Home | History | Annotate | Line # | Download | only in kern
subr_workqueue.c revision 1.41.2.1
      1  1.41.2.1    martin /*	$NetBSD: subr_workqueue.c,v 1.41.2.1 2023/09/04 16:57:56 martin Exp $	*/
      2       1.1      yamt 
      3       1.1      yamt /*-
      4      1.20      yamt  * Copyright (c)2002, 2005, 2006, 2007 YAMAMOTO Takashi,
      5       1.1      yamt  * All rights reserved.
      6       1.1      yamt  *
      7       1.1      yamt  * Redistribution and use in source and binary forms, with or without
      8       1.1      yamt  * modification, are permitted provided that the following conditions
      9       1.1      yamt  * are met:
     10       1.1      yamt  * 1. Redistributions of source code must retain the above copyright
     11       1.1      yamt  *    notice, this list of conditions and the following disclaimer.
     12       1.1      yamt  * 2. Redistributions in binary form must reproduce the above copyright
     13       1.1      yamt  *    notice, this list of conditions and the following disclaimer in the
     14       1.1      yamt  *    documentation and/or other materials provided with the distribution.
     15       1.1      yamt  *
     16       1.1      yamt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17       1.1      yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18       1.1      yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19       1.1      yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20       1.1      yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21       1.1      yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22       1.1      yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23       1.1      yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24       1.1      yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25       1.1      yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26       1.1      yamt  * SUCH DAMAGE.
     27       1.1      yamt  */
     28       1.1      yamt 
     29       1.1      yamt #include <sys/cdefs.h>
     30  1.41.2.1    martin __KERNEL_RCSID(0, "$NetBSD: subr_workqueue.c,v 1.41.2.1 2023/09/04 16:57:56 martin Exp $");
     31       1.1      yamt 
     32       1.1      yamt #include <sys/param.h>
     33  1.41.2.1    martin 
     34  1.41.2.1    martin #include <sys/condvar.h>
     35      1.18     rmind #include <sys/cpu.h>
     36       1.4      yamt #include <sys/kmem.h>
     37  1.41.2.1    martin #include <sys/kthread.h>
     38       1.9        ad #include <sys/mutex.h>
     39  1.41.2.1    martin #include <sys/proc.h>
     40      1.17      yamt #include <sys/queue.h>
     41  1.41.2.1    martin #include <sys/sdt.h>
     42  1.41.2.1    martin #include <sys/systm.h>
     43  1.41.2.1    martin #include <sys/workqueue.h>
     44       1.1      yamt 
     45      1.17      yamt typedef struct work_impl {
     46      1.17      yamt 	SIMPLEQ_ENTRY(work_impl) wk_entry;
     47      1.17      yamt } work_impl_t;
     48      1.17      yamt 
     49      1.17      yamt SIMPLEQ_HEAD(workqhead, work_impl);
     50       1.1      yamt 
     51       1.1      yamt struct workqueue_queue {
     52       1.9        ad 	kmutex_t q_mutex;
     53       1.9        ad 	kcondvar_t q_cv;
     54      1.34     ozaki 	struct workqhead q_queue_pending;
     55  1.41.2.1    martin 	uint64_t q_gen;
     56      1.28      yamt 	lwp_t *q_worker;
     57       1.1      yamt };
     58       1.1      yamt 
     59       1.1      yamt struct workqueue {
