subr_workqueue.c revision 1.37.6.1 1 /* $NetBSD: subr_workqueue.c,v 1.37.6.1 2024/04/18 15:51:35 martin Exp $ */
2
3 /*-
4 * Copyright (c)2002, 2005, 2006, 2007 YAMAMOTO Takashi,
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: subr_workqueue.c,v 1.37.6.1 2024/04/18 15:51:35 martin Exp $");
31
32 #include <sys/param.h>
33
34 #include <sys/condvar.h>
35 #include <sys/cpu.h>
36 #include <sys/kmem.h>
37 #include <sys/kthread.h>
38 #include <sys/mutex.h>
39 #include <sys/proc.h>
40 #include <sys/queue.h>
41 #include <sys/sdt.h>
42 #include <sys/systm.h>
43 #include <sys/workqueue.h>
44
45 typedef struct work_impl {
46 SIMPLEQ_ENTRY(work_impl) wk_entry;
47 } work_impl_t;
48
49 SIMPLEQ_HEAD(workqhead, work_impl);
50
51 struct workqueue_queue {
52 kmutex_t q_mutex;
53 kcondvar_t q_cv;
54 struct workqhead q_queue_pending;
55 uint64_t q_gen;
56 lwp_t *q_worker;
57 };
58
59 struct workqueue {
60 void (*wq_func)(struct work *, void *);
61 void *wq_arg;
62 int wq_flags;
63
64 char wq_name[MAXCOMLEN];
65 pri_t wq_prio;
66 void *wq_ptr;
67 };
68
69 #define WQ_SIZE (roundup2(sizeof(struct workqueue), coherency_unit))
70 #define WQ_QUEUE_SIZE (roundup2(sizeof(struct workqueue_queue), coherency_unit))
71
72 #define POISON 0xaabbccdd
73
74 SDT_PROBE_DEFINE7(sdt, kernel, workqueue, create,
75 "struct workqueue *"/*wq*/,
76 "const char *"/*name*/,
77 "void (*)(struct work *, void *)"/*func*/,
78 "void *"/*arg*/,
79 "pri_t"/*prio*/,
80 "int"/*ipl*/,
81 "int"/*flags*/);
82 SDT_PROBE_DEFINE1(sdt, kernel, workqueue, destroy,
83 "struct workqueue *"/*wq*/);
84
85 SDT_PROBE_DEFINE3(sdt, kernel, workqueue, enqueue,
86 "struct workqueue *"/*wq*/,
87 "struct work *"/*wk*/,
88 "struct cpu_info *"/*ci*/);
89 SDT_PROBE_DEFINE4(sdt, kernel, workqueue, entry,
90 "struct workqueue *"/*wq*/,
91 "struct work *"/*wk*/,
92 "void (*)(struct work *, void *)"/*func*/,
93 "void *"/*arg*/);
94 SDT_PROBE_DEFINE4(sdt, kernel, workqueue, return,
95 "struct workqueue *"/*wq*/,
96 "struct work *"/*wk*/,
97 "void (*)(struct work *, void *)"/*func*/,
98 "void *"/*arg*/);
99 SDT_PROBE_DEFINE2(sdt, kernel, workqueue, wait__start,
100 "struct workqueue *"/*wq*/,
101 "struct work *"/*wk*/);
102 SDT_PROBE_DEFINE2(sdt, kernel, workqueue, wait__self,
103 "struct workqueue *"/*wq*/,
104 "struct work *"/*wk*/);
105 SDT_PROBE_DEFINE2(sdt, kernel, workqueue, wait__hit,
106 "struct workqueue *"/*wq*/,
107 "struct work *"/*wk*/);
108 SDT_PROBE_DEFINE2(sdt, kernel, workqueue, wait__done,
109 "struct workqueue *"/*wq*/,
110 "struct work *"/*wk*/);
111
112 SDT_PROBE_DEFINE1(sdt, kernel, workqueue, exit__start,
113 "struct workqueue *"/*wq*/);
114 SDT_PROBE_DEFINE1(sdt, kernel, workqueue, exit__done,
115 "struct workqueue *"/*wq*/);
116
117 static size_t
118 workqueue_size(int flags)
119 {
120
121 return WQ_SIZE
122 + ((flags & WQ_PERCPU) != 0 ? ncpu : 1) * WQ_QUEUE_SIZE
123 + coherency_unit;
124 }
125
126 static struct workqueue_queue *
127 workqueue_queue_lookup(struct workqueue *wq, struct cpu_info *ci)
128 {
129 u_int idx = 0;
130
131 if (wq->wq_flags & WQ_PERCPU) {
132 idx = ci ? cpu_index(ci) : cpu_index(curcpu());
133 }
134
