subr_workqueue.c revision 1.42 1 1.42 riastrad /* $NetBSD: subr_workqueue.c,v 1.42 2023/08/09 08:23:13 riastradh Exp $ */
2 1.1 yamt
3 1.1 yamt /*-
4 1.20 yamt * Copyright (c)2002, 2005, 2006, 2007 YAMAMOTO Takashi,
5 1.1 yamt * All rights reserved.
6 1.1 yamt *
7 1.1 yamt * Redistribution and use in source and binary forms, with or without
8 1.1 yamt * modification, are permitted provided that the following conditions
9 1.1 yamt * are met:
10 1.1 yamt * 1. Redistributions of source code must retain the above copyright
11 1.1 yamt * notice, this list of conditions and the following disclaimer.
12 1.1 yamt * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 yamt * notice, this list of conditions and the following disclaimer in the
14 1.1 yamt * documentation and/or other materials provided with the distribution.
15 1.1 yamt *
16 1.1 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.1 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.1 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.1 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.1 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.1 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.1 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.1 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.1 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 yamt * SUCH DAMAGE.
27 1.1 yamt */
28 1.1 yamt
29 1.1 yamt #include <sys/cdefs.h>
30 1.42 riastrad __KERNEL_RCSID(0, "$NetBSD: subr_workqueue.c,v 1.42 2023/08/09 08:23:13 riastradh Exp $");
31 1.1 yamt
32 1.1 yamt #include <sys/param.h>
33 1.18 rmind #include <sys/cpu.h>
34 1.1 yamt #include <sys/systm.h>
35 1.1 yamt #include <sys/kthread.h>
36 1.4 yamt #include <sys/kmem.h>
37 1.1 yamt #include <sys/proc.h>
38 1.1 yamt #include <sys/workqueue.h>
39 1.9 ad #include <sys/mutex.h>
40 1.9 ad #include <sys/condvar.h>
41 1.41 riastrad #include <sys/sdt.h>
42 1.17 yamt #include <sys/queue.h>
43 1.1 yamt
44 1.17 yamt typedef struct work_impl {
45 1.17 yamt SIMPLEQ_ENTRY(work_impl) wk_entry;
46 1.17 yamt } work_impl_t;
47 1.17 yamt
48 1.17 yamt SIMPLEQ_HEAD(workqhead, work_impl);
49 1.1 yamt
50 1.1 yamt struct workqueue_queue {
51 1.9 ad kmutex_t q_mutex;
52 1.9 ad kcondvar_t q_cv;
53 1.34 ozaki struct workqhead q_queue_pending;
54 1.42 riastrad uint64_t q_gen;
55 1.28 yamt lwp_t *q_worker;
56 1.1 yamt };
57 1.1 yamt
58 1.1 yamt struct workqueue {
59 1.1 yamt void (*wq_func)(struct work *, void *);
60 1.1 yamt void *wq_arg;
61 1.20 yamt int wq_flags;
62 1.20 yamt
63 1.32 jym char wq_name[MAXCOMLEN];
64 1.12 yamt pri_t wq_prio;
65 1.18 rmind void *wq_ptr;
66 1.1 yamt };
67 1.1 yamt
68 1.24 ad #define WQ_SIZE (roundup2(sizeof(struct workqueue), coherency_unit))
69 1.24 ad #define WQ_QUEUE_SIZE (roundup2(sizeof(struct workqueue_queue), coherency_unit))
70 1.18 rmind
71 1.1 yamt #define POISON 0xaabbccdd
72 1.1 yamt
73 1.41 riastrad SDT_PROBE_DEFINE7(sdt, kernel, workqueue, create,
74 1.41 riastrad "struct workqueue *"/*wq*/,
75 1.41 riastrad "const char *"/*name*/,
76 1.41 riastrad "void (*)(struct work *, void *)"/*func*/,
77 1.41 riastrad "void *"/*arg*/,
78 1.41 riastrad "pri_t"/*prio*/,
79 1.41 riastrad "int"/*ipl*/,
80 1.41 riastrad "int"/*flags*/);
81 1.41 riastrad SDT_PROBE_DEFINE1(sdt, kernel, workqueue, destroy,
82 1.41 riastrad "struct workqueue *"/*wq*/);