     60       1.1      yamt 	void (*wq_func)(struct work *, void *);
     61       1.1      yamt 	void *wq_arg;
     62      1.20      yamt 	int wq_flags;
     63      1.20      yamt 
     64      1.32       jym 	char wq_name[MAXCOMLEN];
     65      1.12      yamt 	pri_t wq_prio;
     66      1.18     rmind 	void *wq_ptr;
     67       1.1      yamt };
     68       1.1      yamt 
     69      1.24        ad #define	WQ_SIZE		(roundup2(sizeof(struct workqueue), coherency_unit))
     70      1.24        ad #define	WQ_QUEUE_SIZE	(roundup2(sizeof(struct workqueue_queue), coherency_unit))
     71      1.18     rmind 
     72       1.1      yamt #define	POISON	0xaabbccdd
     73       1.1      yamt 
     74      1.41  riastrad SDT_PROBE_DEFINE7(sdt, kernel, workqueue, create,
     75      1.41  riastrad     "struct workqueue *"/*wq*/,
     76      1.41  riastrad     "const char *"/*name*/,
     77      1.41  riastrad     "void (*)(struct work *, void *)"/*func*/,
     78      1.41  riastrad     "void *"/*arg*/,
     79      1.41  riastrad     "pri_t"/*prio*/,
     80      1.41  riastrad     "int"/*ipl*/,
     81      1.41  riastrad     "int"/*flags*/);
     82      1.41  riastrad SDT_PROBE_DEFINE1(sdt, kernel, workqueue, destroy,
     83      1.41  riastrad     "struct workqueue *"/*wq*/);
     84      1.41  riastrad 
     85      1.41  riastrad SDT_PROBE_DEFINE3(sdt, kernel, workqueue, enqueue,
     86      1.41  riastrad     "struct workqueue *"/*wq*/,
     87      1.41  riastrad     "struct work *"/*wk*/,
     88      1.41  riastrad     "struct cpu_info *"/*ci*/);
     89      1.41  riastrad SDT_PROBE_DEFINE4(sdt, kernel, workqueue, entry,
     90      1.41  riastrad     "struct workqueue *"/*wq*/,
     91      1.41  riastrad     "struct work *"/*wk*/,
     92      1.41  riastrad     "void (*)(struct work *, void *)"/*func*/,
     93      1.41  riastrad     "void *"/*arg*/);
     94      1.41  riastrad SDT_PROBE_DEFINE4(sdt, kernel, workqueue, return,
     95      1.41  riastrad     "struct workqueue *"/*wq*/,
     96      1.41  riastrad     "struct work *"/*wk*/,
     97      1.41  riastrad     "void (*)(struct work *, void *)"/*func*/,
     98      1.41  riastrad     "void *"/*arg*/);
     99      1.41  riastrad SDT_PROBE_DEFINE2(sdt, kernel, workqueue, wait__start,
    100      1.41  riastrad     "struct workqueue *"/*wq*/,
    101      1.41  riastrad     "struct work *"/*wk*/);
    102  1.41.2.1    martin SDT_PROBE_DEFINE2(sdt, kernel, workqueue, wait__self,
    103  1.41.2.1    martin     "struct workqueue *"/*wq*/,
    104  1.41.2.1    martin     "struct work *"/*wk*/);
    105  1.41.2.1    martin SDT_PROBE_DEFINE2(sdt, kernel, workqueue, wait__hit,
    106  1.41.2.1    martin     "struct workqueue *"/*wq*/,
    107  1.41.2.1    martin     "struct work *"/*wk*/);
    108      1.41  riastrad SDT_PROBE_DEFINE2(sdt, kernel, workqueue, wait__done,
    109      1.41  riastrad     "struct workqueue *"/*wq*/,
    110      1.41  riastrad     "struct work *"/*wk*/);
    111      1.41  riastrad 
    112      1.41  riastrad SDT_PROBE_DEFINE1(sdt, kernel, workqueue, exit__start,
    113      1.41  riastrad     "struct workqueue *"/*wq*/);
    114      1.41  riastrad SDT_PROBE_DEFINE1(sdt, kernel, workqueue, exit__done,
    115      1.41  riastrad     "struct workqueue *"/*wq*/);
    116      1.41  riastrad 
    117      1.20      yamt static size_t
    118      1.20      yamt workqueue_size(int flags)
    119      1.20      yamt {
    120      1.20      yamt 
