Home | History | Annotate | Line # | Download | only in kern
subr_workqueue.c revision 1.39
      1  1.39  riastrad /*	$NetBSD: subr_workqueue.c,v 1.39 2020/09/08 17:02:18 riastradh Exp $	*/
      2   1.1      yamt 
      3   1.1      yamt /*-
      4  1.20      yamt  * Copyright (c)2002, 2005, 2006, 2007 YAMAMOTO Takashi,
      5   1.1      yamt  * All rights reserved.
      6   1.1      yamt  *
      7   1.1      yamt  * Redistribution and use in source and binary forms, with or without
      8   1.1      yamt  * modification, are permitted provided that the following conditions
      9   1.1      yamt  * are met:
     10   1.1      yamt  * 1. Redistributions of source code must retain the above copyright
     11   1.1      yamt  *    notice, this list of conditions and the following disclaimer.
     12   1.1      yamt  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1      yamt  *    notice, this list of conditions and the following disclaimer in the
     14   1.1      yamt  *    documentation and/or other materials provided with the distribution.
     15   1.1      yamt  *
     16   1.1      yamt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17   1.1      yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18   1.1      yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19   1.1      yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20   1.1      yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21   1.1      yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22   1.1      yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23   1.1      yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24   1.1      yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25   1.1      yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26   1.1      yamt  * SUCH DAMAGE.
     27   1.1      yamt  */
     28   1.1      yamt 
     29   1.1      yamt #include <sys/cdefs.h>
     30  1.39  riastrad __KERNEL_RCSID(0, "$NetBSD: subr_workqueue.c,v 1.39 2020/09/08 17:02:18 riastradh Exp $");
     31   1.1      yamt 
     32   1.1      yamt #include <sys/param.h>
     33  1.18     rmind #include <sys/cpu.h>
     34   1.1      yamt #include <sys/systm.h>
     35   1.1      yamt #include <sys/kthread.h>
     36   1.4      yamt #include <sys/kmem.h>
     37   1.1      yamt #include <sys/proc.h>
     38   1.1      yamt #include <sys/workqueue.h>
     39   1.9        ad #include <sys/mutex.h>
     40   1.9        ad #include <sys/condvar.h>
     41  1.17      yamt #include <sys/queue.h>
     42   1.1      yamt 
     43  1.17      yamt typedef struct work_impl {
     44  1.17      yamt 	SIMPLEQ_ENTRY(work_impl) wk_entry;
     45  1.17      yamt } work_impl_t;
     46  1.17      yamt 
     47  1.17      yamt SIMPLEQ_HEAD(workqhead, work_impl);
     48   1.1      yamt 
     49   1.1      yamt struct workqueue_queue {
     50   1.9        ad 	kmutex_t q_mutex;
     51   1.9        ad 	kcondvar_t q_cv;
     52  1.34     ozaki 	struct workqhead q_queue_pending;
     53  1.34     ozaki 	struct workqhead q_queue_running;
