subr_workqueue.c revision 1.37.6.1 1 1.37.6.1 martin /* $NetBSD: subr_workqueue.c,v 1.37.6.1 2024/04/18 15:51:35 martin Exp $ */
2 1.1 yamt
3 1.1 yamt /*-
4 1.20 yamt * Copyright (c)2002, 2005, 2006, 2007 YAMAMOTO Takashi,
5 1.1 yamt * All rights reserved.
6 1.1 yamt *
7 1.1 yamt * Redistribution and use in source and binary forms, with or without
8 1.1 yamt * modification, are permitted provided that the following conditions
9 1.1 yamt * are met:
10 1.1 yamt * 1. Redistributions of source code must retain the above copyright
11 1.1 yamt * notice, this list of conditions and the following disclaimer.
12 1.1 yamt * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 yamt * notice, this list of conditions and the following disclaimer in the
14 1.1 yamt * documentation and/or other materials provided with the distribution.
15 1.1 yamt *
16 1.1 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.1 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.1 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.1 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.1 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.1 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.1 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.1 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.1 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 yamt * SUCH DAMAGE.
27 1.1 yamt */
28 1.1 yamt
29 1.1 yamt #include <sys/cdefs.h>
30 1.37.6.1 martin __KERNEL_RCSID(0, "$NetBSD: subr_workqueue.c,v 1.37.6.1 2024/04/18 15:51:35 martin Exp $");
31 1.1 yamt
32 1.1 yamt #include <sys/param.h>
33 1.37.6.1 martin
34 1.37.6.1 martin #include <sys/condvar.h>
35 1.18 rmind #include <sys/cpu.h>
36 1.4 yamt #include <sys/kmem.h>
37 1.37.6.1 martin #include <sys/kthread.h>
38 1.9 ad #include <sys/mutex.h>
39 1.37.6.1 martin #include <sys/proc.h>
40 1.17 yamt #include <sys/queue.h>
41 1.37.6.1 martin #include <sys/sdt.h>
42 1.37.6.1 martin #include <sys/systm.h>
43 1.37.6.1 martin #include <sys/workqueue.h>
44 1.1 yamt
45 1.17 yamt typedef struct work_impl {
46 1.17 yamt SIMPLEQ_ENTRY(work_impl) wk_entry;
47 1.17 yamt } work_impl_t;
48 1.17 yamt
49 1.17 yamt SIMPLEQ_HEAD(workqhead, work_impl);
50 1.1 yamt
51 1.1 yamt struct workqueue_queue {
52 1.9 ad kmutex_t q_mutex;
53 1.9 ad kcondvar_t q_cv;
54 1.34 ozaki struct workqhead q_queue_pending;
55 1.37.6.1 martin uint64_t q_gen;
56 1.28 yamt lwp_t *q_worker;
57 1.1 yamt };
58 1.1 yamt
59 1.1 yamt struct workqueue {
60 1.1 yamt void (*wq_func)(struct work *, void *);
61 1.1 yamt void *wq_arg;