135 return (void *)((uintptr_t)(wq) + WQ_SIZE + (idx * WQ_QUEUE_SIZE));
136 }
137
138 static void
139 workqueue_runlist(struct workqueue *wq, struct workqhead *list)
140 {
141 work_impl_t *wk;
142 work_impl_t *next;
143
144 for (wk = SIMPLEQ_FIRST(list); wk != NULL; wk = next) {
145 next = SIMPLEQ_NEXT(wk, wk_entry);
146 SDT_PROBE4(sdt, kernel, workqueue, entry,
147 wq, wk, wq->wq_func, wq->wq_arg);
148 (*wq->wq_func)((void *)wk, wq->wq_arg);
149 SDT_PROBE4(sdt, kernel, workqueue, return,
150 wq, wk, wq->wq_func, wq->wq_arg);
151 }
152 }
153
154 static void
155 workqueue_worker(void *cookie)
156 {
157 struct workqueue *wq = cookie;
158 struct workqueue_queue *q;
159
160 /* find the workqueue of this kthread */
161 q = workqueue_queue_lookup(wq, curlwp->l_cpu);
162
163 mutex_enter(&q->q_mutex);
164 for (;;) {
165 struct workqhead tmp;
166
167 SIMPLEQ_INIT(&tmp);
168
169 while (SIMPLEQ_EMPTY(&q->q_queue_pending))
170 cv_wait(&q->q_cv, &q->q_mutex);
171 SIMPLEQ_CONCAT(&tmp, &q->q_queue_pending);
172 SIMPLEQ_INIT(&q->q_queue_pending);
173
174 /*
175 * Mark the queue as actively running a batch of work
176 * by setting the generation number odd.
177 */
178 q->q_gen |= 1;
179 mutex_exit(&q->q_mutex);
180
181 workqueue_runlist(wq, &tmp);
182
183 /*
184 * Notify workqueue_wait that we have completed a batch
185 * of work by incrementing the generation number.
186 */
187 mutex_enter(&q->q_mutex);
188 KASSERTMSG(q->q_gen & 1, "q=%p gen=%"PRIu64, q, q->q_gen);
189 q->q_gen++;
190 cv_broadcast(&q->q_cv);
191 }
192 mutex_exit(&q->q_mutex);
193 }
194
195 static void
196 workqueue_init(struct workqueue *wq, const char *name,
197 void (*callback_func)(struct work *, void *), void *callback_arg,
198 pri_t prio, int ipl)
199 {
200
201 KASSERT(sizeof(wq->wq_name) > strlen(name));
202 strncpy(wq->wq_name, name, sizeof(wq->wq_name));
203
204 wq->wq_prio = prio;
205 wq->wq_func = callback_func;
206 wq->wq_arg = callback_arg;
207 }
208
209 static int
210 workqueue_initqueue(struct workqueue *wq, struct workqueue_queue *q,
211 int ipl, struct cpu_info *ci)
212 {
213 int error, ktf;
214
215 KASSERT(q->q_worker == NULL);
216
217 mutex_init(&q->q_mutex, MUTEX_DEFAULT, ipl);
218 cv_init(&q->q_cv, wq->wq_name);
219 SIMPLEQ_INIT(&q->q_queue_pending);
220 q->q_gen = 0;
221 ktf = ((wq->wq_flags & WQ_MPSAFE) != 0 ? KTHREAD_MPSAFE : 0);
222 if (wq->wq_prio < PRI_KERNEL)
223 ktf |= KTHREAD_TS;
224 if (ci) {
225 error = kthread_create(wq->wq_prio, ktf, ci, workqueue_worker,
226 wq, &q->q_worker, "%s/%u", wq->wq_name, ci->ci_index);
227 } else {
228 error = kthread_create(wq->wq_prio, ktf, ci, workqueue_worker,
229 wq, &q->q_worker, "%s", wq->wq_name);
230 }
231 if (error != 0) {
232 mutex_destroy(&q->q_mutex);
233 cv_destroy(&q->q_cv);
234 KASSERT(q->q_worker == NULL);
235 }
236 return error;
237 }
238
239 struct workqueue_exitargs {
240 work_impl_t wqe_wk;
241 struct workqueue_queue *wqe_q;
242 };
243
244 static void
245 workqueue_exit(struct work *wk, void *arg)
246 {
247 struct workqueue_exitargs *wqe = (void *)wk;
248 struct workqueue_queue *q = wqe->wqe_q;
249
250 /*
251 * only competition at this point is workqueue_finiqueue.
