subr_workqueue.c revision 1.36.2.1 1 /* $NetBSD: subr_workqueue.c,v 1.36.2.1 2018/06/25 07:26:04 pgoyette Exp $ */
2
3 /*-
4 * Copyright (c)2002, 2005, 2006, 2007 YAMAMOTO Takashi,
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: subr_workqueue.c,v 1.36.2.1 2018/06/25 07:26:04 pgoyette Exp $");
31
32 #include <sys/param.h>
33 #include <sys/cpu.h>
34 #include <sys/systm.h>
35 #include <sys/kthread.h>
36 #include <sys/kmem.h>
37 #include <sys/proc.h>
38 #include <sys/workqueue.h>
39 #include <sys/mutex.h>
40 #include <sys/condvar.h>
41 #include <sys/queue.h>
42
43 typedef struct work_impl {
44 SIMPLEQ_ENTRY(work_impl) wk_entry;
45 } work_impl_t;
46
47 SIMPLEQ_HEAD(workqhead, work_impl);
48
49 struct workqueue_queue {
50 kmutex_t q_mutex;
51 kcondvar_t q_cv;
52 struct workqhead q_queue_pending;
53 struct workqhead q_queue_running;
54 lwp_t *q_worker;
55 work_impl_t *q_waiter;
56 };
57
58 struct workqueue {
59 void (*wq_func)(struct work *, void *);
60 void *wq_arg;
61 int wq_flags;
62
63 char wq_name[MAXCOMLEN];
64 pri_t wq_prio;
65 void *wq_ptr;
66 };
67
68 #define WQ_SIZE (roundup2(sizeof(struct workqueue), coherency_unit))
69 #define WQ_QUEUE_SIZE (roundup2(sizeof(struct workqueue_queue), coherency_unit))
70
71 #define POISON 0xaabbccdd
72
73 static size_t
74 workqueue_size(int flags)
75 {
76
77 return WQ_SIZE
78 + ((flags & WQ_PERCPU) != 0 ? ncpu : 1) * WQ_QUEUE_SIZE
79 + coherency_unit;
80 }
81
82 static struct workqueue_queue *
83 workqueue_queue_lookup(struct workqueue *wq, struct cpu_info *ci)
84 {
85 u_int idx = 0;
86
87 if (wq->wq_flags & WQ_PERCPU) {
88 idx = ci ? cpu_index(ci) : cpu_index(curcpu());
89 }
90
91 return (void *)((uintptr_t)(wq) + WQ_SIZE + (idx * WQ_QUEUE_SIZE));
92 }
93
94 static void
95 workqueue_runlist(struct workqueue *wq, struct workqhead *list)
96 {
97 work_impl_t *wk;
98 work_impl_t *next;
99
100 /*
101 * note that "list" is not a complete SIMPLEQ.
102 */
103
104 for (wk = SIMPLEQ_FIRST(list); wk != NULL; wk = next) {
105 next = SIMPLEQ_NEXT(wk, wk_entry);
106 (*wq->wq_func)((void *)wk, wq->wq_arg);
107 }
108 }
109
110 static void
111 workqueue_worker(void *cookie)
112 {
113 struct workqueue *wq = cookie;
114 struct workqueue_queue *q;
115
116 /* find the workqueue of this kthread */
117 q = workqueue_queue_lookup(wq, curlwp->l_cpu);
118
119 for (;;) {
120 /*
121 * we violate abstraction of SIMPLEQ.
