1 1.39 ozaki /* $NetBSD: subr_xcall.c,v 1.39 2025/04/01 03:16:41 ozaki-r Exp $ */ 2 1.2 ad 3 1.2 ad /*- 4 1.29 ad * Copyright (c) 2007-2010, 2019 The NetBSD Foundation, Inc. 5 1.2 ad * All rights reserved. 6 1.2 ad * 7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation 8 1.12 rmind * by Andrew Doran and Mindaugas Rasiukevicius. 9 1.2 ad * 10 1.2 ad * Redistribution and use in source and binary forms, with or without 11 1.2 ad * modification, are permitted provided that the following conditions 12 1.2 ad * are met: 13 1.2 ad * 1. Redistributions of source code must retain the above copyright 14 1.2 ad * notice, this list of conditions and the following disclaimer. 15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright 16 1.2 ad * notice, this list of conditions and the following disclaimer in the 17 1.2 ad * documentation and/or other materials provided with the distribution. 18 1.2 ad * 19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 1.2 ad * POSSIBILITY OF SUCH DAMAGE. 30 1.2 ad */ 31 1.2 ad 32 1.2 ad /* 33 1.2 ad * Cross call support 34 1.2 ad * 35 1.2 ad * Background 36 1.2 ad * 37 1.2 ad * Sometimes it is necessary to modify hardware state that is tied 38 1.2 ad * directly to individual CPUs (such as a CPU's local timer), and 39 1.2 ad * these updates can not be done remotely by another CPU. The LWP 40 1.2 ad * requesting the update may be unable to guarantee that it will be 41 1.2 ad * running on the CPU where the update must occur, when the update 42 1.2 ad * occurs. 43 1.2 ad * 44 1.2 ad * Additionally, it's sometimes necessary to modify per-CPU software 45 1.2 ad * state from a remote CPU. Where these update operations are so 46 1.2 ad * rare or the access to the per-CPU data so frequent that the cost 47 1.2 ad * of using locking or atomic operations to provide coherency is 48 1.4 ad * prohibitive, another way must be found. 49 1.2 ad * 50 1.2 ad * Cross calls help to solve these types of problem by allowing 51 1.34 ad * any LWP in the system to request that an arbitrary function be 52 1.34 ad * executed on a specific CPU. 53 1.2 ad * 54 1.2 ad * Implementation 55 1.2 ad * 56 1.34 ad * A slow mechanism for making low priority cross calls is 57 1.2 ad * provided. The function to be executed runs on the remote CPU 58 1.2 ad * within a bound kthread. No queueing is provided, and the 59 1.2 ad * implementation uses global state. The function being called may 60 1.2 ad * block briefly on locks, but in doing so must be careful to not 61 1.2 ad * interfere with other cross calls in the system. The function is 62 1.2 ad * called with thread context and not from a soft interrupt, so it 63 1.2 ad * can ensure that it is not interrupting other code running on the 64 1.2 ad * CPU, and so has exclusive access to the CPU. Since this facility 65 1.2 ad * is heavyweight, it's expected that it will not be used often. 