addrp)
1039 {
1040 const vm_flag_t strat __diagused = flags & VM_FITMASK;
1041
1042 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1043 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1044
1045 KASSERT(size > 0);
1046 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1047 if ((flags & VM_SLEEP) != 0) {
1048 ASSERT_SLEEPABLE();
1049 }
1050
1051 #if defined(QCACHE)
1052 if (size <= vm->vm_qcache_max) {
1053 void *p;
1054 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1055 qcache_t *qc = vm->vm_qcache[qidx - 1];
1056
1057 p = pool_cache_get(qc->qc_cache, vmf_to_prf(flags));
1058 if (addrp != NULL)
1059 *addrp = (vmem_addr_t)p;
1060 return (p == NULL) ? ENOMEM : 0;
1061 }
1062 #endif /* defined(QCACHE) */
1063
1064 return vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
1065 flags, addrp);
1066 }
1067
1068 int
1069 vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align,
1070 const vmem_size_t phase, const vmem_size_t nocross,
1071 const vmem_addr_t minaddr, const vmem_addr_t maxaddr, const vm_flag_t flags,
1072 vmem_addr_t *addrp)
1073 {
1074 struct vmem_freelist *list;
1075 struct vmem_freelist *first;
1076 struct vmem_freelist *end;
1077 bt_t *bt;
1078 bt_t *btnew;
1079 bt_t *btnew2;
1080 const vmem_size_t size = vmem_roundup_size(vm, size0);
1081 vm_flag_t strat = flags & VM_FITMASK;
1082 vmem_addr_t start;
1083 int rc;
1084
1085 KASSERT(size0 > 0);
1086 KASSERT(size > 0);
1087 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1088 if ((flags & VM_SLEEP) != 0) {
1089 ASSERT_SLEEPABLE();
1090 }
1091 KASSERT((align & vm->vm_quantum_mask) == 0);
1092 KASSERT((align & (align - 1)) == 0);
1093 KASSERT((phase & vm->vm_quantum_mask) == 0);
1094 KASSERT((nocross & vm->vm_quantum_mask) == 0);
1095 KASSERT((nocross & (nocross - 1)) == 0);
1096 KASSERT((align == 0 && phase == 0) || phase < align);
1097 KASSERT(nocross == 0 || nocross >= size);
1098 KASSERT(minaddr <= maxaddr);
1099 KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
1100
1101 if (align == 0) {
1102 align = vm->vm_quantum_mask + 1;
1103 }
1104
1105 /*
1106 * allocate boundary tags before acquiring the vmem lock.
1107 */
1108 btnew = bt_alloc(vm, flags);
1109 if (btnew == NULL) {
1110 return ENOMEM;
1111 }
1112 btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
1113 if (btnew2 == NULL) {
1114 bt_free(vm, btnew);
1115 return ENOMEM;
1116 }
1117
1118 /*
1119 * choose a free block from which we allocate.
1120 */
1121 retry_strat:
1122 first = bt_freehead_toalloc(vm, size, strat);
1123 end = &vm->vm_freelist[VMEM_MAXORDER];
1124 retry:
1125 bt = NULL;
1126 VMEM_LOCK(vm);
1127 vmem_check(vm);
1128 if (strat == VM_INSTANTFIT) {
1129 /*
1130 * just choose the first block which satisfies our restrictions.
1131 *
1132 * note that we don't need to check the size of the blocks
1133 * because any blocks found on these list should be larger than
1134 * the given size.
1135 */
1136 for (list = first; list < end; list++) {
1137 bt = LIST_FIRST(list);
1138 if (bt != NULL) {
1139 rc = vmem_fit(bt, size, align, phase,
1140 nocross, minaddr, maxaddr, &start);
1141 if (rc == 0) {
1142 goto gotit;
1143 }
1144 /*
1145 * don't bother to follow the bt_freelist link
1146 * here. the list can be very long and we are
1147 * told to run fast. blocks from the later free
1148 * lists are larger and have better chances to
1149 * satisfy our restrictions.
1150 */
1151 }
1152 }
1153 } else { /* VM_BESTFIT */
1154 /*
1155 * we assume that, for space efficiency, it's better to
1156 * allocate from a smaller block. thus we will start searching
1157 * from the lower-order list than VM_INSTANTFIT.