     54  1.28      yamt 	lwp_t *q_worker;
     55   1.1      yamt };
     56   1.1      yamt 
     57   1.1      yamt struct workqueue {
     58   1.1      yamt 	void (*wq_func)(struct work *, void *);
     59   1.1      yamt 	void *wq_arg;
     60  1.20      yamt 	int wq_flags;
     61  1.20      yamt 
     62  1.32       jym 	char wq_name[MAXCOMLEN];
     63  1.12      yamt 	pri_t wq_prio;
     64  1.18     rmind 	void *wq_ptr;
     65   1.1      yamt };
     66   1.1      yamt 
     67  1.24        ad #define	WQ_SIZE		(roundup2(sizeof(struct workqueue), coherency_unit))
     68  1.24        ad #define	WQ_QUEUE_SIZE	(roundup2(sizeof(struct workqueue_queue), coherency_unit))
     69  1.18     rmind 
     70   1.1      yamt #define	POISON	0xaabbccdd
     71   1.1      yamt 
     72  1.20      yamt static size_t
     73  1.20      yamt workqueue_size(int flags)
     74  1.20      yamt {
     75  1.20      yamt 
     76  1.20      yamt 	return WQ_SIZE
     77  1.20      yamt 	    + ((flags & WQ_PERCPU) != 0 ? ncpu : 1) * WQ_QUEUE_SIZE
     78  1.24        ad 	    + coherency_unit;
     79  1.20      yamt }
     80  1.20      yamt 
     81  1.14     rmind static struct workqueue_queue *
     82  1.14     rmind workqueue_queue_lookup(struct workqueue *wq, struct cpu_info *ci)
     83  1.14     rmind {
     84  1.18     rmind 	u_int idx = 0;
     85  1.14     rmind 
     86  1.18     rmind 	if (wq->wq_flags & WQ_PERCPU) {
     87  1.18     rmind 		idx = ci ? cpu_index(ci) : cpu_index(curcpu());
     88  1.18     rmind 	}
     89  1.14     rmind 
     90  1.26     rmind 	return (void *)((uintptr_t)(wq) + WQ_SIZE + (idx * WQ_QUEUE_SIZE));
     91  1.14     rmind }
     92  1.14     rmind 
     93   1.1      yamt static void
     94   1.1      yamt workqueue_runlist(struct workqueue *wq, struct workqhead *list)
     95   1.1      yamt {
     96  1.17      yamt 	work_impl_t *wk;
     97  1.17      yamt 	work_impl_t *next;
     98   1.1      yamt 
     99   1.1      yamt 	/*
    100   1.1      yamt 	 * note that "list" is not a complete SIMPLEQ.
    101   1.1      yamt 	 */
    102   1.1      yamt 
    103   1.1      yamt 	for (wk = SIMPLEQ_FIRST(list); wk != NULL; wk = next) {
    104   1.1      yamt 		next = SIMPLEQ_NEXT(wk, wk_entry);
    105  1.17      yamt 		(*wq->wq_func)((void *)wk, wq->wq_arg);
    106   1.1      yamt 	}
    107   1.1      yamt }
    108   1.1      yamt 
    109   1.1      yamt static void
    110  1.21      yamt workqueue_worker(void *cookie)
    111   1.1      yamt {
    112  1.21      yamt 	struct workqueue *wq = cookie;
    113  1.14     rmind 	struct workqueue_queue *q;
    114  1.38  riastrad 	int s;
    115  1.14     rmind 
    116  1.14     rmind 	/* find the workqueue of this kthread */
    117  1.14     rmind 	q = workqueue_queue_lookup(wq, curlwp->l_cpu);
    118  1.14     rmind 
    119  1.38  riastrad 	if (wq->wq_flags & WQ_FPU)
    120  1.38  riastrad 		s = kthread_fpu_enter();
    121   1.3    rpaulo 	for (;;) {
    122   1.1      yamt 		/*
    123   1.1      yamt 		 * we violate abstraction of SIMPLEQ.
