subr_vmem.c revision 1.92.6.4 1 /* $NetBSD: subr_vmem.c,v 1.92.6.4 2017/08/28 17:53:07 skrll Exp $ */
2
3 /*-
4 * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * reference:
31 * - Magazines and Vmem: Extending the Slab Allocator
32 * to Many CPUs and Arbitrary Resources
33 * http://www.usenix.org/event/usenix01/bonwick.html
34 *
35 * locking & the boundary tag pool:
36 * - A pool(9) is used for vmem boundary tags
37 * - During a pool get call the global vmem_btag_refill_lock is taken,
38 * to serialize access to the allocation reserve, but no other
39 * vmem arena locks.
40 * - During pool_put calls no vmem mutexes are locked.
41 * - pool_drain doesn't hold the pool's mutex while releasing memory to
42 * its backing therefore no interferance with any vmem mutexes.
43 * - The boundary tag pool is forced to put page headers into pool pages
44 * (PR_PHINPAGE) and not off page to avoid pool recursion.
45 * (due to sizeof(bt_t) it should be the case anyway)
46 */
47
48 #include <sys/cdefs.h>
49 __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.92.6.4 2017/08/28 17:53:07 skrll Exp $");
50
51 #if defined(_KERNEL) && defined(_KERNEL_OPT)
52 #include "opt_ddb.h"
53 #endif /* defined(_KERNEL) && defined(_KERNEL_OPT) */
54
55 #include <sys/param.h>
56 #include <sys/hash.h>
57 #include <sys/queue.h>
58 #include <sys/bitops.h>
59
60 #if defined(_KERNEL)
61 #include <sys/systm.h>
62 #include <sys/kernel.h> /* hz */
63 #include <sys/callout.h>
64 #include <sys/kmem.h>
65 #include <sys/pool.h>
66 #include <sys/vmem.h>
67 #include <sys/vmem_impl.h>
68 #include <sys/workqueue.h>
69 #include <sys/atomic.h>
70 #include <uvm/uvm.h>
71 #include <uvm/uvm_extern.h>
72 #include <uvm/uvm_km.h>
73 #include <uvm/uvm_page.h>
74 #include <uvm/uvm_pdaemon.h>
75 #else /* defined(_KERNEL) */
76 #include <stdio.h>
77 #include <errno.h>
78 #include <assert.h>
79 #include <stdlib.h>
80 #include <string.h>
81 #include "../sys/vmem.h"
82 #include "../sys/vmem_impl.h"
83 #endif /* defined(_KERNEL) */
84
85
86 #if defined(_KERNEL)
87 #include <sys/evcnt.h>
88 #define VMEM_EVCNT_DEFINE(name) \
89 struct evcnt vmem_evcnt_##name = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, \
90 "vmem", #name); \
91 EVCNT_ATTACH_STATIC(vmem_evcnt_##name);
92 #define VMEM_EVCNT_INCR(ev) vmem_evcnt_##ev.ev_count++
93 #define VMEM_EVCNT_DECR(ev) vmem_evcnt_##ev.ev_count--
94
95 VMEM_EVCNT_DEFINE(static_bt_count)
96 VMEM_EVCNT_DEFINE(static_bt_inuse)
97
98 #define VMEM_CONDVAR_INIT(vm, wchan) cv_init(&vm->vm_cv, wchan)
99 #define VMEM_CONDVAR_DESTROY(vm) cv_destroy(&vm->vm_cv)
100 #define VMEM_CONDVAR_WAIT(vm) cv_wait(&vm->vm_cv, &vm->vm_lock)
101 #define VMEM_CONDVAR_BROADCAST(vm) cv_broadcast(&vm->vm_cv)
102
103 #else /* defined(_KERNEL) */
104
105 #define VMEM_EVCNT_INCR(ev) /* nothing */
106 #define VMEM_EVCNT_DECR(ev) /* nothing */
107
108 #define VMEM_CONDVAR_INIT(vm, wchan) /* nothing */
109 #define VMEM_CONDVAR_DESTROY(vm) /* nothing */
110 #define VMEM_CONDVAR_WAIT(vm) /* nothing */
111 #define VMEM_CONDVAR_BROADCAST(vm) /* nothing */
112
113 #define UNITTEST
114 #define KASSERT(a) assert(a)
115 #define mutex_init(a, b, c) /* nothing */
116 #define mutex_destroy(a) /* nothing */
117 #define mutex_enter(a) /* nothing */
118 #define mutex_tryenter(a) true
119 #define mutex_exit(a) /* nothing */
120 #define mutex_owned(a) /* nothing */
121 #define ASSERT_SLEEPABLE() /* nothing */
122 #define panic(...) printf(__VA_ARGS__); abort()
123 #endif /* defined(_KERNEL) */
124
125 #if defined(VMEM_SANITY)
126 static void vmem_check(vmem_t *);
127 #else /* defined(VMEM_SANITY) */
128 #define vmem_check(vm) /* nothing */
129 #endif /* defined(VMEM_SANITY) */
130
131 #define VMEM_HASHSIZE_MIN 1 /* XXX */
132 #define VMEM_HASHSIZE_MAX 65536 /* XXX */
133 #define VMEM_HASHSIZE_INIT 1
134
135 #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
136
137 #if defined(_KERNEL)
138 static bool vmem_bootstrapped = false;
139 static kmutex_t vmem_list_lock;
140 static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
141 #endif /* defined(_KERNEL) */
142
143 /* ---- misc */
144
145 #define VMEM_LOCK(vm) mutex_enter(&vm->vm_lock)
146 #define VMEM_TRYLOCK(vm) mutex_tryenter(&vm->vm_lock)
147 #define VMEM_UNLOCK(vm) mutex_exit(&vm->vm_lock)
148 #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl)
149 #define VMEM_LOCK_DESTROY(vm) mutex_destroy(&vm->vm_lock)
150 #define VMEM_ASSERT_LOCKED(vm) KASSERT(mutex_owned(&vm->vm_lock))
151
152 #define VMEM_ALIGNUP(addr, align) \
153 (-(-(addr) & -(align)))
154
155 #define VMEM_CROSS_P(addr1, addr2, boundary) \
156 ((((addr1) ^ (addr2)) & -(boundary)) != 0)
157
158 #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
159 #define SIZE2ORDER(size) ((int)ilog2(size))
160
161 #if !defined(_KERNEL)
162 #define xmalloc(sz, flags) malloc(sz)
163 #define xfree(p, sz) free(p)
164 #define bt_alloc(vm, flags) malloc(sizeof(bt_t))
165 #define bt_free(vm, bt) free(bt)
166 #else /* defined(_KERNEL) */
167
168 #define xmalloc(sz, flags) \
169 kmem_alloc(sz, ((flags) & VM_SLEEP) ? KM_SLEEP : KM_NOSLEEP);
170 #define xfree(p, sz) kmem_free(p, sz);
171
172 /*
173 * BT_RESERVE calculation:
174 * we allocate memory for boundry tags with vmem, therefor we have
175 * to keep a reserve of bts used to allocated memory for bts.
176 * This reserve is 4 for each arena involved in allocating vmems memory.