66 1.2 ad * 67 1.34 ad * Cross calls must not allocate memory, as the pagedaemon uses cross 68 1.34 ad * calls (and memory allocation may need to wait on the pagedaemon). 69 1.4 ad * 70 1.12 rmind * A low-overhead mechanism for high priority calls (XC_HIGHPRI) is 71 1.34 ad * also provided. The function to be executed runs in software 72 1.34 ad * interrupt context at IPL_SOFTSERIAL level, and is expected to 73 1.17 rmind * be very lightweight, e.g. avoid blocking. 74 1.2 ad */ 75 1.17 rmind 76 1.2 ad #include <sys/cdefs.h> 77 1.39 ozaki __KERNEL_RCSID(0, "$NetBSD: subr_xcall.c,v 1.39 2025/04/01 03:16:41 ozaki-r Exp $"); 78 1.2 ad 79 1.2 ad #include <sys/types.h> 80 1.2 ad #include <sys/param.h> 81 1.2 ad #include <sys/xcall.h> 82 1.2 ad #include <sys/mutex.h> 83 1.2 ad #include <sys/condvar.h> 84 1.2 ad #include <sys/evcnt.h> 85 1.2 ad #include <sys/kthread.h> 86 1.3 ad #include <sys/cpu.h> 87 1.29 ad #include <sys/atomic.h> 88 1.2 ad 89 1.14 martin #ifdef _RUMPKERNEL 90 1.14 martin #include "rump_private.h" 91 1.14 martin #endif 92 1.14 martin 93 1.12 rmind /* Cross-call state box. */ 94 1.12 rmind typedef struct { 95 1.12 rmind kmutex_t xc_lock; 96 1.12 rmind kcondvar_t xc_busy; 97 1.12 rmind xcfunc_t xc_func; 98 1.12 rmind void * xc_arg1; 99 1.12 rmind void * xc_arg2; 100 1.12 rmind uint64_t xc_headp; 101 1.12 rmind uint64_t xc_donep; 102 1.21 ozaki unsigned int xc_ipl; 103 1.12 rmind } xc_state_t; 104 1.12 rmind 105 1.12 rmind /* Bit indicating high (1) or low (0) priority. */ 106 1.12 rmind #define XC_PRI_BIT (1ULL << 63) 107 1.12 rmind 108 1.12 rmind /* Low priority xcall structures. */ 109 1.13 rmind static xc_state_t xc_low_pri __cacheline_aligned; 110 1.12 rmind 111 1.12 rmind /* High priority xcall structures. */ 112 1.13 rmind static xc_state_t xc_high_pri __cacheline_aligned; 113 1.21 ozaki static void * xc_sihs[4] __cacheline_aligned; 114 1.2 ad 115 1.12 rmind /* Event counters. */ 116 1.13 rmind static struct evcnt xc_unicast_ev __cacheline_aligned; 117 1.13 rmind static struct evcnt xc_broadcast_ev __cacheline_aligned; 118 1.12 rmind 119 1.12 rmind static void xc_init(void); 120 1.12 rmind static void xc_thread(void *); 121 1.12 rmind 122 1.21 ozaki static inline uint64_t xc_highpri(xcfunc_t, void *, void *, struct cpu_info *, 123 1.21 ozaki unsigned int); 124 1.12 rmind static inline uint64_t xc_lowpri(xcfunc_t, void *, void *, struct cpu_info *); 125 1.12 rmind 126 1.21 ozaki /* The internal form of IPL */ 127 1.21 ozaki #define XC_IPL_MASK 0xff00 128 1.21 ozaki /* 129 1.21 ozaki * Assign 0 to XC_IPL_SOFTSERIAL to treat IPL_SOFTSERIAL as the default value 130 1.21 ozaki * (just XC_HIGHPRI). 