Home | History | Annotate | Line # | Download | only in kern
subr_workqueue.c revision 1.37
      1  1.37   ozaki /*	$NetBSD: subr_workqueue.c,v 1.37 2018/06/13 05:26:12 ozaki-r Exp $	*/
      2   1.1    yamt 
      3   1.1    yamt /*-
      4  1.20    yamt  * Copyright (c)2002, 2005, 2006, 2007 YAMAMOTO Takashi,
      5   1.1    yamt  * All rights reserved.
      6   1.1    yamt  *
      7   1.1    yamt  * Redistribution and use in source and binary forms, with or without
      8   1.1    yamt  * modification, are permitted provided that the following conditions
      9   1.1    yamt  * are met:
     10   1.1    yamt  * 1. Redistributions of source code must retain the above copyright
     11   1.1    yamt  *    notice, this list of conditions and the following disclaimer.
     12   1.1    yamt  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1    yamt  *    notice, this list of conditions and the following disclaimer in the
     14   1.1    yamt  *    documentation and/or other materials provided with the distribution.
     15   1.1    yamt  *
     16   1.1    yamt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17   1.1    yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18   1.1    yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19   1.1    yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20   1.1    yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21   1.1    yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22   1.1    yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23   1.1    yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24   1.1    yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25   1.1    yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26   1.1    yamt  * SUCH DAMAGE.
     27   1.1    yamt  */
     28   1.1    yamt 
     29   1.1    yamt #include <sys/cdefs.h>
     30  1.37   ozaki __KERNEL_RCSID(0, "$NetBSD: subr_workqueue.c,v 1.37 2018/06/13 05:26:12 ozaki-r Exp $");
     31   1.1    yamt 
     32   1.1    yamt #include <sys/param.h>
     33  1.18   rmind #include <sys/cpu.h>
     34   1.1    yamt #include <sys/systm.h>
     35   1.1    yamt #include <sys/kthread.h>
     36   1.4    yamt #include <sys/kmem.h>
     37   1.1    yamt #include <sys/proc.h>
     38   1.1    yamt #include <sys/workqueue.h>
     39   1.9      ad #include <sys/mutex.h>
     40   1.9      ad #include <sys/condvar.h>
     41  1.17    yamt #include <sys/queue.h>
     42   1.1    yamt 
     43  1.17    yamt typedef struct work_impl {
     44  1.17    yamt 	SIMPLEQ_ENTRY(work_impl) wk_entry;
     45  1.17    yamt } work_impl_t;
     46  1.17    yamt 
     47  1.17    yamt SIMPLEQ_HEAD(workqhead, work_impl);
     48   1.1    yamt 
     49   1.1    yamt struct workqueue_queue {
     50   1.9      ad 	kmutex_t q_mutex;
     51   1.9      ad 	kcondvar_t q_cv;
     52  1.34   ozaki 	struct workqhead q_queue_pending;