83 1.41 riastrad
84 1.41 riastrad SDT_PROBE_DEFINE3(sdt, kernel, workqueue, enqueue,
85 1.41 riastrad "struct workqueue *"/*wq*/,
86 1.41 riastrad "struct work *"/*wk*/,
87 1.41 riastrad "struct cpu_info *"/*ci*/);
88 1.41 riastrad SDT_PROBE_DEFINE4(sdt, kernel, workqueue, entry,
89 1.41 riastrad "struct workqueue *"/*wq*/,
90 1.41 riastrad "struct work *"/*wk*/,
91 1.41 riastrad "void (*)(struct work *, void *)"/*func*/,
92 1.41 riastrad "void *"/*arg*/);
93 1.41 riastrad SDT_PROBE_DEFINE4(sdt, kernel, workqueue, return,
94 1.41 riastrad "struct workqueue *"/*wq*/,
95 1.41 riastrad "struct work *"/*wk*/,
96 1.41 riastrad "void (*)(struct work *, void *)"/*func*/,
97 1.41 riastrad "void *"/*arg*/);
98 1.41 riastrad SDT_PROBE_DEFINE2(sdt, kernel, workqueue, wait__start,
99 1.41 riastrad "struct workqueue *"/*wq*/,
100 1.41 riastrad "struct work *"/*wk*/);
101 1.41 riastrad SDT_PROBE_DEFINE2(sdt, kernel, workqueue, wait__done,
102 1.41 riastrad "struct workqueue *"/*wq*/,
103 1.41 riastrad "struct work *"/*wk*/);
104 1.41 riastrad
105 1.41 riastrad SDT_PROBE_DEFINE1(sdt, kernel, workqueue, exit__start,
106 1.41 riastrad "struct workqueue *"/*wq*/);
107 1.41 riastrad SDT_PROBE_DEFINE1(sdt, kernel, workqueue, exit__done,
108 1.41 riastrad "struct workqueue *"/*wq*/);
109 1.41 riastrad
110 1.20 yamt static size_t
111 1.20 yamt workqueue_size(int flags)
112 1.20 yamt {
113 1.20 yamt
114 1.20 yamt return WQ_SIZE
115 1.20 yamt + ((flags & WQ_PERCPU) != 0 ? ncpu : 1) * WQ_QUEUE_SIZE
116 1.24 ad + coherency_unit;
117 1.20 yamt }
118 1.20 yamt
119 1.14 rmind static struct workqueue_queue *
120 1.14 rmind workqueue_queue_lookup(struct workqueue *wq, struct cpu_info *ci)
121 1.14 rmind {
122 1.18 rmind u_int idx = 0;
123 1.14 rmind
124 1.18 rmind if (wq->wq_flags & WQ_PERCPU) {
125 1.18 rmind idx = ci ? cpu_index(ci) : cpu_index(curcpu());
126 1.18 rmind }
127 1.14 rmind
128 1.26 rmind return (void *)((uintptr_t)(wq) + WQ_SIZE + (idx * WQ_QUEUE_SIZE));
129 1.14 rmind }
130 1.14 rmind
131 1.1 yamt static void
132 1.1 yamt workqueue_runlist(struct workqueue *wq, struct workqhead *list)
133 1.1 yamt {
134 1.17 yamt work_impl_t *wk;
135 1.17 yamt work_impl_t *next;
136 1.1 yamt
137 1.1 yamt /*
138 1.1 yamt * note that "list" is not a complete SIMPLEQ.
139 1.1 yamt */
140 1.1 yamt
141 1.1 yamt for (wk = SIMPLEQ_FIRST(list); wk != NULL; wk = next) {
142 1.1 yamt next = SIMPLEQ_NEXT(wk, wk_entry);
143 1.41 riastrad SDT_PROBE4(sdt, kernel, workqueue, entry,
144 1.41 riastrad wq, wk, wq->wq_func, wq->wq_arg);
145 1.17 yamt (*wq->wq_func)((void *)wk, wq->wq_arg);
146 1.41 riastrad SDT_PROBE4(sdt, kernel, workqueue, return,
147 1.41 riastrad wq, wk, wq->wq_func, wq->wq_arg);
148 1.1 yamt }
149 1.1 yamt }
150 1.1 yamt
151 1.1 yamt static void
152 1.21 yamt workqueue_worker(void *cookie)
153 1.1 yamt {
154 1.21 yamt struct workqueue *wq = cookie;
155 1.14 rmind struct workqueue_queue *q;
156 1.38 riastrad int s;
157 1.14 rmind
158 1.14 rmind /* find the workqueue of this kthread */
159 1.14 rmind q = workqueue_queue_lookup(wq, curlwp->l_cpu);
160 1.14 rmind
161 1.38 riastrad if (wq->wq_flags & WQ_FPU)
162 1.38 riastrad s = kthread_fpu_enter();
163 1.3 rpaulo for (;;) {
164 1.42 riastrad struct workqhead tmp;
165 1.42 riastrad
166 1.1 yamt /*
167 1.1 yamt * we violate abstraction of SIMPLEQ.