131 1.21 ozaki */ 132 1.21 ozaki #define XC_IPL_SOFTSERIAL 0 133 1.25 ozaki #define XC_IPL_SOFTNET 1 134 1.25 ozaki #define XC_IPL_SOFTBIO 2 135 1.25 ozaki #define XC_IPL_SOFTCLOCK 3 136 1.25 ozaki #define XC_IPL_MAX XC_IPL_SOFTCLOCK 137 1.21 ozaki 138 1.21 ozaki CTASSERT(XC_IPL_MAX <= __arraycount(xc_sihs)); 139 1.21 ozaki 140 1.12 rmind /* 141 1.12 rmind * xc_init: 142 1.12 rmind * 143 1.12 rmind * Initialize low and high priority cross-call structures. 144 1.12 rmind */ 145 1.12 rmind static void 146 1.12 rmind xc_init(void) 147 1.12 rmind { 148 1.12 rmind xc_state_t *xclo = &xc_low_pri, *xchi = &xc_high_pri; 149 1.12 rmind 150 1.12 rmind memset(xclo, 0, sizeof(xc_state_t)); 151 1.12 rmind mutex_init(&xclo->xc_lock, MUTEX_DEFAULT, IPL_NONE); 152 1.37 riastrad cv_init(&xclo->xc_busy, "xclow"); 153 1.12 rmind 154 1.12 rmind memset(xchi, 0, sizeof(xc_state_t)); 155 1.17 rmind mutex_init(&xchi->xc_lock, MUTEX_DEFAULT, IPL_SOFTSERIAL); 156 1.37 riastrad cv_init(&xchi->xc_busy, "xchigh"); 157 1.21 ozaki 158 1.24 ozaki /* Set up a softint for each IPL_SOFT*. */ 159 1.21 ozaki #define SETUP_SOFTINT(xipl, sipl) do { \ 160 1.21 ozaki xc_sihs[(xipl)] = softint_establish( (sipl) | SOFTINT_MPSAFE,\ 161 1.21 ozaki xc__highpri_intr, NULL); \ 162 1.21 ozaki KASSERT(xc_sihs[(xipl)] != NULL); \ 163 1.21 ozaki } while (0) 164 1.21 ozaki 165 1.21 ozaki SETUP_SOFTINT(XC_IPL_SOFTSERIAL, SOFTINT_SERIAL); 166 1.24 ozaki /* 167 1.24 ozaki * If a IPL_SOFTXXX have the same value of the previous, we don't use 168 1.24 ozaki * the IPL (see xc_encode_ipl). So we don't need to allocate a softint 169 1.24 ozaki * for it. 170 1.24 ozaki */ 171 1.24 ozaki #if IPL_SOFTNET != IPL_SOFTSERIAL 172 1.24 ozaki SETUP_SOFTINT(XC_IPL_SOFTNET, SOFTINT_NET); 173 1.24 ozaki #endif 174 1.24 ozaki #if IPL_SOFTBIO != IPL_SOFTNET 175 1.21 ozaki SETUP_SOFTINT(XC_IPL_SOFTBIO, SOFTINT_BIO); 176 1.24 ozaki #endif 177 1.24 ozaki #if IPL_SOFTCLOCK != IPL_SOFTBIO 178 1.21 ozaki SETUP_SOFTINT(XC_IPL_SOFTCLOCK, SOFTINT_CLOCK); 179 1.24 ozaki #endif 180 1.21 ozaki 181 1.21 ozaki #undef SETUP_SOFTINT 182 1.12 rmind 183 1.12 rmind evcnt_attach_dynamic(&xc_unicast_ev, EVCNT_TYPE_MISC, NULL, 184 1.12 rmind "crosscall", "unicast"); 185 1.12 rmind evcnt_attach_dynamic(&xc_broadcast_ev, EVCNT_TYPE_MISC, NULL, 186 1.12 rmind "crosscall", "broadcast"); 187 1.12 rmind } 188 1.2 ad 189 1.2 ad /* 190 1.21 ozaki * Encode an IPL to a form that can be embedded into flags of xc_broadcast 191 1.21 ozaki * or xc_unicast. 