177 * BT_MAXFREE: don't cache excessive counts of bts in arenas
178 */
179 #define STATIC_BT_COUNT 200
180 #define BT_MINRESERVE 4
181 #define BT_MAXFREE 64
182
183 static struct vmem_btag static_bts[STATIC_BT_COUNT];
184 static int static_bt_count = STATIC_BT_COUNT;
185
186 static struct vmem kmem_va_meta_arena_store;
187 vmem_t *kmem_va_meta_arena;
188 static struct vmem kmem_meta_arena_store;
189 vmem_t *kmem_meta_arena = NULL;
190
191 static kmutex_t vmem_btag_refill_lock;
192 static kmutex_t vmem_btag_lock;
193 static LIST_HEAD(, vmem_btag) vmem_btag_freelist;
194 static size_t vmem_btag_freelist_count = 0;
195 static struct pool vmem_btag_pool;
196
197 static void
198 vmem_kick_pdaemon(void)
199 {
200 #if defined(_KERNEL)
201 mutex_spin_enter(&uvm_fpageqlock);
202 uvm_kick_pdaemon();
203 mutex_spin_exit(&uvm_fpageqlock);
204 #endif
205 }
206
207 /* ---- boundary tag */
208
209 static int bt_refill(vmem_t *vm);
210
211 static void *
212 pool_page_alloc_vmem_meta(struct pool *pp, int flags)
213 {
214 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
215 vmem_addr_t va;
216 int ret;
217
218 ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
219 (vflags & ~VM_FITMASK) | VM_INSTANTFIT | VM_POPULATING, &va);
220
221 return ret ? NULL : (void *)va;
222 }
223
224 static void
225 pool_page_free_vmem_meta(struct pool *pp, void *v)
226 {
227
228 vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
229 }
230
231 /* allocator for vmem-pool metadata */
232 struct pool_allocator pool_allocator_vmem_meta = {
233 .pa_alloc = pool_page_alloc_vmem_meta,
234 .pa_free = pool_page_free_vmem_meta,
235 .pa_pagesz = 0
236 };
237
238 static int
239 bt_refill(vmem_t *vm)
240 {
241 bt_t *bt;
242
243 VMEM_LOCK(vm);
244 if (vm->vm_nfreetags > BT_MINRESERVE) {
245 VMEM_UNLOCK(vm);
246 return 0;
247 }
248
249 mutex_enter(&vmem_btag_lock);
250 while (!LIST_EMPTY(&vmem_btag_freelist) &&
251 vm->vm_nfreetags <= BT_MINRESERVE) {
252 bt = LIST_FIRST(&vmem_btag_freelist);
253 LIST_REMOVE(bt, bt_freelist);
254 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
255 vm->vm_nfreetags++;
256 vmem_btag_freelist_count--;
257 VMEM_EVCNT_INCR(static_bt_inuse);
258 }
259 mutex_exit(&vmem_btag_lock);
260
261 while (vm->vm_nfreetags <= BT_MINRESERVE) {
262 VMEM_UNLOCK(vm);
263 mutex_enter(&vmem_btag_refill_lock);
264 bt = pool_get(&vmem_btag_pool, PR_NOWAIT);
265 mutex_exit(&vmem_btag_refill_lock);
266 VMEM_LOCK(vm);
267 if (bt == NULL)
268 break;
269 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
270 vm->vm_nfreetags++;
271 }
272
273 if (vm->vm_nfreetags <= BT_MINRESERVE) {
274 VMEM_UNLOCK(vm);
275 return ENOMEM;
276 }
277
278 VMEM_UNLOCK(vm);
279
280 if (kmem_meta_arena != NULL) {
281 (void)bt_refill(kmem_arena);
282 (void)bt_refill(kmem_va_meta_arena);
283 (void)bt_refill(kmem_meta_arena);
284 }
285
286 return 0;
287 }
288
289 static bt_t *
290 bt_alloc(vmem_t *vm, vm_flag_t flags)
291 {
292 bt_t *bt;
293 VMEM_LOCK(vm);
294 while (vm->vm_nfreetags <= BT_MINRESERVE && (flags & VM_POPULATING) == 0) {
295 VMEM_UNLOCK(vm);
296 if (bt_refill(vm)) {
297 if ((flags & VM_NOSLEEP) != 0) {
298 return NULL;
299 }
300
301 /*
302 * It would be nice to wait for something specific here
303 * but there are multiple ways that a retry could
304 * succeed and we can't wait for multiple things
305 * simultaneously. So we'll just sleep for an arbitrary
306 * short period of time and retry regardless.
307 * This should be a very rare case.
308 */
309
310 vmem_kick_pdaemon();
311 kpause("btalloc", false, 1, NULL);
312 }
313 VMEM_LOCK(vm);
314 }
315 bt = LIST_FIRST(&vm->vm_freetags);
316 LIST_REMOVE(bt, bt_freelist);
317 vm->vm_nfreetags--;
318 VMEM_UNLOCK(vm);
319
320 return bt;
321 }
322
323 static void
324 bt_free(vmem_t *vm, bt_t *bt)
325 {
326
327 VMEM_LOCK(vm);
328 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
329 vm->vm_nfreetags++;
330 VMEM_UNLOCK(vm);
331 }
332
333 static void
334 bt_freetrim(vmem_t *vm, int freelimit)
335 {
336 bt_t *t;
337 LIST_HEAD(, vmem_btag) tofree;
338
339 LIST_INIT(&tofree);
340
341 VMEM_LOCK(vm);
342 while (vm->vm_nfreetags > freelimit) {
343 bt_t *bt = LIST_FIRST(&vm->vm_freetags);
344 LIST_REMOVE(bt, bt_freelist);
345 vm->vm_nfreetags--;
346 if (bt >= static_bts
347 && bt < &static_bts[STATIC_BT_COUNT]) {
348 mutex_enter(&vmem_btag_lock);
349 LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
350 vmem_btag_freelist_count++;
351 mutex_exit(&vmem_btag_lock);
352 VMEM_EVCNT_DECR(static_bt_inuse);
353 } else {
354 LIST_INSERT_HEAD(&tofree, bt, bt_freelist);
355 }
356 }
357
358 VMEM_UNLOCK(vm);
359 while (!LIST_EMPTY(&tofree)) {
360 t = LIST_FIRST(&tofree);
361 LIST_REMOVE(t, bt_freelist);
362 pool_put(&vmem_btag_pool, t);
363 }
364 }
365 #endif /* defined(_KERNEL) */
366
367 /*
368 * freelist[0] ... [1, 1]
369 * freelist[1] ... [2, 3]
370 * freelist[2] ... [4, 7]
371 * freelist[3] ... [8, 15]
372 * :
373 * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
374 * :
375 */
376
377 static struct vmem_freelist *
378 bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
379 {
380 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
381 const int idx = SIZE2ORDER(qsize);
382
383 KASSERT(size != 0 && qsize != 0);
384 KASSERT((size & vm->vm_quantum_mask) == 0);
385 KASSERT(idx >= 0);
386 KASSERT(idx < VMEM_MAXORDER);
387
388 return &vm->vm_freelist[idx];
389 }
390
391 /*
392 * bt_freehead_toalloc: return the freelist for the given size and allocation
393 * strategy.
394 *
395 * for VM_INSTANTFIT, return the list in which any blocks are large enough
396 * for the requested size. otherwise, return the list which can have blocks
397 * large enough for the requested size.