     53  1.34   ozaki 	struct workqhead q_queue_running;
     54  1.28    yamt 	lwp_t *q_worker;
     55  1.34   ozaki 	work_impl_t *q_waiter;
     56   1.1    yamt };
     57   1.1    yamt 
     58   1.1    yamt struct workqueue {
     59   1.1    yamt 	void (*wq_func)(struct work *, void *);
     60   1.1    yamt 	void *wq_arg;
     61  1.20    yamt 	int wq_flags;
     62  1.20    yamt 
     63  1.32     jym 	char wq_name[MAXCOMLEN];
     64  1.12    yamt 	pri_t wq_prio;
     65  1.18   rmind 	void *wq_ptr;
     66   1.1    yamt };
     67   1.1    yamt 
     68  1.24      ad #define	WQ_SIZE		(roundup2(sizeof(struct workqueue), coherency_unit))
     69  1.24      ad #define	WQ_QUEUE_SIZE	(roundup2(sizeof(struct workqueue_queue), coherency_unit))
     70  1.18   rmind 
     71   1.1    yamt #define	POISON	0xaabbccdd
     72   1.1    yamt 
     73  1.20    yamt static size_t
     74  1.20    yamt workqueue_size(int flags)
     75  1.20    yamt {
     76  1.20    yamt 
     77  1.20    yamt 	return WQ_SIZE
     78  1.20    yamt 	    + ((flags & WQ_PERCPU) != 0 ? ncpu : 1) * WQ_QUEUE_SIZE
     79  1.24      ad 	    + coherency_unit;
     80  1.20    yamt }
     81  1.20    yamt 
     82  1.14   rmind static struct workqueue_queue *
     83  1.14   rmind workqueue_queue_lookup(struct workqueue *wq, struct cpu_info *ci)
     84  1.14   rmind {
     85  1.18   rmind 	u_int idx = 0;
     86  1.14   rmind 
     87  1.18   rmind 	if (wq->wq_flags & WQ_PERCPU) {
     88  1.18   rmind 		idx = ci ? cpu_index(ci) : cpu_index(curcpu());
     89  1.18   rmind 	}
     90  1.14   rmind 
     91  1.26   rmind 	return (void *)((uintptr_t)(wq) + WQ_SIZE + (idx * WQ_QUEUE_SIZE));
     92  1.14   rmind }
     93  1.14   rmind 
     94   1.1    yamt static void
     95   1.1    yamt workqueue_runlist(struct workqueue *wq, struct workqhead *list)
     96   1.1    yamt {
     97  1.17    yamt 	work_impl_t *wk;
     98  1.17    yamt 	work_impl_t *next;
     99   1.1    yamt 
    100   1.1    yamt 	/*
    101   1.1    yamt 	 * note that "list" is not a complete SIMPLEQ.
    102   1.1    yamt 	 */
    103   1.1    yamt 
    104   1.1    yamt 	for (wk = SIMPLEQ_FIRST(list); wk != NULL; wk = next) {
    105   1.1    yamt 		next = SIMPLEQ_NEXT(wk, wk_entry);
    106  1.17    yamt 		(*wq->wq_func)((void *)wk, wq->wq_arg);
    107   1.1    yamt 	}
    108   1.1    yamt }
    109   1.1    yamt 
    110   1.1    yamt static void
    111  1.21    yamt workqueue_worker(void *cookie)
    112   1.1    yamt {
    113  1.21    yamt 	struct workqueue *wq = cookie;
    114  1.14   rmind 	struct workqueue_queue *q;
    115  1.14   rmind 
    116  1.14   rmind 	/* find the workqueue of this kthread */
    117  1.14   rmind 	q = workqueue_queue_lookup(wq, curlwp->l_cpu);
    118  1.14   rmind 
    119   1.3  rpaulo 	for (;;) {
    120   1.1    yamt 		/*
    121   1.1    yamt 		 * we violate abstraction of SIMPLEQ.
