subr_workqueue.c revision 1.47 1 1.47 riastrad /* $NetBSD: subr_workqueue.c,v 1.47 2023/08/09 08:24:18 riastradh Exp $ */
2 1.1 yamt
3 1.1 yamt /*-
4 1.20 yamt * Copyright (c)2002, 2005, 2006, 2007 YAMAMOTO Takashi,
5 1.1 yamt * All rights reserved.
6 1.1 yamt *
7 1.1 yamt * Redistribution and use in source and binary forms, with or without
8 1.1 yamt * modification, are permitted provided that the following conditions
9 1.1 yamt * are met:
10 1.1 yamt * 1. Redistributions of source code must retain the above copyright
11 1.1 yamt * notice, this list of conditions and the following disclaimer.
12 1.1 yamt * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 yamt * notice, this list of conditions and the following disclaimer in the
14 1.1 yamt * documentation and/or other materials provided with the distribution.
15 1.1 yamt *
16 1.1 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.1 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.1 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.1 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.1 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.1 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.1 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.1 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.1 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 yamt * SUCH DAMAGE.
27 1.1 yamt */
28 1.1 yamt
29 1.1 yamt #include <sys/cdefs.h>
30 1.47 riastrad __KERNEL_RCSID(0, "$NetBSD: subr_workqueue.c,v 1.47 2023/08/09 08:24:18 riastradh Exp $");
31 1.1 yamt
32 1.1 yamt #include <sys/param.h>
33 1.46 riastrad
34 1.46 riastrad #include <sys/condvar.h>
35 1.18 rmind #include <sys/cpu.h>
36 1.46 riastrad #include <sys/kmem.h>
37 1.1 yamt #include <sys/kthread.h>
38 1.46 riastrad #include <sys/mutex.h>
39 1.1 yamt #include <sys/proc.h>
40 1.46 riastrad #include <sys/queue.h>
41 1.46 riastrad #include <sys/sdt.h>
42 1.46 riastrad #include <sys/systm.h>
43 1.1 yamt #include <sys/workqueue.h>
44 1.1 yamt
45 1.17 yamt typedef struct work_impl {
46 1.17 yamt SIMPLEQ_ENTRY(work_impl) wk_entry;
47 1.17 yamt } work_impl_t;
48 1.17 yamt
49 1.17 yamt SIMPLEQ_HEAD(workqhead, work_impl);
50 1.1 yamt
51 1.1 yamt struct workqueue_queue {
52 1.9 ad kmutex_t q_mutex;
53 1.9 ad kcondvar_t q_cv;
54 1.34 ozaki struct workqhead q_queue_pending;
55 1.42 riastrad uint64_t q_gen;
56 1.28 yamt lwp_t *q_worker;
57 1.1 yamt };
58 1.1 yamt
59 1.1 yamt struct workqueue {
60 1.1 yamt void (*wq_func)(struct work *, void *);
61 1.1 yamt void *wq_arg;
62 1.20 yamt int wq_flags;
63 1.20 yamt
64 1.32 jym char wq_name[MAXCOMLEN];
65 1.12 yamt pri_t wq_prio;
66 1.18 rmind void *wq_ptr;
67 1.1 yamt };
68 1.1 yamt
69 1.24 ad #define WQ_SIZE (roundup2(sizeof(struct workqueue), coherency_unit))
70 1.24 ad #define WQ_QUEUE_SIZE (roundup2(sizeof(struct workqueue_queue), coherency_unit))
71 1.18 rmind
72 1.1 yamt #define POISON 0xaabbccdd
73 1.1 yamt
74 1.41 riastrad SDT_PROBE_DEFINE7(sdt, kernel, workqueue, create,
75 1.41 riastrad "struct workqueue *"/*wq*/,
76 1.41 riastrad "const char *"/*name*/,
77 1.41 riastrad "void (*)(struct work *, void *)"/*func*/,
78 1.41 riastrad "void *"/*arg*/,
79 1.41 riastrad "pri_t"/*prio*/,
80 1.41 riastrad "int"/*ipl*/,
81 1.41 riastrad "int"/*flags*/);
82 1.41 riastrad SDT_PROBE_DEFINE1(sdt, kernel, workqueue, destroy,
83 1.41 riastrad "struct workqueue *"/*wq*/);
84 1.41 riastrad
