subr_workqueue.c revision 1.38 1 1.38 riastrad /* $NetBSD: subr_workqueue.c,v 1.38 2020/08/01 02:14:43 riastradh Exp $ */
2 1.1 yamt
3 1.1 yamt /*-
4 1.20 yamt * Copyright (c)2002, 2005, 2006, 2007 YAMAMOTO Takashi,
5 1.1 yamt * All rights reserved.
6 1.1 yamt *
7 1.1 yamt * Redistribution and use in source and binary forms, with or without
8 1.1 yamt * modification, are permitted provided that the following conditions
9 1.1 yamt * are met:
10 1.1 yamt * 1. Redistributions of source code must retain the above copyright
11 1.1 yamt * notice, this list of conditions and the following disclaimer.
12 1.1 yamt * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 yamt * notice, this list of conditions and the following disclaimer in the
14 1.1 yamt * documentation and/or other materials provided with the distribution.
15 1.1 yamt *
16 1.1 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.1 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.1 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.1 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.1 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.1 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.1 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.1 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.1 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 yamt * SUCH DAMAGE.
27 1.1 yamt */
28 1.1 yamt
29 1.1 yamt #include <sys/cdefs.h>
30 1.38 riastrad __KERNEL_RCSID(0, "$NetBSD: subr_workqueue.c,v 1.38 2020/08/01 02:14:43 riastradh Exp $");
31 1.1 yamt
32 1.1 yamt #include <sys/param.h>
33 1.18 rmind #include <sys/cpu.h>
34 1.1 yamt #include <sys/systm.h>
35 1.1 yamt #include <sys/kthread.h>
36 1.4 yamt #include <sys/kmem.h>
37 1.1 yamt #include <sys/proc.h>
38 1.1 yamt #include <sys/workqueue.h>
39 1.9 ad #include <sys/mutex.h>
40 1.9 ad #include <sys/condvar.h>
41 1.17 yamt #include <sys/queue.h>
42 1.1 yamt
43 1.17 yamt typedef struct work_impl {
44 1.17 yamt SIMPLEQ_ENTRY(work_impl) wk_entry;
45 1.17 yamt } work_impl_t;
46 1.17 yamt
47 1.17 yamt SIMPLEQ_HEAD(workqhead, work_impl);
48 1.1 yamt
49 1.1 yamt struct workqueue_queue {
50 1.9 ad kmutex_t q_mutex;
51 1.9 ad kcondvar_t q_cv;
52 1.34 ozaki struct workqhead q_queue_pending;
53 1.34 ozaki struct workqhead q_queue_running;
54 1.28 yamt lwp_t *q_worker;
55 1.34 ozaki work_impl_t *q_waiter;
56 1.1 yamt };
57 1.1 yamt
58 1.1 yamt struct workqueue {
59 1.1 yamt void (*wq_func)(struct work *, void *);
60 1.1 yamt void *wq_arg;
61 1.20 yamt int wq_flags;
62 1.20 yamt
63 1.32 jym char wq_name[MAXCOMLEN];
64 1.12 yamt pri_t wq_prio;
65 1.18 rmind void *wq_ptr;
66 1.1 yamt };
67 1.1 yamt
68 1.24 ad #define WQ_SIZE (roundup2(sizeof(struct workqueue), coherency_unit))
69 1.24 ad #define WQ_QUEUE_SIZE (roundup2(sizeof(struct workqueue_queue), coherency_unit))
70 1.18 rmind
71 1.1 yamt #define POISON 0xaabbccdd
72 1.1 yamt
73 1.20 yamt static size_t
74 1.20 yamt workqueue_size(int flags)
75 1.20 yamt {
76 1.20 yamt
77 1.20 yamt return WQ_SIZE
78 1.20 yamt + ((flags & WQ_PERCPU) != 0 ? ncpu : 1) * WQ_QUEUE_SIZE
79 1.24 ad + coherency_unit;
80 1.20 yamt }
81 1.20 yamt
82 1.14 rmind static struct workqueue_queue *
83 1.14 rmind workqueue_queue_lookup(struct workqueue *wq, struct cpu_info *ci)
84 1.14 rmind {
85 1.18 rmind u_int idx = 0;
86 1.14 rmind
87 1.18 rmind if (wq->wq_flags & WQ_PERCPU) {
88 1.18 rmind idx = ci ? cpu_index(ci) : cpu_index(curcpu());
89 1.18 rmind }
90 1.14 rmind
91 1.26 rmind return (void *)((uintptr_t)(wq) + WQ_SIZE + (idx * WQ_QUEUE_SIZE));
92 1.14 rmind }
93 1.14 rmind
94 1.1 yamt static void
95 1.1 yamt workqueue_runlist(struct workqueue *wq, struct workqhead *list)
96 1.1 yamt {
97 1.17 yamt work_impl_t *wk;
98 1.17 yamt work_impl_t *next;
99 1.1 yamt
100 1.1 yamt /*
101 1.1 yamt * note that "list" is not a complete SIMPLEQ.