1158 * however, don't bother to find the smallest block in a free
1159 * list because the list can be very long. we can revisit it
1160 * if/when it turns out to be a problem.
1161 *
1162 * note that the 'first' list can contain blocks smaller than
1163 * the requested size. thus we need to check bt_size.
1164 */
1165 for (list = first; list < end; list++) {
1166 LIST_FOREACH(bt, list, bt_freelist) {
1167 if (bt->bt_size >= size) {
1168 rc = vmem_fit(bt, size, align, phase,
1169 nocross, minaddr, maxaddr, &start);
1170 if (rc == 0) {
1171 goto gotit;
1172 }
1173 }
1174 }
1175 }
1176 }
1177 VMEM_UNLOCK(vm);
1178 #if 1
1179 if (strat == VM_INSTANTFIT) {
1180 strat = VM_BESTFIT;
1181 goto retry_strat;
1182 }
1183 #endif
1184 if (align != vm->vm_quantum_mask + 1 || phase != 0 || nocross != 0) {
1185
1186 /*
1187 * XXX should try to import a region large enough to
1188 * satisfy restrictions?
1189 */
1190
1191 goto fail;
1192 }
1193 /* XXX eeek, minaddr & maxaddr not respected */
1194 if (vmem_import(vm, size, flags) == 0) {
1195 goto retry;
1196 }
1197 /* XXX */
1198
1199 if ((flags & VM_SLEEP) != 0) {
1200 vmem_kick_pdaemon();
1201 VMEM_LOCK(vm);
1202 VMEM_CONDVAR_WAIT(vm);
1203 VMEM_UNLOCK(vm);
1204 goto retry;
1205 }
1206 fail:
1207 bt_free(vm, btnew);
1208 bt_free(vm, btnew2);
1209 return ENOMEM;
1210
1211 gotit:
1212 KASSERT(bt->bt_type == BT_TYPE_FREE);
1213 KASSERT(bt->bt_size >= size);
1214 bt_remfree(vm, bt);
1215 vmem_check(vm);
1216 if (bt->bt_start != start) {
1217 btnew2->bt_type = BT_TYPE_FREE;
1218 btnew2->bt_start = bt->bt_start;
1219 btnew2->bt_size = start - bt->bt_start;
1220 bt->bt_start = start;
1221 bt->bt_size -= btnew2->bt_size;
1222 bt_insfree(vm, btnew2);
1223 bt_insseg(vm, btnew2, TAILQ_PREV(bt, vmem_seglist, bt_seglist));
1224 btnew2 = NULL;
1225 vmem_check(vm);
1226 }
1227 KASSERT(bt->bt_start == start);
1228 if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
1229 /* split */
1230 btnew->bt_type = BT_TYPE_BUSY;
1231 btnew->bt_start = bt->bt_start;
1232 btnew->bt_size = size;
1233 bt->bt_start = bt->bt_start + size;
1234 bt->bt_size -= size;
1235 bt_insfree(vm, bt);
1236 bt_insseg(vm, btnew, TAILQ_PREV(bt, vmem_seglist, bt_seglist));
1237 bt_insbusy(vm, btnew);
1238 vmem_check(vm);
1239 VMEM_UNLOCK(vm);
1240 } else {
1241 bt->bt_type = BT_TYPE_BUSY;
1242 bt_insbusy(vm, bt);
1243 vmem_check(vm);
1244 VMEM_UNLOCK(vm);
1245 bt_free(vm, btnew);
1246 btnew = bt;
1247 }
1248 if (btnew2 != NULL) {
1249 bt_free(vm, btnew2);
1250 }
1251 KASSERT(btnew->bt_size >= size);
1252 btnew->bt_type = BT_TYPE_BUSY;
1253
1254 if (addrp != NULL)
1255 *addrp = btnew->bt_start;
1256 return 0;
1257 }
1258
1259 /*
1260 * vmem_free: free the resource to the arena.