85 1.41 riastrad SDT_PROBE_DEFINE3(sdt, kernel, workqueue, enqueue,
86 1.41 riastrad "struct workqueue *"/*wq*/,
87 1.41 riastrad "struct work *"/*wk*/,
88 1.41 riastrad "struct cpu_info *"/*ci*/);
89 1.41 riastrad SDT_PROBE_DEFINE4(sdt, kernel, workqueue, entry,
90 1.41 riastrad "struct workqueue *"/*wq*/,
91 1.41 riastrad "struct work *"/*wk*/,
92 1.41 riastrad "void (*)(struct work *, void *)"/*func*/,
93 1.41 riastrad "void *"/*arg*/);
94 1.41 riastrad SDT_PROBE_DEFINE4(sdt, kernel, workqueue, return,
95 1.41 riastrad "struct workqueue *"/*wq*/,
96 1.41 riastrad "struct work *"/*wk*/,
97 1.41 riastrad "void (*)(struct work *, void *)"/*func*/,
98 1.41 riastrad "void *"/*arg*/);
99 1.41 riastrad SDT_PROBE_DEFINE2(sdt, kernel, workqueue, wait__start,
100 1.41 riastrad "struct workqueue *"/*wq*/,
101 1.41 riastrad "struct work *"/*wk*/);
102 1.43 riastrad SDT_PROBE_DEFINE2(sdt, kernel, workqueue, wait__self,
103 1.43 riastrad "struct workqueue *"/*wq*/,
104 1.43 riastrad "struct work *"/*wk*/);
105 1.43 riastrad SDT_PROBE_DEFINE2(sdt, kernel, workqueue, wait__hit,
106 1.43 riastrad "struct workqueue *"/*wq*/,
107 1.43 riastrad "struct work *"/*wk*/);
108 1.41 riastrad SDT_PROBE_DEFINE2(sdt, kernel, workqueue, wait__done,
109 1.41 riastrad "struct workqueue *"/*wq*/,
110 1.41 riastrad "struct work *"/*wk*/);
111 1.41 riastrad
112 1.41 riastrad SDT_PROBE_DEFINE1(sdt, kernel, workqueue, exit__start,
113 1.41 riastrad "struct workqueue *"/*wq*/);
114 1.41 riastrad SDT_PROBE_DEFINE1(sdt, kernel, workqueue, exit__done,
115 1.41 riastrad "struct workqueue *"/*wq*/);
116 1.41 riastrad
117 1.20 yamt static size_t
118 1.20 yamt workqueue_size(int flags)
119 1.20 yamt {
120 1.20 yamt
121 1.20 yamt return WQ_SIZE
122 1.20 yamt + ((flags & WQ_PERCPU) != 0 ? ncpu : 1) * WQ_QUEUE_SIZE
123 1.24 ad + coherency_unit;
124 1.20 yamt }
125 1.20 yamt
126 1.14 rmind static struct workqueue_queue *
127 1.14 rmind workqueue_queue_lookup(struct workqueue *wq, struct cpu_info *ci)
128 1.14 rmind {
129 1.18 rmind u_int idx = 0;
130 1.14 rmind
131 1.18 rmind if (wq->wq_flags & WQ_PERCPU) {
132 1.18 rmind idx = ci ? cpu_index(ci) : cpu_index(curcpu());
133 1.18 rmind }
134 1.14 rmind
135 1.26 rmind return (void *)((uintptr_t)(wq) + WQ_SIZE + (idx * WQ_QUEUE_SIZE));
136 1.14 rmind }
137 1.14 rmind
138 1.1 yamt static void
139 1.1 yamt workqueue_runlist(struct workqueue *wq, struct workqhead *list)
140 1.1 yamt {
141 1.17 yamt work_impl_t *wk;
142 1.17 yamt work_impl_t *next;
143 1.1 yamt
144 1.1 yamt for (wk = SIMPLEQ_FIRST(list); wk != NULL; wk = next) {
145 1.1 yamt next = SIMPLEQ_NEXT(wk, wk_entry);
146 1.41 riastrad SDT_PROBE4(sdt, kernel, workqueue, entry,
147 1.41 riastrad wq, wk, wq->wq_func, wq->wq_arg);
148 1.17 yamt (*wq->wq_func)((void *)wk, wq->wq_arg);
149 1.41 riastrad SDT_PROBE4(sdt, kernel, workqueue, return,
150 1.41 riastrad wq, wk, wq->wq_func, wq->wq_arg);
151 1.1 yamt }
152 1.1 yamt }
153 1.1 yamt
154 1.1 yamt static void
155 1.21 yamt workqueue_worker(void *cookie)
156 1.1 yamt {
157 1.21 yamt struct workqueue *wq = cookie;
158 1.14 rmind struct workqueue_queue *q;
159 1.47 riastrad int s, fpu = wq->wq_flags & WQ_FPU;
160 1.14 rmind
161 1.14 rmind /* find the workqueue of this kthread */
162 1.14 rmind q = workqueue_queue_lookup(wq, curlwp->l_cpu);
163 1.14 rmind
164 1.47 riastrad if (fpu)
165 1.38 riastrad s = kthread_fpu_enter();