62 1.20 yamt int wq_flags;
63 1.20 yamt
64 1.32 jym char wq_name[MAXCOMLEN];
65 1.12 yamt pri_t wq_prio;
66 1.18 rmind void *wq_ptr;
67 1.1 yamt };
68 1.1 yamt
69 1.24 ad #define WQ_SIZE (roundup2(sizeof(struct workqueue), coherency_unit))
70 1.24 ad #define WQ_QUEUE_SIZE (roundup2(sizeof(struct workqueue_queue), coherency_unit))
71 1.18 rmind
72 1.1 yamt #define POISON 0xaabbccdd
73 1.1 yamt
74 1.37.6.1 martin SDT_PROBE_DEFINE7(sdt, kernel, workqueue, create,
75 1.37.6.1 martin "struct workqueue *"/*wq*/,
76 1.37.6.1 martin "const char *"/*name*/,
77 1.37.6.1 martin "void (*)(struct work *, void *)"/*func*/,
78 1.37.6.1 martin "void *"/*arg*/,
79 1.37.6.1 martin "pri_t"/*prio*/,
80 1.37.6.1 martin "int"/*ipl*/,
81 1.37.6.1 martin "int"/*flags*/);
82 1.37.6.1 martin SDT_PROBE_DEFINE1(sdt, kernel, workqueue, destroy,
83 1.37.6.1 martin "struct workqueue *"/*wq*/);
84 1.37.6.1 martin
85 1.37.6.1 martin SDT_PROBE_DEFINE3(sdt, kernel, workqueue, enqueue,
86 1.37.6.1 martin "struct workqueue *"/*wq*/,
87 1.37.6.1 martin "struct work *"/*wk*/,
88 1.37.6.1 martin "struct cpu_info *"/*ci*/);
89 1.37.6.1 martin SDT_PROBE_DEFINE4(sdt, kernel, workqueue, entry,
90 1.37.6.1 martin "struct workqueue *"/*wq*/,
91 1.37.6.1 martin "struct work *"/*wk*/,
92 1.37.6.1 martin "void (*)(struct work *, void *)"/*func*/,
93 1.37.6.1 martin "void *"/*arg*/);
94 1.37.6.1 martin SDT_PROBE_DEFINE4(sdt, kernel, workqueue, return,
95 1.37.6.1 martin "struct workqueue *"/*wq*/,
96 1.37.6.1 martin "struct work *"/*wk*/,
97 1.37.6.1 martin "void (*)(struct work *, void *)"/*func*/,
98 1.37.6.1 martin "void *"/*arg*/);
99 1.37.6.1 martin SDT_PROBE_DEFINE2(sdt, kernel, workqueue, wait__start,
100 1.37.6.1 martin "struct workqueue *"/*wq*/,
101 1.37.6.1 martin "struct work *"/*wk*/);
102 1.37.6.1 martin SDT_PROBE_DEFINE2(sdt, kernel, workqueue, wait__self,
103 1.37.6.1 martin "struct workqueue *"/*wq*/,
104 1.37.6.1 martin "struct work *"/*wk*/);
105 1.37.6.1 martin SDT_PROBE_DEFINE2(sdt, kernel, workqueue, wait__hit,
106 1.37.6.1 martin "struct workqueue *"/*wq*/,
107 1.37.6.1 martin "struct work *"/*wk*/);
108 1.37.6.1 martin SDT_PROBE_DEFINE2(sdt, kernel, workqueue, wait__done,
109 1.37.6.1 martin "struct workqueue *"/*wq*/,
110 1.37.6.1 martin "struct work *"/*wk*/);
111 1.37.6.1 martin
112 1.37.6.1 martin SDT_PROBE_DEFINE1(sdt, kernel, workqueue, exit__start,
113 1.37.6.1 martin "struct workqueue *"/*wq*/);
114 1.37.6.1 martin SDT_PROBE_DEFINE1(sdt, kernel, workqueue, exit__done,
115 1.37.6.1 martin "struct workqueue *"/*wq*/);
116 1.37.6.1 martin
117 1.20 yamt static size_t