1261 */
1262
1263 void
1264 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1265 {
1266
1267 KASSERT(size > 0);
1268
1269 #if defined(QCACHE)
1270 if (size <= vm->vm_qcache_max) {
1271 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1272 qcache_t *qc = vm->vm_qcache[qidx - 1];
1273
1274 pool_cache_put(qc->qc_cache, (void *)addr);
1275 return;
1276 }
1277 #endif /* defined(QCACHE) */
1278
1279 vmem_xfree(vm, addr, size);
1280 }
1281
1282 void
1283 vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1284 {
1285 bt_t *bt;
1286 bt_t *t;
1287 LIST_HEAD(, vmem_btag) tofree;
1288
1289 LIST_INIT(&tofree);
1290
1291 KASSERT(size > 0);
1292
1293 VMEM_LOCK(vm);
1294
1295 bt = bt_lookupbusy(vm, addr);
1296 KASSERT(bt != NULL);
1297 KASSERT(bt->bt_start == addr);
1298 KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1299 bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1300 KASSERT(bt->bt_type == BT_TYPE_BUSY);
1301 bt_rembusy(vm, bt);
1302 bt->bt_type = BT_TYPE_FREE;
1303
1304 /* coalesce */
1305 t = TAILQ_NEXT(bt, bt_seglist);
1306 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1307 KASSERT(BT_END(bt) < t->bt_start); /* YYY */
1308 bt_remfree(vm, t);
1309 bt_remseg(vm, t);
1310 bt->bt_size += t->bt_size;
1311 LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1312 }
1313 t = TAILQ_PREV(bt, vmem_seglist, bt_seglist);
1314 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1315 KASSERT(BT_END(t) < bt->bt_start); /* YYY */
1316 bt_remfree(vm, t);
1317 bt_remseg(vm, t);
1318 bt->bt_size += t->bt_size;
1319 bt->bt_start = t->bt_start;
1320 LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1321 }
1322
1323 t = TAILQ_PREV(bt, vmem_seglist, bt_seglist);
1324 KASSERT(t != NULL);
1325 KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1326 if (vm->vm_releasefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1327 t->bt_size == bt->bt_size) {
1328 vmem_addr_t spanaddr;
1329 vmem_size_t spansize;
1330
1331 KASSERT(t->bt_start == bt->bt_start);
1332 spanaddr = bt->bt_start;
1333 spansize = bt->bt_size;
1334 bt_remseg(vm, bt);
1335 LIST_INSERT_HEAD(&tofree, bt, bt_freelist);
1336 bt_remseg(vm, t);
1337 LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1338 vm->vm_size -= spansize;
1339 VMEM_CONDVAR_BROADCAST(vm);
1340 VMEM_UNLOCK(vm);
1341 (*vm->vm_releasefn)(vm->vm_arg, spanaddr, spansize);
1342 } else {
1343 bt_insfree(vm, bt);
1344 VMEM_CONDVAR_BROADCAST(vm);
1345 VMEM_UNLOCK(vm);
1346 }
1347
1348 while (!LIST_EMPTY(&tofree)) {
1349 t = LIST_FIRST(&tofree);
1350 LIST_REMOVE(t, bt_freelist);
1351 bt_free(vm, t);
1352 }
1353
1354 bt_freetrim(vm, BT_MAXFREE);
1355 }
1356
1357 /*
1358 * vmem_add:
1359 *
1360 * => caller must ensure appropriate spl,
1361 * if the arena can be accessed from interrupt context.