166 1.45 riastrad mutex_enter(&q->q_mutex);
167 1.3 rpaulo for (;;) {
168 1.42 riastrad struct workqhead tmp;
169 1.42 riastrad
170 1.44 riastrad SIMPLEQ_INIT(&tmp);
171 1.1 yamt
172 1.34 ozaki while (SIMPLEQ_EMPTY(&q->q_queue_pending))
173 1.9 ad cv_wait(&q->q_cv, &q->q_mutex);
174 1.44 riastrad SIMPLEQ_CONCAT(&tmp, &q->q_queue_pending);
175 1.34 ozaki SIMPLEQ_INIT(&q->q_queue_pending);
176 1.42 riastrad
177 1.42 riastrad /*
178 1.42 riastrad * Mark the queue as actively running a batch of work
179 1.42 riastrad * by setting the generation number odd.
180 1.42 riastrad */
181 1.42 riastrad q->q_gen |= 1;
182 1.9 ad mutex_exit(&q->q_mutex);
183 1.1 yamt
184 1.42 riastrad workqueue_runlist(wq, &tmp);
185 1.34 ozaki
186 1.42 riastrad /*
187 1.42 riastrad * Notify workqueue_wait that we have completed a batch
188 1.42 riastrad * of work by incrementing the generation number.
189 1.42 riastrad */
190 1.34 ozaki mutex_enter(&q->q_mutex);
191 1.42 riastrad KASSERTMSG(q->q_gen & 1, "q=%p gen=%"PRIu64, q, q->q_gen);
192 1.42 riastrad q->q_gen++;
193 1.39 riastrad cv_broadcast(&q->q_cv);
194 1.1 yamt }
195 1.45 riastrad mutex_exit(&q->q_mutex);
196 1.47 riastrad if (fpu)
197 1.38 riastrad kthread_fpu_exit(s);
198 1.1 yamt }
199 1.1 yamt
200 1.1 yamt static void
201 1.1 yamt workqueue_init(struct workqueue *wq, const char *name,
202 1.1 yamt void (*callback_func)(struct work *, void *), void *callback_arg,
203 1.12 yamt pri_t prio, int ipl)
204 1.1 yamt {
205 1.1 yamt
206 1.36 ozaki KASSERT(sizeof(wq->wq_name) > strlen(name));
207 1.32 jym strncpy(wq->wq_name, name, sizeof(wq->wq_name));
208 1.32 jym
209 1.1 yamt wq->wq_prio = prio;
210 1.1 yamt wq->wq_func = callback_func;
211 1.1 yamt wq->wq_arg = callback_arg;
212 1.1 yamt }
213 1.1 yamt
214 1.1 yamt static int
215 1.18 rmind workqueue_initqueue(struct workqueue *wq, struct workqueue_queue *q,
216 1.18 rmind int ipl, struct cpu_info *ci)
217 1.1 yamt {
218 1.13 ad int error, ktf;
219 1.14 rmind
220 1.20 yamt KASSERT(q->q_worker == NULL);
221 1.20 yamt
222 1.22 ad mutex_init(&q->q_mutex, MUTEX_DEFAULT, ipl);
223 1.9 ad cv_init(&q->q_cv, wq->wq_name);
224 1.34 ozaki SIMPLEQ_INIT(&q->q_queue_pending);
225 1.42 riastrad q->q_gen = 0;
226 1.18 rmind ktf = ((wq->wq_flags & WQ_MPSAFE) != 0 ? KTHREAD_MPSAFE : 0);
227 1.33 matt if (wq->wq_prio < PRI_KERNEL)
228 1.33 matt ktf |= KTHREAD_TS;
229 1.18 rmind if (ci) {
230 1.18 rmind error = kthread_create(wq->wq_prio, ktf, ci, workqueue_worker,
231 1.23 martin wq, &q->q_worker, "%s/%u", wq->wq_name, ci->ci_index);
232 1.18 rmind } else {
233 1.18 rmind error = kthread_create(wq->wq_prio, ktf, ci, workqueue_worker,
234 1.18 rmind wq, &q->q_worker, "%s", wq->wq_name);
235 1.18 rmind }
236 1.20 yamt if (error != 0) {
237 1.20 yamt mutex_destroy(&q->q_mutex);
238 1.20 yamt cv_destroy(&q->q_cv);
239 1.20 yamt KASSERT(q->q_worker == NULL);
240 1.20 yamt }
241 1.1 yamt return error;
242 1.1 yamt }
243 1.1 yamt
244 1.5 yamt struct workqueue_exitargs {
245 1.17 yamt work_impl_t wqe_wk;
246 1.5 yamt struct workqueue_queue *wqe_q;
247 1.5 yamt };
248 1.5 yamt
249 1.5 yamt static void
250 1.7 yamt workqueue_exit(struct work *wk, void *arg)
251 1.5 yamt {
252 1.5 yamt struct workqueue_exitargs *wqe = (void *)wk;
253 1.5 yamt struct workqueue_queue *q = wqe->wqe_q;
254 1.5 yamt
255 1.5 yamt /*
256 1.11 yamt * only competition at this point is workqueue_finiqueue.