    124   1.1      yamt 		 */
    125   1.1      yamt 
    126   1.9        ad 		mutex_enter(&q->q_mutex);
    127  1.34     ozaki 		while (SIMPLEQ_EMPTY(&q->q_queue_pending))
    128   1.9        ad 			cv_wait(&q->q_cv, &q->q_mutex);
    129  1.34     ozaki 		KASSERT(SIMPLEQ_EMPTY(&q->q_queue_running));
    130  1.34     ozaki 		q->q_queue_running.sqh_first =
    131  1.34     ozaki 		    q->q_queue_pending.sqh_first; /* XXX */
    132  1.34     ozaki 		SIMPLEQ_INIT(&q->q_queue_pending);
    133   1.9        ad 		mutex_exit(&q->q_mutex);
    134   1.1      yamt 
    135  1.34     ozaki 		workqueue_runlist(wq, &q->q_queue_running);
    136  1.34     ozaki 
    137  1.34     ozaki 		mutex_enter(&q->q_mutex);
    138  1.34     ozaki 		KASSERT(!SIMPLEQ_EMPTY(&q->q_queue_running));
    139  1.34     ozaki 		SIMPLEQ_INIT(&q->q_queue_running);
    140  1.39  riastrad 		/* Wake up workqueue_wait */
    141  1.39  riastrad 		cv_broadcast(&q->q_cv);
    142  1.34     ozaki 		mutex_exit(&q->q_mutex);
    143   1.1      yamt 	}
    144  1.38  riastrad 	if (wq->wq_flags & WQ_FPU)
    145  1.38  riastrad 		kthread_fpu_exit(s);
    146   1.1      yamt }
    147   1.1      yamt 
    148   1.1      yamt static void
    149   1.1      yamt workqueue_init(struct workqueue *wq, const char *name,
    150   1.1      yamt     void (*callback_func)(struct work *, void *), void *callback_arg,
    151  1.12      yamt     pri_t prio, int ipl)
    152   1.1      yamt {
    153   1.1      yamt 
    154  1.36     ozaki 	KASSERT(sizeof(wq->wq_name) > strlen(name));
    155  1.32       jym 	strncpy(wq->wq_name, name, sizeof(wq->wq_name));
    156  1.32       jym 
    157   1.1      yamt 	wq->wq_prio = prio;
    158   1.1      yamt 	wq->wq_func = callback_func;
    159   1.1      yamt 	wq->wq_arg = callback_arg;
    160   1.1      yamt }
    161   1.1      yamt 
    162   1.1      yamt static int
    163  1.18     rmind workqueue_initqueue(struct workqueue *wq, struct workqueue_queue *q,
    164  1.18     rmind     int ipl, struct cpu_info *ci)
    165   1.1      yamt {
    166  1.13        ad 	int error, ktf;
    167  1.14     rmind 
    168  1.20      yamt 	KASSERT(q->q_worker == NULL);
    169  1.20      yamt 
    170  1.22        ad 	mutex_init(&q->q_mutex, MUTEX_DEFAULT, ipl);
    171   1.9        ad 	cv_init(&q->q_cv, wq->wq_name);
    172  1.34     ozaki 	SIMPLEQ_INIT(&q->q_queue_pending);
    173  1.34     ozaki 	SIMPLEQ_INIT(&q->q_queue_running);
    174  1.18     rmind 	ktf = ((wq->wq_flags & WQ_MPSAFE) != 0 ? KTHREAD_MPSAFE : 0);
    175  1.33      matt 	if (wq->wq_prio < PRI_KERNEL)
    176  1.33      matt 		ktf |= KTHREAD_TS;
    177  1.18     rmind 	if (ci) {
    178  1.18     rmind 		error = kthread_create(wq->wq_prio, ktf, ci, workqueue_worker,
    179  1.23    martin 		    wq, &q->q_worker, "%s/%u", wq->wq_name, ci->ci_index);
    180  1.18     rmind 	} else {
    181  1.18     rmind 		error = kthread_create(wq->wq_prio, ktf, ci, workqueue_worker,
    182  1.18     rmind 		    wq, &q->q_worker, "%s", wq->wq_name);
    183  1.18     rmind 	}
    184  1.20      yamt 	if (error != 0) {
    185  1.20      yamt 		mutex_destroy(&q->q_mutex);
    186  1.20      yamt 		cv_destroy(&q->q_cv);
    187  1.20      yamt 		KASSERT(q->q_worker == NULL);
    188  1.20      yamt 	}
    189   1.1      yamt 	return error;
    190   1.1      yamt }
    191   1.1      yamt 
    192   1.5      yamt struct workqueue_exitargs {
    193  1.17      yamt 	work_impl_t wqe_wk;
    194   1.5      yamt 	struct workqueue_queue *wqe_q;
    195   1.5      yamt };
    196   1.5      yamt 
    197   1.5      yamt static void
    198   1.7      yamt workqueue_exit(struct work *wk, void *arg)
    199   1.5      yamt {
    200   1.5      yamt 	struct workqueue_exitargs *wqe = (void *)wk;
    201   1.5      yamt 	struct workqueue_queue *q = wqe->wqe_q;
    202   1.5      yamt 
    203   1.5      yamt 	/*
    204  1.11      yamt 	 * only competition at this point is workqueue_finiqueue.