122 */
123
124 mutex_enter(&q->q_mutex);
125 while (SIMPLEQ_EMPTY(&q->q_queue_pending))
126 cv_wait(&q->q_cv, &q->q_mutex);
127 KASSERT(SIMPLEQ_EMPTY(&q->q_queue_running));
128 q->q_queue_running.sqh_first =
129 q->q_queue_pending.sqh_first; /* XXX */
130 SIMPLEQ_INIT(&q->q_queue_pending);
131 mutex_exit(&q->q_mutex);
132
133 workqueue_runlist(wq, &q->q_queue_running);
134
135 mutex_enter(&q->q_mutex);
136 KASSERT(!SIMPLEQ_EMPTY(&q->q_queue_running));
137 SIMPLEQ_INIT(&q->q_queue_running);
138 if (__predict_false(q->q_waiter != NULL)) {
139 /* Wake up workqueue_wait */
140 cv_signal(&q->q_cv);
141 }
142 mutex_exit(&q->q_mutex);
143 }
144 }
145
146 static void
147 workqueue_init(struct workqueue *wq, const char *name,
148 void (*callback_func)(struct work *, void *), void *callback_arg,
149 pri_t prio, int ipl)
150 {
151
152 KASSERT(sizeof(wq->wq_name) > strlen(name));
153 strncpy(wq->wq_name, name, sizeof(wq->wq_name));
154
155 wq->wq_prio = prio;
156 wq->wq_func = callback_func;
157 wq->wq_arg = callback_arg;
158 }
159
160 static int
161 workqueue_initqueue(struct workqueue *wq, struct workqueue_queue *q,
162 int ipl, struct cpu_info *ci)
163 {
164 int error, ktf;
165
166 KASSERT(q->q_worker == NULL);
167
168 mutex_init(&q->q_mutex, MUTEX_DEFAULT, ipl);
169 cv_init(&q->q_cv, wq->wq_name);
170 SIMPLEQ_INIT(&q->q_queue_pending);
171 SIMPLEQ_INIT(&q->q_queue_running);
172 ktf = ((wq->wq_flags & WQ_MPSAFE) != 0 ? KTHREAD_MPSAFE : 0);
173 if (wq->wq_prio < PRI_KERNEL)
174 ktf |= KTHREAD_TS;
175 if (ci) {
176 error = kthread_create(wq->wq_prio, ktf, ci, workqueue_worker,
177 wq, &q->q_worker, "%s/%u", wq->wq_name, ci->ci_index);
178 } else {
179 error = kthread_create(wq->wq_prio, ktf, ci, workqueue_worker,
180 wq, &q->q_worker, "%s", wq->wq_name);
181 }
182 if (error != 0) {
183 mutex_destroy(&q->q_mutex);
184 cv_destroy(&q->q_cv);
185 KASSERT(q->q_worker == NULL);
186 }
187 return error;
188 }
189
190 struct workqueue_exitargs {
191 work_impl_t wqe_wk;
192 struct workqueue_queue *wqe_q;
193 };
194
195 static void
196 workqueue_exit(struct work *wk, void *arg)
197 {
198 struct workqueue_exitargs *wqe = (void *)wk;
199 struct workqueue_queue *q = wqe->wqe_q;
200
201 /*
202 * only competition at this point is workqueue_finiqueue.
203 */
204
205 KASSERT(q->q_worker == curlwp);
206 KASSERT(SIMPLEQ_EMPTY(&q->q_queue_pending));
207 mutex_enter(&q->q_mutex);
208 q->q_worker = NULL;
209 cv_signal(&q->q_cv);
210 mutex_exit(&q->q_mutex);
211 kthread_exit(0);
212 }
213
214 static void
215 workqueue_finiqueue(struct workqueue *wq, struct workqueue_queue *q)
216 {
217 struct workqueue_exitargs wqe;
218
219 KASSERT(wq->wq_func == workqueue_exit);
220
221 wqe.wqe_q = q;
222 KASSERT(SIMPLEQ_EMPTY(&q->q_queue_pending));
223 KASSERT(q->q_worker != NULL);
224 mutex_enter(&q->q_mutex);
225 SIMPLEQ_INSERT_TAIL(&q->q_queue_pending, &wqe.wqe_wk, wk_entry);
226 cv_signal(&q->q_cv);
227 while (q->q_worker != NULL) {
228 cv_wait(&q->q_cv, &q->q_mutex);
229 }
230 mutex_exit(&q->q_mutex);
231 mutex_destroy(&q->q_mutex);
232 cv_destroy(&q->q_cv);
233 }
234
235 /* --- */
236
237 int
238 workqueue_create(struct workqueue **wqp, const char *name,
239 void (*callback_func)(struct work *, void *), void *callback_arg,
240 pri_t prio, int ipl, int flags)
241 {
242 struct workqueue *wq;
243 struct workqueue_queue *q;
244 void *ptr;
245 int error = 0;
246
247 CTASSERT(sizeof(work_impl_t) <= sizeof(struct work));
248
249 ptr = kmem_zalloc(workqueue_size(flags), KM_SLEEP);