102 1.1 yamt */
103 1.1 yamt
104 1.1 yamt for (wk = SIMPLEQ_FIRST(list); wk != NULL; wk = next) {
105 1.1 yamt next = SIMPLEQ_NEXT(wk, wk_entry);
106 1.17 yamt (*wq->wq_func)((void *)wk, wq->wq_arg);
107 1.1 yamt }
108 1.1 yamt }
109 1.1 yamt
110 1.1 yamt static void
111 1.21 yamt workqueue_worker(void *cookie)
112 1.1 yamt {
113 1.21 yamt struct workqueue *wq = cookie;
114 1.14 rmind struct workqueue_queue *q;
115 1.38 riastrad int s;
116 1.14 rmind
117 1.14 rmind /* find the workqueue of this kthread */
118 1.14 rmind q = workqueue_queue_lookup(wq, curlwp->l_cpu);
119 1.14 rmind
120 1.38 riastrad if (wq->wq_flags & WQ_FPU)
121 1.38 riastrad s = kthread_fpu_enter();
122 1.3 rpaulo for (;;) {
123 1.1 yamt /*
124 1.1 yamt * we violate abstraction of SIMPLEQ.
125 1.1 yamt */
126 1.1 yamt
127 1.9 ad mutex_enter(&q->q_mutex);
128 1.34 ozaki while (SIMPLEQ_EMPTY(&q->q_queue_pending))
129 1.9 ad cv_wait(&q->q_cv, &q->q_mutex);
130 1.34 ozaki KASSERT(SIMPLEQ_EMPTY(&q->q_queue_running));
131 1.34 ozaki q->q_queue_running.sqh_first =
132 1.34 ozaki q->q_queue_pending.sqh_first; /* XXX */
133 1.34 ozaki SIMPLEQ_INIT(&q->q_queue_pending);
134 1.9 ad mutex_exit(&q->q_mutex);
135 1.1 yamt
136 1.34 ozaki workqueue_runlist(wq, &q->q_queue_running);
137 1.34 ozaki
138 1.34 ozaki mutex_enter(&q->q_mutex);
139 1.34 ozaki KASSERT(!SIMPLEQ_EMPTY(&q->q_queue_running));
140 1.34 ozaki SIMPLEQ_INIT(&q->q_queue_running);
141 1.34 ozaki if (__predict_false(q->q_waiter != NULL)) {
142 1.34 ozaki /* Wake up workqueue_wait */
143 1.34 ozaki cv_signal(&q->q_cv);
144 1.34 ozaki }
145 1.34 ozaki mutex_exit(&q->q_mutex);
146 1.1 yamt }
147 1.38 riastrad if (wq->wq_flags & WQ_FPU)
148 1.38 riastrad kthread_fpu_exit(s);
149 1.1 yamt }
150 1.1 yamt
151 1.1 yamt static void
152 1.1 yamt workqueue_init(struct workqueue *wq, const char *name,
153 1.1 yamt void (*callback_func)(struct work *, void *), void *callback_arg,
154 1.12 yamt pri_t prio, int ipl)
155 1.1 yamt {
156 1.1 yamt
157 1.36 ozaki KASSERT(sizeof(wq->wq_name) > strlen(name));
158 1.32 jym strncpy(wq->wq_name, name, sizeof(wq->wq_name));
159 1.32 jym
160 1.1 yamt wq->wq_prio = prio;
161 1.1 yamt wq->wq_func = callback_func;
162 1.1 yamt wq->wq_arg = callback_arg;
163 1.1 yamt }
164 1.1 yamt
165 1.1 yamt static int
166 1.18 rmind workqueue_initqueue(struct workqueue *wq, struct workqueue_queue *q,
167 1.18 rmind int ipl, struct cpu_info *ci)
168 1.1 yamt {
169 1.13 ad int error, ktf;
170 1.14 rmind
171 1.20 yamt KASSERT(q->q_worker == NULL);
172 1.20 yamt
173 1.22 ad mutex_init(&q->q_mutex, MUTEX_DEFAULT, ipl);
174 1.9 ad cv_init(&q->q_cv, wq->wq_name);
175 1.34 ozaki SIMPLEQ_INIT(&q->q_queue_pending);