    205   1.5      yamt 	 */
    206   1.5      yamt 
    207  1.13        ad 	KASSERT(q->q_worker == curlwp);
    208  1.34     ozaki 	KASSERT(SIMPLEQ_EMPTY(&q->q_queue_pending));
    209   1.9        ad 	mutex_enter(&q->q_mutex);
    210   1.5      yamt 	q->q_worker = NULL;
    211  1.39  riastrad 	cv_broadcast(&q->q_cv);
    212   1.9        ad 	mutex_exit(&q->q_mutex);
    213   1.5      yamt 	kthread_exit(0);
    214   1.5      yamt }
    215   1.5      yamt 
    216   1.5      yamt static void
    217  1.14     rmind workqueue_finiqueue(struct workqueue *wq, struct workqueue_queue *q)
    218   1.5      yamt {
    219   1.5      yamt 	struct workqueue_exitargs wqe;
    220   1.5      yamt 
    221  1.20      yamt 	KASSERT(wq->wq_func == workqueue_exit);
    222   1.5      yamt 
    223   1.5      yamt 	wqe.wqe_q = q;
    224  1.34     ozaki 	KASSERT(SIMPLEQ_EMPTY(&q->q_queue_pending));
    225   1.5      yamt 	KASSERT(q->q_worker != NULL);
    226   1.9        ad 	mutex_enter(&q->q_mutex);
    227  1.34     ozaki 	SIMPLEQ_INSERT_TAIL(&q->q_queue_pending, &wqe.wqe_wk, wk_entry);
    228  1.39  riastrad 	cv_broadcast(&q->q_cv);
    229   1.5      yamt 	while (q->q_worker != NULL) {
    230   1.9        ad 		cv_wait(&q->q_cv, &q->q_mutex);
    231   1.5      yamt 	}
    232   1.9        ad 	mutex_exit(&q->q_mutex);
    233   1.9        ad 	mutex_destroy(&q->q_mutex);
    234   1.9        ad 	cv_destroy(&q->q_cv);
    235   1.5      yamt }
    236   1.5      yamt 
    237   1.1      yamt /* --- */
    238   1.1      yamt 
    239   1.1      yamt int
    240   1.1      yamt workqueue_create(struct workqueue **wqp, const char *name,
    241   1.1      yamt     void (*callback_func)(struct work *, void *), void *callback_arg,
    242  1.12      yamt     pri_t prio, int ipl, int flags)
    243   1.1      yamt {
    244   1.1      yamt 	struct workqueue *wq;
    245  1.18     rmind 	struct workqueue_queue *q;
    246  1.18     rmind 	void *ptr;
    247  1.20      yamt 	int error = 0;
    248   1.1      yamt 
    249  1.25      matt 	CTASSERT(sizeof(work_impl_t) <= sizeof(struct work));
    250  1.17      yamt 
    251  1.20      yamt 	ptr = kmem_zalloc(workqueue_size(flags), KM_SLEEP);
    252  1.26     rmind 	wq = (void *)roundup2((uintptr_t)ptr, coherency_unit);
    253  1.18     rmind 	wq->wq_ptr = ptr;
    254  1.18     rmind 	wq->wq_flags = flags;
    255   1.1      yamt 
    256   1.1      yamt 	workqueue_init(wq, name, callback_func, callback_arg, prio, ipl);
    257   1.1      yamt 
    258  1.14     rmind 	if (flags & WQ_PERCPU) {
    259  1.14     rmind 		struct cpu_info *ci;
    260  1.14     rmind 		CPU_INFO_ITERATOR cii;
