Home | History | Annotate | Line # | Download | only in kern
subr_xcall.c revision 1.19
      1  1.19     ozaki /*	$NetBSD: subr_xcall.c,v 1.19 2016/11/21 00:54:21 ozaki-r Exp $	*/
      2   1.2        ad 
      3   1.2        ad /*-
      4  1.12     rmind  * Copyright (c) 2007-2010 The NetBSD Foundation, Inc.
      5   1.2        ad  * All rights reserved.
      6   1.2        ad  *
      7   1.2        ad  * This code is derived from software contributed to The NetBSD Foundation
      8  1.12     rmind  * by Andrew Doran and Mindaugas Rasiukevicius.
      9   1.2        ad  *
     10   1.2        ad  * Redistribution and use in source and binary forms, with or without
     11   1.2        ad  * modification, are permitted provided that the following conditions
     12   1.2        ad  * are met:
     13   1.2        ad  * 1. Redistributions of source code must retain the above copyright
     14   1.2        ad  *    notice, this list of conditions and the following disclaimer.
     15   1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     17   1.2        ad  *    documentation and/or other materials provided with the distribution.
     18   1.2        ad  *
     19   1.2        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.2        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.2        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.2        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.2        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.2        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.2        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.2        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.2        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.2        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.2        ad  * POSSIBILITY OF SUCH DAMAGE.
     30   1.2        ad  */
     31   1.2        ad 
     32   1.2        ad /*
     33   1.2        ad  * Cross call support
     34   1.2        ad  *
     35   1.2        ad  * Background
     36   1.2        ad  *
     37   1.2        ad  *	Sometimes it is necessary to modify hardware state that is tied
     38   1.2        ad  *	directly to individual CPUs (such as a CPU's local timer), and
     39   1.2        ad  *	these updates can not be done remotely by another CPU.  The LWP
     40   1.2        ad  *	requesting the update may be unable to guarantee that it will be
     41   1.2        ad  *	running on the CPU where the update must occur, when the update
     42   1.2        ad  *	occurs.
     43   1.2        ad  *
     44   1.2        ad  *	Additionally, it's sometimes necessary to modify per-CPU software
     45   1.2        ad  *	state from a remote CPU.  Where these update operations are so
     46   1.2        ad  *	rare or the access to the per-CPU data so frequent that the cost
     47   1.2        ad  *	of using locking or atomic operations to provide coherency is
     48   1.4        ad  *	prohibitive, another way must be found.
     49   1.2        ad  *
     50   1.2        ad  *	Cross calls help to solve these types of problem by allowing
     51   1.2        ad  *	any CPU in the system to request that an arbitrary function be
     52   1.2        ad  *	executed on any other CPU.
     53   1.2        ad  *
     54   1.2        ad  * Implementation
     55   1.2        ad  *
     56   1.2        ad  *	A slow mechanism for making 'low priority' cross calls is
     57   1.2        ad  *	provided.  The function to be executed runs on the remote CPU
     58   1.2        ad  *	within a bound kthread.  No queueing is provided, and the
     59   1.2        ad  *	implementation uses global state.  The function being called may
     60   1.2        ad  *	block briefly on locks, but in doing so must be careful to not
     61   1.2        ad  *	interfere with other cross calls in the system.  The function is
     62   1.2        ad  *	called with thread context and not from a soft interrupt, so it
     63   1.2        ad  *	can ensure that it is not interrupting other code running on the
     64   1.2        ad  *	CPU, and so has exclusive access to the CPU.  Since this facility
     65   1.2        ad  *	is heavyweight, it's expected that it will not be used often.
     66   1.2        ad  *
     67   1.4        ad  *	Cross calls must not allocate memory, as the pagedaemon uses
     68   1.4        ad  *	them (and memory allocation may need to wait on the pagedaemon).
     69   1.4        ad  *
     70  1.12     rmind  *	A low-overhead mechanism for high priority calls (XC_HIGHPRI) is
     71  1.12     rmind  *	also provided.  The function to be executed runs on a software
     72  1.17     rmind  *	interrupt context, at IPL_SOFTSERIAL level, and is expected to
     73  1.17     rmind  *	be very lightweight, e.g. avoid blocking.