    122   1.1    yamt 		 */
    123   1.1    yamt 
    124   1.9      ad 		mutex_enter(&q->q_mutex);
    125  1.34   ozaki 		while (SIMPLEQ_EMPTY(&q->q_queue_pending))
    126   1.9      ad 			cv_wait(&q->q_cv, &q->q_mutex);
    127  1.34   ozaki 		KASSERT(SIMPLEQ_EMPTY(&q->q_queue_running));
    128  1.34   ozaki 		q->q_queue_running.sqh_first =
    129  1.34   ozaki 		    q->q_queue_pending.sqh_first; /* XXX */
    130  1.34   ozaki 		SIMPLEQ_INIT(&q->q_queue_pending);
    131   1.9      ad 		mutex_exit(&q->q_mutex);
    132   1.1    yamt 
    133  1.34   ozaki 		workqueue_runlist(wq, &q->q_queue_running);
    134  1.34   ozaki 
    135  1.34   ozaki 		mutex_enter(&q->q_mutex);
    136  1.34   ozaki 		KASSERT(!SIMPLEQ_EMPTY(&q->q_queue_running));
    137  1.34   ozaki 		SIMPLEQ_INIT(&q->q_queue_running);
    138  1.34   ozaki 		if (__predict_false(q->q_waiter != NULL)) {
    139  1.34   ozaki 			/* Wake up workqueue_wait */
    140  1.34   ozaki 			cv_signal(&q->q_cv);
    141  1.34   ozaki 		}
    142  1.34   ozaki 		mutex_exit(&q->q_mutex);
    143   1.1    yamt 	}
    144   1.1    yamt }
    145   1.1    yamt 
    146   1.1    yamt static void
    147   1.1    yamt workqueue_init(struct workqueue *wq, const char *name,
    148   1.1    yamt     void (*callback_func)(struct work *, void *), void *callback_arg,
    149  1.12    yamt     pri_t prio, int ipl)
    150   1.1    yamt {
    151   1.1    yamt 
    152  1.36   ozaki 	KASSERT(sizeof(wq->wq_name) > strlen(name));
    153  1.32     jym 	strncpy(wq->wq_name, name, sizeof(wq->wq_name));
    154  1.32     jym 
    155   1.1    yamt 	wq->wq_prio = prio;
    156   1.1    yamt 	wq->wq_func = callback_func;
    157   1.1    yamt 	wq->wq_arg = callback_arg;
    158   1.1    yamt }
    159   1.1    yamt 
    160   1.1    yamt static int
    161  1.18   rmind workqueue_initqueue(struct workqueue *wq, struct workqueue_queue *q,
    162  1.18   rmind     int ipl, struct cpu_info *ci)
    163   1.1    yamt {
    164  1.13      ad 	int error, ktf;
    165  1.14   rmind 
    166  1.20    yamt 	KASSERT(q->q_worker == NULL);
    167  1.20    yamt 
    168  1.22      ad 	mutex_init(&q->q_mutex, MUTEX_DEFAULT, ipl);
    169   1.9      ad 	cv_init(&q->q_cv, wq->wq_name);
    170  1.34   ozaki 	SIMPLEQ_INIT(&q->q_queue_pending);
    171  1.34   ozaki 	SIMPLEQ_INIT(&q->q_queue_running);
    172  1.18   rmind 	ktf = ((wq->wq_flags & WQ_MPSAFE) != 0 ? KTHREAD_MPSAFE : 0);
    173  1.33    matt 	if (wq->wq_prio < PRI_KERNEL)
    174  1.33    matt 		ktf |= KTHREAD_TS;
    175  1.18   rmind 	if (ci) {
    176  1.18   rmind 		error = kthread_create(wq->wq_prio, ktf, ci, workqueue_worker,
    177  1.23  martin 		    wq, &q->q_worker, "%s/%u", wq->wq_name, ci->ci_index);
    178  1.18   rmind 	} else {
    179  1.18   rmind 		error = kthread_create(wq->wq_prio, ktf, ci, workqueue_worker,
    180  1.18   rmind 		    wq, &q->q_worker, "%s", wq->wq_name);
    181  1.18   rmind 	}
    182  1.20    yamt 	if (error != 0) {
    183  1.20    yamt 		mutex_destroy(&q->q_mutex);
    184  1.20    yamt 		cv_destroy(&q->q_cv);
    185  1.20    yamt 		KASSERT(q->q_worker == NULL);
    186  1.20    yamt 	}
    187   1.1    yamt 	return error;
    188   1.1    yamt }
    189   1.1    yamt 
    190   1.5    yamt struct workqueue_exitargs {
    191  1.17    yamt 	work_impl_t wqe_wk;
    192   1.5    yamt 	struct workqueue_queue *wqe_q;
    193   1.5    yamt };
    194   1.5    yamt 
    195   1.5    yamt static void
    196   1.7    yamt workqueue_exit(struct work *wk, void *arg)
    197   1.5    yamt {
    198   1.5    yamt 	struct workqueue_exitargs *wqe = (void *)wk;
    199   1.5    yamt 	struct workqueue_queue *q = wqe->wqe_q;
    200   1.5    yamt 
    201   1.5    yamt 	/*
    202  1.11    yamt 	 * only competition at this point is workqueue_finiqueue.