176 1.34 ozaki SIMPLEQ_INIT(&q->q_queue_running);
177 1.18 rmind ktf = ((wq->wq_flags & WQ_MPSAFE) != 0 ? KTHREAD_MPSAFE : 0);
178 1.33 matt if (wq->wq_prio < PRI_KERNEL)
179 1.33 matt ktf |= KTHREAD_TS;
180 1.18 rmind if (ci) {
181 1.18 rmind error = kthread_create(wq->wq_prio, ktf, ci, workqueue_worker,
182 1.23 martin wq, &q->q_worker, "%s/%u", wq->wq_name, ci->ci_index);
183 1.18 rmind } else {
184 1.18 rmind error = kthread_create(wq->wq_prio, ktf, ci, workqueue_worker,
185 1.18 rmind wq, &q->q_worker, "%s", wq->wq_name);
186 1.18 rmind }
187 1.20 yamt if (error != 0) {
188 1.20 yamt mutex_destroy(&q->q_mutex);
189 1.20 yamt cv_destroy(&q->q_cv);
190 1.20 yamt KASSERT(q->q_worker == NULL);
191 1.20 yamt }
192 1.1 yamt return error;
193 1.1 yamt }
194 1.1 yamt
195 1.5 yamt struct workqueue_exitargs {
196 1.17 yamt work_impl_t wqe_wk;
197 1.5 yamt struct workqueue_queue *wqe_q;
198 1.5 yamt };
199 1.5 yamt
200 1.5 yamt static void
201 1.7 yamt workqueue_exit(struct work *wk, void *arg)
202 1.5 yamt {
203 1.5 yamt struct workqueue_exitargs *wqe = (void *)wk;
204 1.5 yamt struct workqueue_queue *q = wqe->wqe_q;
205 1.5 yamt
206 1.5 yamt /*
207 1.11 yamt * only competition at this point is workqueue_finiqueue.
208 1.5 yamt */
209 1.5 yamt
210 1.13 ad KASSERT(q->q_worker == curlwp);
211 1.34 ozaki KASSERT(SIMPLEQ_EMPTY(&q->q_queue_pending));
212 1.9 ad mutex_enter(&q->q_mutex);
213 1.5 yamt q->q_worker = NULL;
214 1.10 yamt cv_signal(&q->q_cv);
215 1.9 ad mutex_exit(&q->q_mutex);
216 1.5 yamt kthread_exit(0);
217 1.5 yamt }
218 1.5 yamt
219 1.5 yamt static void
220 1.14 rmind workqueue_finiqueue(struct workqueue *wq, struct workqueue_queue *q)
221 1.5 yamt {
222 1.5 yamt struct workqueue_exitargs wqe;
223 1.5 yamt
224 1.20 yamt KASSERT(wq->wq_func == workqueue_exit);
225 1.5 yamt
226 1.5 yamt wqe.wqe_q = q;
227 1.34 ozaki KASSERT(SIMPLEQ_EMPTY(&q->q_queue_pending));
228 1.5 yamt KASSERT(q->q_worker != NULL);
229 1.9 ad mutex_enter(&q->q_mutex);
230 1.34 ozaki SIMPLEQ_INSERT_TAIL(&q->q_queue_pending, &wqe.wqe_wk, wk_entry);
231 1.10 yamt cv_signal(&q->q_cv);
232 1.5 yamt while (q->q_worker != NULL) {
233 1.9 ad cv_wait(&q->q_cv, &q->q_mutex);
234 1.5 yamt }
235 1.9 ad mutex_exit(&q->q_mutex);
236 1.9 ad mutex_destroy(&q->q_mutex);
237 1.9 ad cv_destroy(&q->q_cv);
238 1.5 yamt }
239 1.5 yamt
240 1.1 yamt /* --- */
241 1.1 yamt
242 1.1 yamt int
243 1.1 yamt workqueue_create(struct workqueue **wqp, const char *name,
244 1.1 yamt void (*callback_func)(struct work *, void *), void *callback_arg,
245 1.12 yamt pri_t prio, int ipl, int flags)
246 1.1 yamt {
247 1.1 yamt struct workqueue *wq;
248 1.18 rmind struct workqueue_queue *q;
249 1.18 rmind void *ptr;
250 1.20 yamt int error = 0;