     74   1.2        ad  */
     75  1.17     rmind 
     76   1.2        ad #include <sys/cdefs.h>
     77  1.19     ozaki __KERNEL_RCSID(0, "$NetBSD: subr_xcall.c,v 1.19 2016/11/21 00:54:21 ozaki-r Exp $");
     78   1.2        ad 
     79   1.2        ad #include <sys/types.h>
     80   1.2        ad #include <sys/param.h>
     81   1.2        ad #include <sys/xcall.h>
     82   1.2        ad #include <sys/mutex.h>
     83   1.2        ad #include <sys/condvar.h>
     84   1.2        ad #include <sys/evcnt.h>
     85   1.2        ad #include <sys/kthread.h>
     86   1.3        ad #include <sys/cpu.h>
     87   1.2        ad 
     88  1.14    martin #ifdef _RUMPKERNEL
     89  1.14    martin #include "rump_private.h"
     90  1.14    martin #endif
     91  1.14    martin 
     92  1.12     rmind /* Cross-call state box. */
     93  1.12     rmind typedef struct {
     94  1.12     rmind 	kmutex_t	xc_lock;
     95  1.12     rmind 	kcondvar_t	xc_busy;
     96  1.12     rmind 	xcfunc_t	xc_func;
     97  1.12     rmind 	void *		xc_arg1;
     98  1.12     rmind 	void *		xc_arg2;
     99  1.12     rmind 	uint64_t	xc_headp;
    100  1.12     rmind 	uint64_t	xc_donep;
    101  1.12     rmind } xc_state_t;
    102  1.12     rmind 
    103  1.12     rmind /* Bit indicating high (1) or low (0) priority. */
    104  1.12     rmind #define	XC_PRI_BIT	(1ULL << 63)
    105  1.12     rmind 
    106  1.12     rmind /* Low priority xcall structures. */
    107  1.13     rmind static xc_state_t	xc_low_pri	__cacheline_aligned;
    108  1.12     rmind 
    109  1.12     rmind /* High priority xcall structures. */
    110  1.13     rmind static xc_state_t	xc_high_pri	__cacheline_aligned;
    111  1.13     rmind static void *		xc_sih		__cacheline_aligned;
    112   1.2        ad 
    113  1.12     rmind /* Event counters. */
    114  1.13     rmind static struct evcnt	xc_unicast_ev	__cacheline_aligned;
    115  1.13     rmind static struct evcnt	xc_broadcast_ev	__cacheline_aligned;
    116  1.12     rmind 
    117  1.12     rmind static void		xc_init(void);
    118  1.12     rmind static void		xc_thread(void *);
    119  1.12     rmind 
    120  1.12     rmind static inline uint64_t	xc_highpri(xcfunc_t, void *, void *, struct cpu_info *);
    121  1.12     rmind static inline uint64_t	xc_lowpri(xcfunc_t, void *, void *, struct cpu_info *);
    122  1.12     rmind 
    123  1.12     rmind /*
    124  1.12     rmind  * xc_init:
    125  1.12     rmind  *
    126  1.12     rmind  *	Initialize low and high priority cross-call structures.
