subr_workqueue.c revision 1.45 1 /* $NetBSD: subr_workqueue.c,v 1.45 2023/08/09 08:23:45 riastradh Exp $ */
2
3 /*-
4 * Copyright (c)2002, 2005, 2006, 2007 YAMAMOTO Takashi,
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: subr_workqueue.c,v 1.45 2023/08/09 08:23:45 riastradh Exp $");
31
32 #include <sys/param.h>
33 #include <sys/cpu.h>
34 #include <sys/systm.h>
35 #include <sys/kthread.h>
36 #include <sys/kmem.h>
37 #include <sys/proc.h>
38 #include <sys/workqueue.h>
39 #include <sys/mutex.h>
40 #include <sys/condvar.h>
41 #include <sys/sdt.h>
42 #include <sys/queue.h>
43
44 typedef struct work_impl {
45 SIMPLEQ_ENTRY(work_impl) wk_entry;
46 } work_impl_t;
47
48 SIMPLEQ_HEAD(workqhead, work_impl);
49
50 struct workqueue_queue {
51 kmutex_t q_mutex;
52 kcondvar_t q_cv;
53 struct workqhead q_queue_pending;
54 uint64_t q_gen;
55 lwp_t *q_worker;
56 };
57
58 struct workqueue {
59 void (*wq_func)(struct work *, void *);
60 void *wq_arg;
61 int wq_flags;
62
63 char wq_name[MAXCOMLEN];
64 pri_t wq_prio;
65 void *wq_ptr;
66 };
67
68 #define WQ_SIZE (roundup2(sizeof(struct workqueue), coherency_unit))
69 #define WQ_QUEUE_SIZE (roundup2(sizeof(struct workqueue_queue), coherency_unit))
70
71 #define POISON 0xaabbccdd
72
73 SDT_PROBE_DEFINE7(sdt, kernel, workqueue, create,
74 "struct workqueue *"/*wq*/,
75 "const char *"/*name*/,
76 "void (*)(struct work *, void *)"/*func*/,
77 "void *"/*arg*/,
78 "pri_t"/*prio*/,
79 "int"/*ipl*/,
80 "int"/*flags*/);
81 SDT_PROBE_DEFINE1(sdt, kernel, workqueue, destroy,
82 "struct workqueue *"/*wq*/);
83
84 SDT_PROBE_DEFINE3(sdt, kernel, workqueue, enqueue,
85 "struct workqueue *"/*wq*/,
86 "struct work *"/*wk*/,
87 "struct cpu_info *"/*ci*/);
88 SDT_PROBE_DEFINE4(sdt, kernel, workqueue, entry,
89 "struct workqueue *"/*wq*/,
90 "struct work *"/*wk*/,
91 "void (*)(struct work *, void *)"/*func*/,
92 "void *"/*arg*/);
93 SDT_PROBE_DEFINE4(sdt, kernel, workqueue, return,
94 "struct workqueue *"/*wq*/,
95 "struct work *"/*wk*/,
96 "void (*)(struct work *, void *)"/*func*/,
97 "void *"/*arg*/);
98 SDT_PROBE_DEFINE2(sdt, kernel, workqueue, wait__start,
99 "struct workqueue *"/*wq*/,
100 "struct work *"/*wk*/);
101 SDT_PROBE_DEFINE2(sdt, kernel, workqueue, wait__self,
102 "struct workqueue *"/*wq*/,
103 "struct work *"/*wk*/);
104 SDT_PROBE_DEFINE2(sdt, kernel, workqueue, wait__hit,
105 "struct workqueue *"/*wq*/,
106 "struct work *"/*wk*/);
107 SDT_PROBE_DEFINE2(sdt, kernel, workqueue, wait__done,
108 "struct workqueue *"/*wq*/,
109 "struct work *"/*wk*/);
110
111 SDT_PROBE_DEFINE1(sdt, kernel, workqueue, exit__start,
112 "struct workqueue *"/*wq*/);
113 SDT_PROBE_DEFINE1(sdt, kernel, workqueue, exit__done,
114 "struct workqueue *"/*wq*/);
115
116 static size_t
117 workqueue_size(int flags)
118 {
119
120 return WQ_SIZE
121 + ((flags & WQ_PERCPU) != 0 ? ncpu : 1) * WQ_QUEUE_SIZE
122 + coherency_unit;
123 }
124
125 static struct workqueue_queue *
126 workqueue_queue_lookup(struct workqueue *wq, struct cpu_info *ci)
127 {
128 u_int idx = 0;
129
130 if (wq->wq_flags & WQ_PERCPU) {
131 idx = ci ? cpu_index(ci) : cpu_index(curcpu());
132 }
133
134 return (void *)((uintptr_t)(wq) + WQ_SIZE + (idx * WQ_QUEUE_SIZE));
135 }
136