398 */
399
400 static struct vmem_freelist *
401 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
402 {
403 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
404 int idx = SIZE2ORDER(qsize);
405
406 KASSERT(size != 0 && qsize != 0);
407 KASSERT((size & vm->vm_quantum_mask) == 0);
408
409 if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
410 idx++;
411 /* check too large request? */
412 }
413 KASSERT(idx >= 0);
414 KASSERT(idx < VMEM_MAXORDER);
415
416 return &vm->vm_freelist[idx];
417 }
418
419 /* ---- boundary tag hash */
420
421 static struct vmem_hashlist *
422 bt_hashhead(vmem_t *vm, vmem_addr_t addr)
423 {
424 struct vmem_hashlist *list;
425 unsigned int hash;
426
427 hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
428 list = &vm->vm_hashlist[hash % vm->vm_hashsize];
429
430 return list;
431 }
432
433 static bt_t *
434 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
435 {
436 struct vmem_hashlist *list;
437 bt_t *bt;
438
439 list = bt_hashhead(vm, addr);
440 LIST_FOREACH(bt, list, bt_hashlist) {
441 if (bt->bt_start == addr) {
442 break;
443 }
444 }
445
446 return bt;
447 }
448
449 static void
450 bt_rembusy(vmem_t *vm, bt_t *bt)
451 {
452
453 KASSERT(vm->vm_nbusytag > 0);
454 vm->vm_inuse -= bt->bt_size;
455 vm->vm_nbusytag--;
456 LIST_REMOVE(bt, bt_hashlist);
457 }
458
459 static void
460 bt_insbusy(vmem_t *vm, bt_t *bt)
461 {
462 struct vmem_hashlist *list;
463
464 KASSERT(bt->bt_type == BT_TYPE_BUSY);
465
466 list = bt_hashhead(vm, bt->bt_start);
467 LIST_INSERT_HEAD(list, bt, bt_hashlist);
468 vm->vm_nbusytag++;
469 vm->vm_inuse += bt->bt_size;
470 }
471
472 /* ---- boundary tag list */
473
474 static void
475 bt_remseg(vmem_t *vm, bt_t *bt)
476 {
477
478 TAILQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
479 }
480
481 static void
482 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
483 {
484
485 TAILQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
486 }
487
488 static void
489 bt_insseg_tail(vmem_t *vm, bt_t *bt)
490 {
491
492 TAILQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
493 }
494
495 static void
496 bt_remfree(vmem_t *vm, bt_t *bt)
497 {
498
499 KASSERT(bt->bt_type == BT_TYPE_FREE);
500
501 LIST_REMOVE(bt, bt_freelist);
502 }
503
504 static void
505 bt_insfree(vmem_t *vm, bt_t *bt)
506 {
507 struct vmem_freelist *list;
508
509 list = bt_freehead_tofree(vm, bt->bt_size);
510 LIST_INSERT_HEAD(list, bt, bt_freelist);
511 }
512
513 /* ---- vmem internal functions */
514
515 #if defined(QCACHE)
516 static inline vm_flag_t
517 prf_to_vmf(int prflags)
518 {
519 vm_flag_t vmflags;
520
521 KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
522 if ((prflags & PR_WAITOK) != 0) {
523 vmflags = VM_SLEEP;
524 } else {
525 vmflags = VM_NOSLEEP;
526 }
527 return vmflags;
528 }
529
530 static inline int
531 vmf_to_prf(vm_flag_t vmflags)
532 {
533 int prflags;
534
535 if ((vmflags & VM_SLEEP) != 0) {
536 prflags = PR_WAITOK;
537 } else {
538 prflags = PR_NOWAIT;
539 }
540 return prflags;
541 }
542
543 static size_t
544 qc_poolpage_size(size_t qcache_max)
545 {
546 int i;
547
548 for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
549 /* nothing */
550 }
551 return ORDER2SIZE(i);
552 }
553
554 static void *
555 qc_poolpage_alloc(struct pool *pool, int prflags)
556 {
557 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
558 vmem_t *vm = qc->qc_vmem;
559 vmem_addr_t addr;
560
561 if (vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
562 prf_to_vmf(prflags) | VM_INSTANTFIT, &addr) != 0)
563 return NULL;
564 return (void *)addr;
565 }
566
567 static void
568 qc_poolpage_free(struct pool *pool, void *addr)
569 {
570 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
571 vmem_t *vm = qc->qc_vmem;
572
573 vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
574 }
575
576 static void
577 qc_init(vmem_t *vm, size_t qcache_max, int ipl)
578 {
579 qcache_t *prevqc;
580 struct pool_allocator *pa;
581 int qcache_idx_max;
582 int i;
583
584 KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
585 if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
586 qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
587 }
588 vm->vm_qcache_max = qcache_max;
589 pa = &vm->vm_qcache_allocator;
590 memset(pa, 0, sizeof(*pa));
591 pa->pa_alloc = qc_poolpage_alloc;
592 pa->pa_free = qc_poolpage_free;
593 pa->pa_pagesz = qc_poolpage_size(qcache_max);
594
595 qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
596 prevqc = NULL;
597 for (i = qcache_idx_max; i > 0; i--) {
598 qcache_t *qc = &vm->vm_qcache_store[i - 1];
599 size_t size = i << vm->vm_quantum_shift;
600 pool_cache_t pc;
601
602 qc->qc_vmem = vm;
603 snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
604 vm->vm_name, size);
605
606 pc = pool_cache_init(size,
607 ORDER2SIZE(vm->vm_quantum_shift), 0,
608 PR_NOALIGN | PR_NOTOUCH | PR_RECURSIVE /* XXX */,
609 qc->qc_name, pa, ipl, NULL, NULL, NULL);
610
611 KASSERT(pc);
612
613 qc->qc_cache = pc;
614 KASSERT(qc->qc_cache != NULL); /* XXX */
615 if (prevqc != NULL &&
616 qc->qc_cache->pc_pool.pr_itemsperpage ==
617 prevqc->qc_cache->pc_pool.pr_itemsperpage) {
618 pool_cache_destroy(qc->qc_cache);
619 vm->vm_qcache[i - 1] = prevqc;
620 continue;
621 }
622 qc->qc_cache->pc_pool.pr_qcache = qc;
623 vm->vm_qcache[i - 1] = qc;
624 prevqc = qc;
625 }
626 }
627
628 static void
629 qc_destroy(vmem_t *vm)
630 {
631 const qcache_t *prevqc;
632 int i;
633 int qcache_idx_max;
634
635 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
636 prevqc = NULL;
637 for (i = 0; i < qcache_idx_max; i++) {
638 qcache_t *qc = vm->vm_qcache[i];
639
640 if (prevqc == qc) {
641 continue;
642 }
643 pool_cache_destroy(qc->qc_cache);
644 prevqc = qc;
645 }
646 }
647 #endif
648
649 #if defined(_KERNEL)
650 static void
651 vmem_bootstrap(void)
652 {
653
654 mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_VM);
655 mutex_init(&vmem_btag_lock, MUTEX_DEFAULT, IPL_VM);