    121      1.20      yamt 	return WQ_SIZE
    122      1.20      yamt 	    + ((flags & WQ_PERCPU) != 0 ? ncpu : 1) * WQ_QUEUE_SIZE
    123      1.24        ad 	    + coherency_unit;
    124      1.20      yamt }
    125      1.20      yamt 
    126      1.14     rmind static struct workqueue_queue *
    127      1.14     rmind workqueue_queue_lookup(struct workqueue *wq, struct cpu_info *ci)
    128      1.14     rmind {
    129      1.18     rmind 	u_int idx = 0;
    130      1.14     rmind 
    131      1.18     rmind 	if (wq->wq_flags & WQ_PERCPU) {
    132      1.18     rmind 		idx = ci ? cpu_index(ci) : cpu_index(curcpu());
    133      1.18     rmind 	}
    134      1.14     rmind 
    135      1.26     rmind 	return (void *)((uintptr_t)(wq) + WQ_SIZE + (idx * WQ_QUEUE_SIZE));
    136      1.14     rmind }
    137      1.14     rmind 
    138       1.1      yamt static void
    139       1.1      yamt workqueue_runlist(struct workqueue *wq, struct workqhead *list)
    140       1.1      yamt {
    141      1.17      yamt 	work_impl_t *wk;
    142      1.17      yamt 	work_impl_t *next;
    143       1.1      yamt 
    144       1.1      yamt 	for (wk = SIMPLEQ_FIRST(list); wk != NULL; wk = next) {
    145       1.1      yamt 		next = SIMPLEQ_NEXT(wk, wk_entry);
    146      1.41  riastrad 		SDT_PROBE4(sdt, kernel, workqueue, entry,
    147      1.41  riastrad 		    wq, wk, wq->wq_func, wq->wq_arg);
    148      1.17      yamt 		(*wq->wq_func)((void *)wk, wq->wq_arg);
    149      1.41  riastrad 		SDT_PROBE4(sdt, kernel, workqueue, return,
    150      1.41  riastrad 		    wq, wk, wq->wq_func, wq->wq_arg);
    151       1.1      yamt 	}
    152       1.1      yamt }
    153       1.1      yamt 
    154       1.1      yamt static void
    155      1.21      yamt workqueue_worker(void *cookie)
    156       1.1      yamt {
    157      1.21      yamt 	struct workqueue *wq = cookie;
    158      1.14     rmind 	struct workqueue_queue *q;
    159  1.41.2.1    martin 	int s, fpu = wq->wq_flags & WQ_FPU;
    160      1.14     rmind 
    161      1.14     rmind 	/* find the workqueue of this kthread */
    162      1.14     rmind 	q = workqueue_queue_lookup(wq, curlwp->l_cpu);
    163      1.14     rmind 
    164  1.41.2.1    martin 	if (fpu)
    165      1.38  riastrad 		s = kthread_fpu_enter();
    166  1.41.2.1    martin 	mutex_enter(&q->q_mutex);
    167       1.3    rpaulo 	for (;;) {
    168  1.41.2.1    martin 		struct workqhead tmp;
    169  1.41.2.1    martin 
    170  1.41.2.1    martin 		SIMPLEQ_INIT(&tmp);
    171       1.1      yamt 
    172      1.34     ozaki 		while (SIMPLEQ_EMPTY(&q->q_queue_pending))
    173       1.9        ad 			cv_wait(&q->q_cv, &q->q_mutex);
    174  1.41.2.1    martin 		SIMPLEQ_CONCAT(&tmp, &q->q_queue_pending);
    175      1.34     ozaki 		SIMPLEQ_INIT(&q->q_queue_pending);
    176  1.41.2.1    martin 
    177  1.41.2.1    martin 		/*
    178  1.41.2.1    martin 		 * Mark the queue as actively running a batch of work
    179  1.41.2.1    martin 		 * by setting the generation number odd.
    180  1.41.2.1    martin 		 */
    181  1.41.2.1    martin 		q->q_gen |= 1;
    182       1.9        ad 		mutex_exit(&q->q_mutex);
    183       1.1      yamt 
    184  1.41.2.1    martin 		workqueue_runlist(wq, &tmp);
    185      1.34     ozaki 
    186  1.41.2.1    martin 		/*
    187  1.41.2.1    martin 		 * Notify workqueue_wait that we have completed a batch
    188  1.41.2.1    martin 		 * of work by incrementing the generation number.