    127  1.12     rmind  */
    128  1.12     rmind static void
    129  1.12     rmind xc_init(void)
    130  1.12     rmind {
    131  1.12     rmind 	xc_state_t *xclo = &xc_low_pri, *xchi = &xc_high_pri;
    132  1.12     rmind 
    133  1.12     rmind 	memset(xclo, 0, sizeof(xc_state_t));
    134  1.12     rmind 	mutex_init(&xclo->xc_lock, MUTEX_DEFAULT, IPL_NONE);
    135  1.12     rmind 	cv_init(&xclo->xc_busy, "xclocv");
    136  1.12     rmind 
    137  1.12     rmind 	memset(xchi, 0, sizeof(xc_state_t));
    138  1.17     rmind 	mutex_init(&xchi->xc_lock, MUTEX_DEFAULT, IPL_SOFTSERIAL);
    139  1.12     rmind 	cv_init(&xchi->xc_busy, "xchicv");
    140  1.18     rmind 	xc_sih = softint_establish(SOFTINT_SERIAL | SOFTINT_MPSAFE,
    141  1.14    martin 	    xc__highpri_intr, NULL);
    142  1.12     rmind 	KASSERT(xc_sih != NULL);
    143  1.12     rmind 
    144  1.12     rmind 	evcnt_attach_dynamic(&xc_unicast_ev, EVCNT_TYPE_MISC, NULL,
    145  1.12     rmind 	   "crosscall", "unicast");
    146  1.12     rmind 	evcnt_attach_dynamic(&xc_broadcast_ev, EVCNT_TYPE_MISC, NULL,
    147  1.12     rmind 	   "crosscall", "broadcast");
    148  1.12     rmind }
    149   1.2        ad 
    150   1.2        ad /*
    151   1.2        ad  * xc_init_cpu:
    152   1.2        ad  *
    153   1.2        ad  *	Initialize the cross-call subsystem.  Called once for each CPU
    154   1.2        ad  *	in the system as they are attached.
    155   1.2        ad  */
    156   1.2        ad void
    157   1.2        ad xc_init_cpu(struct cpu_info *ci)
    158   1.2        ad {
    159  1.11     pooka 	static bool again = false;
    160  1.16    martin 	int error __diagused;
    161   1.2        ad 
    162   1.2        ad 	if (!again) {
    163   1.2        ad 		/* Autoconfiguration will prevent re-entry. */
    164  1.12     rmind 		xc_init();
    165   1.2        ad 		again = true;
    166   1.2        ad 	}
    167   1.2        ad 	cv_init(&ci->ci_data.cpu_xcall, "xcall");
    168   1.2        ad 	error = kthread_create(PRI_XCALL, KTHREAD_MPSAFE, ci, xc_thread,
    169   1.6    martin 	    NULL, NULL, "xcall/%u", ci->ci_index);
    170  1.12     rmind 	KASSERT(error == 0);
    171   1.2        ad }
    172   1.2        ad 
    173   1.2        ad /*
    174   1.7        ad  * xc_broadcast:
    175   1.2        ad  *
    176   1.2        ad  *	Trigger a call on all CPUs in the system.
    177   1.2        ad  */
    178   1.2        ad uint64_t
    179   1.2        ad xc_broadcast(u_int flags, xcfunc_t func, void *arg1, void *arg2)
    180   1.2        ad {
    181   1.2        ad 
    182  1.12     rmind 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
    183  1.12     rmind 
    184   1.2        ad 	if ((flags & XC_HIGHPRI) != 0) {
    185  1.12     rmind 		return xc_highpri(func, arg1, arg2, NULL);
    186   1.2        ad 	} else {
    187  1.12     rmind 		return xc_lowpri(func, arg1, arg2, NULL);
    188   1.2        ad 	}
    189   1.2        ad }
    190   1.2        ad 
    191   1.2        ad /*
    192   1.2        ad  * xc_unicast:
    193   1.2        ad  *
    194   1.2        ad  *	Trigger a call on one CPU.
    195   1.2        ad  */
    196   1.2        ad uint64_t
    197   1.2        ad xc_unicast(u_int flags, xcfunc_t func, void *arg1, void *arg2,
    198   1.2        ad 	   struct cpu_info *ci)
    199   1.2        ad {
    200   1.2        ad 
    201  1.12     rmind 	KASSERT(ci != NULL);
    202  1.12     rmind 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
    203  1.12     rmind 
    204   1.2        ad 	if ((flags & XC_HIGHPRI) != 0) {
    205  1.12     rmind 		return xc_highpri(func, arg1, arg2, ci);
    206  1.12     rmind 	} else {
    207  1.12     rmind 		return xc_lowpri(func, arg1, arg2, ci);
    208  1.12     rmind 	}
    209  1.12     rmind }
    210  1.12     rmind 
    211  1.12     rmind /*
    212  1.12     rmind  * xc_wait:
    213  1.12     rmind  *
    214  1.12     rmind  *	Wait for a cross call to complete.