    261  1.14     rmind 
    262  1.14     rmind 		/* create the work-queue for each CPU */
    263  1.14     rmind 		for (CPU_INFO_FOREACH(cii, ci)) {
    264  1.20      yamt 			q = workqueue_queue_lookup(wq, ci);
    265  1.18     rmind 			error = workqueue_initqueue(wq, q, ipl, ci);
    266  1.18     rmind 			if (error) {
    267  1.14     rmind 				break;
    268  1.18     rmind 			}
    269  1.14     rmind 		}
    270  1.14     rmind 	} else {
    271  1.18     rmind 		/* initialize a work-queue */
    272  1.20      yamt 		q = workqueue_queue_lookup(wq, NULL);
    273  1.18     rmind 		error = workqueue_initqueue(wq, q, ipl, NULL);
    274   1.1      yamt 	}
    275  1.18     rmind 
    276  1.20      yamt 	if (error != 0) {
    277  1.20      yamt 		workqueue_destroy(wq);
    278  1.20      yamt 	} else {
    279  1.20      yamt 		*wqp = wq;
    280  1.15     rmind 	}
    281   1.1      yamt 
    282  1.20      yamt 	return error;
    283   1.1      yamt }
    284   1.1      yamt 
    285  1.34     ozaki static bool
    286  1.34     ozaki workqueue_q_wait(struct workqueue_queue *q, work_impl_t *wk_target)
    287  1.34     ozaki {
    288  1.34     ozaki 	work_impl_t *wk;
    289  1.34     ozaki 	bool found = false;
    290  1.34     ozaki 
    291  1.34     ozaki 	mutex_enter(&q->q_mutex);
    292  1.37     ozaki 	if (q->q_worker == curlwp)
    293  1.37     ozaki 		goto out;
    294  1.34     ozaki     again:
    295  1.34     ozaki 	SIMPLEQ_FOREACH(wk, &q->q_queue_pending, wk_entry) {
    296  1.34     ozaki 		if (wk == wk_target)
    297  1.34     ozaki 			goto found;
    298  1.34     ozaki 	}
    299  1.34     ozaki 	SIMPLEQ_FOREACH(wk, &q->q_queue_running, wk_entry) {
    300  1.34     ozaki 		if (wk == wk_target)
    301  1.34     ozaki 			goto found;
    302  1.34     ozaki 	}
    303  1.34     ozaki     found:
    304  1.34     ozaki 	if (wk != NULL) {
    305  1.34     ozaki 		found = true;
    306  1.34     ozaki 		cv_wait(&q->q_cv, &q->q_mutex);
    307  1.34     ozaki 		goto again;
    308  1.34     ozaki 	}
    309  1.37     ozaki     out:
    310  1.34     ozaki 	mutex_exit(&q->q_mutex);
    311  1.34     ozaki 
    312  1.34     ozaki 	return found;
    313  1.34     ozaki }
    314  1.34     ozaki 
    315  1.34     ozaki /*
    316  1.34     ozaki  * Wait for a specified work to finish.  The caller must ensure that no new
    317  1.34     ozaki  * work will be enqueued before calling workqueue_wait.  Note that if the
    318  1.34     ozaki  * workqueue is WQ_PERCPU, the caller can enqueue a new work to another queue
    319  1.34     ozaki  * other than the waiting queue.