118 1.20 yamt workqueue_size(int flags)
119 1.20 yamt {
120 1.20 yamt
121 1.20 yamt return WQ_SIZE
122 1.20 yamt + ((flags & WQ_PERCPU) != 0 ? ncpu : 1) * WQ_QUEUE_SIZE
123 1.24 ad + coherency_unit;
124 1.20 yamt }
125 1.20 yamt
126 1.14 rmind static struct workqueue_queue *
127 1.14 rmind workqueue_queue_lookup(struct workqueue *wq, struct cpu_info *ci)
128 1.14 rmind {
129 1.18 rmind u_int idx = 0;
130 1.14 rmind
131 1.18 rmind if (wq->wq_flags & WQ_PERCPU) {
132 1.18 rmind idx = ci ? cpu_index(ci) : cpu_index(curcpu());
133 1.18 rmind }
134 1.14 rmind
135 1.26 rmind return (void *)((uintptr_t)(wq) + WQ_SIZE + (idx * WQ_QUEUE_SIZE));
136 1.14 rmind }
137 1.14 rmind
138 1.1 yamt static void
139 1.1 yamt workqueue_runlist(struct workqueue *wq, struct workqhead *list)
140 1.1 yamt {
141 1.17 yamt work_impl_t *wk;
142 1.17 yamt work_impl_t *next;
143 1.1 yamt
144 1.1 yamt for (wk = SIMPLEQ_FIRST(list); wk != NULL; wk = next) {
145 1.1 yamt next = SIMPLEQ_NEXT(wk, wk_entry);
146 1.37.6.1 martin SDT_PROBE4(sdt, kernel, workqueue, entry,
147 1.37.6.1 martin wq, wk, wq->wq_func, wq->wq_arg);
148 1.17 yamt (*wq->wq_func)((void *)wk, wq->wq_arg);
149 1.37.6.1 martin SDT_PROBE4(sdt, kernel, workqueue, return,
150 1.37.6.1 martin wq, wk, wq->wq_func, wq->wq_arg);
151 1.1 yamt }
152 1.1 yamt }
153 1.1 yamt
154 1.1 yamt static void
155 1.21 yamt workqueue_worker(void *cookie)
156 1.1 yamt {
157 1.21 yamt struct workqueue *wq = cookie;
158 1.14 rmind struct workqueue_queue *q;
159 1.14 rmind
160 1.14 rmind /* find the workqueue of this kthread */
161 1.14 rmind q = workqueue_queue_lookup(wq, curlwp->l_cpu);
162 1.14 rmind
163 1.37.6.1 martin mutex_enter(&q->q_mutex);
164 1.3 rpaulo for (;;) {
165 1.37.6.1 martin struct workqhead tmp;
166 1.37.6.1 martin
167 1.37.6.1 martin SIMPLEQ_INIT(&tmp);
168 1.1 yamt
169 1.34 ozaki while (SIMPLEQ_EMPTY(&q->q_queue_pending))
170 1.9 ad cv_wait(&q->q_cv, &q->q_mutex);
171 1.37.6.1 martin SIMPLEQ_CONCAT(&tmp, &q->q_queue_pending);
172 1.34 ozaki SIMPLEQ_INIT(&q->q_queue_pending);
173 1.37.6.1 martin
174 1.37.6.1 martin /*
175 1.37.6.1 martin * Mark the queue as actively running a batch of work
176 1.37.6.1 martin * by setting the generation number odd.
177 1.37.6.1 martin */
178 1.37.6.1 martin q->q_gen |= 1;
179 1.9 ad mutex_exit(&q->q_mutex);
180 1.1 yamt
181 1.37.6.1 martin workqueue_runlist(wq, &tmp);
182 1.34 ozaki
183 1.37.6.1 martin /*
184 1.37.6.1 martin * Notify workqueue_wait that we have completed a batch
185 1.37.6.1 martin * of work by incrementing the generation number.