    215  1.12     rmind  */
    216  1.12     rmind void
    217  1.12     rmind xc_wait(uint64_t where)
    218  1.12     rmind {
    219  1.12     rmind 	xc_state_t *xc;
    220  1.12     rmind 
    221  1.12     rmind 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
    222  1.12     rmind 
    223  1.12     rmind 	/* Determine whether it is high or low priority cross-call. */
    224  1.12     rmind 	if ((where & XC_PRI_BIT) != 0) {
    225  1.12     rmind 		xc = &xc_high_pri;
    226  1.12     rmind 		where &= ~XC_PRI_BIT;
    227   1.2        ad 	} else {
    228  1.12     rmind 		xc = &xc_low_pri;
    229  1.12     rmind 	}
    230  1.12     rmind 
    231  1.12     rmind 	/* Fast path, if already done. */
    232  1.12     rmind 	if (xc->xc_donep >= where) {
    233  1.12     rmind 		return;
    234  1.12     rmind 	}
    235  1.12     rmind 
    236  1.12     rmind 	/* Slow path: block until awoken. */
    237  1.12     rmind 	mutex_enter(&xc->xc_lock);
    238  1.12     rmind 	while (xc->xc_donep < where) {
    239  1.12     rmind 		cv_wait(&xc->xc_busy, &xc->xc_lock);
    240   1.2        ad 	}
    241  1.12     rmind 	mutex_exit(&xc->xc_lock);
    242   1.2        ad }
    243   1.2        ad 
    244   1.2        ad /*
    245   1.2        ad  * xc_lowpri:
    246   1.2        ad  *
    247   1.2        ad  *	Trigger a low priority call on one or more CPUs.
    248   1.2        ad  */
    249  1.12     rmind static inline uint64_t
    250  1.12     rmind xc_lowpri(xcfunc_t func, void *arg1, void *arg2, struct cpu_info *ci)
    251   1.2        ad {
    252  1.12     rmind 	xc_state_t *xc = &xc_low_pri;
    253   1.2        ad 	CPU_INFO_ITERATOR cii;
    254  1.10  uebayasi 	uint64_t where;
    255   1.2        ad 
    256  1.12     rmind 	mutex_enter(&xc->xc_lock);
    257  1.19     ozaki 	while (xc->xc_headp != xc->xc_donep) {
    258  1.12     rmind 		cv_wait(&xc->xc_busy, &xc->xc_lock);
    259  1.12     rmind 	}
    260  1.12     rmind 	xc->xc_arg1 = arg1;
    261  1.12     rmind 	xc->xc_arg2 = arg2;
    262  1.12     rmind 	xc->xc_func = func;
    263   1.2        ad 	if (ci == NULL) {
    264   1.2        ad 		xc_broadcast_ev.ev_count++;
    265   1.2        ad 		for (CPU_INFO_FOREACH(cii, ci)) {
    266   1.8        ad 			if ((ci->ci_schedstate.spc_flags & SPCF_RUNNING) == 0)
    267   1.8        ad 				continue;
    268  1.12     rmind 			xc->xc_headp += 1;
    269   1.2        ad 			ci->ci_data.cpu_xcall_pending = true;
    270   1.2        ad 			cv_signal(&ci->ci_data.cpu_xcall);
    271   1.2        ad 		}
    272   1.2        ad 	} else {
    273   1.2        ad 		xc_unicast_ev.ev_count++;
    274  1.12     rmind 		xc->xc_headp += 1;
    275   1.2        ad 		ci->ci_data.cpu_xcall_pending = true;
    276   1.2        ad 		cv_signal(&ci->ci_data.cpu_xcall);
    277   1.2        ad 	}
    278  1.19     ozaki 	KASSERT(xc->xc_donep < xc->xc_headp);
    279  1.12     rmind 	where = xc->xc_headp;
    280  1.12     rmind 	mutex_exit(&xc->xc_lock);
    281   1.2        ad 
    282  1.12     rmind 	/* Return a low priority ticket. */
    283  1.12     rmind 	KASSERT((where & XC_PRI_BIT) == 0);
    284   1.2        ad 	return where;
    285   1.2        ad }
    286   1.2        ad 
    287   1.2        ad /*
    288   1.2        ad  * xc_thread:
    289   1.2        ad  *
    290   1.2        ad  *	One thread per-CPU to dispatch low priority calls.