1362 */
1363
1364 int
1365 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1366 {
1367
1368 return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1369 }
1370
1371 /*
1372 * vmem_size: information about arenas size
1373 *
1374 * => return free/allocated size in arena
1375 */
1376 vmem_size_t
1377 vmem_size(vmem_t *vm, int typemask)
1378 {
1379
1380 switch (typemask) {
1381 case VMEM_ALLOC:
1382 return vm->vm_inuse;
1383 case VMEM_FREE:
1384 return vm->vm_size - vm->vm_inuse;
1385 case VMEM_FREE|VMEM_ALLOC:
1386 return vm->vm_size;
1387 default:
1388 panic("vmem_size");
1389 }
1390 }
1391
1392 /* ---- rehash */
1393
1394 #if defined(_KERNEL)
1395 static struct callout vmem_rehash_ch;
1396 static int vmem_rehash_interval;
1397 static struct workqueue *vmem_rehash_wq;
1398 static struct work vmem_rehash_wk;
1399
1400 static void
1401 vmem_rehash_all(struct work *wk, void *dummy)
1402 {
1403 vmem_t *vm;
1404
1405 KASSERT(wk == &vmem_rehash_wk);
1406 mutex_enter(&vmem_list_lock);
1407 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1408 size_t desired;
1409 size_t current;
1410
1411 if (!VMEM_TRYLOCK(vm)) {
1412 continue;
1413 }
1414 desired = vm->vm_nbusytag;
1415 current = vm->vm_hashsize;
1416 VMEM_UNLOCK(vm);
1417
1418 if (desired > VMEM_HASHSIZE_MAX) {
1419 desired = VMEM_HASHSIZE_MAX;
1420 } else if (desired < VMEM_HASHSIZE_MIN) {
1421 desired = VMEM_HASHSIZE_MIN;
1422 }
1423 if (desired > current * 2 || desired * 2 < current) {
1424 vmem_rehash(vm, desired, VM_NOSLEEP);
1425 }
1426 }
1427 mutex_exit(&vmem_list_lock);
1428
1429 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1430 }
1431
1432 static void
1433 vmem_rehash_all_kick(void *dummy)
1434 {
1435
1436 workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1437 }
1438
1439 void
1440 vmem_rehash_start(void)
1441 {
1442 int error;
1443
1444 error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1445 vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
1446 if (error) {
1447 panic("%s: workqueue_create %d\n", __func__, error);
1448 }
1449 callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
1450 callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1451
1452 vmem_rehash_interval = hz * 10;
1453 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1454 }
1455 #endif /* defined(_KERNEL) */
1456
1457 /* ---- debug */
1458
1459 #if defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY)
1460
1461 static void bt_dump(const bt_t *, void (*)(const char *, ...)
1462 __printflike(1, 2));
1463
1464 static const char *
1465 bt_type_string(int type)
1466 {
1467 static const char * const table[] = {
1468 [BT_TYPE_BUSY] = "busy",
1469 [BT_TYPE_FREE] = "free",
1470 [BT_TYPE_SPAN] = "span",
1471 [BT_TYPE_SPAN_STATIC] = "static span",
1472 };
1473
1474 if (type >= __arraycount(table)) {
1475 return "BOGUS";
1476 }
1477 return table[type];
1478 }
1479
1480 static void
1481 bt_dump(const bt_t *bt, void (*pr)(const char *, ...))
1482 {
1483
1484 (*pr)("\t%p: %" PRIu64 ", %" PRIu64 ", %d(%s)\n",
1485 bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1486 bt->bt_type, bt_type_string(bt->bt_type));
1487 }
1488
1489 static void
1490 vmem_dump(const vmem_t *vm , void (*pr)(const char *, ...) __printflike(1, 2))
1491 {
1492 const bt_t *bt;
1493 int i;
1494
1495 (*pr)("vmem %p '%s'\n", vm, vm->vm_name);
1496 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1497 bt_dump(bt, pr);
1498 }
1499
1500 for (i = 0; i < VMEM_MAXORDER; i++) {
1501 const struct vmem_freelist *fl = &vm->vm_freelist[i];
1502
1503 if (LIST_EMPTY(fl)) {
1504 continue;
1505 }
1506
1507 (*pr)("freelist[%d]\n", i);
1508 LIST_FOREACH(bt, fl, bt_freelist) {
1509 bt_dump(bt, pr);
1510 }
1511 }
1512 }
1513
1514 #endif /* defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) */
1515
1516 #if defined(DDB)
1517 static bt_t *
1518 vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
1519 {
1520 bt_t *bt;
1521
1522 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1523 if (BT_ISSPAN_P(bt)) {
1524 continue;
1525 }
1526 if (bt->bt_start <= addr && addr <= BT_END(bt)) {
1527 return bt;
1528 }
1529 }
1530
1531 return NULL;
1532 }
1533
1534 void
1535 vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1536 {
1537 vmem_t *vm;
1538
1539 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1540 bt_t *bt;
1541
1542 bt = vmem_whatis_lookup(vm, addr);
1543 if (bt == NULL) {
1544 continue;
1545 }
1546 (*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1547 (void *)addr, (void *)bt->bt_start,
1548 (size_t)(addr - bt->bt_start), vm->vm_name,
1549 (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1550 }
1551 }
1552
1553 void
1554 vmem_printall(const char *modif, void (*pr)(const char *, ...))