186 1.37.6.1 martin */
187 1.34 ozaki mutex_enter(&q->q_mutex);
188 1.37.6.1 martin KASSERTMSG(q->q_gen & 1, "q=%p gen=%"PRIu64, q, q->q_gen);
189 1.37.6.1 martin q->q_gen++;
190 1.37.6.1 martin cv_broadcast(&q->q_cv);
191 1.1 yamt }
192 1.37.6.1 martin mutex_exit(&q->q_mutex);
193 1.1 yamt }
194 1.1 yamt
195 1.1 yamt static void
196 1.1 yamt workqueue_init(struct workqueue *wq, const char *name,
197 1.1 yamt void (*callback_func)(struct work *, void *), void *callback_arg,
198 1.12 yamt pri_t prio, int ipl)
199 1.1 yamt {
200 1.1 yamt
201 1.36 ozaki KASSERT(sizeof(wq->wq_name) > strlen(name));
202 1.32 jym strncpy(wq->wq_name, name, sizeof(wq->wq_name));
203 1.32 jym
204 1.1 yamt wq->wq_prio = prio;
205 1.1 yamt wq->wq_func = callback_func;
206 1.1 yamt wq->wq_arg = callback_arg;
207 1.1 yamt }
208 1.1 yamt
209 1.1 yamt static int
210 1.18 rmind workqueue_initqueue(struct workqueue *wq, struct workqueue_queue *q,
211 1.18 rmind int ipl, struct cpu_info *ci)
212 1.1 yamt {
213 1.13 ad int error, ktf;
214 1.14 rmind
215 1.20 yamt KASSERT(q->q_worker == NULL);
216 1.20 yamt
217 1.22 ad mutex_init(&q->q_mutex, MUTEX_DEFAULT, ipl);
218 1.9 ad cv_init(&q->q_cv, wq->wq_name);
219 1.34 ozaki SIMPLEQ_INIT(&q->q_queue_pending);
220 1.37.6.1 martin q->q_gen = 0;
221 1.18 rmind ktf = ((wq->wq_flags & WQ_MPSAFE) != 0 ? KTHREAD_MPSAFE : 0);
222 1.33 matt if (wq->wq_prio < PRI_KERNEL)
223 1.33 matt ktf |= KTHREAD_TS;
224 1.18 rmind if (ci) {
225 1.18 rmind error = kthread_create(wq->wq_prio, ktf, ci, workqueue_worker,
226 1.23 martin wq, &q->q_worker, "%s/%u", wq->wq_name, ci->ci_index);
227 1.18 rmind } else {
228 1.18 rmind error = kthread_create(wq->wq_prio, ktf, ci, workqueue_worker,
229 1.18 rmind wq, &q->q_worker, "%s", wq->wq_name);
230 1.18 rmind }
231 1.20 yamt if (error != 0) {
232 1.20 yamt mutex_destroy(&q->q_mutex);
233 1.20 yamt cv_destroy(&q->q_cv);
234 1.20 yamt KASSERT(q->q_worker == NULL);
235 1.20 yamt }
236 1.1 yamt return error;
237 1.1 yamt }
238 1.1 yamt
239 1.5 yamt struct workqueue_exitargs {
240 1.17 yamt work_impl_t wqe_wk;
241 1.5 yamt struct workqueue_queue *wqe_q;
242 1.5 yamt };
243 1.5 yamt
244 1.5 yamt static void
245 1.7 yamt workqueue_exit(struct work *wk, void *arg)
246 1.5 yamt {
247 1.5 yamt struct workqueue_exitargs *wqe = (void *)wk;
248 1.5 yamt struct workqueue_queue *q = wqe->wqe_q;
249 1.5 yamt
250 1.5 yamt /*
251 1.11 yamt * only competition at this point is workqueue_finiqueue.