168 1.1 yamt */
169 1.1 yamt
170 1.9 ad mutex_enter(&q->q_mutex);
171 1.34 ozaki while (SIMPLEQ_EMPTY(&q->q_queue_pending))
172 1.9 ad cv_wait(&q->q_cv, &q->q_mutex);
173 1.42 riastrad tmp.sqh_first = q->q_queue_pending.sqh_first; /* XXX */
174 1.34 ozaki SIMPLEQ_INIT(&q->q_queue_pending);
175 1.42 riastrad
176 1.42 riastrad /*
177 1.42 riastrad * Mark the queue as actively running a batch of work
178 1.42 riastrad * by setting the generation number odd.
179 1.42 riastrad */
180 1.42 riastrad q->q_gen |= 1;
181 1.9 ad mutex_exit(&q->q_mutex);
182 1.1 yamt
183 1.42 riastrad workqueue_runlist(wq, &tmp);
184 1.34 ozaki
185 1.42 riastrad /*
186 1.42 riastrad * Notify workqueue_wait that we have completed a batch
187 1.42 riastrad * of work by incrementing the generation number.
188 1.42 riastrad */
189 1.34 ozaki mutex_enter(&q->q_mutex);
190 1.42 riastrad KASSERTMSG(q->q_gen & 1, "q=%p gen=%"PRIu64, q, q->q_gen);
191 1.42 riastrad q->q_gen++;
192 1.39 riastrad cv_broadcast(&q->q_cv);
193 1.34 ozaki mutex_exit(&q->q_mutex);
194 1.1 yamt }
195 1.38 riastrad if (wq->wq_flags & WQ_FPU)
196 1.38 riastrad kthread_fpu_exit(s);
197 1.1 yamt }
198 1.1 yamt
199 1.1 yamt static void
200 1.1 yamt workqueue_init(struct workqueue *wq, const char *name,
201 1.1 yamt void (*callback_func)(struct work *, void *), void *callback_arg,
202 1.12 yamt pri_t prio, int ipl)
203 1.1 yamt {
204 1.1 yamt
205 1.36 ozaki KASSERT(sizeof(wq->wq_name) > strlen(name));
206 1.32 jym strncpy(wq->wq_name, name, sizeof(wq->wq_name));
207 1.32 jym
208 1.1 yamt wq->wq_prio = prio;
209 1.1 yamt wq->wq_func = callback_func;
210 1.1 yamt wq->wq_arg = callback_arg;
211 1.1 yamt }
212 1.1 yamt
213 1.1 yamt static int
214 1.18 rmind workqueue_initqueue(struct workqueue *wq, struct workqueue_queue *q,
215 1.18 rmind int ipl, struct cpu_info *ci)
216 1.1 yamt {
217 1.13 ad int error, ktf;
218 1.14 rmind
219 1.20 yamt KASSERT(q->q_worker == NULL);
220 1.20 yamt
221 1.22 ad mutex_init(&q->q_mutex, MUTEX_DEFAULT, ipl);
222 1.9 ad cv_init(&q->q_cv, wq->wq_name);
223 1.34 ozaki SIMPLEQ_INIT(&q->q_queue_pending);
224 1.42 riastrad q->q_gen = 0;
225 1.18 rmind ktf = ((wq->wq_flags & WQ_MPSAFE) != 0 ? KTHREAD_MPSAFE : 0);
226 1.33 matt if (wq->wq_prio < PRI_KERNEL)
227 1.33 matt ktf |= KTHREAD_TS;
228 1.18 rmind if (ci) {
229 1.18 rmind error = kthread_create(wq->wq_prio, ktf, ci, workqueue_worker,
230 1.23 martin wq, &q->q_worker, "%s/%u", wq->wq_name, ci->ci_index);
231 1.18 rmind } else {
232 1.18 rmind error = kthread_create(wq->wq_prio, ktf, ci, workqueue_worker,
233 1.18 rmind wq, &q->q_worker, "%s", wq->wq_name);
234 1.18 rmind }
235 1.20 yamt if (error != 0) {
236 1.20 yamt mutex_destroy(&q->q_mutex);
237 1.20 yamt cv_destroy(&q->q_cv);
238 1.20 yamt KASSERT(q->q_worker == NULL);
239 1.20 yamt }
240 1.1 yamt return error;
241 1.1 yamt }
242 1.1 yamt
243 1.5 yamt struct workqueue_exitargs {
244 1.17 yamt work_impl_t wqe_wk;
245 1.5 yamt struct workqueue_queue *wqe_q;
246 1.5 yamt };
247 1.5 yamt
248 1.5 yamt static void
249 1.7 yamt workqueue_exit(struct work *wk, void *arg)
250 1.5 yamt {
251 1.5 yamt struct workqueue_exitargs *wqe = (void *)wk;
252 1.5 yamt struct workqueue_queue *q = wqe->wqe_q;
253 1.5 yamt
254 1.5 yamt /*
255 1.11 yamt * only competition at this point is workqueue_finiqueue.