137 static void
138 workqueue_runlist(struct workqueue *wq, struct workqhead *list)
139 {
140 work_impl_t *wk;
141 work_impl_t *next;
142
143 for (wk = SIMPLEQ_FIRST(list); wk != NULL; wk = next) {
144 next = SIMPLEQ_NEXT(wk, wk_entry);
145 SDT_PROBE4(sdt, kernel, workqueue, entry,
146 wq, wk, wq->wq_func, wq->wq_arg);
147 (*wq->wq_func)((void *)wk, wq->wq_arg);
148 SDT_PROBE4(sdt, kernel, workqueue, return,
149 wq, wk, wq->wq_func, wq->wq_arg);
150 }
151 }
152
153 static void
154 workqueue_worker(void *cookie)
155 {
156 struct workqueue *wq = cookie;
157 struct workqueue_queue *q;
158 int s;
159
160 /* find the workqueue of this kthread */
161 q = workqueue_queue_lookup(wq, curlwp->l_cpu);
162
163 if (wq->wq_flags & WQ_FPU)
164 s = kthread_fpu_enter();
165 mutex_enter(&q->q_mutex);
166 for (;;) {
167 struct workqhead tmp;
168
169 SIMPLEQ_INIT(&tmp);
170
171 while (SIMPLEQ_EMPTY(&q->q_queue_pending))
172 cv_wait(&q->q_cv, &q->q_mutex);
173 SIMPLEQ_CONCAT(&tmp, &q->q_queue_pending);
174 SIMPLEQ_INIT(&q->q_queue_pending);
175
176 /*
177 * Mark the queue as actively running a batch of work
178 * by setting the generation number odd.
179 */
180 q->q_gen |= 1;
181 mutex_exit(&q->q_mutex);
182
183 workqueue_runlist(wq, &tmp);
184
185 /*
186 * Notify workqueue_wait that we have completed a batch
187 * of work by incrementing the generation number.
188 */
189 mutex_enter(&q->q_mutex);
190 KASSERTMSG(q->q_gen & 1, "q=%p gen=%"PRIu64, q, q->q_gen);
191 q->q_gen++;
192 cv_broadcast(&q->q_cv);
193 }
194 mutex_exit(&q->q_mutex);
195 if (wq->wq_flags & WQ_FPU)
196 kthread_fpu_exit(s);
197 }
198
199 static void
200 workqueue_init(struct workqueue *wq, const char *name,
201 void (*callback_func)(struct work *, void *), void *callback_arg,
202 pri_t prio, int ipl)
203 {
204
205 KASSERT(sizeof(wq->wq_name) > strlen(name));
206 strncpy(wq->wq_name, name, sizeof(wq->wq_name));
207
208 wq->wq_prio = prio;
209 wq->wq_func = callback_func;
210 wq->wq_arg = callback_arg;
211 }
212
213 static int
214 workqueue_initqueue(struct workqueue *wq, struct workqueue_queue *q,
215 int ipl, struct cpu_info *ci)
216 {
217 int error, ktf;
218
219 KASSERT(q->q_worker == NULL);
220
221 mutex_init(&q->q_mutex, MUTEX_DEFAULT, ipl);
222 cv_init(&q->q_cv, wq->wq_name);
223 SIMPLEQ_INIT(&q->q_queue_pending);
224 q->q_gen = 0;
225 ktf = ((wq->wq_flags & WQ_MPSAFE) != 0 ? KTHREAD_MPSAFE : 0);
226 if (wq->wq_prio < PRI_KERNEL)
227 ktf |= KTHREAD_TS;
228 if (ci) {
229 error = kthread_create(wq->wq_prio, ktf, ci, workqueue_worker,
230 wq, &q->q_worker, "%s/%u", wq->wq_name, ci->ci_index);
231 } else {
232 error = kthread_create(wq->wq_prio, ktf, ci, workqueue_worker,
233 wq, &q->q_worker, "%s", wq->wq_name);
234 }
235 if (error != 0) {
236 mutex_destroy(&q->q_mutex);
237 cv_destroy(&q->q_cv);
238 KASSERT(q->q_worker == NULL);
239 }
240 return error;
241 }
242
243 struct workqueue_exitargs {
244 work_impl_t wqe_wk;
245 struct workqueue_queue *wqe_q;
246 };
247
248 static void
249 workqueue_exit(struct work *wk, void *arg)
250 {
251 struct workqueue_exitargs *wqe = (void *)wk;
252 struct workqueue_queue *q = wqe->wqe_q;
253
254 /*
255 * only competition at this point is workqueue_finiqueue.