    203   1.5    yamt 	 */
    204   1.5    yamt 
    205  1.13      ad 	KASSERT(q->q_worker == curlwp);
    206  1.34   ozaki 	KASSERT(SIMPLEQ_EMPTY(&q->q_queue_pending));
    207   1.9      ad 	mutex_enter(&q->q_mutex);
    208   1.5    yamt 	q->q_worker = NULL;
    209  1.10    yamt 	cv_signal(&q->q_cv);
    210   1.9      ad 	mutex_exit(&q->q_mutex);
    211   1.5    yamt 	kthread_exit(0);
    212   1.5    yamt }
    213   1.5    yamt 
    214   1.5    yamt static void
    215  1.14   rmind workqueue_finiqueue(struct workqueue *wq, struct workqueue_queue *q)
    216   1.5    yamt {
    217   1.5    yamt 	struct workqueue_exitargs wqe;
    218   1.5    yamt 
    219  1.20    yamt 	KASSERT(wq->wq_func == workqueue_exit);
    220   1.5    yamt 
    221   1.5    yamt 	wqe.wqe_q = q;
    222  1.34   ozaki 	KASSERT(SIMPLEQ_EMPTY(&q->q_queue_pending));
    223   1.5    yamt 	KASSERT(q->q_worker != NULL);
    224   1.9      ad 	mutex_enter(&q->q_mutex);
    225  1.34   ozaki 	SIMPLEQ_INSERT_TAIL(&q->q_queue_pending, &wqe.wqe_wk, wk_entry);
    226  1.10    yamt 	cv_signal(&q->q_cv);
    227   1.5    yamt 	while (q->q_worker != NULL) {
    228   1.9      ad 		cv_wait(&q->q_cv, &q->q_mutex);
    229   1.5    yamt 	}
    230   1.9      ad 	mutex_exit(&q->q_mutex);
    231   1.9      ad 	mutex_destroy(&q->q_mutex);
    232   1.9      ad 	cv_destroy(&q->q_cv);
    233   1.5    yamt }
    234   1.5    yamt 
    235   1.1    yamt /* --- */
    236   1.1    yamt 
    237   1.1    yamt int
    238   1.1    yamt workqueue_create(struct workqueue **wqp, const char *name,
    239   1.1    yamt     void (*callback_func)(struct work *, void *), void *callback_arg,
    240  1.12    yamt     pri_t prio, int ipl, int flags)
    241   1.1    yamt {
    242   1.1    yamt 	struct workqueue *wq;
    243  1.18   rmind 	struct workqueue_queue *q;
    244  1.18   rmind 	void *ptr;
    245  1.20    yamt 	int error = 0;
    246   1.1    yamt 
    247  1.25    matt 	CTASSERT(sizeof(work_impl_t) <= sizeof(struct work));
    248  1.17    yamt 
    249  1.20    yamt 	ptr = kmem_zalloc(workqueue_size(flags), KM_SLEEP);
    250  1.26   rmind 	wq = (void *)roundup2((uintptr_t)ptr, coherency_unit);
    251  1.18   rmind 	wq->wq_ptr = ptr;
    252  1.18   rmind 	wq->wq_flags = flags;
    253   1.1    yamt 
    254   1.1    yamt 	workqueue_init(wq, name, callback_func, callback_arg, prio, ipl);
    255   1.1    yamt 
    256  1.14   rmind 	if (flags & WQ_PERCPU) {
    257  1.14   rmind 		struct cpu_info *ci;
    258  1.14   rmind 		CPU_INFO_ITERATOR cii;
    259  1.14   rmind 
    260  1.14   rmind 		/* create the work-queue for each CPU */