    291   1.2        ad  */
    292   1.2        ad static void
    293   1.2        ad xc_thread(void *cookie)
    294   1.2        ad {
    295  1.12     rmind 	struct cpu_info *ci = curcpu();
    296  1.12     rmind 	xc_state_t *xc = &xc_low_pri;
    297   1.2        ad 	void *arg1, *arg2;
    298   1.2        ad 	xcfunc_t func;
    299   1.2        ad 
    300  1.12     rmind 	mutex_enter(&xc->xc_lock);
    301   1.2        ad 	for (;;) {
    302   1.2        ad 		while (!ci->ci_data.cpu_xcall_pending) {
    303  1.19     ozaki 			if (xc->xc_headp == xc->xc_donep) {
    304  1.12     rmind 				cv_broadcast(&xc->xc_busy);
    305  1.12     rmind 			}
    306  1.12     rmind 			cv_wait(&ci->ci_data.cpu_xcall, &xc->xc_lock);
    307   1.2        ad 			KASSERT(ci == curcpu());
    308   1.2        ad 		}
    309   1.2        ad 		ci->ci_data.cpu_xcall_pending = false;
    310  1.12     rmind 		func = xc->xc_func;
    311  1.12     rmind 		arg1 = xc->xc_arg1;
    312  1.12     rmind 		arg2 = xc->xc_arg2;
    313  1.12     rmind 		mutex_exit(&xc->xc_lock);
    314   1.2        ad 
    315  1.12     rmind 		KASSERT(func != NULL);
    316   1.2        ad 		(*func)(arg1, arg2);
    317   1.2        ad 
    318  1.12     rmind 		mutex_enter(&xc->xc_lock);
    319  1.12     rmind 		xc->xc_donep++;
    320   1.2        ad 	}
    321   1.2        ad 	/* NOTREACHED */
    322   1.2        ad }
    323  1.12     rmind 
    324  1.12     rmind /*
    325  1.12     rmind  * xc_ipi_handler:
    326  1.12     rmind  *
    327  1.12     rmind  *	Handler of cross-call IPI.
    328  1.12     rmind  */
    329  1.12     rmind void
    330  1.12     rmind xc_ipi_handler(void)
    331  1.12     rmind {
    332  1.14    martin 	/* Executes xc__highpri_intr() via software interrupt. */
    333  1.12     rmind 	softint_schedule(xc_sih);
    334  1.12     rmind }
    335  1.12     rmind 
    336  1.12     rmind /*
    337  1.14    martin  * xc__highpri_intr:
    338  1.12     rmind  *
    339  1.12     rmind  *	A software interrupt handler for high priority calls.
    340  1.12     rmind  */
    341  1.14    martin void
    342  1.14    martin xc__highpri_intr(void *dummy)
    343  1.12     rmind {
    344  1.12     rmind 	xc_state_t *xc = &xc_high_pri;
    345  1.12     rmind 	void *arg1, *arg2;
    346  1.12     rmind 	xcfunc_t func;
    347  1.12     rmind 
    348  1.14    martin 	KASSERT(!cpu_intr_p());
    349  1.12     rmind 	/*
    350  1.12     rmind 	 * Lock-less fetch of function and its arguments.
    351  1.12     rmind 	 * Safe since it cannot change at this point.