257 1.5 yamt */
258 1.5 yamt
259 1.13 ad KASSERT(q->q_worker == curlwp);
260 1.34 ozaki KASSERT(SIMPLEQ_EMPTY(&q->q_queue_pending));
261 1.9 ad mutex_enter(&q->q_mutex);
262 1.5 yamt q->q_worker = NULL;
263 1.39 riastrad cv_broadcast(&q->q_cv);
264 1.9 ad mutex_exit(&q->q_mutex);
265 1.5 yamt kthread_exit(0);
266 1.5 yamt }
267 1.5 yamt
268 1.5 yamt static void
269 1.14 rmind workqueue_finiqueue(struct workqueue *wq, struct workqueue_queue *q)
270 1.5 yamt {
271 1.5 yamt struct workqueue_exitargs wqe;
272 1.5 yamt
273 1.20 yamt KASSERT(wq->wq_func == workqueue_exit);
274 1.5 yamt
275 1.5 yamt wqe.wqe_q = q;
276 1.34 ozaki KASSERT(SIMPLEQ_EMPTY(&q->q_queue_pending));
277 1.5 yamt KASSERT(q->q_worker != NULL);
278 1.9 ad mutex_enter(&q->q_mutex);
279 1.34 ozaki SIMPLEQ_INSERT_TAIL(&q->q_queue_pending, &wqe.wqe_wk, wk_entry);
280 1.39 riastrad cv_broadcast(&q->q_cv);
281 1.5 yamt while (q->q_worker != NULL) {
282 1.9 ad cv_wait(&q->q_cv, &q->q_mutex);
283 1.5 yamt }
284 1.9 ad mutex_exit(&q->q_mutex);
285 1.9 ad mutex_destroy(&q->q_mutex);
286 1.9 ad cv_destroy(&q->q_cv);
287 1.5 yamt }
288 1.5 yamt
289 1.1 yamt /* --- */
290 1.1 yamt
291 1.1 yamt int
292 1.1 yamt workqueue_create(struct workqueue **wqp, const char *name,
293 1.1 yamt void (*callback_func)(struct work *, void *), void *callback_arg,
294 1.12 yamt pri_t prio, int ipl, int flags)
295 1.1 yamt {
296 1.1 yamt struct workqueue *wq;
297 1.18 rmind struct workqueue_queue *q;
298 1.18 rmind void *ptr;
299 1.20 yamt int error = 0;
300 1.1 yamt
301 1.25 matt CTASSERT(sizeof(work_impl_t) <= sizeof(struct work));
302 1.17 yamt
303 1.20 yamt ptr = kmem_zalloc(workqueue_size(flags), KM_SLEEP);
304 1.26 rmind wq = (void *)roundup2((uintptr_t)ptr, coherency_unit);
305 1.18 rmind wq->wq_ptr = ptr;
306 1.18 rmind wq->wq_flags = flags;
307 1.1 yamt
308 1.1 yamt workqueue_init(wq, name, callback_func, callback_arg, prio, ipl);
309 1.1 yamt
310 1.14 rmind if (flags & WQ_PERCPU) {
311 1.14 rmind struct cpu_info *ci;
312 1.14 rmind CPU_INFO_ITERATOR cii;
313 1.14 rmind
314 1.14 rmind /* create the work-queue for each CPU */
315 1.14 rmind for (CPU_INFO_FOREACH(cii, ci)) {
316 1.20 yamt q = workqueue_queue_lookup(wq, ci);
317 1.18 rmind error = workqueue_initqueue(wq, q, ipl, ci);
318 1.18 rmind if (error) {
319 1.14 rmind break;
320 1.18 rmind }
321 1.14 rmind }
322 1.14 rmind } else {
323 1.18 rmind /* initialize a work-queue */
324 1.20 yamt q = workqueue_queue_lookup(wq, NULL);
325 1.18 rmind error = workqueue_initqueue(wq, q, ipl, NULL);
326 1.1 yamt }
327 1.18 rmind
328 1.20 yamt if (error != 0) {
329 1.20 yamt workqueue_destroy(wq);
330 1.20 yamt } else {
331 1.20 yamt *wqp = wq;