256 1.5 yamt */
257 1.5 yamt
258 1.13 ad KASSERT(q->q_worker == curlwp);
259 1.34 ozaki KASSERT(SIMPLEQ_EMPTY(&q->q_queue_pending));
260 1.9 ad mutex_enter(&q->q_mutex);
261 1.5 yamt q->q_worker = NULL;
262 1.39 riastrad cv_broadcast(&q->q_cv);
263 1.9 ad mutex_exit(&q->q_mutex);
264 1.5 yamt kthread_exit(0);
265 1.5 yamt }
266 1.5 yamt
267 1.5 yamt static void
268 1.14 rmind workqueue_finiqueue(struct workqueue *wq, struct workqueue_queue *q)
269 1.5 yamt {
270 1.5 yamt struct workqueue_exitargs wqe;
271 1.5 yamt
272 1.20 yamt KASSERT(wq->wq_func == workqueue_exit);
273 1.5 yamt
274 1.5 yamt wqe.wqe_q = q;
275 1.34 ozaki KASSERT(SIMPLEQ_EMPTY(&q->q_queue_pending));
276 1.5 yamt KASSERT(q->q_worker != NULL);
277 1.9 ad mutex_enter(&q->q_mutex);
278 1.34 ozaki SIMPLEQ_INSERT_TAIL(&q->q_queue_pending, &wqe.wqe_wk, wk_entry);
279 1.39 riastrad cv_broadcast(&q->q_cv);
280 1.5 yamt while (q->q_worker != NULL) {
281 1.9 ad cv_wait(&q->q_cv, &q->q_mutex);
282 1.5 yamt }
283 1.9 ad mutex_exit(&q->q_mutex);
284 1.9 ad mutex_destroy(&q->q_mutex);
285 1.9 ad cv_destroy(&q->q_cv);
286 1.5 yamt }
287 1.5 yamt
288 1.1 yamt /* --- */
289 1.1 yamt
290 1.1 yamt int
291 1.1 yamt workqueue_create(struct workqueue **wqp, const char *name,
292 1.1 yamt void (*callback_func)(struct work *, void *), void *callback_arg,
293 1.12 yamt pri_t prio, int ipl, int flags)
294 1.1 yamt {
295 1.1 yamt struct workqueue *wq;
296 1.18 rmind struct workqueue_queue *q;
297 1.18 rmind void *ptr;
298 1.20 yamt int error = 0;
299 1.1 yamt
300 1.25 matt CTASSERT(sizeof(work_impl_t) <= sizeof(struct work));
301 1.17 yamt
302 1.20 yamt ptr = kmem_zalloc(workqueue_size(flags), KM_SLEEP);
303 1.26 rmind wq = (void *)roundup2((uintptr_t)ptr, coherency_unit);
304 1.18 rmind wq->wq_ptr = ptr;
305 1.18 rmind wq->wq_flags = flags;
306 1.1 yamt
307 1.1 yamt workqueue_init(wq, name, callback_func, callback_arg, prio, ipl);
308 1.1 yamt
309 1.14 rmind if (flags & WQ_PERCPU) {
310 1.14 rmind struct cpu_info *ci;
311 1.14 rmind CPU_INFO_ITERATOR cii;
312 1.14 rmind
313 1.14 rmind /* create the work-queue for each CPU */
314 1.14 rmind for (CPU_INFO_FOREACH(cii, ci)) {
315 1.20 yamt q = workqueue_queue_lookup(wq, ci);
316 1.18 rmind error = workqueue_initqueue(wq, q, ipl, ci);
317 1.18 rmind if (error) {
318 1.14 rmind break;
319 1.18 rmind }
320 1.14 rmind }
321 1.14 rmind } else {
322 1.18 rmind /* initialize a work-queue */
323 1.20 yamt q = workqueue_queue_lookup(wq, NULL);
324 1.18 rmind error = workqueue_initqueue(wq, q, ipl, NULL);
325 1.1 yamt }
326 1.18 rmind
