subr_xcall.c revision 1.1.2.2 1 1.1.2.2 ad /* $NetBSD: subr_xcall.c,v 1.1.2.2 2007/08/30 20:02:33 ad Exp $ */
2 1.1.2.1 ad
3 1.1.2.1 ad /*-
4 1.1.2.1 ad * Copyright (c) 2007 The NetBSD Foundation, Inc.
5 1.1.2.1 ad * All rights reserved.
6 1.1.2.1 ad *
7 1.1.2.1 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.1.2.1 ad * by Andrew Doran.
9 1.1.2.1 ad *
10 1.1.2.1 ad * Redistribution and use in source and binary forms, with or without
11 1.1.2.1 ad * modification, are permitted provided that the following conditions
12 1.1.2.1 ad * are met:
13 1.1.2.1 ad * 1. Redistributions of source code must retain the above copyright
14 1.1.2.1 ad * notice, this list of conditions and the following disclaimer.
15 1.1.2.1 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.1.2.1 ad * notice, this list of conditions and the following disclaimer in the
17 1.1.2.1 ad * documentation and/or other materials provided with the distribution.
18 1.1.2.1 ad * 3. All advertising materials mentioning features or use of this software
19 1.1.2.1 ad * must display the following acknowledgement:
20 1.1.2.1 ad * This product includes software developed by the NetBSD
21 1.1.2.1 ad * Foundation, Inc. and its contributors.
22 1.1.2.1 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.1.2.1 ad * contributors may be used to endorse or promote products derived
24 1.1.2.1 ad * from this software without specific prior written permission.
25 1.1.2.1 ad *
26 1.1.2.1 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.1.2.1 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.1.2.1 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.1.2.1 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.1.2.1 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.1.2.1 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.1.2.1 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.1.2.1 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.1.2.1 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.1.2.1 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.1.2.1 ad * POSSIBILITY OF SUCH DAMAGE.
37 1.1.2.1 ad */
38 1.1.2.1 ad
39 1.1.2.1 ad /*
40 1.1.2.1 ad * Cross call support
41 1.1.2.1 ad *
42 1.1.2.1 ad * Background
43 1.1.2.1 ad *
44 1.1.2.1 ad * Sometimes it is necessary to modify hardware state that is tied
45 1.1.2.1 ad * directly to individual CPUs (such as a CPU's local timer), and
46 1.1.2.1 ad * these updates can not be done remotely by another CPU. The LWP
47 1.1.2.1 ad * requesting the update may be unable to guarantee that it will be
48 1.1.2.1 ad * running on the CPU where the update must occur, when the update
49 1.1.2.1 ad * occurs.
50 1.1.2.1 ad *
51 1.1.2.1 ad * Additionally, it's sometimes necessary to modify per-CPU software
52 1.1.2.1 ad * state from a remote CPU. Where these update operations are so
53 1.1.2.1 ad * rare or the access to the per-CPU data so frequent that the cost
54 1.1.2.1 ad * of using locking or atomic operations to provide coherency is
55 1.1.2.1 ad * prohobitive, another way must be found.
56 1.1.2.1 ad *
57 1.1.2.1 ad * Cross calls help to solve these types of problem by allowing
58 1.1.2.1 ad * any CPU in the system to request that an arbitrary function be
59 1.1.2.1 ad * executed on any other CPU.
60 1.1.2.1 ad *
61 1.1.2.1 ad * Implementation
62 1.1.2.1 ad *
63 1.1.2.1 ad * A slow mechanism for making 'low priority' cross calls is
64 1.1.2.1 ad * provided. The function to be executed runs on the remote CPU
65 1.1.2.1 ad * within a bound kthread. No queueing is provided, and the
66 1.1.2.1 ad * implementation uses global state. The function being called may
67 1.1.2.1 ad * block briefly on locks, but in doing so must be careful to not
68 1.1.2.1 ad * interfere with other cross calls in the system. The function is
69 1.1.2.1 ad * called with thread context and not from a soft interrupt, so it
70 1.1.2.1 ad * can ensure that it is not interrupting other code running on the
71 1.1.2.1 ad * CPU, and so has exclusive access to the CPU. Since this facility
72 1.1.2.1 ad * is heavyweight, it's expected that it will not be used often.
73 1.1.2.1 ad *
74 1.1.2.1 ad * Future directions
75 1.1.2.1 ad *
76 1.1.2.1 ad * Add a low-overhead mechanism to run cross calls in interrupt
77 1.1.2.1 ad * context (XC_HIGHPRI).