252 1.5 yamt */
253 1.5 yamt
254 1.13 ad KASSERT(q->q_worker == curlwp);
255 1.34 ozaki KASSERT(SIMPLEQ_EMPTY(&q->q_queue_pending));
256 1.9 ad mutex_enter(&q->q_mutex);
257 1.5 yamt q->q_worker = NULL;
258 1.37.6.1 martin cv_broadcast(&q->q_cv);
259 1.9 ad mutex_exit(&q->q_mutex);
260 1.5 yamt kthread_exit(0);
261 1.5 yamt }
262 1.5 yamt
263 1.5 yamt static void
264 1.14 rmind workqueue_finiqueue(struct workqueue *wq, struct workqueue_queue *q)
265 1.5 yamt {
266 1.5 yamt struct workqueue_exitargs wqe;
267 1.5 yamt
268 1.20 yamt KASSERT(wq->wq_func == workqueue_exit);
269 1.5 yamt
270 1.5 yamt wqe.wqe_q = q;
271 1.34 ozaki KASSERT(SIMPLEQ_EMPTY(&q->q_queue_pending));
272 1.5 yamt KASSERT(q->q_worker != NULL);
273 1.9 ad mutex_enter(&q->q_mutex);
274 1.34 ozaki SIMPLEQ_INSERT_TAIL(&q->q_queue_pending, &wqe.wqe_wk, wk_entry);
275 1.37.6.1 martin cv_broadcast(&q->q_cv);
276 1.5 yamt while (q->q_worker != NULL) {
277 1.9 ad cv_wait(&q->q_cv, &q->q_mutex);
278 1.5 yamt }
279 1.9 ad mutex_exit(&q->q_mutex);
280 1.9 ad mutex_destroy(&q->q_mutex);
281 1.9 ad cv_destroy(&q->q_cv);
282 1.5 yamt }
283 1.5 yamt
284 1.1 yamt /* --- */
285 1.1 yamt
286 1.1 yamt int
287 1.1 yamt workqueue_create(struct workqueue **wqp, const char *name,
288 1.1 yamt void (*callback_func)(struct work *, void *), void *callback_arg,
289 1.12 yamt pri_t prio, int ipl, int flags)
290 1.1 yamt {
291 1.1 yamt struct workqueue *wq;
292 1.18 rmind struct workqueue_queue *q;
293 1.18 rmind void *ptr;
294 1.20 yamt int error = 0;
295 1.1 yamt
296 1.25 matt CTASSERT(sizeof(work_impl_t) <= sizeof(struct work));
297 1.17 yamt
298 1.20 yamt ptr = kmem_zalloc(workqueue_size(flags), KM_SLEEP);
299 1.26 rmind wq = (void *)roundup2((uintptr_t)ptr, coherency_unit);
300 1.18 rmind wq->wq_ptr = ptr;
301 1.18 rmind wq->wq_flags = flags;
302 1.1 yamt
303 1.1 yamt workqueue_init(wq, name, callback_func, callback_arg, prio, ipl);
304 1.1 yamt
305 1.14 rmind if (flags & WQ_PERCPU) {
306 1.14 rmind struct cpu_info *ci;
307 1.14 rmind CPU_INFO_ITERATOR cii;
308 1.14 rmind
309 1.14 rmind /* create the work-queue for each CPU */
310 1.14 rmind for (CPU_INFO_FOREACH(cii, ci)) {
311 1.20 yamt q = workqueue_queue_lookup(wq, ci);
312 1.18 rmind error = workqueue_initqueue(wq, q, ipl, ci);
313 1.18 rmind if (error) {
314 1.14 rmind break;
315 1.18 rmind }
316 1.14 rmind }
317 1.14 rmind } else {
318 1.18 rmind /* initialize a work-queue */
319 1.20 yamt q = workqueue_queue_lookup(wq, NULL);
320 1.18 rmind error = workqueue_initqueue(wq, q, ipl, NULL);
321 1.1 yamt }
322 1.18 rmind
323 1.20 yamt if (error != 0) {
324 1.20 yamt workqueue_destroy(wq);
325 1.20 yamt } else {
326 1.20 yamt *wqp = wq;
327 1.15 rmind }
328 1.1 yamt
329 1.20 yamt return error;
330 1.1 yamt }
331 1.1 yamt
332 1.34 ozaki static bool
333 1.37.6.1 martin workqueue_q_wait(struct workqueue *wq, struct workqueue_queue *q,
334 1.37.6.1 martin work_impl_t *wk_target)
335 1.34 ozaki {
336 1.34 ozaki work_impl_t *wk;
337 1.34 ozaki bool found = false;
338 1.37.6.1 martin uint64_t gen;
339 1.34 ozaki
340 1.34 ozaki mutex_enter(&q->q_mutex);
341 1.37.6.1 martin
342 1.37.6.1 martin /*
343 1.37.6.1 martin * Avoid a deadlock scenario. We can't guarantee that
344 1.37.6.1 martin * wk_target has completed at this point, but we can't wait for
345 1.37.6.1 martin * it either, so do nothing.