251 1.1 yamt
252 1.25 matt CTASSERT(sizeof(work_impl_t) <= sizeof(struct work));
253 1.17 yamt
254 1.20 yamt ptr = kmem_zalloc(workqueue_size(flags), KM_SLEEP);
255 1.26 rmind wq = (void *)roundup2((uintptr_t)ptr, coherency_unit);
256 1.18 rmind wq->wq_ptr = ptr;
257 1.18 rmind wq->wq_flags = flags;
258 1.1 yamt
259 1.1 yamt workqueue_init(wq, name, callback_func, callback_arg, prio, ipl);
260 1.1 yamt
261 1.14 rmind if (flags & WQ_PERCPU) {
262 1.14 rmind struct cpu_info *ci;
263 1.14 rmind CPU_INFO_ITERATOR cii;
264 1.14 rmind
265 1.14 rmind /* create the work-queue for each CPU */
266 1.14 rmind for (CPU_INFO_FOREACH(cii, ci)) {
267 1.20 yamt q = workqueue_queue_lookup(wq, ci);
268 1.18 rmind error = workqueue_initqueue(wq, q, ipl, ci);
269 1.18 rmind if (error) {
270 1.14 rmind break;
271 1.18 rmind }
272 1.14 rmind }
273 1.14 rmind } else {
274 1.18 rmind /* initialize a work-queue */
275 1.20 yamt q = workqueue_queue_lookup(wq, NULL);
276 1.18 rmind error = workqueue_initqueue(wq, q, ipl, NULL);
277 1.1 yamt }
278 1.18 rmind
279 1.20 yamt if (error != 0) {
280 1.20 yamt workqueue_destroy(wq);
281 1.20 yamt } else {
282 1.20 yamt *wqp = wq;
283 1.15 rmind }
284 1.1 yamt
285 1.20 yamt return error;
286 1.1 yamt }
287 1.1 yamt
288 1.34 ozaki static bool
289 1.34 ozaki workqueue_q_wait(struct workqueue_queue *q, work_impl_t *wk_target)
290 1.34 ozaki {
291 1.34 ozaki work_impl_t *wk;
292 1.34 ozaki bool found = false;
293 1.34 ozaki
294 1.34 ozaki mutex_enter(&q->q_mutex);
295 1.37 ozaki if (q->q_worker == curlwp)
296 1.37 ozaki goto out;
297 1.34 ozaki again:
298 1.34 ozaki SIMPLEQ_FOREACH(wk, &q->q_queue_pending, wk_entry) {
299 1.34 ozaki if (wk == wk_target)
300 1.34 ozaki goto found;
301 1.34 ozaki }
302 1.34 ozaki SIMPLEQ_FOREACH(wk, &q->q_queue_running, wk_entry) {
303 1.34 ozaki if (wk == wk_target)
304 1.34 ozaki goto found;
305 1.34 ozaki }
306 1.34 ozaki found:
307 1.34 ozaki if (wk != NULL) {
308 1.34 ozaki found = true;
309 1.34 ozaki KASSERT(q->q_waiter == NULL);
310 1.34 ozaki q->q_waiter = wk;
311 1.34 ozaki cv_wait(&q->q_cv, &q->q_mutex);
312 1.34 ozaki goto again;
313 1.34 ozaki }
314 1.34 ozaki if (q->q_waiter != NULL)
315 1.34 ozaki q->q_waiter = NULL;
316 1.37 ozaki out:
317 1.34 ozaki mutex_exit(&q->q_mutex);
318 1.34 ozaki
319 1.34 ozaki return found;
320 1.34 ozaki }
321 1.34 ozaki
322 1.34 ozaki /*
323 1.34 ozaki * Wait for a specified work to finish. The caller must ensure that no new
324 1.34 ozaki * work will be enqueued before calling workqueue_wait. Note that if the
325 1.34 ozaki * workqueue is WQ_PERCPU, the caller can enqueue a new work to another queue
326 1.34 ozaki * other than the waiting queue.