192 1.21 ozaki */ 193 1.21 ozaki unsigned int 194 1.21 ozaki xc_encode_ipl(int ipl) 195 1.21 ozaki { 196 1.21 ozaki 197 1.21 ozaki switch (ipl) { 198 1.21 ozaki case IPL_SOFTSERIAL: 199 1.21 ozaki return __SHIFTIN(XC_IPL_SOFTSERIAL, XC_IPL_MASK); 200 1.23 ozaki /* IPL_SOFT* can be the same value (e.g., on sparc or mips). */ 201 1.23 ozaki #if IPL_SOFTNET != IPL_SOFTSERIAL 202 1.23 ozaki case IPL_SOFTNET: 203 1.23 ozaki return __SHIFTIN(XC_IPL_SOFTNET, XC_IPL_MASK); 204 1.23 ozaki #endif 205 1.23 ozaki #if IPL_SOFTBIO != IPL_SOFTNET 206 1.21 ozaki case IPL_SOFTBIO: 207 1.21 ozaki return __SHIFTIN(XC_IPL_SOFTBIO, XC_IPL_MASK); 208 1.23 ozaki #endif 209 1.22 martin #if IPL_SOFTCLOCK != IPL_SOFTBIO 210 1.21 ozaki case IPL_SOFTCLOCK: 211 1.21 ozaki return __SHIFTIN(XC_IPL_SOFTCLOCK, XC_IPL_MASK); 212 1.22 martin #endif 213 1.21 ozaki } 214 1.21 ozaki 215 1.21 ozaki panic("Invalid IPL: %d", ipl); 216 1.21 ozaki } 217 1.21 ozaki 218 1.21 ozaki /* 219 1.21 ozaki * Extract an XC_IPL from flags of xc_broadcast or xc_unicast. 220 1.21 ozaki */ 221 1.21 ozaki static inline unsigned int 222 1.21 ozaki xc_extract_ipl(unsigned int flags) 223 1.21 ozaki { 224 1.21 ozaki 225 1.21 ozaki return __SHIFTOUT(flags, XC_IPL_MASK); 226 1.21 ozaki } 227 1.21 ozaki 228 1.21 ozaki /* 229 1.2 ad * xc_init_cpu: 230 1.2 ad * 231 1.2 ad * Initialize the cross-call subsystem. Called once for each CPU 232 1.2 ad * in the system as they are attached. 233 1.2 ad */ 234 1.2 ad void 235 1.2 ad xc_init_cpu(struct cpu_info *ci) 236 1.2 ad { 237 1.11 pooka static bool again = false; 238 1.16 martin int error __diagused; 239 1.2 ad 240 1.2 ad if (!again) { 241 1.2 ad /* Autoconfiguration will prevent re-entry. */ 242 1.12 rmind xc_init(); 243 1.2 ad again = true; 244 1.2 ad } 245 1.2 ad cv_init(&ci->ci_data.cpu_xcall, "xcall"); 246 1.2 ad error = kthread_create(PRI_XCALL, KTHREAD_MPSAFE, ci, xc_thread, 247 1.6 martin NULL, NULL, "xcall/%u", ci->ci_index); 248 1.12 rmind KASSERT(error == 0); 249 1.2 ad } 250 1.2 ad 251 1.2 ad /* 252 1.7 ad * xc_broadcast: 253 1.2 ad * 254 1.2 ad * Trigger a call on all CPUs in the system. 255 1.2 ad */ 256 1.2 ad uint64_t 257 1.21 ozaki xc_broadcast(unsigned int flags, xcfunc_t func, void *arg1, void *arg2) 258 1.2 ad { 259 1.2 ad 260 1.35 riastrad KASSERT(!cpu_intr_p()); 261 1.35 riastrad KASSERT(!cpu_softintr_p()); 262 1.26 ozaki ASSERT_SLEEPABLE(); 263 1.12 rmind 264 1.29 ad if (__predict_false(!mp_online)) { 265 1.36 riastrad int s, bound; 266 1.36 riastrad 267 1.36 riastrad if (flags & XC_HIGHPRI) 268 1.36 riastrad s = splsoftserial(); 269 1.36 riastrad else 270 