346 1.37.6.1 martin *
347 1.37.6.1 martin * XXX Are there use-cases that require this semantics?
348 1.37.6.1 martin */
349 1.37.6.1 martin if (q->q_worker == curlwp) {
350 1.37.6.1 martin SDT_PROBE2(sdt, kernel, workqueue, wait__self, wq, wk_target);
351 1.37 ozaki goto out;
352 1.37.6.1 martin }
353 1.37.6.1 martin
354 1.37.6.1 martin /*
355 1.37.6.1 martin * Wait until the target is no longer pending. If we find it
356 1.37.6.1 martin * on this queue, the caller can stop looking in other queues.
357 1.37.6.1 martin * If we don't find it in this queue, however, we can't skip
358 1.37.6.1 martin * waiting -- it may be hidden in the running queue which we
359 1.37.6.1 martin * have no access to.
360 1.37.6.1 martin */
361 1.34 ozaki again:
362 1.34 ozaki SIMPLEQ_FOREACH(wk, &q->q_queue_pending, wk_entry) {
363 1.37.6.1 martin if (wk == wk_target) {
364 1.37.6.1 martin SDT_PROBE2(sdt, kernel, workqueue, wait__hit, wq, wk);
365 1.37.6.1 martin found = true;
366 1.37.6.1 martin cv_wait(&q->q_cv, &q->q_mutex);
367 1.37.6.1 martin goto again;
368 1.37.6.1 martin }
369 1.34 ozaki }
370 1.37.6.1 martin
371 1.37.6.1 martin /*
372 1.37.6.1 martin * The target may be in the batch of work currently running,
373 1.37.6.1 martin * but we can't touch that queue. So if there's anything
374 1.37.6.1 martin * running, wait until the generation changes.
375 1.37.6.1 martin */
376 1.37.6.1 martin gen = q->q_gen;
377 1.37.6.1 martin if (gen & 1) {
378 1.37.6.1 martin do
379 1.37.6.1 martin cv_wait(&q->q_cv, &q->q_mutex);
380 1.37.6.1 martin while (gen == q->q_gen);
381 1.34 ozaki }
382 1.37.6.1 martin
383 1.37 ozaki out:
384 1.34 ozaki mutex_exit(&q->q_mutex);
385 1.34 ozaki
386 1.34 ozaki return found;
387 1.34 ozaki }
388 1.34 ozaki
389 1.34 ozaki /*
390 1.34 ozaki * Wait for a specified work to finish. The caller must ensure that no new
391 1.34 ozaki * work will be enqueued before calling workqueue_wait. Note that if the
392 1.34 ozaki * workqueue is WQ_PERCPU, the caller can enqueue a new work to another queue
393 1.34 ozaki * other than the waiting queue.