    320  1.34     ozaki  */
    321  1.34     ozaki void
    322  1.34     ozaki workqueue_wait(struct workqueue *wq, struct work *wk)
    323  1.34     ozaki {
    324  1.34     ozaki 	struct workqueue_queue *q;
    325  1.34     ozaki 	bool found;
    326  1.34     ozaki 
    327  1.34     ozaki 	if (ISSET(wq->wq_flags, WQ_PERCPU)) {
    328  1.34     ozaki 		struct cpu_info *ci;
    329  1.34     ozaki 		CPU_INFO_ITERATOR cii;
    330  1.34     ozaki 		for (CPU_INFO_FOREACH(cii, ci)) {
    331  1.34     ozaki 			q = workqueue_queue_lookup(wq, ci);
    332  1.34     ozaki 			found = workqueue_q_wait(q, (work_impl_t *)wk);
    333  1.34     ozaki 			if (found)
    334  1.34     ozaki 				break;
    335  1.34     ozaki 		}
    336  1.34     ozaki 	} else {
    337  1.34     ozaki 		q = workqueue_queue_lookup(wq, NULL);
    338  1.34     ozaki 		(void) workqueue_q_wait(q, (work_impl_t *)wk);
    339  1.34     ozaki 	}
    340  1.34     ozaki }
    341  1.34     ozaki 
    342   1.1      yamt void
    343   1.5      yamt workqueue_destroy(struct workqueue *wq)
    344   1.5      yamt {
    345  1.14     rmind 	struct workqueue_queue *q;
    346  1.20      yamt 	struct cpu_info *ci;
    347  1.20      yamt 	CPU_INFO_ITERATOR cii;
    348   1.5      yamt 
    349  1.20      yamt 	wq->wq_func = workqueue_exit;
    350  1.20      yamt 	for (CPU_INFO_FOREACH(cii, ci)) {
    351  1.20      yamt 		q = workqueue_queue_lookup(wq, ci);
    352  1.20      yamt 		if (q->q_worker != NULL) {
    353  1.18     rmind 			workqueue_finiqueue(wq, q);
    354  1.18     rmind 		}
    355  1.14     rmind 	}
    356  1.20      yamt 	kmem_free(wq->wq_ptr, workqueue_size(wq->wq_flags));
    357   1.5      yamt }
    358   1.5      yamt 
    359  1.35     ozaki #ifdef DEBUG
    360  1.35     ozaki static void
    361  1.35     ozaki workqueue_check_duplication(struct workqueue_queue *q, work_impl_t *wk)
    362  1.35     ozaki {
    363  1.35     ozaki 	work_impl_t *_wk;
    364  1.35     ozaki 
    365  1.35     ozaki 	SIMPLEQ_FOREACH(_wk, &q->q_queue_pending, wk_entry) {
    366  1.35     ozaki 		if (_wk == wk)
    367  1.35     ozaki 			panic("%s: tried to enqueue a queued work", __func__);
    368  1.35     ozaki 	}
    369  1.35     ozaki }
    370  1.35     ozaki #endif
    371  1.35     ozaki 
    372   1.5      yamt void
    373  1.17      yamt workqueue_enqueue(struct workqueue *wq, struct work *wk0, struct cpu_info *ci)
    374   1.1      yamt {
    375  1.14     rmind 	struct workqueue_queue *q;
    376  1.17      yamt 	work_impl_t *wk = (void *)wk0;
    377  1.14     rmind 
    378  1.18     rmind 	KASSERT(wq->wq_flags & WQ_PERCPU || ci == NULL);
    379  1.14     rmind 	q = workqueue_queue_lookup(wq, ci);
    380   1.1      yamt 
    381   1.9        ad 	mutex_enter(&q->q_mutex);
    382  1.35     ozaki #ifdef DEBUG
    383  1.35     ozaki 	workqueue_check_duplication(q, wk);
    384  1.35     ozaki #endif
    385  1.34     ozaki 	SIMPLEQ_INSERT_TAIL(&q->q_queue_pending, wk, wk_entry);
    386  1.39  riastrad 	cv_broadcast(&q->q_cv);
    387   1.9        ad 	mutex_exit(&q->q_mutex);
    388   1.1      yamt }
    389