332 1.15 rmind }
333 1.1 yamt
334 1.20 yamt return error;
335 1.1 yamt }
336 1.1 yamt
337 1.34 ozaki static bool
338 1.43 riastrad workqueue_q_wait(struct workqueue *wq, struct workqueue_queue *q,
339 1.43 riastrad work_impl_t *wk_target)
340 1.34 ozaki {
341 1.34 ozaki work_impl_t *wk;
342 1.34 ozaki bool found = false;
343 1.42 riastrad uint64_t gen;
344 1.34 ozaki
345 1.34 ozaki mutex_enter(&q->q_mutex);
346 1.42 riastrad
347 1.42 riastrad /*
348 1.42 riastrad * Avoid a deadlock scenario. We can't guarantee that
349 1.42 riastrad * wk_target has completed at this point, but we can't wait for
350 1.42 riastrad * it either, so do nothing.
351 1.42 riastrad *
352 1.42 riastrad * XXX Are there use-cases that require this semantics?
353 1.42 riastrad */
354 1.43 riastrad if (q->q_worker == curlwp) {
355 1.43 riastrad SDT_PROBE2(sdt, kernel, workqueue, wait__self, wq, wk_target);
356 1.37 ozaki goto out;
357 1.43 riastrad }
358 1.42 riastrad
359 1.42 riastrad /*
360 1.42 riastrad * Wait until the target is no longer pending. If we find it
361 1.42 riastrad * on this queue, the caller can stop looking in other queues.
362 1.42 riastrad * If we don't find it in this queue, however, we can't skip
363 1.42 riastrad * waiting -- it may be hidden in the running queue which we
364 1.42 riastrad * have no access to.
365 1.42 riastrad */
366 1.34 ozaki again:
367 1.34 ozaki SIMPLEQ_FOREACH(wk, &q->q_queue_pending, wk_entry) {
368 1.42 riastrad if (wk == wk_target) {
369 1.43 riastrad SDT_PROBE2(sdt, kernel, workqueue, wait__hit, wq, wk);
370 1.42 riastrad found = true;
371 1.42 riastrad cv_wait(&q->q_cv, &q->q_mutex);
372 1.42 riastrad goto again;
373 1.42 riastrad }
374 1.34 ozaki }
375 1.42 riastrad
376 1.42 riastrad /*
377 1.42 riastrad * The target may be in the batch of work currently running,
378 1.42 riastrad * but we can't touch that queue. So if there's anything
379 1.42 riastrad * running, wait until the generation changes.
380 1.42 riastrad */
381 1.42 riastrad gen = q->q_gen;
382 1.42 riastrad if (gen & 1) {
383 1.42 riastrad do
384 1.42 riastrad cv_wait(&q->q_cv, &q->q_mutex);
385 1.42 riastrad while (gen == q->q_gen);
386 1.34 ozaki }
387 1.42 riastrad
388 1.37 ozaki out:
389 1.34 ozaki mutex_exit(&q->q_mutex);
390 1.34 ozaki
391 1.34 ozaki return found;
392 1.34 ozaki }
393 1.34 ozaki
394 1.34 ozaki /*
395 1.34 ozaki * Wait for a specified work to finish. The caller must ensure that no new
396 1.34 ozaki * work will be enqueued before calling workqueue_wait. Note that if the
397 1.34 ozaki * workqueue is WQ_PERCPU, the caller can enqueue a new work to another queue
398 1.34 ozaki * other than the waiting queue.