394 1.34 ozaki */
395 1.34 ozaki void
396 1.34 ozaki workqueue_wait(struct workqueue *wq, struct work *wk)
397 1.34 ozaki {
398 1.34 ozaki struct workqueue_queue *q;
399 1.34 ozaki bool found;
400 1.34 ozaki
401 1.37.6.1 martin ASSERT_SLEEPABLE();
402 1.37.6.1 martin
403 1.37.6.1 martin SDT_PROBE2(sdt, kernel, workqueue, wait__start, wq, wk);
404 1.34 ozaki if (ISSET(wq->wq_flags, WQ_PERCPU)) {
405 1.34 ozaki struct cpu_info *ci;
406 1.34 ozaki CPU_INFO_ITERATOR cii;
407 1.34 ozaki for (CPU_INFO_FOREACH(cii, ci)) {
408 1.34 ozaki q = workqueue_queue_lookup(wq, ci);
409 1.37.6.1 martin found = workqueue_q_wait(wq, q, (work_impl_t *)wk);
410 1.34 ozaki if (found)
411 1.34 ozaki break;
412 1.34 ozaki }
413 1.34 ozaki } else {
414 1.34 ozaki q = workqueue_queue_lookup(wq, NULL);
415 1.37.6.1 martin (void)workqueue_q_wait(wq, q, (work_impl_t *)wk);
416 1.34 ozaki }
417 1.37.6.1 martin SDT_PROBE2(sdt, kernel, workqueue, wait__done, wq, wk);
418 1.34 ozaki }
419 1.34 ozaki
420 1.1 yamt void
421 1.5 yamt workqueue_destroy(struct workqueue *wq)
422 1.5 yamt {
423 1.14 rmind struct workqueue_queue *q;
424 1.20 yamt struct cpu_info *ci;
425 1.20 yamt CPU_INFO_ITERATOR cii;
426 1.5 yamt
427 1.37.6.1 martin ASSERT_SLEEPABLE();
428 1.37.6.1 martin
429 1.37.6.1 martin SDT_PROBE1(sdt, kernel, workqueue, exit__start, wq);
430 1.20 yamt wq->wq_func = workqueue_exit;
431 1.20 yamt for (CPU_INFO_FOREACH(cii, ci)) {
432 1.20 yamt q = workqueue_queue_lookup(wq, ci);
433 1.20 yamt if (q->q_worker != NULL) {
434 1.18 rmind workqueue_finiqueue(wq, q);
435 1.18 rmind }
436 1.14 rmind }
437 1.37.6.1 martin SDT_PROBE1(sdt, kernel, workqueue, exit__done, wq);
438 1.20 yamt kmem_free(wq->wq_ptr, workqueue_size(wq->wq_flags));
439 1.5 yamt }
440 1.5 yamt
441 1.35 ozaki #ifdef DEBUG
442 1.35 ozaki static void
443 1.35 ozaki workqueue_check_duplication(struct workqueue_queue *q, work_impl_t *wk)
444 1.35 ozaki {
445 1.35 ozaki work_impl_t *_wk;
446 1.35 ozaki
447 1.35 ozaki SIMPLEQ_FOREACH(_wk, &q->q_queue_pending, wk_entry) {
448 1.35 ozaki if (_wk == wk)
449 1.35 ozaki panic("%s: tried to enqueue a queued work", __func__);
450 1.35 ozaki }
451 1.35 ozaki }
452 1.35 ozaki #endif
453 1.35 ozaki
454 1.5 yamt void
455 1.17 yamt workqueue_enqueue(struct workqueue *wq, struct work *wk0, struct cpu_info *ci)
456 1.1 yamt {
457 1.14 rmind struct workqueue_queue *q;
458 1.17 yamt work_impl_t *wk = (void *)wk0;
459 1.14 rmind
460 1.37.6.1 martin SDT_PROBE3(sdt, kernel, workqueue, enqueue, wq, wk0, ci);
461 1.37.6.1 martin
462 1.18 rmind KASSERT(wq->wq_flags & WQ_PERCPU || ci == NULL);
463 1.14 rmind q = workqueue_queue_lookup(wq, ci);
464 1.1 yamt
465 1.9 ad mutex_enter(&q->q_mutex);
466 1.35 ozaki #ifdef DEBUG
467 1.35 ozaki workqueue_check_duplication(q, wk);
468 1.35 ozaki #endif
469 1.34 ozaki SIMPLEQ_INSERT_TAIL(&q->q_queue_pending, wk, wk_entry);
470 1.37.6.1 martin cv_broadcast(&q->q_cv);
471 1.9 ad mutex_exit(&q->q_mutex);
472 1.1 yamt }
473