1.36 riastrad bound = curlwp_bind(); 271 1.29 ad (*func)(arg1, arg2); 272 1.36 riastrad if (flags & XC_HIGHPRI) 273 1.36 riastrad splx(s); 274 1.36 riastrad else 275 1.36 riastrad curlwp_bindx(bound); 276 1.29 ad return 0; 277 1.29 ad } 278 1.29 ad 279 1.2 ad if ((flags & XC_HIGHPRI) != 0) { 280 1.39 ozaki unsigned int ipl = xc_extract_ipl(flags); 281 1.21 ozaki return xc_highpri(func, arg1, arg2, NULL, ipl); 282 1.2 ad } else { 283 1.12 rmind return xc_lowpri(func, arg1, arg2, NULL); 284 1.2 ad } 285 1.2 ad } 286 1.2 ad 287 1.27 uwe static void 288 1.27 uwe xc_nop(void *arg1, void *arg2) 289 1.27 uwe { 290 1.27 uwe 291 1.33 thorpej return; 292 1.27 uwe } 293 1.27 uwe 294 1.27 uwe /* 295 1.27 uwe * xc_barrier: 296 1.27 uwe * 297 1.27 uwe * Broadcast a nop to all CPUs in the system. 298 1.27 uwe */ 299 1.27 uwe void 300 1.27 uwe xc_barrier(unsigned int flags) 301 1.27 uwe { 302 1.27 uwe uint64_t where; 303 1.27 uwe 304 1.27 uwe where = xc_broadcast(flags, xc_nop, NULL, NULL); 305 1.27 uwe xc_wait(where); 306 1.27 uwe } 307 1.27 uwe 308 1.2 ad /* 309 1.2 ad * xc_unicast: 310 1.2 ad * 311 1.2 ad * Trigger a call on one CPU. 312 1.2 ad */ 313 1.2 ad uint64_t 314 1.21 ozaki xc_unicast(unsigned int flags, xcfunc_t func, void *arg1, void *arg2, 315 1.36 riastrad struct cpu_info *ci) 316 1.2 ad { 317 1.2 ad 318 1.12 rmind KASSERT(ci != NULL); 319 1.35 riastrad KASSERT(!cpu_intr_p()); 320 1.35 riastrad KASSERT(!cpu_softintr_p()); 321 1.26 ozaki ASSERT_SLEEPABLE(); 322 1.12 rmind 323 1.29 ad if (__predict_false(!mp_online)) { 324 1.36 riastrad int s, bound; 325 1.36 riastrad 326 1.29 ad KASSERT(ci == curcpu()); 327 1.36 riastrad 328 1.36 riastrad if (flags & XC_HIGHPRI) 329 1.36 riastrad s = splsoftserial(); 330 1.36 riastrad else 331 1.36 riastrad bound = curlwp_bind(); 332 1.29 ad (*func)(arg1, arg2); 333 1.36 riastrad if (flags & XC_HIGHPRI) 334 1.36 riastrad splx(s); 335 1.36 riastrad else 336 1.36 riastrad curlwp_bindx(bound); 337 1.36 riastrad 338 1.29 ad return 0; 339 1.29 ad } 340 1.29 ad 341 1.2 ad if ((flags & XC_HIGHPRI) != 0) { 342 1.39 ozaki unsigned int ipl = xc_extract_ipl(flags); 343 1.21 ozaki return xc_highpri(func, arg1, arg2, ci, ipl); 344 1.12 rmind } else { 345 1.12 rmind return xc_lowpri(func, arg1, arg2, ci); 346 1.12 rmind } 347 1.12 rmind } 348 1.12 rmind 349 1.12 rmind /* 350 1.12 rmind * xc_wait: 351 1.12 rmind * 352 1.12 rmind * Wait for a cross call to complete. 