    261  1.14   rmind 		for (CPU_INFO_FOREACH(cii, ci)) {
    262  1.20    yamt 			q = workqueue_queue_lookup(wq, ci);
    263  1.18   rmind 			error = workqueue_initqueue(wq, q, ipl, ci);
    264  1.18   rmind 			if (error) {
    265  1.14   rmind 				break;
    266  1.18   rmind 			}
    267  1.14   rmind 		}
    268  1.14   rmind 	} else {
    269  1.18   rmind 		/* initialize a work-queue */
    270  1.20    yamt 		q = workqueue_queue_lookup(wq, NULL);
    271  1.18   rmind 		error = workqueue_initqueue(wq, q, ipl, NULL);
    272   1.1    yamt 	}
    273  1.18   rmind 
    274  1.20    yamt 	if (error != 0) {
    275  1.20    yamt 		workqueue_destroy(wq);
    276  1.20    yamt 	} else {
    277  1.20    yamt 		*wqp = wq;
    278  1.15   rmind 	}
    279   1.1    yamt 
    280  1.20    yamt 	return error;
    281   1.1    yamt }
    282   1.1    yamt 
    283  1.34   ozaki static bool
    284  1.34   ozaki workqueue_q_wait(struct workqueue_queue *q, work_impl_t *wk_target)
    285  1.34   ozaki {
    286  1.34   ozaki 	work_impl_t *wk;
    287  1.34   ozaki 	bool found = false;
    288  1.34   ozaki 
    289  1.34   ozaki 	mutex_enter(&q->q_mutex);
    290  1.37   ozaki 	if (q->q_worker == curlwp)
    291  1.37   ozaki 		goto out;
    292  1.34   ozaki     again:
    293  1.34   ozaki 	SIMPLEQ_FOREACH(wk, &q->q_queue_pending, wk_entry) {
    294  1.34   ozaki 		if (wk == wk_target)
    295  1.34   ozaki 			goto found;
    296  1.34   ozaki 	}
    297  1.34   ozaki 	SIMPLEQ_FOREACH(wk, &q->q_queue_running, wk_entry) {
    298  1.34   ozaki 		if (wk == wk_target)
    299  1.34   ozaki 			goto found;
    300  1.34   ozaki 	}
    301  1.34   ozaki     found:
    302  1.34   ozaki 	if (wk != NULL) {
    303  1.34   ozaki 		found = true;
    304  1.34   ozaki 		KASSERT(q->q_waiter == NULL);
    305  1.34   ozaki 		q->q_waiter = wk;
    306  1.34   ozaki 		cv_wait(&q->q_cv, &q->q_mutex);
    307  1.34   ozaki 		goto again;
    308  1.34   ozaki 	}
    309  1.34   ozaki 	if (q->q_waiter != NULL)
    310  1.34   ozaki 		q->q_waiter = NULL;
    311  1.37   ozaki     out:
    312  1.34   ozaki 	mutex_exit(&q->q_mutex);
    313  1.34   ozaki 
    314  1.34   ozaki 	return found;
    315  1.34   ozaki }
    316  1.34   ozaki 
    317  1.34   ozaki /*
    318  1.34   ozaki  * Wait for a specified work to finish.  The caller must ensure that no new
    319  1.34   ozaki  * work will be enqueued before calling workqueue_wait.  Note that if the
    320  1.34   ozaki  * workqueue is WQ_PERCPU, the caller can enqueue a new work to another queue
    321  1.34   ozaki  * other than the waiting queue.