1555 {
1556 const vmem_t *vm;
1557
1558 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1559 vmem_dump(vm, pr);
1560 }
1561 }
1562
1563 void
1564 vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...))
1565 {
1566 const vmem_t *vm = (const void *)addr;
1567
1568 vmem_dump(vm, pr);
1569 }
1570 #endif /* defined(DDB) */
1571
1572 #if defined(_KERNEL)
1573 #define vmem_printf printf
1574 #else
1575 #include <stdio.h>
1576 #include <stdarg.h>
1577
1578 static void
1579 vmem_printf(const char *fmt, ...)
1580 {
1581 va_list ap;
1582 va_start(ap, fmt);
1583 vprintf(fmt, ap);
1584 va_end(ap);
1585 }
1586 #endif
1587
1588 #if defined(VMEM_SANITY)
1589
1590 static bool
1591 vmem_check_sanity(vmem_t *vm)
1592 {
1593 const bt_t *bt, *bt2;
1594
1595 KASSERT(vm != NULL);
1596
1597 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1598 if (bt->bt_start > BT_END(bt)) {
1599 printf("corrupted tag\n");
1600 bt_dump(bt, vmem_printf);
1601 return false;
1602 }
1603 }
1604 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1605 TAILQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
1606 if (bt == bt2) {
1607 continue;
1608 }
1609 if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
1610 continue;
1611 }
1612 if (bt->bt_start <= BT_END(bt2) &&
1613 bt2->bt_start <= BT_END(bt)) {
1614 printf("overwrapped tags\n");
1615 bt_dump(bt, vmem_printf);
1616 bt_dump(bt2, vmem_printf);
1617 return false;
1618 }
1619 }
1620 }
1621
1622 return true;
1623 }
1624
1625 static void
1626 vmem_check(vmem_t *vm)
1627 {
1628
1629 if (!vmem_check_sanity(vm)) {
1630 panic("insanity vmem %p", vm);
1631 }
1632 }
1633
1634 #endif /* defined(VMEM_SANITY) */
1635
1636 #if defined(UNITTEST)
1637 int
1638 main(void)
1639 {
1640 int rc;
1641 vmem_t *vm;
1642 vmem_addr_t p;
1643 struct reg {
1644 vmem_addr_t p;
1645 vmem_size_t sz;
1646 bool x;
1647 } *reg = NULL;
1648 int nreg = 0;
1649 int nalloc = 0;
1650 int nfree = 0;
1651 vmem_size_t total = 0;
1652 #if 1
1653 vm_flag_t strat = VM_INSTANTFIT;
1654 #else
1655 vm_flag_t strat = VM_BESTFIT;
1656 #endif
1657
1658 vm = vmem_create("test", 0, 0, 1, NULL, NULL, NULL, 0, VM_SLEEP,
1659 #ifdef _KERNEL
1660 IPL_NONE
1661 #else
1662 0
1663 #endif
1664 );
1665 if (vm == NULL) {
1666 printf("vmem_create\n");
1667 exit(EXIT_FAILURE);
1668 }
1669 vmem_dump(vm, vmem_printf);
1670
1671 rc = vmem_add(vm, 0, 50, VM_SLEEP);
1672 assert(rc == 0);
1673 rc = vmem_add(vm, 100, 200, VM_SLEEP);
1674 assert(rc == 0);
1675 rc = vmem_add(vm, 2000, 1, VM_SLEEP);
1676 assert(rc == 0);
1677 rc = vmem_add(vm, 40000, 65536, VM_SLEEP);
1678 assert(rc == 0);
1679 rc = vmem_add(vm, 10000, 10000, VM_SLEEP);
1680 assert(rc == 0);
1681 rc = vmem_add(vm, 500, 1000, VM_SLEEP);
1682 assert(rc == 0);
1683 rc = vmem_add(vm, 0xffffff00, 0x100, VM_SLEEP);
1684 assert(rc == 0);
1685 rc = vmem_xalloc(vm, 0x101, 0, 0, 0,