327 1.20 yamt if (error != 0) {
328 1.20 yamt workqueue_destroy(wq);
329 1.20 yamt } else {
330 1.20 yamt *wqp = wq;
331 1.15 rmind }
332 1.1 yamt
333 1.20 yamt return error;
334 1.1 yamt }
335 1.1 yamt
336 1.34 ozaki static bool
337 1.34 ozaki workqueue_q_wait(struct workqueue_queue *q, work_impl_t *wk_target)
338 1.34 ozaki {
339 1.34 ozaki work_impl_t *wk;
340 1.34 ozaki bool found = false;
341 1.42 riastrad uint64_t gen;
342 1.34 ozaki
343 1.34 ozaki mutex_enter(&q->q_mutex);
344 1.42 riastrad
345 1.42 riastrad /*
346 1.42 riastrad * Avoid a deadlock scenario. We can't guarantee that
347 1.42 riastrad * wk_target has completed at this point, but we can't wait for
348 1.42 riastrad * it either, so do nothing.
349 1.42 riastrad *
350 1.42 riastrad * XXX Are there use-cases that require this semantics?
351 1.42 riastrad */
352 1.37 ozaki if (q->q_worker == curlwp)
353 1.37 ozaki goto out;
354 1.42 riastrad
355 1.42 riastrad /*
356 1.42 riastrad * Wait until the target is no longer pending. If we find it
357 1.42 riastrad * on this queue, the caller can stop looking in other queues.
358 1.42 riastrad * If we don't find it in this queue, however, we can't skip
359 1.42 riastrad * waiting -- it may be hidden in the running queue which we
360 1.42 riastrad * have no access to.
361 1.42 riastrad */
362 1.34 ozaki again:
363 1.34 ozaki SIMPLEQ_FOREACH(wk, &q->q_queue_pending, wk_entry) {
364 1.42 riastrad if (wk == wk_target) {
365 1.42 riastrad found = true;
366 1.42 riastrad cv_wait(&q->q_cv, &q->q_mutex);
367 1.42 riastrad goto again;
368 1.42 riastrad }
369 1.34 ozaki }
370 1.42 riastrad
371 1.42 riastrad /*
372 1.42 riastrad * The target may be in the batch of work currently running,
373 1.42 riastrad * but we can't touch that queue. So if there's anything
374 1.42 riastrad * running, wait until the generation changes.
375 1.42 riastrad */
376 1.42 riastrad gen = q->q_gen;
377 1.42 riastrad if (gen & 1) {
378 1.42 riastrad do
379 1.42 riastrad cv_wait(&q->q_cv, &q->q_mutex);
380 1.42 riastrad while (gen == q->q_gen);
381 1.34 ozaki }
382 1.42 riastrad
383 1.37 ozaki out:
384 1.34 ozaki mutex_exit(&q->q_mutex);
385 1.34 ozaki
386 1.34 ozaki return found;
387 1.34 ozaki }
388 1.34 ozaki
389 1.34 ozaki /*
390 1.34 ozaki * Wait for a specified work to finish. The caller must ensure that no new
391 1.34 ozaki * work will be enqueued before calling workqueue_wait. Note that if the
392 1.34 ozaki * workqueue is WQ_PERCPU, the caller can enqueue a new work to another queue
393 1.34 ozaki * other than the waiting queue.