353 1.12 rmind */ 354 1.12 rmind void 355 1.12 rmind xc_wait(uint64_t where) 356 1.12 rmind { 357 1.12 rmind xc_state_t *xc; 358 1.12 rmind 359 1.35 riastrad KASSERT(!cpu_intr_p()); 360 1.35 riastrad KASSERT(!cpu_softintr_p()); 361 1.26 ozaki ASSERT_SLEEPABLE(); 362 1.12 rmind 363 1.29 ad if (__predict_false(!mp_online)) { 364 1.29 ad return; 365 1.29 ad } 366 1.29 ad 367 1.12 rmind /* Determine whether it is high or low priority cross-call. */ 368 1.12 rmind if ((where & XC_PRI_BIT) != 0) { 369 1.12 rmind xc = &xc_high_pri; 370 1.12 rmind where &= ~XC_PRI_BIT; 371 1.2 ad } else { 372 1.12 rmind xc = &xc_low_pri; 373 1.12 rmind } 374 1.12 rmind 375 1.32 riastrad #ifdef __HAVE_ATOMIC64_LOADSTORE 376 1.32 riastrad /* Fast path, if already done. */ 377 1.32 riastrad if (atomic_load_acquire(&xc->xc_donep) >= where) { 378 1.32 riastrad return; 379 1.32 riastrad } 380 1.32 riastrad #endif 381 1.32 riastrad 382 1.32 riastrad /* Slow path: block until awoken. */ 383 1.31 ad mutex_enter(&xc->xc_lock); 384 1.31 ad while (xc->xc_donep < where) { 385 1.31 ad cv_wait(&xc->xc_busy, &xc->xc_lock); 386 1.2 ad } 387 1.31 ad mutex_exit(&xc->xc_lock); 388 1.2 ad } 389 1.2 ad 390 1.2 ad /* 391 1.2 ad * xc_lowpri: 392 1.2 ad * 393 1.2 ad * Trigger a low priority call on one or more CPUs. 394 1.2 ad */ 395 1.12 rmind static inline uint64_t 396 1.12 rmind xc_lowpri(xcfunc_t func, void *arg1, void *arg2, struct cpu_info *ci) 397 1.2 ad { 398 1.12 rmind xc_state_t *xc = &xc_low_pri; 399 1.2 ad CPU_INFO_ITERATOR cii; 400 1.10 uebayasi uint64_t where; 401 1.2 ad 402 1.12 rmind mutex_enter(&xc->xc_lock); 403 1.19 ozaki while (xc->xc_headp != xc->xc_donep) { 404 1.12 rmind cv_wait(&xc->xc_busy, &xc->xc_lock); 405 1.12 rmind } 406 1.12 rmind xc->xc_arg1 = arg1; 407 1.12 rmind xc->xc_arg2 = arg2; 408 1.12 rmind xc->xc_func = func; 409 1.2 ad if (ci == NULL) { 410 1.2 ad xc_broadcast_ev.ev_count++; 411 1.2 ad for (CPU_INFO_FOREACH(cii, ci)) { 412 1.8 ad if ((ci->ci_schedstate.spc_flags & SPCF_RUNNING) == 0) 413 1.8 ad continue; 414 1.12 rmind xc->xc_headp += 1; 415 1.2 ad ci->ci_data.cpu_xcall_pending = true; 416 1.2 ad cv_signal(&ci->ci_data.cpu_xcall); 417 1.2 ad } 418 1.2 ad } else { 419 1.2 ad xc_unicast_ev.ev_count++; 420 1.12 rmind xc->xc_headp += 1; 421 1.2 ad ci->ci_data.cpu_xcall_pending = true; 422 1.2 ad cv_signal(&ci->ci_data.cpu_xcall); 423 1.2 ad } 424 1.19 ozaki KASSERT(xc->xc_donep < xc->xc_headp); 425 1.12 rmind where = xc->xc_headp; 426 1.12 rmind mutex_exit(&xc->xc_lock); 427 1.2 ad 428 1.12 rmind /* Return a low priority ticket. */ 429 1.12 rmind KASSERT((where & XC_PRI_BIT) == 0); 430 1.2 ad return where; 431 1.2 ad } 432 1.2 ad 433 1.2 ad /* 434 1.2 ad * xc_thread: 435 1.2 ad * 436 1.2 ad * One thread per-CPU to dispatch low priority calls. 