327 1.34 ozaki */
328 1.34 ozaki void
329 1.34 ozaki workqueue_wait(struct workqueue *wq, struct work *wk)
330 1.34 ozaki {
331 1.34 ozaki struct workqueue_queue *q;
332 1.34 ozaki bool found;
333 1.34 ozaki
334 1.34 ozaki if (ISSET(wq->wq_flags, WQ_PERCPU)) {
335 1.34 ozaki struct cpu_info *ci;
336 1.34 ozaki CPU_INFO_ITERATOR cii;
337 1.34 ozaki for (CPU_INFO_FOREACH(cii, ci)) {
338 1.34 ozaki q = workqueue_queue_lookup(wq, ci);
339 1.34 ozaki found = workqueue_q_wait(q, (work_impl_t *)wk);
340 1.34 ozaki if (found)
341 1.34 ozaki break;
342 1.34 ozaki }
343 1.34 ozaki } else {
344 1.34 ozaki q = workqueue_queue_lookup(wq, NULL);
345 1.34 ozaki (void) workqueue_q_wait(q, (work_impl_t *)wk);
346 1.34 ozaki }
347 1.34 ozaki }
348 1.34 ozaki
349 1.1 yamt void
350 1.5 yamt workqueue_destroy(struct workqueue *wq)
351 1.5 yamt {
352 1.14 rmind struct workqueue_queue *q;
353 1.20 yamt struct cpu_info *ci;
354 1.20 yamt CPU_INFO_ITERATOR cii;
355 1.5 yamt
356 1.20 yamt wq->wq_func = workqueue_exit;
357 1.20 yamt for (CPU_INFO_FOREACH(cii, ci)) {
358 1.20 yamt q = workqueue_queue_lookup(wq, ci);
359 1.20 yamt if (q->q_worker != NULL) {
360 1.18 rmind workqueue_finiqueue(wq, q);
361 1.18 rmind }
362 1.14 rmind }
363 1.20 yamt kmem_free(wq->wq_ptr, workqueue_size(wq->wq_flags));
364 1.5 yamt }
365 1.5 yamt
366 1.35 ozaki #ifdef DEBUG
367 1.35 ozaki static void
368 1.35 ozaki workqueue_check_duplication(struct workqueue_queue *q, work_impl_t *wk)
369 1.35 ozaki {
370 1.35 ozaki work_impl_t *_wk;
371 1.35 ozaki
372 1.35 ozaki SIMPLEQ_FOREACH(_wk, &q->q_queue_pending, wk_entry) {
373 1.35 ozaki if (_wk == wk)
374 1.35 ozaki panic("%s: tried to enqueue a queued work", __func__);
375 1.35 ozaki }
376 1.35 ozaki }
377 1.35 ozaki #endif
378 1.35 ozaki
379 1.5 yamt void
380 1.17 yamt workqueue_enqueue(struct workqueue *wq, struct work *wk0, struct cpu_info *ci)
381 1.1 yamt {
382 1.14 rmind struct workqueue_queue *q;
383 1.17 yamt work_impl_t *wk = (void *)wk0;
384 1.14 rmind
385 1.18 rmind KASSERT(wq->wq_flags & WQ_PERCPU || ci == NULL);
386 1.14 rmind q = workqueue_queue_lookup(wq, ci);
387 1.1 yamt
388 1.9 ad mutex_enter(&q->q_mutex);
389 1.34 ozaki KASSERT(q->q_waiter == NULL);
390 1.35 ozaki #ifdef DEBUG
391 1.35 ozaki workqueue_check_duplication(q, wk);
392 1.35 ozaki #endif
393 1.34 ozaki SIMPLEQ_INSERT_TAIL(&q->q_queue_pending, wk, wk_entry);
394 1.13 ad cv_signal(&q->q_cv);
395 1.9 ad mutex_exit(&q->q_mutex);
396 1.1 yamt }
397