252 */
253
254 KASSERT(q->q_worker == curlwp);
255 KASSERT(SIMPLEQ_EMPTY(&q->q_queue_pending));
256 mutex_enter(&q->q_mutex);
257 q->q_worker = NULL;
258 cv_broadcast(&q->q_cv);
259 mutex_exit(&q->q_mutex);
260 kthread_exit(0);
261 }
262
263 static void
264 workqueue_finiqueue(struct workqueue *wq, struct workqueue_queue *q)
265 {
266 struct workqueue_exitargs wqe;
267
268 KASSERT(wq->wq_func == workqueue_exit);
269
270 wqe.wqe_q = q;
271 KASSERT(SIMPLEQ_EMPTY(&q->q_queue_pending));
272 KASSERT(q->q_worker != NULL);
273 mutex_enter(&q->q_mutex);
274 SIMPLEQ_INSERT_TAIL(&q->q_queue_pending, &wqe.wqe_wk, wk_entry);
275 cv_broadcast(&q->q_cv);
276 while (q->q_worker != NULL) {
277 cv_wait(&q->q_cv, &q->q_mutex);
278 }
279 mutex_exit(&q->q_mutex);
280 mutex_destroy(&q->q_mutex);
281 cv_destroy(&q->q_cv);
282 }
283
284 /* --- */
285
286 int
287 workqueue_create(struct workqueue **wqp, const char *name,
288 void (*callback_func)(struct work *, void *), void *callback_arg,
289 pri_t prio, int ipl, int flags)
290 {
291 struct workqueue *wq;
292 struct workqueue_queue *q;
293 void *ptr;
294 int error = 0;
295
296 CTASSERT(sizeof(work_impl_t) <= sizeof(struct work));
297
298 ptr = kmem_zalloc(workqueue_size(flags), KM_SLEEP);
299 wq = (void *)roundup2((uintptr_t)ptr, coherency_unit);
300 wq->wq_ptr = ptr;
301 wq->wq_flags = flags;
302
303 workqueue_init(wq, name, callback_func, callback_arg, prio, ipl);
304
305 if (flags & WQ_PERCPU) {
306 struct cpu_info *ci;
307 CPU_INFO_ITERATOR cii;
308
309 /* create the work-queue for each CPU */
310 for (CPU_INFO_FOREACH(cii, ci)) {
311 q = workqueue_queue_lookup(wq, ci);
312 error = workqueue_initqueue(wq, q, ipl, ci);
313 if (error) {
314 break;
315 }
316 }
317 } else {
318 /* initialize a work-queue */
319 q = workqueue_queue_lookup(wq, NULL);
320 error = workqueue_initqueue(wq, q, ipl, NULL);
321 }
322
323 if (error != 0) {
324 workqueue_destroy(wq);
325 } else {
326 *wqp = wq;
327 }
328
329 return error;
330 }
331
332 static bool
333 workqueue_q_wait(struct workqueue *wq, struct workqueue_queue *q,
334 work_impl_t *wk_target)
335 {
336 work_impl_t *wk;
337 bool found = false;
338 uint64_t gen;
339
340 mutex_enter(&q->q_mutex);
341
342 /*
343 * Avoid a deadlock scenario. We can't guarantee that
344 * wk_target has completed at this point, but we can't wait for
345 * it either, so do nothing.
346 *
347 * XXX Are there use-cases that require this semantics?
348 */
349 if (q->q_worker == curlwp) {
350 SDT_PROBE2(sdt, kernel, workqueue, wait__self, wq, wk_target);
351 goto out;
352 }
353
354 /*
355 * Wait until the target is no longer pending. If we find it
356 * on this queue, the caller can stop looking in other queues.