    189  1.41.2.1    martin 		 */
    190      1.34     ozaki 		mutex_enter(&q->q_mutex);
    191  1.41.2.1    martin 		KASSERTMSG(q->q_gen & 1, "q=%p gen=%"PRIu64, q, q->q_gen);
    192  1.41.2.1    martin 		q->q_gen++;
    193      1.39  riastrad 		cv_broadcast(&q->q_cv);
    194       1.1      yamt 	}
    195  1.41.2.1    martin 	mutex_exit(&q->q_mutex);
    196  1.41.2.1    martin 	if (fpu)
    197      1.38  riastrad 		kthread_fpu_exit(s);
    198       1.1      yamt }
    199       1.1      yamt 
    200       1.1      yamt static void
    201       1.1      yamt workqueue_init(struct workqueue *wq, const char *name,
    202       1.1      yamt     void (*callback_func)(struct work *, void *), void *callback_arg,
    203      1.12      yamt     pri_t prio, int ipl)
    204       1.1      yamt {
    205       1.1      yamt 
    206      1.36     ozaki 	KASSERT(sizeof(wq->wq_name) > strlen(name));
    207      1.32       jym 	strncpy(wq->wq_name, name, sizeof(wq->wq_name));
    208      1.32       jym 
    209       1.1      yamt 	wq->wq_prio = prio;
    210       1.1      yamt 	wq->wq_func = callback_func;
    211       1.1      yamt 	wq->wq_arg = callback_arg;
    212       1.1      yamt }
    213       1.1      yamt 
    214       1.1      yamt static int
    215      1.18     rmind workqueue_initqueue(struct workqueue *wq, struct workqueue_queue *q,
    216      1.18     rmind     int ipl, struct cpu_info *ci)
    217       1.1      yamt {
    218      1.13        ad 	int error, ktf;
    219      1.14     rmind 
    220      1.20      yamt 	KASSERT(q->q_worker == NULL);
    221      1.20      yamt 
    222      1.22        ad 	mutex_init(&q->q_mutex, MUTEX_DEFAULT, ipl);
    223       1.9        ad 	cv_init(&q->q_cv, wq->wq_name);
    224      1.34     ozaki 	SIMPLEQ_INIT(&q->q_queue_pending);
    225  1.41.2.1    martin 	q->q_gen = 0;
    226      1.18     rmind 	ktf = ((wq->wq_flags & WQ_MPSAFE) != 0 ? KTHREAD_MPSAFE : 0);
    227      1.33      matt 	if (wq->wq_prio < PRI_KERNEL)
    228      1.33      matt 		ktf |= KTHREAD_TS;
    229      1.18     rmind 	if (ci) {
    230      1.18     rmind 		error = kthread_create(wq->wq_prio, ktf, ci, workqueue_worker,
    231      1.23    martin 		    wq, &q->q_worker, "%s/%u", wq->wq_name, ci->ci_index);
    232      1.18     rmind 	} else {
    233      1.18     rmind 		error = kthread_create(wq->wq_prio, ktf, ci, workqueue_worker,
    234      1.18     rmind 		    wq, &q->q_worker, "%s", wq->wq_name);
    235      1.18     rmind 	}
    236      1.20      yamt 	if (error != 0) {
    237      1.20      yamt 		mutex_destroy(&q->q_mutex);
    238      1.20      yamt 		cv_destroy(&q->q_cv);
    239      1.20      yamt 		KASSERT(q->q_worker == NULL);
    240      1.20      yamt 	}
    241       1.1      yamt 	return error;
    242       1.1      yamt }
    243       1.1      yamt 
    244       1.5      yamt struct workqueue_exitargs {
    245      1.17      yamt 	work_impl_t wqe_wk;
    246       1.5      yamt 	struct workqueue_queue *wqe_q;
    247       1.5      yamt };
    248       1.5      yamt 
    249       1.5      yamt static void
    250       1.7      yamt workqueue_exit(struct work *wk, void *arg)
    251       1.5      yamt {
    252       1.5      yamt 	struct workqueue_exitargs *wqe = (void *)wk;
    253       1.5      yamt 	struct workqueue_queue *q = wqe->wqe_q;
    254       1.5      yamt 
    255       1.5      yamt 	/*
    256      1.11      yamt 	 * only competition at this point is workqueue_finiqueue.