250 wq = (void *)roundup2((uintptr_t)ptr, coherency_unit);
251 wq->wq_ptr = ptr;
252 wq->wq_flags = flags;
253
254 workqueue_init(wq, name, callback_func, callback_arg, prio, ipl);
255
256 if (flags & WQ_PERCPU) {
257 struct cpu_info *ci;
258 CPU_INFO_ITERATOR cii;
259
260 /* create the work-queue for each CPU */
261 for (CPU_INFO_FOREACH(cii, ci)) {
262 q = workqueue_queue_lookup(wq, ci);
263 error = workqueue_initqueue(wq, q, ipl, ci);
264 if (error) {
265 break;
266 }
267 }
268 } else {
269 /* initialize a work-queue */
270 q = workqueue_queue_lookup(wq, NULL);
271 error = workqueue_initqueue(wq, q, ipl, NULL);
272 }
273
274 if (error != 0) {
275 workqueue_destroy(wq);
276 } else {
277 *wqp = wq;
278 }
279
280 return error;
281 }
282
283 static bool
284 workqueue_q_wait(struct workqueue_queue *q, work_impl_t *wk_target)
285 {
286 work_impl_t *wk;
287 bool found = false;
288
289 mutex_enter(&q->q_mutex);
290 if (q->q_worker == curlwp)
291 goto out;
292 again:
293 SIMPLEQ_FOREACH(wk, &q->q_queue_pending, wk_entry) {
294 if (wk == wk_target)
295 goto found;
296 }
297 SIMPLEQ_FOREACH(wk, &q->q_queue_running, wk_entry) {
298 if (wk == wk_target)
299 goto found;
300 }
301 found:
302 if (wk != NULL) {
303 found = true;
304 KASSERT(q->q_waiter == NULL);
305 q->q_waiter = wk;
306 cv_wait(&q->q_cv, &q->q_mutex);
307 goto again;
308 }
309 if (q->q_waiter != NULL)
310 q->q_waiter = NULL;
311 out:
312 mutex_exit(&q->q_mutex);
313
314 return found;
315 }
316
317 /*
318 * Wait for a specified work to finish. The caller must ensure that no new
319 * work will be enqueued before calling workqueue_wait. Note that if the
320 * workqueue is WQ_PERCPU, the caller can enqueue a new work to another queue
321 * other than the waiting queue.
322 */
323 void
324 workqueue_wait(struct workqueue *wq, struct work *wk)
325 {
326 struct workqueue_queue *q;
327 bool found;
328
329 if (ISSET(wq->wq_flags, WQ_PERCPU)) {
330 struct cpu_info *ci;
331 CPU_INFO_ITERATOR cii;
332 for (CPU_INFO_FOREACH(cii, ci)) {
333 q = workqueue_queue_lookup(wq, ci);
334 found = workqueue_q_wait(q, (work_impl_t *)wk);
335 if (found)
336 break;
337 }
338 } else {
339 q = workqueue_queue_lookup(wq, NULL);
340 (void) workqueue_q_wait(q, (work_impl_t *)wk);
341 }
342 }
343
344 void
345 workqueue_destroy(struct workqueue *wq)
346 {
347 struct workqueue_queue *q;
348 struct cpu_info *ci;
349 CPU_INFO_ITERATOR cii;
350
351 wq->wq_func = workqueue_exit;
352 for (CPU_INFO_FOREACH(cii, ci)) {
353 q = workqueue_queue_lookup(wq, ci);
354 if (q->q_worker != NULL) {
355 workqueue_finiqueue(wq, q);
356 }
357 }
358 kmem_free(wq->wq_ptr, workqueue_size(wq->wq_flags));
359 }
360
361 #ifdef DEBUG
362 static void
363 workqueue_check_duplication(struct workqueue_queue *q, work_impl_t *wk)
364 {
365 work_impl_t *_wk;
366
367 SIMPLEQ_FOREACH(_wk, &q->q_queue_pending, wk_entry) {
368 if (_wk == wk)
369 panic("%s: tried to enqueue a queued work", __func__);
370 }
371 }
372 #endif
373
374 void
375 workqueue_enqueue(struct workqueue *wq, struct work *wk0, struct cpu_info *ci)
376 {
377 struct workqueue_queue *q;
378 work_impl_t *wk = (void *)wk0;
379
380 KASSERT(wq->wq_flags & WQ_PERCPU || ci == NULL);
381 q = workqueue_queue_lookup(wq, ci);
382
383 mutex_enter(&q->q_mutex);
384 KASSERT(q->q_waiter == NULL);
385 #ifdef DEBUG
386 workqueue_check_duplication(q, wk);
387 #endif
388 SIMPLEQ_INSERT_TAIL(&q->q_queue_pending, wk, wk_entry);
389 cv_signal(&q->q_cv);
390 mutex_exit(&q->q_mutex);
391 }
392