78 1.1.2.1 ad */
79 1.1.2.1 ad
80 1.1.2.1 ad #include <sys/cdefs.h>
81 1.1.2.2 ad __KERNEL_RCSID(0, "$NetBSD: subr_xcall.c,v 1.1.2.2 2007/08/30 20:02:33 ad Exp $");
82 1.1.2.1 ad
83 1.1.2.1 ad #include <sys/types.h>
84 1.1.2.1 ad #include <sys/param.h>
85 1.1.2.1 ad #include <sys/xcall.h>
86 1.1.2.1 ad #include <sys/mutex.h>
87 1.1.2.1 ad #include <sys/condvar.h>
88 1.1.2.1 ad #include <sys/evcnt.h>
89 1.1.2.1 ad #include <sys/kthread.h>
90 1.1.2.1 ad
91 1.1.2.1 ad #define PRI_XCALL PRI_KERNEL_RT
92 1.1.2.1 ad
93 1.1.2.1 ad static void xc_thread(void *);
94 1.1.2.2 ad static uint64_t xc_lowpri(u_int, xcfunc_t, void *, void *, struct cpu_info *);
95 1.1.2.1 ad
96 1.1.2.1 ad static kmutex_t xc_lock;
97 1.1.2.1 ad static xcfunc_t xc_func;
98 1.1.2.1 ad static void *xc_arg1;
99 1.1.2.1 ad static void *xc_arg2;
100 1.1.2.1 ad static kcondvar_t xc_busy;
101 1.1.2.1 ad static struct evcnt xc_unicast_ev;
102 1.1.2.1 ad static struct evcnt xc_broadcast_ev;
103 1.1.2.1 ad static uint64_t xc_headp;
104 1.1.2.1 ad static uint64_t xc_tailp;
105 1.1.2.1 ad static uint64_t xc_donep;
106 1.1.2.1 ad
107 1.1.2.1 ad /*
108 1.1.2.1 ad * xc_init_cpu:
109 1.1.2.1 ad *
110 1.1.2.1 ad * Initialize the cross-call subsystem. Called once for each CPU
111 1.1.2.2 ad * in the system as they are attached.
112 1.1.2.1 ad */
113 1.1.2.1 ad void
114 1.1.2.1 ad xc_init_cpu(struct cpu_info *ci)
115 1.1.2.1 ad {
116 1.1.2.1 ad static bool again;
117 1.1.2.1 ad int error;
118 1.1.2.1 ad
119 1.1.2.1 ad if (!again) {
120 1.1.2.1 ad /* Autoconfiguration will prevent re-entry. */
121 1.1.2.1 ad again = true;
122 1.1.2.1 ad mutex_init(&xc_lock, MUTEX_DEFAULT, IPL_NONE);
123 1.1.2.1 ad cv_init(&xc_busy, "xcallbsy");
124 1.1.2.1 ad evcnt_attach_dynamic(&xc_unicast_ev, EVCNT_TYPE_MISC, NULL,
125 1.1.2.1 ad "crosscall", "unicast");
126 1.1.2.1 ad evcnt_attach_dynamic(&xc_broadcast_ev, EVCNT_TYPE_MISC, NULL,
127 1.1.2.1 ad "crosscall", "broadcast");
128 1.1.2.1 ad }
129 1.1.2.1 ad
130 1.1.2.1 ad cv_init(&ci->ci_data.cpu_xcall, "xcall");
131 1.1.2.1 ad error = kthread_create(PRI_XCALL, KTHREAD_MPSAFE, ci, xc_thread,
132 1.1.2.1 ad NULL, NULL, "xcall/%d", (int)ci->ci_cpuid);
133 1.1.2.1 ad if (error != 0)
134 1.1.2.1 ad panic("xc_init_cpu: error %d", error);
135 1.1.2.1 ad }
136 1.1.2.1 ad
137 1.1.2.1 ad /*
138 1.1.2.1 ad * xc_unicast:
139 1.1.2.1 ad *
140 1.1.2.1 ad * Trigger a call on all CPUs in the system.
141 1.1.2.1 ad */
142 1.1.2.2 ad uint64_t
143 1.1.2.1 ad xc_broadcast(u_int flags, xcfunc_t func, void *arg1, void *arg2)
144 1.1.2.1 ad {
145 1.1.2.1 ad
146 1.1.2.1 ad if ((flags & XC_HIGHPRI) != 0) {
147 1.1.2.1 ad panic("xc_unicast: no high priority crosscalls yet");
148 1.1.2.1 ad } else {
149 1.1.2.2 ad return xc_lowpri(flags, func, arg1, arg2, NULL);
150 1.1.2.1 ad }
151 1.1.2.1 ad }
152 1.1.2.1 ad
153 1.1.2.1 ad /*
154 1.1.2.1 ad * xc_unicast:
155 1.1.2.1 ad *
156 1.1.2.1 ad * Trigger a call on one CPU.
157 1.1.2.1 ad */
158 1.1.2.2 ad uint64_t
159 1.1.2.1 ad xc_unicast(u_int flags, xcfunc_t func, void *arg1, void *arg2,
160 1.1.2.1 ad struct cpu_info *ci)
161 1.1.2.1 ad {
162 1.1.2.1 ad
163 1.1.2.1 ad if ((flags & XC_HIGHPRI) != 0) {
164 1.1.2.1 ad panic("xc_unicast: no high priority crosscalls yet");
165 1.1.2.1 ad } else {
166 1.1.2.1 ad KASSERT(ci != NULL);
167 1.1.2.2 ad return xc_lowpri(flags, func, arg1, arg2, ci);
168 1.1.2.1 ad }
169 1.1.2.1 ad }
170 1.1.2.1 ad
171 1.1.2.1 ad /*
172 1.1.2.1 ad * xc_lowpri:
173 1.1.2.1 ad *
174 1.1.2.1 ad * Trigger a low priority call on one or more CPUs.