    257       1.5      yamt 	 */
    258       1.5      yamt 
    259      1.13        ad 	KASSERT(q->q_worker == curlwp);
    260      1.34     ozaki 	KASSERT(SIMPLEQ_EMPTY(&q->q_queue_pending));
    261       1.9        ad 	mutex_enter(&q->q_mutex);
    262       1.5      yamt 	q->q_worker = NULL;
    263      1.39  riastrad 	cv_broadcast(&q->q_cv);
    264       1.9        ad 	mutex_exit(&q->q_mutex);
    265       1.5      yamt 	kthread_exit(0);
    266       1.5      yamt }
    267       1.5      yamt 
    268       1.5      yamt static void
    269      1.14     rmind workqueue_finiqueue(struct workqueue *wq, struct workqueue_queue *q)
    270       1.5      yamt {
    271       1.5      yamt 	struct workqueue_exitargs wqe;
    272       1.5      yamt 
    273      1.20      yamt 	KASSERT(wq->wq_func == workqueue_exit);
    274       1.5      yamt 
    275       1.5      yamt 	wqe.wqe_q = q;
    276      1.34     ozaki 	KASSERT(SIMPLEQ_EMPTY(&q->q_queue_pending));
    277       1.5      yamt 	KASSERT(q->q_worker != NULL);
    278       1.9        ad 	mutex_enter(&q->q_mutex);
    279      1.34     ozaki 	SIMPLEQ_INSERT_TAIL(&q->q_queue_pending, &wqe.wqe_wk, wk_entry);
    280      1.39  riastrad 	cv_broadcast(&q->q_cv);
    281       1.5      yamt 	while (q->q_worker != NULL) {
    282       1.9        ad 		cv_wait(&q->q_cv, &q->q_mutex);
    283       1.5      yamt 	}
    284       1.9        ad 	mutex_exit(&q->q_mutex);
    285       1.9        ad 	mutex_destroy(&q->q_mutex);
    286       1.9        ad 	cv_destroy(&q->q_cv);
    287       1.5      yamt }
    288       1.5      yamt 
    289       1.1      yamt /* --- */
    290       1.1      yamt 
    291       1.1      yamt int
    292       1.1      yamt workqueue_create(struct workqueue **wqp, const char *name,
    293       1.1      yamt     void (*callback_func)(struct work *, void *), void *callback_arg,
    294      1.12      yamt     pri_t prio, int ipl, int flags)
    295       1.1      yamt {
    296       1.1      yamt 	struct workqueue *wq;
    297      1.18     rmind 	struct workqueue_queue *q;
    298      1.18     rmind 	void *ptr;
    299      1.20      yamt 	int error = 0;
    300       1.1      yamt 
    301      1.25      matt 	CTASSERT(sizeof(work_impl_t) <= sizeof(struct work));
    302      1.17      yamt 
    303      1.20      yamt 	ptr = kmem_zalloc(workqueue_size(flags), KM_SLEEP);
    304      1.26     rmind 	wq = (void *)roundup2((uintptr_t)ptr, coherency_unit);
    305      1.18     rmind 	wq->wq_ptr = ptr;
    306      1.18     rmind 	wq->wq_flags = flags;
    307       1.1      yamt 
    308       1.1      yamt 	workqueue_init(wq, name, callback_func, callback_arg, prio, ipl);
    309       1.1      yamt 
    310      1.14     rmind 	if (flags & WQ_PERCPU) {
    311      1.14     rmind 		struct cpu_info *ci;
    312      1.14     rmind 		CPU_INFO_ITERATOR cii;
    313      1.14     rmind 
    314      1.14     rmind 		/* create the work-queue for each CPU */
    315      1.14     rmind 		for (CPU_INFO_FOREACH(cii, ci)) {
    316      1.20      yamt 			q = workqueue_queue_lookup(wq, ci);
    317      1.18     rmind 			error = workqueue_initqueue(wq, q, ipl, ci);
    318      1.18     rmind 			if (error) {
    319      1.14     rmind 				break;
    320      1.18     rmind 			}
    321      1.14     rmind 		}
    322      1.14     rmind 	} else {
    323      1.18     rmind 		/* initialize a work-queue */
    324      1.20      yamt 		q = workqueue_queue_lookup(wq, NULL);
    325      1.18     rmind 		error = workqueue_initqueue(wq, q, ipl, NULL);
    326       1.1      yamt 	}
    327      1.18     rmind 
    328      1.20      yamt 	if (error != 0) {
    329      1.20      yamt 		workqueue_destroy(wq);
    330      1.20      yamt 	} else {
    331      1.20      yamt 		*wqp = wq;
    332      1.15     rmind 	}
    333       1.1      yamt 
    334      1.20      yamt 	return error;
    335       1.1      yamt }
    336       1.1      yamt 
    337      1.34     ozaki static bool
    338  1.41.2.1    martin workqueue_q_wait(struct workqueue *wq, struct workqueue_queue *q,
    339  1.41.2.1    martin     work_impl_t *wk_target)
    340      1.34     ozaki {
    341      1.34     ozaki 	work_impl_t *wk;
    342      1.34     ozaki 	bool found = false;
    343  1.41.2.1    martin 	uint64_t gen;
    344      1.34     ozaki 
    345      1.34     ozaki 	mutex_enter(&q->q_mutex);
    346  1.41.2.1    martin 
    347  1.41.2.1    martin 	/*
    348  1.41.2.1    martin 	 * Avoid a deadlock scenario.  We can't guarantee that
    349  1.41.2.1    martin 	 * wk_target has completed at this point, but we can't wait for
    350  1.41.2.1    martin 	 * it either, so do nothing.