656 mutex_init(&vmem_btag_refill_lock, MUTEX_DEFAULT, IPL_VM);
657
658 while (static_bt_count-- > 0) {
659 bt_t *bt = &static_bts[static_bt_count];
660 LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
661 VMEM_EVCNT_INCR(static_bt_count);
662 vmem_btag_freelist_count++;
663 }
664 vmem_bootstrapped = TRUE;
665 }
666
667 void
668 vmem_subsystem_init(vmem_t *vm)
669 {
670
671 kmem_va_meta_arena = vmem_init(&kmem_va_meta_arena_store, "vmem-va",
672 0, 0, PAGE_SIZE, vmem_alloc, vmem_free, vm,
673 0, VM_NOSLEEP | VM_BOOTSTRAP | VM_LARGEIMPORT,
674 IPL_VM);
675
676 kmem_meta_arena = vmem_init(&kmem_meta_arena_store, "vmem-meta",
677 0, 0, PAGE_SIZE,
678 uvm_km_kmem_alloc, uvm_km_kmem_free, kmem_va_meta_arena,
679 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
680
681 pool_init(&vmem_btag_pool, sizeof(bt_t), 0, 0, PR_PHINPAGE,
682 "vmembt", &pool_allocator_vmem_meta, IPL_VM);
683 }
684 #endif /* defined(_KERNEL) */
685
686 static int
687 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
688 int spanbttype)
689 {
690 bt_t *btspan;
691 bt_t *btfree;
692
693 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
694 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
695 KASSERT(spanbttype == BT_TYPE_SPAN ||
696 spanbttype == BT_TYPE_SPAN_STATIC);
697
698 btspan = bt_alloc(vm, flags);
699 if (btspan == NULL) {
700 return ENOMEM;
701 }
702 btfree = bt_alloc(vm, flags);
703 if (btfree == NULL) {
704 bt_free(vm, btspan);
705 return ENOMEM;
706 }
707
708 btspan->bt_type = spanbttype;
709 btspan->bt_start = addr;
710 btspan->bt_size = size;
711
712 btfree->bt_type = BT_TYPE_FREE;
713 btfree->bt_start = addr;
714 btfree->bt_size = size;
715
716 VMEM_LOCK(vm);
717 bt_insseg_tail(vm, btspan);
718 bt_insseg(vm, btfree, btspan);
719 bt_insfree(vm, btfree);
720 vm->vm_size += size;
721 VMEM_UNLOCK(vm);
722
723 return 0;
724 }
725
726 static void
727 vmem_destroy1(vmem_t *vm)
728 {
729
730 #if defined(QCACHE)
731 qc_destroy(vm);
732 #endif /* defined(QCACHE) */
733 if (vm->vm_hashlist != NULL) {
734 int i;
735
736 for (i = 0; i < vm->vm_hashsize; i++) {
737 bt_t *bt;
738
739 while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
740 KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
741 bt_free(vm, bt);
742 }
743 }
744 if (vm->vm_hashlist != &vm->vm_hash0) {
745 xfree(vm->vm_hashlist,
746 sizeof(struct vmem_hashlist *) * vm->vm_hashsize);
747 }
748 }
749
750 bt_freetrim(vm, 0);
751
752 VMEM_CONDVAR_DESTROY(vm);
753 VMEM_LOCK_DESTROY(vm);
754 xfree(vm, sizeof(*vm));
755 }
756
757 static int
758 vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
759 {
760 vmem_addr_t addr;
761 int rc;
762
763 if (vm->vm_importfn == NULL) {
764 return EINVAL;
765 }
766
767 if (vm->vm_flags & VM_LARGEIMPORT) {
768 size *= 16;
769 }
770
771 if (vm->vm_flags & VM_XIMPORT) {
772 rc = ((vmem_ximport_t *)vm->vm_importfn)(vm->vm_arg, size,
773 &size, flags, &addr);
774 } else {
775 rc = (vm->vm_importfn)(vm->vm_arg, size, flags, &addr);
776 }
777 if (rc) {
778 return ENOMEM;
779 }
780
781 if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) != 0) {
782 (*vm->vm_releasefn)(vm->vm_arg, addr, size);
783 return ENOMEM;
784 }
785
786 return 0;
787 }
788
789 static int
790 vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
791 {
792 bt_t *bt;
793 int i;
794 struct vmem_hashlist *newhashlist;
795 struct vmem_hashlist *oldhashlist;
796 size_t oldhashsize;
797
798 KASSERT(newhashsize > 0);
799
800 newhashlist =
801 xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
802 if (newhashlist == NULL) {
803 return ENOMEM;
804 }
805 for (i = 0; i < newhashsize; i++) {
806 LIST_INIT(&newhashlist[i]);
807 }
808
809 if (!VMEM_TRYLOCK(vm)) {
810 xfree(newhashlist,
811 sizeof(struct vmem_hashlist *) * newhashsize);
812 return EBUSY;
813 }
814 oldhashlist = vm->vm_hashlist;
815 oldhashsize = vm->vm_hashsize;
816 vm->vm_hashlist = newhashlist;
817 vm->vm_hashsize = newhashsize;
818 if (oldhashlist == NULL) {
819 VMEM_UNLOCK(vm);
820 return 0;
821 }
822 for (i = 0; i < oldhashsize; i++) {
823 while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
824 bt_rembusy(vm, bt); /* XXX */
825 bt_insbusy(vm, bt);
826 }
827 }
828 VMEM_UNLOCK(vm);
829
830 if (oldhashlist != &vm->vm_hash0) {
831 xfree(oldhashlist,
832 sizeof(struct vmem_hashlist *) * oldhashsize);
833 }
834
835 return 0;
836 }
837
838 /*
839 * vmem_fit: check if a bt can satisfy the given restrictions.
840 *
841 * it's a caller's responsibility to ensure the region is big enough
842 * before calling us.
843 */
844
845 static int
846 vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align,
847 vmem_size_t phase, vmem_size_t nocross,
848 vmem_addr_t minaddr, vmem_addr_t maxaddr, vmem_addr_t *addrp)
849 {
850 vmem_addr_t start;
851 vmem_addr_t end;
852
853 KASSERT(size > 0);
854 KASSERT(bt->bt_size >= size); /* caller's responsibility */
855
856 /*
857 * XXX assumption: vmem_addr_t and vmem_size_t are
858 * unsigned integer of the same size.
859 */
860
861 start = bt->bt_start;
862 if (start < minaddr) {
863 start = minaddr;
864 }
865 end = BT_END(bt);
866 if (end > maxaddr) {
867 end = maxaddr;
868 }
869 if (start > end) {
870 return ENOMEM;
871 }
872
873 start = VMEM_ALIGNUP(start - phase, align) + phase;
874 if (start < bt->bt_start) {
875 start += align;
876 }
877 if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
878 KASSERT(align < nocross);
879 start = VMEM_ALIGNUP(start - phase, nocross) + phase;
880 }
881 if (start <= end && end - start >= size - 1) {
882 KASSERT((start & (align - 1)) == phase);
883 KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
884 KASSERT(minaddr <= start);
885 KASSERT(maxaddr == 0 || start + size - 1 <= maxaddr);
886 KASSERT(bt->bt_start <= start);
887 KASSERT(BT_END(bt) - start >= size - 1);
888 *addrp = start;
889 return 0;
890 }
891 return ENOMEM;
892 }
893
894 /* ---- vmem API */
895
896 /*
897 * vmem_create_internal: creates a vmem arena.