394 1.34 ozaki */
395 1.34 ozaki void
396 1.34 ozaki workqueue_wait(struct workqueue *wq, struct work *wk)
397 1.34 ozaki {
398 1.34 ozaki struct workqueue_queue *q;
399 1.34 ozaki bool found;
400 1.34 ozaki
401 1.40 riastrad ASSERT_SLEEPABLE();
402 1.40 riastrad
403 1.41 riastrad SDT_PROBE2(sdt, kernel, workqueue, wait__start, wq, wk);
404 1.34 ozaki if (ISSET(wq->wq_flags, WQ_PERCPU)) {
405 1.34 ozaki struct cpu_info *ci;
406 1.34 ozaki CPU_INFO_ITERATOR cii;
407 1.34 ozaki for (CPU_INFO_FOREACH(cii, ci)) {
408 1.34 ozaki q = workqueue_queue_lookup(wq, ci);
409 1.34 ozaki found = workqueue_q_wait(q, (work_impl_t *)wk);
410 1.34 ozaki if (found)
411 1.34 ozaki break;
412 1.34 ozaki }
413 1.34 ozaki } else {
414 1.34 ozaki q = workqueue_queue_lookup(wq, NULL);
415 1.34 ozaki (void) workqueue_q_wait(q, (work_impl_t *)wk);
416 1.34 ozaki }
417 1.41 riastrad SDT_PROBE2(sdt, kernel, workqueue, wait__done, wq, wk);
418 1.34 ozaki }
419 1.34 ozaki
420 1.1 yamt void
421 1.5 yamt workqueue_destroy(struct workqueue *wq)
422 1.5 yamt {
423 1.14 rmind struct workqueue_queue *q;
424 1.20 yamt struct cpu_info *ci;
425 1.20 yamt CPU_INFO_ITERATOR cii;
426 1.5 yamt
427 1.40 riastrad ASSERT_SLEEPABLE();
428 1.40 riastrad
429 1.41 riastrad SDT_PROBE1(sdt, kernel, workqueue, exit__start, wq);
430 1.20 yamt wq->wq_func = workqueue_exit;
431 1.20 yamt for (CPU_INFO_FOREACH(cii, ci)) {
432 1.20 yamt q = workqueue_queue_lookup(wq, ci);
433 1.20 yamt if (q->q_worker != NULL) {
434 1.18 rmind workqueue_finiqueue(wq, q);
435 1.18 rmind }
436 1.14 rmind }
437 1.41 riastrad SDT_PROBE1(sdt, kernel, workqueue, exit__done, wq);
438 1.20 yamt kmem_free(wq->wq_ptr, workqueue_size(wq->wq_flags));
439 1.5 yamt }
440 1.5 yamt
441 1.35 ozaki #ifdef DEBUG
442 1.35 ozaki static void
443 1.35 ozaki workqueue_check_duplication(struct workqueue_queue *q, work_impl_t *wk)
444 1.35 ozaki {
445 1.35 ozaki work_impl_t *_wk;
446 1.35 ozaki
447 1.35 ozaki SIMPLEQ_FOREACH(_wk, &q->q_queue_pending, wk_entry) {
448 1.35 ozaki if (_wk == wk)
449 1.35 ozaki panic("%s: tried to enqueue a queued work", __func__);
450 1.35 ozaki }
451 1.35 ozaki }
452 1.35 ozaki #endif
453 1.35 ozaki
454 1.5 yamt void
455 1.17 yamt workqueue_enqueue(struct workqueue *wq, struct work *wk0, struct cpu_info *ci)
456 1.1 yamt {
457 1.14 rmind struct workqueue_queue *q;
458 1.17 yamt work_impl_t *wk = (void *)wk0;
459 1.14 rmind
460 1.41 riastrad SDT_PROBE3(sdt, kernel, workqueue, enqueue, wq, wk0, ci);
461 1.41 riastrad
462 1.18 rmind KASSERT(wq->wq_flags & WQ_PERCPU || ci == NULL);
463 1.14 rmind q = workqueue_queue_lookup(wq, ci);
464 1.1 yamt
465 1.9 ad mutex_enter(&q->q_mutex);
466 1.35 ozaki #ifdef DEBUG
467 1.35 ozaki workqueue_check_duplication(q, wk);
468 1.35 ozaki #endif
469 1.34 ozaki SIMPLEQ_INSERT_TAIL(&q->q_queue_pending, wk, wk_entry);
470 1.39 riastrad cv_broadcast(&q->q_cv);
471 1.9 ad mutex_exit(&q->q_mutex);
472 1.1 yamt }
473