256 */
257
258 KASSERT(q->q_worker == curlwp);
259 KASSERT(SIMPLEQ_EMPTY(&q->q_queue_pending));
260 mutex_enter(&q->q_mutex);
261 q->q_worker = NULL;
262 cv_broadcast(&q->q_cv);
263 mutex_exit(&q->q_mutex);
264 kthread_exit(0);
265 }
266
267 static void
268 workqueue_finiqueue(struct workqueue *wq, struct workqueue_queue *q)
269 {
270 struct workqueue_exitargs wqe;
271
272 KASSERT(wq->wq_func == workqueue_exit);
273
274 wqe.wqe_q = q;
275 KASSERT(SIMPLEQ_EMPTY(&q->q_queue_pending));
276 KASSERT(q->q_worker != NULL);
277 mutex_enter(&q->q_mutex);
278 SIMPLEQ_INSERT_TAIL(&q->q_queue_pending, &wqe.wqe_wk, wk_entry);
279 cv_broadcast(&q->q_cv);
280 while (q->q_worker != NULL) {
281 cv_wait(&q->q_cv, &q->q_mutex);
282 }
283 mutex_exit(&q->q_mutex);
284 mutex_destroy(&q->q_mutex);
285 cv_destroy(&q->q_cv);
286 }
287
288 /* --- */
289
290 int
291 workqueue_create(struct workqueue **wqp, const char *name,
292 void (*callback_func)(struct work *, void *), void *callback_arg,
293 pri_t prio, int ipl, int flags)
294 {
295 struct workqueue *wq;
296 struct workqueue_queue *q;
297 void *ptr;
298 int error = 0;
299
300 CTASSERT(sizeof(work_impl_t) <= sizeof(struct work));
301
302 ptr = kmem_zalloc(workqueue_size(flags), KM_SLEEP);
303 wq = (void *)roundup2((uintptr_t)ptr, coherency_unit);
304 wq->wq_ptr = ptr;
305 wq->wq_flags = flags;
306
307 workqueue_init(wq, name, callback_func, callback_arg, prio, ipl);
308
309 if (flags & WQ_PERCPU) {
310 struct cpu_info *ci;
311 CPU_INFO_ITERATOR cii;
312
313 /* create the work-queue for each CPU */
314 for (CPU_INFO_FOREACH(cii, ci)) {
315 q = workqueue_queue_lookup(wq, ci);
316 error = workqueue_initqueue(wq, q, ipl, ci);
317 if (error) {
318 break;
319 }
320 }
321 } else {
322 /* initialize a work-queue */
323 q = workqueue_queue_lookup(wq, NULL);
324 error = workqueue_initqueue(wq, q, ipl, NULL);
325 }
326
327 if (error != 0) {
328 workqueue_destroy(wq);
329 } else {
330 *wqp = wq;
331 }
332
333 return error;
334 }
335
336 static bool
337 workqueue_q_wait(struct workqueue *wq, struct workqueue_queue *q,
338 work_impl_t *wk_target)
339 {
340 work_impl_t *wk;
341 bool found = false;
342 uint64_t gen;
343
344 mutex_enter(&q->q_mutex);
345
346 /*
347 * Avoid a deadlock scenario. We can't guarantee that
348 * wk_target has completed at this point, but we can't wait for
349 * it either, so do nothing.
350 *
351 * XXX Are there use-cases that require this semantics?
352 */
353 if (q->q_worker == curlwp) {
354 SDT_PROBE2(sdt, kernel, workqueue, wait__self, wq, wk_target);
355 goto out;
356 }
357
358 /*
359 * Wait until the target is no longer pending. If we find it
360 * on this queue, the caller can stop looking in other queues.