898 */
899
900 vmem_t *
901 vmem_init(vmem_t *vm, const char *name,
902 vmem_addr_t base, vmem_size_t size, vmem_size_t quantum,
903 vmem_import_t *importfn, vmem_release_t *releasefn,
904 vmem_t *arg, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
905 {
906 int i;
907
908 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
909 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
910 KASSERT(quantum > 0);
911
912 #if defined(_KERNEL)
913 /* XXX: SMP, we get called early... */
914 if (!vmem_bootstrapped) {
915 vmem_bootstrap();
916 }
917 #endif /* defined(_KERNEL) */
918
919 if (vm == NULL) {
920 vm = xmalloc(sizeof(*vm), flags);
921 }
922 if (vm == NULL) {
923 return NULL;
924 }
925
926 VMEM_CONDVAR_INIT(vm, "vmem");
927 VMEM_LOCK_INIT(vm, ipl);
928 vm->vm_flags = flags;
929 vm->vm_nfreetags = 0;
930 LIST_INIT(&vm->vm_freetags);
931 strlcpy(vm->vm_name, name, sizeof(vm->vm_name));
932 vm->vm_quantum_mask = quantum - 1;
933 vm->vm_quantum_shift = SIZE2ORDER(quantum);
934 KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
935 vm->vm_importfn = importfn;
936 vm->vm_releasefn = releasefn;
937 vm->vm_arg = arg;
938 vm->vm_nbusytag = 0;
939 vm->vm_size = 0;
940 vm->vm_inuse = 0;
941 #if defined(QCACHE)
942 qc_init(vm, qcache_max, ipl);
943 #endif /* defined(QCACHE) */
944
945 TAILQ_INIT(&vm->vm_seglist);
946 for (i = 0; i < VMEM_MAXORDER; i++) {
947 LIST_INIT(&vm->vm_freelist[i]);
948 }
949 memset(&vm->vm_hash0, 0, sizeof(struct vmem_hashlist));
950 vm->vm_hashsize = 1;
951 vm->vm_hashlist = &vm->vm_hash0;
952
953 if (size != 0) {
954 if (vmem_add(vm, base, size, flags) != 0) {
955 vmem_destroy1(vm);
956 return NULL;
957 }
958 }
959
960 #if defined(_KERNEL)
961 if (flags & VM_BOOTSTRAP) {
962 bt_refill(vm);
963 }
964
965 mutex_enter(&vmem_list_lock);
966 LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
967 mutex_exit(&vmem_list_lock);
968 #endif /* defined(_KERNEL) */
969
970 return vm;
971 }
972
973
974
975 /*
976 * vmem_create: create an arena.
977 *
978 * => must not be called from interrupt context.
979 */
980
981 vmem_t *
982 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
983 vmem_size_t quantum, vmem_import_t *importfn, vmem_release_t *releasefn,
984 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
985 {
986
987 KASSERT((flags & (VM_XIMPORT)) == 0);
988
989 return vmem_init(NULL, name, base, size, quantum,
990 importfn, releasefn, source, qcache_max, flags, ipl);
991 }
992
993 /*
994 * vmem_xcreate: create an arena takes alternative import func.
995 *
996 * => must not be called from interrupt context.
997 */
998
999 vmem_t *
1000 vmem_xcreate(const char *name, vmem_addr_t base, vmem_size_t size,
1001 vmem_size_t quantum, vmem_ximport_t *importfn, vmem_release_t *releasefn,
1002 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
1003 {
1004
1005 KASSERT((flags & (VM_XIMPORT)) == 0);
1006
1007 return vmem_init(NULL, name, base, size, quantum,
1008 (vmem_import_t *)importfn, releasefn, source,
1009 qcache_max, flags | VM_XIMPORT, ipl);
1010 }
1011
1012 void
1013 vmem_destroy(vmem_t *vm)
1014 {
1015
1016 #if defined(_KERNEL)
1017 mutex_enter(&vmem_list_lock);
1018 LIST_REMOVE(vm, vm_alllist);
1019 mutex_exit(&vmem_list_lock);
1020 #endif /* defined(_KERNEL) */
1021
1022 vmem_destroy1(vm);
1023 }
1024
1025 vmem_size_t
1026 vmem_roundup_size(vmem_t *vm, vmem_size_t size)
1027 {
1028
1029 return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
1030 }
1031
1032 /*
1033 * vmem_alloc: allocate resource from the arena.
1034 */
1035
1036 int
1037 vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags, vmem_addr_t *addrp)
1038 {
1039 const vm_flag_t strat __diagused = flags & VM_FITMASK;
1040 int error;
1041
1042 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1043 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1044
1045 KASSERT(size > 0);
1046 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1047 if ((flags & VM_SLEEP) != 0) {
1048 ASSERT_SLEEPABLE();
1049 }
1050
1051 #if defined(QCACHE)
1052 if (size <= vm->vm_qcache_max) {
1053 void *p;
1054 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1055 qcache_t *qc = vm->vm_qcache[qidx - 1];
1056
1057 p = pool_cache_get(qc->qc_cache, vmf_to_prf(flags));
1058 if (addrp != NULL)
1059 *addrp = (vmem_addr_t)p;
1060 error = (p == NULL) ? ENOMEM : 0;
1061 goto out;
1062 }
1063 #endif /* defined(QCACHE) */
1064
1065 error = vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
1066 flags, addrp);
1067 out:
1068 KASSERT(error == 0 || (flags & VM_SLEEP) == 0);
1069 return error;
1070 }
1071
1072 int
1073 vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align,
1074 const vmem_size_t phase, const vmem_size_t nocross,
1075 const vmem_addr_t minaddr, const vmem_addr_t maxaddr, const vm_flag_t flags,
1076 vmem_addr_t *addrp)
1077 {
1078 struct vmem_freelist *list;
1079 struct vmem_freelist *first;
1080 struct vmem_freelist *end;
1081 bt_t *bt;
1082 bt_t *btnew;
1083 bt_t *btnew2;
1084 const vmem_size_t size = vmem_roundup_size(vm, size0);
1085 vm_flag_t strat = flags & VM_FITMASK;
1086 vmem_addr_t start;
1087 int rc;
1088
1089 KASSERT(size0 > 0);
1090 KASSERT(size > 0);
1091 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1092 if ((flags & VM_SLEEP) != 0) {
1093 ASSERT_SLEEPABLE();
1094 }
1095 KASSERT((align & vm->vm_quantum_mask) == 0);
1096 KASSERT((align & (align - 1)) == 0);
1097 KASSERT((phase & vm->vm_quantum_mask) == 0);
1098 KASSERT((nocross & vm->vm_quantum_mask) == 0);
1099 KASSERT((nocross & (nocross - 1)) == 0);
1100 KASSERT((align == 0 && phase == 0) || phase < align);
1101 KASSERT(nocross == 0 || nocross >= size);
1102 KASSERT(minaddr <= maxaddr);
1103 KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
1104
1105 if (align == 0) {
1106 align = vm->vm_quantum_mask + 1;
1107 }
1108
1109 /*
1110 * allocate boundary tags before acquiring the vmem lock.
1111 */
1112 btnew = bt_alloc(vm, flags);
1113 if (btnew == NULL) {
1114 return ENOMEM;
1115 }
1116 btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
1117 if (btnew2 == NULL) {
1118 bt_free(vm, btnew);
1119 return ENOMEM;
1120 }
1121
1122 /*
1123 * choose a free block from which we allocate.