1686 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1687 assert(rc != 0);
1688 rc = vmem_xalloc(vm, 50, 0, 0, 0, 0, 49, strat|VM_SLEEP, &p);
1689 assert(rc == 0 && p == 0);
1690 vmem_xfree(vm, p, 50);
1691 rc = vmem_xalloc(vm, 25, 0, 0, 0, 0, 24, strat|VM_SLEEP, &p);
1692 assert(rc == 0 && p == 0);
1693 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1694 0xffffff01, 0xffffffff, strat|VM_SLEEP, &p);
1695 assert(rc != 0);
1696 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1697 0xffffff00, 0xfffffffe, strat|VM_SLEEP, &p);
1698 assert(rc != 0);
1699 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1700 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1701 assert(rc == 0);
1702 vmem_dump(vm, vmem_printf);
1703 for (;;) {
1704 struct reg *r;
1705 int t = rand() % 100;
1706
1707 if (t > 45) {
1708 /* alloc */
1709 vmem_size_t sz = rand() % 500 + 1;
1710 bool x;
1711 vmem_size_t align, phase, nocross;
1712 vmem_addr_t minaddr, maxaddr;
1713
1714 if (t > 70) {
1715 x = true;
1716 /* XXX */
1717 align = 1 << (rand() % 15);
1718 phase = rand() % 65536;
1719 nocross = 1 << (rand() % 15);
1720 if (align <= phase) {
1721 phase = 0;
1722 }
1723 if (VMEM_CROSS_P(phase, phase + sz - 1,
1724 nocross)) {
1725 nocross = 0;
1726 }
1727 do {
1728 minaddr = rand() % 50000;
1729 maxaddr = rand() % 70000;
1730 } while (minaddr > maxaddr);
1731 printf("=== xalloc %" PRIu64
1732 " align=%" PRIu64 ", phase=%" PRIu64
1733 ", nocross=%" PRIu64 ", min=%" PRIu64
1734 ", max=%" PRIu64 "\n",
1735 (uint64_t)sz,
1736 (uint64_t)align,
1737 (uint64_t)phase,
1738 (uint64_t)nocross,
1739 (uint64_t)minaddr,
1740 (uint64_t)maxaddr);
1741 rc = vmem_xalloc(vm, sz, align, phase, nocross,
1742 minaddr, maxaddr, strat|VM_SLEEP, &p);
1743 } else {
1744 x = false;
1745 printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1746 rc = vmem_alloc(vm, sz, strat|VM_SLEEP, &p);
1747 }
1748 printf("-> %" PRIu64 "\n", (uint64_t)p);
1749 vmem_dump(vm, vmem_printf);
1750 if (rc != 0) {
1751 if (x) {
1752 continue;
1753 }
1754 break;
1755 }
1756 nreg++;
1757 reg = realloc(reg, sizeof(*reg) * nreg);
1758 r = ®[nreg - 1];
1759 r->p = p;
1760 r->sz = sz;
1761 r->x = x;
1762 total += sz;
1763 nalloc++;
1764 } else if (nreg != 0) {
1765 /* free */
1766 r = ®[rand() % nreg];
1767 printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1768 (uint64_t)r->p, (uint64_t)r->sz);
1769 if (r->x) {
1770 vmem_xfree(vm, r->p, r->sz);
1771 } else {
1772 vmem_free(vm, r->p, r->sz);
1773 }
1774 total -= r->sz;
1775 vmem_dump(vm, vmem_printf);
1776 *r = reg[nreg - 1];
1777 nreg--;
1778 nfree++;
1779 }
1780 printf("total=%" PRIu64 "\n", (uint64_t)total);
1781 }
1782 fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1783 (uint64_t)total, nalloc, nfree);
1784 exit(EXIT_SUCCESS);
1785 }
1786 #endif /* defined(UNITTEST) */
1787