    351  1.41.2.1    martin 	 *
    352  1.41.2.1    martin 	 * XXX Are there use-cases that require this semantics?
    353  1.41.2.1    martin 	 */
    354  1.41.2.1    martin 	if (q->q_worker == curlwp) {
    355  1.41.2.1    martin 		SDT_PROBE2(sdt, kernel, workqueue, wait__self,  wq, wk_target);
    356      1.37     ozaki 		goto out;
    357  1.41.2.1    martin 	}
    358  1.41.2.1    martin 
    359  1.41.2.1    martin 	/*
    360  1.41.2.1    martin 	 * Wait until the target is no longer pending.  If we find it
    361  1.41.2.1    martin 	 * on this queue, the caller can stop looking in other queues.
    362  1.41.2.1    martin 	 * If we don't find it in this queue, however, we can't skip
    363  1.41.2.1    martin 	 * waiting -- it may be hidden in the running queue which we
    364  1.41.2.1    martin 	 * have no access to.
    365  1.41.2.1    martin 	 */
    366      1.34     ozaki     again:
    367      1.34     ozaki 	SIMPLEQ_FOREACH(wk, &q->q_queue_pending, wk_entry) {
    368  1.41.2.1    martin 		if (wk == wk_target) {
    369  1.41.2.1    martin 			SDT_PROBE2(sdt, kernel, workqueue, wait__hit,  wq, wk);
    370  1.41.2.1    martin 			found = true;
    371  1.41.2.1    martin 			cv_wait(&q->q_cv, &q->q_mutex);
    372  1.41.2.1    martin 			goto again;
    373  1.41.2.1    martin 		}
    374      1.34     ozaki 	}
    375  1.41.2.1    martin 
    376  1.41.2.1    martin 	/*
    377  1.41.2.1    martin 	 * The target may be in the batch of work currently running,
    378  1.41.2.1    martin 	 * but we can't touch that queue.  So if there's anything
    379  1.41.2.1    martin 	 * running, wait until the generation changes.
    380  1.41.2.1    martin 	 */
    381  1.41.2.1    martin 	gen = q->q_gen;
    382  1.41.2.1    martin 	if (gen & 1) {
    383  1.41.2.1    martin 		do
    384  1.41.2.1    martin 			cv_wait(&q->q_cv, &q->q_mutex);
    385  1.41.2.1    martin 		while (gen == q->q_gen);
    386      1.34     ozaki 	}
    387  1.41.2.1    martin 
    388      1.37     ozaki     out:
    389      1.34     ozaki 	mutex_exit(&q->q_mutex);
    390      1.34     ozaki 
    391      1.34     ozaki 	return found;
    392      1.34     ozaki }
    393      1.34     ozaki 
    394      1.34     ozaki /*
    395      1.34     ozaki  * Wait for a specified work to finish.  The caller must ensure that no new
    396      1.34     ozaki  * work will be enqueued before calling workqueue_wait.  Note that if the
    397      1.34     ozaki  * workqueue is WQ_PERCPU, the caller can enqueue a new work to another queue
    398      1.34     ozaki  * other than the waiting queue.