437 1.2 ad */ 438 1.2 ad static void 439 1.2 ad xc_thread(void *cookie) 440 1.2 ad { 441 1.12 rmind struct cpu_info *ci = curcpu(); 442 1.12 rmind xc_state_t *xc = &xc_low_pri; 443 1.2 ad void *arg1, *arg2; 444 1.2 ad xcfunc_t func; 445 1.38 mrg struct lwp *l = curlwp; 446 1.38 mrg 447 1.38 mrg KASSERTMSG(l->l_nopreempt == 0, "lwp %p nopreempt %d", 448 1.38 mrg l, l->l_nopreempt); 449 1.2 ad 450 1.12 rmind mutex_enter(&xc->xc_lock); 451 1.2 ad for (;;) { 452 1.2 ad while (!ci->ci_data.cpu_xcall_pending) { 453 1.19 ozaki if (xc->xc_headp == xc->xc_donep) { 454 1.12 rmind cv_broadcast(&xc->xc_busy); 455 1.12 rmind } 456 1.12 rmind cv_wait(&ci->ci_data.cpu_xcall, &xc->xc_lock); 457 1.2 ad KASSERT(ci == curcpu()); 458 1.2 ad } 459 1.2 ad ci->ci_data.cpu_xcall_pending = false; 460 1.12 rmind func = xc->xc_func; 461 1.12 rmind arg1 = xc->xc_arg1; 462 1.12 rmind arg2 = xc->xc_arg2; 463 1.12 rmind mutex_exit(&xc->xc_lock); 464 1.2 ad 465 1.12 rmind KASSERT(func != NULL); 466 1.2 ad (*func)(arg1, arg2); 467 1.2 ad 468 1.38 mrg KASSERTMSG(l->l_nopreempt == 0, "lwp %p nopreempt %d func %p", 469 1.38 mrg l, l->l_nopreempt, func); 470 1.38 mrg 471 1.12 rmind mutex_enter(&xc->xc_lock); 472 1.32 riastrad #ifdef __HAVE_ATOMIC64_LOADSTORE 473 1.32 riastrad atomic_store_release(&xc->xc_donep, xc->xc_donep + 1); 474 1.32 riastrad #else 475 1.12 rmind xc->xc_donep++; 476 1.32 riastrad #endif 477 1.2 ad } 478 1.2 ad /* NOTREACHED */ 479 1.2 ad } 480 1.12 rmind 481 1.12 rmind /* 482 1.12 rmind * xc_ipi_handler: 483 1.12 rmind * 484 1.12 rmind * Handler of cross-call IPI. 485 1.12 rmind */ 486 1.12 rmind void 487 1.12 rmind xc_ipi_handler(void) 488 1.12 rmind { 489 1.21 ozaki xc_state_t *xc = & xc_high_pri; 490 1.21 ozaki 491 1.21 ozaki KASSERT(xc->xc_ipl < __arraycount(xc_sihs)); 492 1.24 ozaki KASSERT(xc_sihs[xc->xc_ipl] != NULL); 493 1.21 ozaki 494 1.14 martin /* Executes xc__highpri_intr() via software interrupt. */ 495 1.21 ozaki softint_schedule(xc_sihs[xc->xc_ipl]); 496 1.12 rmind } 497 1.12 rmind 498 1.12 rmind /* 499 1.14 martin * xc__highpri_intr: 500 1.12 rmind * 501 1.12 rmind * A software interrupt handler for high priority calls. 502 1.12 rmind */ 503 1.14 martin void 504 1.14 martin xc__highpri_intr(void *dummy) 505 1.12 rmind { 506 1.12 rmind xc_state_t *xc = &xc_high_pri; 507 1.12 rmind void *arg1, *arg2; 508 1.12 rmind xcfunc_t func; 509 1.12 rmind 510 1.20 martin KASSERTMSG(!cpu_intr_p(), "high priority xcall for function %p", 511 1.20 martin xc->xc_func); 512 1.12 rmind /* 513 1.12 rmind * Lock-less fetch of function and its arguments. 514 1.12 rmind * Safe since it cannot change at this point. 