1124 */
1125 retry_strat:
1126 first = bt_freehead_toalloc(vm, size, strat);
1127 end = &vm->vm_freelist[VMEM_MAXORDER];
1128 retry:
1129 bt = NULL;
1130 VMEM_LOCK(vm);
1131 vmem_check(vm);
1132 if (strat == VM_INSTANTFIT) {
1133 /*
1134 * just choose the first block which satisfies our restrictions.
1135 *
1136 * note that we don't need to check the size of the blocks
1137 * because any blocks found on these list should be larger than
1138 * the given size.
1139 */
1140 for (list = first; list < end; list++) {
1141 bt = LIST_FIRST(list);
1142 if (bt != NULL) {
1143 rc = vmem_fit(bt, size, align, phase,
1144 nocross, minaddr, maxaddr, &start);
1145 if (rc == 0) {
1146 goto gotit;
1147 }
1148 /*
1149 * don't bother to follow the bt_freelist link
1150 * here. the list can be very long and we are
1151 * told to run fast. blocks from the later free
1152 * lists are larger and have better chances to
1153 * satisfy our restrictions.
1154 */
1155 }
1156 }
1157 } else { /* VM_BESTFIT */
1158 /*
1159 * we assume that, for space efficiency, it's better to
1160 * allocate from a smaller block. thus we will start searching
1161 * from the lower-order list than VM_INSTANTFIT.
1162 * however, don't bother to find the smallest block in a free
1163 * list because the list can be very long. we can revisit it
1164 * if/when it turns out to be a problem.
1165 *
1166 * note that the 'first' list can contain blocks smaller than
1167 * the requested size. thus we need to check bt_size.
1168 */
1169 for (list = first; list < end; list++) {
1170 LIST_FOREACH(bt, list, bt_freelist) {
1171 if (bt->bt_size >= size) {
1172 rc = vmem_fit(bt, size, align, phase,
1173 nocross, minaddr, maxaddr, &start);
1174 if (rc == 0) {
1175 goto gotit;
1176 }
1177 }
1178 }
1179 }
1180 }
1181 VMEM_UNLOCK(vm);
1182 #if 1
1183 if (strat == VM_INSTANTFIT) {
1184 strat = VM_BESTFIT;
1185 goto retry_strat;
1186 }
1187 #endif
1188 if (align != vm->vm_quantum_mask + 1 || phase != 0 || nocross != 0) {
1189
1190 /*
1191 * XXX should try to import a region large enough to
1192 * satisfy restrictions?
1193 */
1194
1195 goto fail;
1196 }
1197 /* XXX eeek, minaddr & maxaddr not respected */
1198 if (vmem_import(vm, size, flags) == 0) {
1199 goto retry;
1200 }
1201 /* XXX */
1202
1203 if ((flags & VM_SLEEP) != 0) {
1204 vmem_kick_pdaemon();
1205 VMEM_LOCK(vm);
1206 VMEM_CONDVAR_WAIT(vm);
1207 VMEM_UNLOCK(vm);
1208 goto retry;
1209 }
1210 fail:
1211 bt_free(vm, btnew);
1212 bt_free(vm, btnew2);
1213 return ENOMEM;
1214
1215 gotit:
1216 KASSERT(bt->bt_type == BT_TYPE_FREE);
1217 KASSERT(bt->bt_size >= size);
1218 bt_remfree(vm, bt);
1219 vmem_check(vm);
1220 if (bt->bt_start != start) {
1221 btnew2->bt_type = BT_TYPE_FREE;
1222 btnew2->bt_start = bt->bt_start;
1223 btnew2->bt_size = start - bt->bt_start;
1224 bt->bt_start = start;
1225 bt->bt_size -= btnew2->bt_size;
1226 bt_insfree(vm, btnew2);
1227 bt_insseg(vm, btnew2, TAILQ_PREV(bt, vmem_seglist, bt_seglist));
1228 btnew2 = NULL;
1229 vmem_check(vm);
1230 }
1231 KASSERT(bt->bt_start == start);
1232 if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
1233 /* split */
1234 btnew->bt_type = BT_TYPE_BUSY;
1235 btnew->bt_start = bt->bt_start;
1236 btnew->bt_size = size;
1237 bt->bt_start = bt->bt_start + size;
1238 bt->bt_size -= size;
1239 bt_insfree(vm, bt);
1240 bt_insseg(vm, btnew, TAILQ_PREV(bt, vmem_seglist, bt_seglist));
1241 bt_insbusy(vm, btnew);
1242 vmem_check(vm);
1243 VMEM_UNLOCK(vm);
1244 } else {
1245 bt->bt_type = BT_TYPE_BUSY;
1246 bt_insbusy(vm, bt);
1247 vmem_check(vm);
1248 VMEM_UNLOCK(vm);
1249 bt_free(vm, btnew);
1250 btnew = bt;
1251 }
1252 if (btnew2 != NULL) {
1253 bt_free(vm, btnew2);
1254 }
1255 KASSERT(btnew->bt_size >= size);
1256 btnew->bt_type = BT_TYPE_BUSY;
1257
1258 if (addrp != NULL)
1259 *addrp = btnew->bt_start;
1260 return 0;
1261 }
1262
1263 /*
1264 * vmem_free: free the resource to the arena.
1265 */
1266
1267 void
1268 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1269 {
1270
1271 KASSERT(size > 0);
1272
1273 #if defined(QCACHE)
1274 if (size <= vm->vm_qcache_max) {
1275 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1276 qcache_t *qc = vm->vm_qcache[qidx - 1];
1277
1278 pool_cache_put(qc->qc_cache, (void *)addr);
1279 return;
1280 }
1281 #endif /* defined(QCACHE) */
1282
1283 vmem_xfree(vm, addr, size);
1284 }
1285
1286 void
1287 vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1288 {
1289 bt_t *bt;
1290 bt_t *t;
1291 LIST_HEAD(, vmem_btag) tofree;
1292
1293 LIST_INIT(&tofree);
1294
1295 KASSERT(size > 0);
1296
1297 VMEM_LOCK(vm);
1298
1299 bt = bt_lookupbusy(vm, addr);
1300 KASSERT(bt != NULL);
1301 KASSERT(bt->bt_start == addr);
1302 KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1303 bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1304 KASSERT(bt->bt_type == BT_TYPE_BUSY);
1305 bt_rembusy(vm, bt);
1306 bt->bt_type = BT_TYPE_FREE;
1307
1308 /* coalesce */
1309 t = TAILQ_NEXT(bt, bt_seglist);
1310 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1311 KASSERT(BT_END(bt) < t->bt_start); /* YYY */
1312 bt_remfree(vm, t);
1313 bt_remseg(vm, t);
1314 bt->bt_size += t->bt_size;
1315 LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1316 }
1317 t = TAILQ_PREV(bt, vmem_seglist, bt_seglist);
1318 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1319 KASSERT(BT_END(t) < bt->bt_start); /* YYY */
1320 bt_remfree(vm, t);
1321 bt_remseg(vm, t);
1322 bt->bt_size += t->bt_size;
1323 bt->bt_start = t->bt_start;
1324 LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1325 }
1326
1327 t = TAILQ_PREV(bt, vmem_seglist, bt_seglist);
1328 KASSERT(t != NULL);
1329 KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1330 if (vm->vm_releasefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1331 t->bt_size == bt->bt_size) {
1332 vmem_addr_t spanaddr;
1333 vmem_size_t spansize;
1334
1335 KASSERT(t->bt_start == bt->bt_start);
1336 spanaddr = bt->bt_start;
1337 spansize = bt->bt_size;
1338 bt_remseg(vm, bt);
1339 LIST_INSERT_HEAD(&tofree, bt, bt_freelist);
1340 bt_remseg(vm, t);
1341 LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1342 vm->vm_size -= spansize;
1343 VMEM_CONDVAR_BROADCAST(vm);
1344 VMEM_UNLOCK(vm);
1345 (*vm->vm_releasefn)(vm->vm_arg, spanaddr, spansize);
1346 } else {
1347 bt_insfree(vm, bt);
1348 VMEM_CONDVAR_BROADCAST(vm);
1349 VMEM_UNLOCK(vm);
1350 }
1351
1352 while (!LIST_EMPTY(&tofree)) {
1353 t = LIST_FIRST(&tofree);
1354 LIST_REMOVE(t, bt_freelist);
1355 bt_free(vm, t);
1356 }
1357
1358 bt_freetrim(vm, BT_MAXFREE);
1359 }
1360
1361 /*
1362 * vmem_add:
1363 *
1364 * => caller must ensure appropriate spl,
1365 * if the arena can be accessed from interrupt context.