357 * If we don't find it in this queue, however, we can't skip
358 * waiting -- it may be hidden in the running queue which we
359 * have no access to.
360 */
361 again:
362 SIMPLEQ_FOREACH(wk, &q->q_queue_pending, wk_entry) {
363 if (wk == wk_target) {
364 SDT_PROBE2(sdt, kernel, workqueue, wait__hit, wq, wk);
365 found = true;
366 cv_wait(&q->q_cv, &q->q_mutex);
367 goto again;
368 }
369 }
370
371 /*
372 * The target may be in the batch of work currently running,
373 * but we can't touch that queue. So if there's anything
374 * running, wait until the generation changes.
375 */
376 gen = q->q_gen;
377 if (gen & 1) {
378 do
379 cv_wait(&q->q_cv, &q->q_mutex);
380 while (gen == q->q_gen);
381 }
382
383 out:
384 mutex_exit(&q->q_mutex);
385
386 return found;
387 }
388
389 /*
390 * Wait for a specified work to finish. The caller must ensure that no new
391 * work will be enqueued before calling workqueue_wait. Note that if the
392 * workqueue is WQ_PERCPU, the caller can enqueue a new work to another queue
393 * other than the waiting queue.
394 */
395 void
396 workqueue_wait(struct workqueue *wq, struct work *wk)
397 {
398 struct workqueue_queue *q;
399 bool found;
400
401 ASSERT_SLEEPABLE();
402
403 SDT_PROBE2(sdt, kernel, workqueue, wait__start, wq, wk);
404 if (ISSET(wq->wq_flags, WQ_PERCPU)) {
405 struct cpu_info *ci;
406 CPU_INFO_ITERATOR cii;
407 for (CPU_INFO_FOREACH(cii, ci)) {
408 q = workqueue_queue_lookup(wq, ci);
409 found = workqueue_q_wait(wq, q, (work_impl_t *)wk);
410 if (found)
411 break;
412 }
413 } else {
414 q = workqueue_queue_lookup(wq, NULL);
415 (void)workqueue_q_wait(wq, q, (work_impl_t *)wk);
416 }
417 SDT_PROBE2(sdt, kernel, workqueue, wait__done, wq, wk);
418 }
419
420 void
421 workqueue_destroy(struct workqueue *wq)
422 {
423 struct workqueue_queue *q;
424 struct cpu_info *ci;
425 CPU_INFO_ITERATOR cii;
426
427 ASSERT_SLEEPABLE();
428
429 SDT_PROBE1(sdt, kernel, workqueue, exit__start, wq);
430 wq->wq_func = workqueue_exit;
431 for (CPU_INFO_FOREACH(cii, ci)) {
432 q = workqueue_queue_lookup(wq, ci);
433 if (q->q_worker != NULL) {
434 workqueue_finiqueue(wq, q);
435 }
436 }
437 SDT_PROBE1(sdt, kernel, workqueue, exit__done, wq);
438 kmem_free(wq->wq_ptr, workqueue_size(wq->wq_flags));
439 }
440
441 #ifdef DEBUG
442 static void
443 workqueue_check_duplication(struct workqueue_queue *q, work_impl_t *wk)
444 {
445 work_impl_t *_wk;
446
447 SIMPLEQ_FOREACH(_wk, &q->q_queue_pending, wk_entry) {
448 if (_wk == wk)
449 panic("%s: tried to enqueue a queued work", __func__);
450 }
451 }
452 #endif
453
454 void
455 workqueue_enqueue(struct workqueue *wq, struct work *wk0, struct cpu_info *ci)
456 {
457 struct workqueue_queue *q;
458 work_impl_t *wk = (void *)wk0;
459
460 SDT_PROBE3(sdt, kernel, workqueue, enqueue, wq, wk0, ci);
461
462 KASSERT(wq->wq_flags & WQ_PERCPU || ci == NULL);
463 q = workqueue_queue_lookup(wq, ci);
464
465 mutex_enter(&q->q_mutex);
466 #ifdef DEBUG
467 workqueue_check_duplication(q, wk);
468 #endif
469 SIMPLEQ_INSERT_TAIL(&q->q_queue_pending, wk, wk_entry);
470 cv_broadcast(&q->q_cv);
471 mutex_exit(&q->q_mutex);
472 }
473