515 1.12 rmind */ 516 1.12 rmind func = xc->xc_func; 517 1.12 rmind arg1 = xc->xc_arg1; 518 1.12 rmind arg2 = xc->xc_arg2; 519 1.12 rmind 520 1.12 rmind KASSERT(func != NULL); 521 1.12 rmind (*func)(arg1, arg2); 522 1.12 rmind 523 1.12 rmind /* 524 1.12 rmind * Note the request as done, and if we have reached the head, 525 1.12 rmind * cross-call has been processed - notify waiters, if any. 526 1.12 rmind */ 527 1.12 rmind mutex_enter(&xc->xc_lock); 528 1.28 maxv KASSERT(xc->xc_donep < xc->xc_headp); 529 1.32 riastrad #ifdef __HAVE_ATOMIC64_LOADSTORE 530 1.32 riastrad atomic_store_release(&xc->xc_donep, xc->xc_donep + 1); 531 1.32 riastrad #else 532 1.32 riastrad xc->xc_donep++; 533 1.32 riastrad #endif 534 1.32 riastrad if (xc->xc_donep == xc->xc_headp) { 535 1.12 rmind cv_broadcast(&xc->xc_busy); 536 1.12 rmind } 537 1.12 rmind mutex_exit(&xc->xc_lock); 538 1.12 rmind } 539 1.12 rmind 540 1.12 rmind /* 541 1.12 rmind * xc_highpri: 542 1.12 rmind * 543 1.12 rmind * Trigger a high priority call on one or more CPUs. 544 1.12 rmind */ 545 1.12 rmind static inline uint64_t 546 1.21 ozaki xc_highpri(xcfunc_t func, void *arg1, void *arg2, struct cpu_info *ci, 547 1.21 ozaki unsigned int ipl) 548 1.12 rmind { 549 1.12 rmind xc_state_t *xc = &xc_high_pri; 550 1.12 rmind uint64_t where; 551 1.12 rmind 552 1.12 rmind mutex_enter(&xc->xc_lock); 553 1.12 rmind while (xc->xc_headp != xc->xc_donep) { 554 1.12 rmind cv_wait(&xc->xc_busy, &xc->xc_lock); 555 1.12 rmind } 556 1.12 rmind xc->xc_func = func; 557 1.12 rmind xc->xc_arg1 = arg1; 558 1.12 rmind xc->xc_arg2 = arg2; 559 1.12 rmind xc->xc_headp += (ci ? 1 : ncpu); 560 1.21 ozaki xc->xc_ipl = ipl; 561 1.12 rmind where = xc->xc_headp; 562 1.12 rmind mutex_exit(&xc->xc_lock); 563 1.12 rmind 564 1.12 rmind /* 565 1.12 rmind * Send the IPI once lock is released. 566 1.12 rmind * Note: it will handle the local CPU case. 567 1.12 rmind */ 568 1.12 rmind 569 1.14 martin #ifdef _RUMPKERNEL 570 1.14 martin rump_xc_highpri(ci); 571 1.14 martin #else 572 1.12 rmind #ifdef MULTIPROCESSOR 573 1.12 rmind kpreempt_disable(); 574 1.12 rmind if (curcpu() == ci) { 575 1.12 rmind /* Unicast: local CPU. */ 576 1.12 rmind xc_ipi_handler(); 577 1.12 rmind } else if (ci) { 578 1.12 rmind /* Unicast: remote CPU. */ 579 1.12 rmind xc_send_ipi(ci); 580 1.12 rmind } else { 581 1.12 rmind /* Broadcast: all, including local. */ 582 1.12 rmind xc_send_ipi(NULL); 583 1.12 rmind xc_ipi_handler(); 584 1.12 rmind } 585 1.12 rmind kpreempt_enable(); 586 1.12 rmind #else 587 1.15 rmind KASSERT(ci == NULL || curcpu() == ci); 588 1.12 rmind xc_ipi_handler(); 589 1.12 rmind #endif 590 1.14 martin #endif 591 1.12 rmind 592 1.12 rmind /* Indicate a high priority ticket. */ 593 1.12 rmind return (where | XC_PRI_BIT); 594 1.12 rmind } 595