399 1.34 ozaki */
400 1.34 ozaki void
401 1.34 ozaki workqueue_wait(struct workqueue *wq, struct work *wk)
402 1.34 ozaki {
403 1.34 ozaki struct workqueue_queue *q;
404 1.34 ozaki bool found;
405 1.34 ozaki
406 1.40 riastrad ASSERT_SLEEPABLE();
407 1.40 riastrad
408 1.41 riastrad SDT_PROBE2(sdt, kernel, workqueue, wait__start, wq, wk);
409 1.34 ozaki if (ISSET(wq->wq_flags, WQ_PERCPU)) {
410 1.34 ozaki struct cpu_info *ci;
411 1.34 ozaki CPU_INFO_ITERATOR cii;
412 1.34 ozaki for (CPU_INFO_FOREACH(cii, ci)) {
413 1.34 ozaki q = workqueue_queue_lookup(wq, ci);
414 1.43 riastrad found = workqueue_q_wait(wq, q, (work_impl_t *)wk);
415 1.34 ozaki if (found)
416 1.34 ozaki break;
417 1.34 ozaki }
418 1.34 ozaki } else {
419 1.34 ozaki q = workqueue_queue_lookup(wq, NULL);
420 1.43 riastrad (void)workqueue_q_wait(wq, q, (work_impl_t *)wk);
421 1.34 ozaki }
422 1.41 riastrad SDT_PROBE2(sdt, kernel, workqueue, wait__done, wq, wk);
423 1.34 ozaki }
424 1.34 ozaki
425 1.1 yamt void
426 1.5 yamt workqueue_destroy(struct workqueue *wq)
427 1.5 yamt {
428 1.14 rmind struct workqueue_queue *q;
429 1.20 yamt struct cpu_info *ci;
430 1.20 yamt CPU_INFO_ITERATOR cii;
431 1.5 yamt
432 1.40 riastrad ASSERT_SLEEPABLE();
433 1.40 riastrad
434 1.41 riastrad SDT_PROBE1(sdt, kernel, workqueue, exit__start, wq);
435 1.20 yamt wq->wq_func = workqueue_exit;
436 1.20 yamt for (CPU_INFO_FOREACH(cii, ci)) {
437 1.20 yamt q = workqueue_queue_lookup(wq, ci);
438 1.20 yamt if (q->q_worker != NULL) {
439 1.18 rmind workqueue_finiqueue(wq, q);
440 1.18 rmind }
441 1.14 rmind }
442 1.41 riastrad SDT_PROBE1(sdt, kernel, workqueue, exit__done, wq);
443 1.20 yamt kmem_free(wq->wq_ptr, workqueue_size(wq->wq_flags));
444 1.5 yamt }
445 1.5 yamt
446 1.35 ozaki #ifdef DEBUG
447 1.35 ozaki static void
448 1.35 ozaki workqueue_check_duplication(struct workqueue_queue *q, work_impl_t *wk)
449 1.35 ozaki {
450 1.35 ozaki work_impl_t *_wk;
451 1.35 ozaki
452 1.35 ozaki SIMPLEQ_FOREACH(_wk, &q->q_queue_pending, wk_entry) {
453 1.35 ozaki if (_wk == wk)
454 1.35 ozaki panic("%s: tried to enqueue a queued work", __func__);
455 1.35 ozaki }
456 1.35 ozaki }
457 1.35 ozaki #endif
458 1.35 ozaki
459 1.5 yamt void
460 1.17 yamt workqueue_enqueue(struct workqueue *wq, struct work *wk0, struct cpu_info *ci)
461 1.1 yamt {
462 1.14 rmind struct workqueue_queue *q;
463 1.17 yamt work_impl_t *wk = (void *)wk0;
464 1.14 rmind
465 1.41 riastrad SDT_PROBE3(sdt, kernel, workqueue, enqueue, wq, wk0, ci);
466 1.41 riastrad
467 1.18 rmind KASSERT(wq->wq_flags & WQ_PERCPU || ci == NULL);
468 1.14 rmind q = workqueue_queue_lookup(wq, ci);
469 1.1 yamt
470 1.9 ad mutex_enter(&q->q_mutex);
471 1.35 ozaki #ifdef DEBUG
472 1.35 ozaki workqueue_check_duplication(q, wk);
473 1.35 ozaki #endif
474 1.34 ozaki SIMPLEQ_INSERT_TAIL(&q->q_queue_pending, wk, wk_entry);
475 1.39 riastrad cv_broadcast(&q->q_cv);
476 1.9 ad mutex_exit(&q->q_mutex);
477 1.1 yamt }
478