1366 */
1367
1368 int
1369 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1370 {
1371
1372 return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1373 }
1374
1375 /*
1376 * vmem_size: information about arenas size
1377 *
1378 * => return free/allocated size in arena
1379 */
1380 vmem_size_t
1381 vmem_size(vmem_t *vm, int typemask)
1382 {
1383
1384 switch (typemask) {
1385 case VMEM_ALLOC:
1386 return vm->vm_inuse;
1387 case VMEM_FREE:
1388 return vm->vm_size - vm->vm_inuse;
1389 case VMEM_FREE|VMEM_ALLOC:
1390 return vm->vm_size;
1391 default:
1392 panic("vmem_size");
1393 }
1394 }
1395
1396 /* ---- rehash */
1397
1398 #if defined(_KERNEL)
1399 static struct callout vmem_rehash_ch;
1400 static int vmem_rehash_interval;
1401 static struct workqueue *vmem_rehash_wq;
1402 static struct work vmem_rehash_wk;
1403
1404 static void
1405 vmem_rehash_all(struct work *wk, void *dummy)
1406 {
1407 vmem_t *vm;
1408
1409 KASSERT(wk == &vmem_rehash_wk);
1410 mutex_enter(&vmem_list_lock);
1411 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1412 size_t desired;
1413 size_t current;
1414
1415 if (!VMEM_TRYLOCK(vm)) {
1416 continue;
1417 }
1418 desired = vm->vm_nbusytag;
1419 current = vm->vm_hashsize;
1420 VMEM_UNLOCK(vm);
1421
1422 if (desired > VMEM_HASHSIZE_MAX) {
1423 desired = VMEM_HASHSIZE_MAX;
1424 } else if (desired < VMEM_HASHSIZE_MIN) {
1425 desired = VMEM_HASHSIZE_MIN;
1426 }
1427 if (desired > current * 2 || desired * 2 < current) {
1428 vmem_rehash(vm, desired, VM_NOSLEEP);
1429 }
1430 }
1431 mutex_exit(&vmem_list_lock);
1432
1433 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1434 }
1435
1436 static void
1437 vmem_rehash_all_kick(void *dummy)
1438 {
1439
1440 workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1441 }
1442
1443 void
1444 vmem_rehash_start(void)
1445 {
1446 int error;
1447
1448 error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1449 vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
1450 if (error) {
1451 panic("%s: workqueue_create %d\n", __func__, error);
1452 }
1453 callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
1454 callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1455
1456 vmem_rehash_interval = hz * 10;
1457 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1458 }
1459 #endif /* defined(_KERNEL) */
1460
1461 /* ---- debug */
1462
1463 #if defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY)
1464
1465 static void bt_dump(const bt_t *, void (*)(const char *, ...)
1466 __printflike(1, 2));
1467
1468 static const char *
1469 bt_type_string(int type)
1470 {
1471 static const char * const table[] = {
1472 [BT_TYPE_BUSY] = "busy",
1473 [BT_TYPE_FREE] = "free",
1474 [BT_TYPE_SPAN] = "span",
1475 [BT_TYPE_SPAN_STATIC] = "static span",
1476 };
1477
1478 if (type >= __arraycount(table)) {
1479 return "BOGUS";
1480 }
1481 return table[type];
1482 }
1483
1484 static void
1485 bt_dump(const bt_t *bt, void (*pr)(const char *, ...))
1486 {
1487
1488 (*pr)("\t%p: %" PRIu64 ", %" PRIu64 ", %d(%s)\n",
1489 bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1490 bt->bt_type, bt_type_string(bt->bt_type));
1491 }
1492
1493 static void
1494 vmem_dump(const vmem_t *vm , void (*pr)(const char *, ...) __printflike(1, 2))
1495 {
1496 const bt_t *bt;
1497 int i;
1498
1499 (*pr)("vmem %p '%s'\n", vm, vm->vm_name);
1500 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1501 bt_dump(bt, pr);
1502 }
1503
1504 for (i = 0; i < VMEM_MAXORDER; i++) {
1505 const struct vmem_freelist *fl = &vm->vm_freelist[i];
1506
1507 if (LIST_EMPTY(fl)) {
1508 continue;
1509 }
1510
1511 (*pr)("freelist[%d]\n", i);
1512 LIST_FOREACH(bt, fl, bt_freelist) {
1513 bt_dump(bt, pr);
1514 }
1515 }
1516 }
1517
1518 #endif /* defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) */
1519
1520 #if defined(DDB)
1521 static bt_t *
1522 vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
1523 {
1524 bt_t *bt;
1525
1526 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1527 if (BT_ISSPAN_P(bt)) {
1528 continue;
1529 }
1530 if (bt->bt_start <= addr && addr <= BT_END(bt)) {
1531 return bt;
1532 }
1533 }
1534
1535 return NULL;
1536 }
1537
1538 void
1539 vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1540 {
1541 vmem_t *vm;
1542
1543 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1544 bt_t *bt;
1545
1546 bt = vmem_whatis_lookup(vm, addr);
1547 if (bt == NULL) {
1548 continue;
1549 }
1550 (*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1551 (void *)addr, (void *)bt->bt_start,
1552 (size_t)(addr - bt->bt_start), vm->vm_name,
1553 (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1554 }
1555 }
1556
1557 void
1558 vmem_printall(const char *modif, void (*pr)(const char *, ...))
1559 {
1560 const vmem_t *vm;
1561
1562 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1563 vmem_dump(vm, pr);
1564 }
1565 }
1566
1567 void
1568 vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...))
1569 {
1570 const vmem_t *vm = (const void *)addr;
1571
1572 vmem_dump(vm, pr);
1573 }
1574 #endif /* defined(DDB) */
1575
1576 #if defined(_KERNEL)
1577 #define vmem_printf printf
1578 #else
1579 #include <stdio.h>
1580 #include <stdarg.h>
1581
1582 static void
1583 vmem_printf(const char *fmt, ...)