361 * If we don't find it in this queue, however, we can't skip
362 * waiting -- it may be hidden in the running queue which we
363 * have no access to.
364 */
365 again:
366 SIMPLEQ_FOREACH(wk, &q->q_queue_pending, wk_entry) {
367 if (wk == wk_target) {
368 SDT_PROBE2(sdt, kernel, workqueue, wait__hit, wq, wk);
369 found = true;
370 cv_wait(&q->q_cv, &q->q_mutex);
371 goto again;
372 }
373 }
374
375 /*
376 * The target may be in the batch of work currently running,
377 * but we can't touch that queue. So if there's anything
378 * running, wait until the generation changes.
379 */
380 gen = q->q_gen;
381 if (gen & 1) {
382 do
383 cv_wait(&q->q_cv, &q->q_mutex);
384 while (gen == q->q_gen);
385 }
386
387 out:
388 mutex_exit(&q->q_mutex);
389
390 return found;
391 }
392
393 /*
394 * Wait for a specified work to finish. The caller must ensure that no new
395 * work will be enqueued before calling workqueue_wait. Note that if the
396 * workqueue is WQ_PERCPU, the caller can enqueue a new work to another queue
397 * other than the waiting queue.
398 */
399 void
400 workqueue_wait(struct workqueue *wq, struct work *wk)
401 {
402 struct workqueue_queue *q;
403 bool found;
404
405 ASSERT_SLEEPABLE();
406
407 SDT_PROBE2(sdt, kernel, workqueue, wait__start, wq, wk);
408 if (ISSET(wq->wq_flags, WQ_PERCPU)) {
409 struct cpu_info *ci;
410 CPU_INFO_ITERATOR cii;
411 for (CPU_INFO_FOREACH(cii, ci)) {
412 q = workqueue_queue_lookup(wq, ci);
413 found = workqueue_q_wait(wq, q, (work_impl_t *)wk);
414 if (found)
415 break;
416 }
417 } else {
418 q = workqueue_queue_lookup(wq, NULL);
419 (void)workqueue_q_wait(wq, q, (work_impl_t *)wk);
420 }
421 SDT_PROBE2(sdt, kernel, workqueue, wait__done, wq, wk);
422 }
423
424 void
425 workqueue_destroy(struct workqueue *wq)
426 {
427 struct workqueue_queue *q;
428 struct cpu_info *ci;
429 CPU_INFO_ITERATOR cii;
430
431 ASSERT_SLEEPABLE();
432
433 SDT_PROBE1(sdt, kernel, workqueue, exit__start, wq);
434 wq->wq_func = workqueue_exit;
435 for (CPU_INFO_FOREACH(cii, ci)) {
436 q = workqueue_queue_lookup(wq, ci);
437 if (q->q_worker != NULL) {
438 workqueue_finiqueue(wq, q);
439 }
440 }
441 SDT_PROBE1(sdt, kernel, workqueue, exit__done, wq);
442 kmem_free(wq->wq_ptr, workqueue_size(wq->wq_flags));
443 }
444
445 #ifdef DEBUG
446 static void
447 workqueue_check_duplication(struct workqueue_queue *q, work_impl_t *wk)
448 {
449 work_impl_t *_wk;
450
451 SIMPLEQ_FOREACH(_wk, &q->q_queue_pending, wk_entry) {
452 if (_wk == wk)
453 panic("%s: tried to enqueue a queued work", __func__);
454 }
455 }
456 #endif
457
458 void
459 workqueue_enqueue(struct workqueue *wq, struct work *wk0, struct cpu_info *ci)
460 {
461 struct workqueue_queue *q;
462 work_impl_t *wk = (void *)wk0;
463
464 SDT_PROBE3(sdt, kernel, workqueue, enqueue, wq, wk0, ci);
465
466 KASSERT(wq->wq_flags & WQ_PERCPU || ci == NULL);
467 q = workqueue_queue_lookup(wq, ci);
468
469 mutex_enter(&q->q_mutex);
470 #ifdef DEBUG
471 workqueue_check_duplication(q, wk);
472 #endif
473 SIMPLEQ_INSERT_TAIL(&q->q_queue_pending, wk, wk_entry);
474 cv_broadcast(&q->q_cv);
475 mutex_exit(&q->q_mutex);
476 }
477