    352  1.12     rmind 	 */
    353  1.12     rmind 	KASSERT(xc->xc_donep < xc->xc_headp);
    354  1.12     rmind 	func = xc->xc_func;
    355  1.12     rmind 	arg1 = xc->xc_arg1;
    356  1.12     rmind 	arg2 = xc->xc_arg2;
    357  1.12     rmind 
    358  1.12     rmind 	KASSERT(func != NULL);
    359  1.12     rmind 	(*func)(arg1, arg2);
    360  1.12     rmind 
    361  1.12     rmind 	/*
    362  1.12     rmind 	 * Note the request as done, and if we have reached the head,
    363  1.12     rmind 	 * cross-call has been processed - notify waiters, if any.
    364  1.12     rmind 	 */
    365  1.12     rmind 	mutex_enter(&xc->xc_lock);
    366  1.12     rmind 	if (++xc->xc_donep == xc->xc_headp) {
    367  1.12     rmind 		cv_broadcast(&xc->xc_busy);
    368  1.12     rmind 	}
    369  1.12     rmind 	mutex_exit(&xc->xc_lock);
    370  1.12     rmind }
    371  1.12     rmind 
    372  1.12     rmind /*
    373  1.12     rmind  * xc_highpri:
    374  1.12     rmind  *
    375  1.12     rmind  *	Trigger a high priority call on one or more CPUs.
    376  1.12     rmind  */
    377  1.12     rmind static inline uint64_t
    378  1.12     rmind xc_highpri(xcfunc_t func, void *arg1, void *arg2, struct cpu_info *ci)
    379  1.12     rmind {
    380  1.12     rmind 	xc_state_t *xc = &xc_high_pri;
    381  1.12     rmind 	uint64_t where;
    382  1.12     rmind 
    383  1.12     rmind 	mutex_enter(&xc->xc_lock);
    384  1.12     rmind 	while (xc->xc_headp != xc->xc_donep) {
    385  1.12     rmind 		cv_wait(&xc->xc_busy, &xc->xc_lock);
    386  1.12     rmind 	}
    387  1.12     rmind 	xc->xc_func = func;
    388  1.12     rmind 	xc->xc_arg1 = arg1;
    389  1.12     rmind 	xc->xc_arg2 = arg2;
    390  1.12     rmind 	xc->xc_headp += (ci ? 1 : ncpu);
    391  1.12     rmind 	where = xc->xc_headp;
    392  1.12     rmind 	mutex_exit(&xc->xc_lock);
    393  1.12     rmind 
    394  1.12     rmind 	/*
    395  1.12     rmind 	 * Send the IPI once lock is released.
    396  1.12     rmind 	 * Note: it will handle the local CPU case.
    397  1.12     rmind 	 */
    398  1.12     rmind 
    399  1.14    martin #ifdef _RUMPKERNEL
    400  1.14    martin 	rump_xc_highpri(ci);
    401  1.14    martin #else
    402  1.12     rmind #ifdef MULTIPROCESSOR
    403  1.12     rmind 	kpreempt_disable();
    404  1.12     rmind 	if (curcpu() == ci) {
    405  1.12     rmind 		/* Unicast: local CPU. */
    406  1.12     rmind 		xc_ipi_handler();
    407  1.12     rmind 	} else if (ci) {
    408  1.12     rmind 		/* Unicast: remote CPU. */
    409  1.12     rmind 		xc_send_ipi(ci);
    410  1.12     rmind 	} else {
    411  1.12     rmind 		/* Broadcast: all, including local. */
    412  1.12     rmind 		xc_send_ipi(NULL);
    413  1.12     rmind 		xc_ipi_handler();
    414  1.12     rmind 	}
    415  1.12     rmind 	kpreempt_enable();
    416  1.12     rmind #else
    417  1.15     rmind 	KASSERT(ci == NULL || curcpu() == ci);
    418  1.12     rmind 	xc_ipi_handler();
    419  1.12     rmind #endif
    420  1.14    martin #endif
    421  1.12     rmind 
    422  1.12     rmind 	/* Indicate a high priority ticket. */
    423  1.12     rmind 	return (where | XC_PRI_BIT);
    424  1.12     rmind }
    425