    399      1.34     ozaki  */
    400      1.34     ozaki void
    401      1.34     ozaki workqueue_wait(struct workqueue *wq, struct work *wk)
    402      1.34     ozaki {
    403      1.34     ozaki 	struct workqueue_queue *q;
    404      1.34     ozaki 	bool found;
    405      1.34     ozaki 
    406      1.40  riastrad 	ASSERT_SLEEPABLE();
    407      1.40  riastrad 
    408      1.41  riastrad 	SDT_PROBE2(sdt, kernel, workqueue, wait__start,  wq, wk);
    409      1.34     ozaki 	if (ISSET(wq->wq_flags, WQ_PERCPU)) {
    410      1.34     ozaki 		struct cpu_info *ci;
    411      1.34     ozaki 		CPU_INFO_ITERATOR cii;
    412      1.34     ozaki 		for (CPU_INFO_FOREACH(cii, ci)) {
    413      1.34     ozaki 			q = workqueue_queue_lookup(wq, ci);
    414  1.41.2.1    martin 			found = workqueue_q_wait(wq, q, (work_impl_t *)wk);
    415      1.34     ozaki 			if (found)
    416      1.34     ozaki 				break;
    417      1.34     ozaki 		}
    418      1.34     ozaki 	} else {
    419      1.34     ozaki 		q = workqueue_queue_lookup(wq, NULL);
    420  1.41.2.1    martin 		(void)workqueue_q_wait(wq, q, (work_impl_t *)wk);
    421      1.34     ozaki 	}
    422      1.41  riastrad 	SDT_PROBE2(sdt, kernel, workqueue, wait__done,  wq, wk);
    423      1.34     ozaki }
    424      1.34     ozaki 
    425       1.1      yamt void
    426       1.5      yamt workqueue_destroy(struct workqueue *wq)
    427       1.5      yamt {
    428      1.14     rmind 	struct workqueue_queue *q;
    429      1.20      yamt 	struct cpu_info *ci;
    430      1.20      yamt 	CPU_INFO_ITERATOR cii;
    431       1.5      yamt 
    432      1.40  riastrad 	ASSERT_SLEEPABLE();
    433      1.40  riastrad 
    434      1.41  riastrad 	SDT_PROBE1(sdt, kernel, workqueue, exit__start,  wq);
    435      1.20      yamt 	wq->wq_func = workqueue_exit;
    436      1.20      yamt 	for (CPU_INFO_FOREACH(cii, ci)) {
    437      1.20      yamt 		q = workqueue_queue_lookup(wq, ci);
    438      1.20      yamt 		if (q->q_worker != NULL) {
    439      1.18     rmind 			workqueue_finiqueue(wq, q);
    440      1.18     rmind 		}
    441      1.14     rmind 	}
    442      1.41  riastrad 	SDT_PROBE1(sdt, kernel, workqueue, exit__done,  wq);
    443      1.20      yamt 	kmem_free(wq->wq_ptr, workqueue_size(wq->wq_flags));
    444       1.5      yamt }
    445       1.5      yamt 
    446      1.35     ozaki #ifdef DEBUG
    447      1.35     ozaki static void
    448      1.35     ozaki workqueue_check_duplication(struct workqueue_queue *q, work_impl_t *wk)
    449      1.35     ozaki {
    450      1.35     ozaki 	work_impl_t *_wk;
    451      1.35     ozaki 
    452      1.35     ozaki 	SIMPLEQ_FOREACH(_wk, &q->q_queue_pending, wk_entry) {
    453      1.35     ozaki 		if (_wk == wk)
    454      1.35     ozaki 			panic("%s: tried to enqueue a queued work", __func__);
    455      1.35     ozaki 	}
    456      1.35     ozaki }
    457      1.35     ozaki #endif
    458      1.35     ozaki 
    459       1.5      yamt void
    460      1.17      yamt workqueue_enqueue(struct workqueue *wq, struct work *wk0, struct cpu_info *ci)
    461       1.1      yamt {
    462      1.14     rmind 	struct workqueue_queue *q;
    463      1.17      yamt 	work_impl_t *wk = (void *)wk0;
    464      1.14     rmind 
    465      1.41  riastrad 	SDT_PROBE3(sdt, kernel, workqueue, enqueue,  wq, wk0, ci);
    466      1.41  riastrad 
    467      1.18     rmind 	KASSERT(wq->wq_flags & WQ_PERCPU || ci == NULL);
    468      1.14     rmind 	q = workqueue_queue_lookup(wq, ci);
    469       1.1      yamt 
    470       1.9        ad 	mutex_enter(&q->q_mutex);
    471      1.35     ozaki #ifdef DEBUG
    472      1.35     ozaki 	workqueue_check_duplication(q, wk);
    473      1.35     ozaki #endif
    474      1.34     ozaki 	SIMPLEQ_INSERT_TAIL(&q->q_queue_pending, wk, wk_entry);
    475      1.39  riastrad 	cv_broadcast(&q->q_cv);
    476       1.9        ad 	mutex_exit(&q->q_mutex);
    477       1.1      yamt }
    478