    322  1.34   ozaki  */
    323  1.34   ozaki void
    324  1.34   ozaki workqueue_wait(struct workqueue *wq, struct work *wk)
    325  1.34   ozaki {
    326  1.34   ozaki 	struct workqueue_queue *q;
    327  1.34   ozaki 	bool found;
    328  1.34   ozaki 
    329  1.34   ozaki 	if (ISSET(wq->wq_flags, WQ_PERCPU)) {
    330  1.34   ozaki 		struct cpu_info *ci;
    331  1.34   ozaki 		CPU_INFO_ITERATOR cii;
    332  1.34   ozaki 		for (CPU_INFO_FOREACH(cii, ci)) {
    333  1.34   ozaki 			q = workqueue_queue_lookup(wq, ci);
    334  1.34   ozaki 			found = workqueue_q_wait(q, (work_impl_t *)wk);
    335  1.34   ozaki 			if (found)
    336  1.34   ozaki 				break;
    337  1.34   ozaki 		}
    338  1.34   ozaki 	} else {
    339  1.34   ozaki 		q = workqueue_queue_lookup(wq, NULL);
    340  1.34   ozaki 		(void) workqueue_q_wait(q, (work_impl_t *)wk);
    341  1.34   ozaki 	}
    342  1.34   ozaki }
    343  1.34   ozaki 
    344   1.1    yamt void
    345   1.5    yamt workqueue_destroy(struct workqueue *wq)
    346   1.5    yamt {
    347  1.14   rmind 	struct workqueue_queue *q;
    348  1.20    yamt 	struct cpu_info *ci;
    349  1.20    yamt 	CPU_INFO_ITERATOR cii;
    350   1.5    yamt 
    351  1.20    yamt 	wq->wq_func = workqueue_exit;
    352  1.20    yamt 	for (CPU_INFO_FOREACH(cii, ci)) {
    353  1.20    yamt 		q = workqueue_queue_lookup(wq, ci);
    354  1.20    yamt 		if (q->q_worker != NULL) {
    355  1.18   rmind 			workqueue_finiqueue(wq, q);
    356  1.18   rmind 		}
    357  1.14   rmind 	}
    358  1.20    yamt 	kmem_free(wq->wq_ptr, workqueue_size(wq->wq_flags));
    359   1.5    yamt }
    360   1.5    yamt 
    361  1.35   ozaki #ifdef DEBUG
    362  1.35   ozaki static void
    363  1.35   ozaki workqueue_check_duplication(struct workqueue_queue *q, work_impl_t *wk)
    364  1.35   ozaki {
    365  1.35   ozaki 	work_impl_t *_wk;
    366  1.35   ozaki 
    367  1.35   ozaki 	SIMPLEQ_FOREACH(_wk, &q->q_queue_pending, wk_entry) {
    368  1.35   ozaki 		if (_wk == wk)
    369  1.35   ozaki 			panic("%s: tried to enqueue a queued work", __func__);
    370  1.35   ozaki 	}
    371  1.35   ozaki }
    372  1.35   ozaki #endif
    373  1.35   ozaki 
    374   1.5    yamt void
    375  1.17    yamt workqueue_enqueue(struct workqueue *wq, struct work *wk0, struct cpu_info *ci)
    376   1.1    yamt {
    377  1.14   rmind 	struct workqueue_queue *q;
    378  1.17    yamt 	work_impl_t *wk = (void *)wk0;
    379  1.14   rmind 
    380  1.18   rmind 	KASSERT(wq->wq_flags & WQ_PERCPU || ci == NULL);
    381  1.14   rmind 	q = workqueue_queue_lookup(wq, ci);
    382   1.1    yamt 
    383   1.9      ad 	mutex_enter(&q->q_mutex);
    384  1.34   ozaki 	KASSERT(q->q_waiter == NULL);
    385  1.35   ozaki #ifdef DEBUG
    386  1.35   ozaki 	workqueue_check_duplication(q, wk);
    387  1.35   ozaki #endif
    388  1.34   ozaki 	SIMPLEQ_INSERT_TAIL(&q->q_queue_pending, wk, wk_entry);
    389  1.13      ad 	cv_signal(&q->q_cv);
    390   1.9      ad 	mutex_exit(&q->q_mutex);
    391   1.1    yamt }
    392