175 1.1.2.1 ad */
176 1.1.2.2 ad static uint64_t
177 1.1.2.1 ad xc_lowpri(u_int flags, xcfunc_t func, void *arg1, void *arg2,
178 1.1.2.1 ad struct cpu_info *ci)
179 1.1.2.1 ad {
180 1.1.2.1 ad CPU_INFO_ITERATOR cii;
181 1.1.2.1 ad u_int where;
182 1.1.2.1 ad
183 1.1.2.1 ad mutex_enter(&xc_lock);
184 1.1.2.1 ad while (xc_headp != xc_tailp)
185 1.1.2.1 ad cv_wait(&xc_busy, &xc_lock);
186 1.1.2.1 ad xc_arg1 = arg1;
187 1.1.2.1 ad xc_arg2 = arg2;
188 1.1.2.1 ad xc_func = func;
189 1.1.2.2 ad if (ci == NULL) {
190 1.1.2.1 ad xc_broadcast_ev.ev_count++;
191 1.1.2.1 ad for (CPU_INFO_FOREACH(cii, ci)) {
192 1.1.2.1 ad xc_headp += 1;
193 1.1.2.2 ad ci->ci_data.cpu_xcall_pending = true;
194 1.1.2.1 ad cv_signal(&ci->ci_data.cpu_xcall);
195 1.1.2.1 ad }
196 1.1.2.1 ad } else {
197 1.1.2.1 ad xc_unicast_ev.ev_count++;
198 1.1.2.1 ad xc_headp += 1;
199 1.1.2.2 ad ci->ci_data.cpu_xcall_pending = true;
200 1.1.2.1 ad cv_signal(&ci->ci_data.cpu_xcall);
201 1.1.2.1 ad }
202 1.1.2.1 ad KASSERT(xc_tailp < xc_headp);
203 1.1.2.2 ad where = xc_headp;
204 1.1.2.2 ad mutex_exit(&xc_lock);
205 1.1.2.2 ad
206 1.1.2.2 ad return where;
207 1.1.2.2 ad }
208 1.1.2.2 ad
209 1.1.2.2 ad /*
210 1.1.2.2 ad * xc_wait:
211 1.1.2.2 ad *
212 1.1.2.2 ad * Wait for a cross call to complete.
213 1.1.2.2 ad */
214 1.1.2.2 ad void
215 1.1.2.2 ad xc_wait(uint64_t where)
216 1.1.2.2 ad {
217 1.1.2.2 ad
218 1.1.2.2 ad if (xc_donep >= where)
219 1.1.2.2 ad return;
220 1.1.2.2 ad
221 1.1.2.2 ad mutex_enter(&xc_lock);
222 1.1.2.2 ad while (xc_donep < where)
223 1.1.2.2 ad cv_wait(&xc_busy, &xc_lock);
224 1.1.2.1 ad mutex_exit(&xc_lock);
225 1.1.2.1 ad }
226 1.1.2.1 ad
227 1.1.2.1 ad /*
228 1.1.2.1 ad * xc_thread:
229 1.1.2.1 ad *
230 1.1.2.1 ad * One thread per-CPU to dispatch low priority calls.
231 1.1.2.1 ad */
232 1.1.2.1 ad static void
233 1.1.2.1 ad xc_thread(void *cookie)
234 1.1.2.1 ad {
235 1.1.2.1 ad void *arg1, *arg2;
236 1.1.2.1 ad struct cpu_info *ci;
237 1.1.2.1 ad xcfunc_t func;
238 1.1.2.1 ad
239 1.1.2.1 ad ci = curcpu();
240 1.1.2.1 ad
241 1.1.2.1 ad mutex_enter(&xc_lock);
242 1.1.2.1 ad for (;;) {
243 1.1.2.2 ad while (!ci->ci_data.cpu_xcall_pending) {
244 1.1.2.1 ad if (xc_headp == xc_tailp)
245 1.1.2.1 ad cv_broadcast(&xc_busy);
246 1.1.2.1 ad cv_wait(&ci->ci_data.cpu_xcall, &xc_lock);
247 1.1.2.1 ad KASSERT(ci == curcpu());
248 1.1.2.1 ad }
249 1.1.2.2 ad ci->ci_data.cpu_xcall_pending = false;
250 1.1.2.1 ad func = xc_func;
251 1.1.2.1 ad arg1 = xc_arg1;
252 1.1.2.1 ad arg2 = xc_arg2;
253 1.1.2.1 ad xc_tailp++;
254 1.1.2.1 ad mutex_exit(&xc_lock);
255 1.1.2.1 ad
256 1.1.2.1 ad (*func)(arg1, arg2);
257 1.1.2.1 ad
258 1.1.2.1 ad mutex_enter(&xc_lock);
259 1.1.2.1 ad xc_donep++;
260 1.1.2.1 ad }
261 1.1.2.1 ad /* NOTREACHED */
262 1.1.2.1 ad }
263