1584 {
1585 va_list ap;
1586 va_start(ap, fmt);
1587 vprintf(fmt, ap);
1588 va_end(ap);
1589 }
1590 #endif
1591
1592 #if defined(VMEM_SANITY)
1593
1594 static bool
1595 vmem_check_sanity(vmem_t *vm)
1596 {
1597 const bt_t *bt, *bt2;
1598
1599 KASSERT(vm != NULL);
1600
1601 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1602 if (bt->bt_start > BT_END(bt)) {
1603 printf("corrupted tag\n");
1604 bt_dump(bt, vmem_printf);
1605 return false;
1606 }
1607 }
1608 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1609 TAILQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
1610 if (bt == bt2) {
1611 continue;
1612 }
1613 if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
1614 continue;
1615 }
1616 if (bt->bt_start <= BT_END(bt2) &&
1617 bt2->bt_start <= BT_END(bt)) {
1618 printf("overwrapped tags\n");
1619 bt_dump(bt, vmem_printf);
1620 bt_dump(bt2, vmem_printf);
1621 return false;
1622 }
1623 }
1624 }
1625
1626 return true;
1627 }
1628
1629 static void
1630 vmem_check(vmem_t *vm)
1631 {
1632
1633 if (!vmem_check_sanity(vm)) {
1634 panic("insanity vmem %p", vm);
1635 }
1636 }
1637
1638 #endif /* defined(VMEM_SANITY) */
1639
1640 #if defined(UNITTEST)
1641 int
1642 main(void)
1643 {
1644 int rc;
1645 vmem_t *vm;
1646 vmem_addr_t p;
1647 struct reg {
1648 vmem_addr_t p;
1649 vmem_size_t sz;
1650 bool x;
1651 } *reg = NULL;
1652 int nreg = 0;
1653 int nalloc = 0;
1654 int nfree = 0;
1655 vmem_size_t total = 0;
1656 #if 1
1657 vm_flag_t strat = VM_INSTANTFIT;
1658 #else
1659 vm_flag_t strat = VM_BESTFIT;
1660 #endif
1661
1662 vm = vmem_create("test", 0, 0, 1, NULL, NULL, NULL, 0, VM_SLEEP,
1663 #ifdef _KERNEL
1664 IPL_NONE
1665 #else
1666 0
1667 #endif
1668 );
1669 if (vm == NULL) {
1670 printf("vmem_create\n");
1671 exit(EXIT_FAILURE);
1672 }
1673 vmem_dump(vm, vmem_printf);
1674
1675 rc = vmem_add(vm, 0, 50, VM_SLEEP);
1676 assert(rc == 0);
1677 rc = vmem_add(vm, 100, 200, VM_SLEEP);
1678 assert(rc == 0);
1679 rc = vmem_add(vm, 2000, 1, VM_SLEEP);
1680 assert(rc == 0);
1681 rc = vmem_add(vm, 40000, 65536, VM_SLEEP);
1682 assert(rc == 0);
1683 rc = vmem_add(vm, 10000, 10000, VM_SLEEP);
1684 assert(rc == 0);
1685 rc = vmem_add(vm, 500, 1000, VM_SLEEP);
1686 assert(rc == 0);
1687 rc = vmem_add(vm, 0xffffff00, 0x100, VM_SLEEP);
1688 assert(rc == 0);
1689 rc = vmem_xalloc(vm, 0x101, 0, 0, 0,
1690 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1691 assert(rc != 0);
1692 rc = vmem_xalloc(vm, 50, 0, 0, 0, 0, 49, strat|VM_SLEEP, &p);
1693 assert(rc == 0 && p == 0);
1694 vmem_xfree(vm, p, 50);
1695 rc = vmem_xalloc(vm, 25, 0, 0, 0, 0, 24, strat|VM_SLEEP, &p);
1696 assert(rc == 0 && p == 0);
1697 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1698 0xffffff01, 0xffffffff, strat|VM_SLEEP, &p);
1699 assert(rc != 0);
1700 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1701 0xffffff00, 0xfffffffe, strat|VM_SLEEP, &p);
1702 assert(rc != 0);
1703 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1704 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1705 assert(rc == 0);
1706 vmem_dump(vm, vmem_printf);
1707 for (;;) {
1708 struct reg *r;
1709 int t = rand() % 100;
1710
1711 if (t > 45) {
1712 /* alloc */
1713 vmem_size_t sz = rand() % 500 + 1;
1714 bool x;
1715 vmem_size_t align, phase, nocross;
1716 vmem_addr_t minaddr, maxaddr;
1717
1718 if (t > 70) {
1719 x = true;
1720 /* XXX */
1721 align = 1 << (rand() % 15);
1722 phase = rand() % 65536;
1723 nocross = 1 << (rand() % 15);
1724 if (align <= phase) {
1725 phase = 0;
1726 }
1727 if (VMEM_CROSS_P(phase, phase + sz - 1,
1728 nocross)) {
1729 nocross = 0;
1730 }
1731 do {
1732 minaddr = rand() % 50000;
1733 maxaddr = rand() % 70000;
1734 } while (minaddr > maxaddr);
1735 printf("=== xalloc %" PRIu64
1736 " align=%" PRIu64 ", phase=%" PRIu64
1737 ", nocross=%" PRIu64 ", min=%" PRIu64
1738 ", max=%" PRIu64 "\n",
1739 (uint64_t)sz,
1740 (uint64_t)align,
1741 (uint64_t)phase,
1742 (uint64_t)nocross,
1743 (uint64_t)minaddr,
1744 (uint64_t)maxaddr);
1745 rc = vmem_xalloc(vm, sz, align, phase, nocross,
1746 minaddr, maxaddr, strat|VM_SLEEP, &p);
1747 } else {
1748 x = false;
1749 printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1750 rc = vmem_alloc(vm, sz, strat|VM_SLEEP, &p);
1751 }
1752 printf("-> %" PRIu64 "\n", (uint64_t)p);
1753 vmem_dump(vm, vmem_printf);
1754 if (rc != 0) {
1755 if (x) {
1756 continue;
1757 }
1758 break;
1759 }
1760 nreg++;
1761 reg = realloc(reg, sizeof(*reg) * nreg);
1762 r = ®[nreg - 1];
1763 r->p = p;
1764 r->sz = sz;
1765 r->x = x;
1766 total += sz;
1767 nalloc++;
1768 } else if (nreg != 0) {
1769 /* free */
1770 r = ®[rand() % nreg];
1771 printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1772 (uint64_t)r->p, (uint64_t)r->sz);
1773 if (r->x) {
1774 vmem_xfree(vm, r->p, r->sz);
1775 } else {
1776 vmem_free(vm, r->p, r->sz);
1777 }
1778 total -= r->sz;
1779 vmem_dump(vm, vmem_printf);
1780 *r = reg[nreg - 1];
1781 nreg--;
1782 nfree++;
1783 }
1784 printf("total=%" PRIu64 "\n", (uint64_t)total);
1785 }
1786 fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1787 (uint64_t)total, nalloc, nfree);
1788 exit(EXIT_SUCCESS);
1789 }
1790 #endif /* defined(UNITTEST) */
1791