Home | History | Annotate | Line # | Download | only in kern
subr_xcall.c revision 1.28
      1  1.28      maxv /*	$NetBSD: subr_xcall.c,v 1.28 2019/11/11 09:50:11 maxv Exp $	*/
      2   1.2        ad 
      3   1.2        ad /*-
      4  1.12     rmind  * Copyright (c) 2007-2010 The NetBSD Foundation, Inc.
      5   1.2        ad  * All rights reserved.
      6   1.2        ad  *
      7   1.2        ad  * This code is derived from software contributed to The NetBSD Foundation
      8  1.12     rmind  * by Andrew Doran and Mindaugas Rasiukevicius.
      9   1.2        ad  *
     10   1.2        ad  * Redistribution and use in source and binary forms, with or without
     11   1.2        ad  * modification, are permitted provided that the following conditions
     12   1.2        ad  * are met:
     13   1.2        ad  * 1. Redistributions of source code must retain the above copyright
     14   1.2        ad  *    notice, this list of conditions and the following disclaimer.
     15   1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     17   1.2        ad  *    documentation and/or other materials provided with the distribution.
     18   1.2        ad  *
     19   1.2        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.2        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.2        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.2        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.2        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.2        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.2        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.2        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.2        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.2        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.2        ad  * POSSIBILITY OF SUCH DAMAGE.
     30   1.2        ad  */
     31   1.2        ad 
     32   1.2        ad /*
     33   1.2        ad  * Cross call support
     34   1.2        ad  *
     35   1.2        ad  * Background
     36   1.2        ad  *
     37   1.2        ad  *	Sometimes it is necessary to modify hardware state that is tied
     38   1.2        ad  *	directly to individual CPUs (such as a CPU's local timer), and
     39   1.2        ad  *	these updates can not be done remotely by another CPU.  The LWP
     40   1.2        ad  *	requesting the update may be unable to guarantee that it will be
     41   1.2        ad  *	running on the CPU where the update must occur, when the update
     42   1.2        ad  *	occurs.
     43   1.2        ad  *
     44   1.2        ad  *	Additionally, it's sometimes necessary to modify per-CPU software
     45   1.2        ad  *	state from a remote CPU.  Where these update operations are so
     46   1.2        ad  *	rare or the access to the per-CPU data so frequent that the cost
     47   1.2        ad  *	of using locking or atomic operations to provide coherency is
     48   1.4        ad  *	prohibitive, another way must be found.
     49   1.2        ad  *
     50   1.2        ad  *	Cross calls help to solve these types of problem by allowing
     51   1.2        ad  *	any CPU in the system to request that an arbitrary function be
     52   1.2        ad  *	executed on any other CPU.
     53   1.2        ad  *
     54   1.2        ad  * Implementation
     55   1.2        ad  *
     56   1.2        ad  *	A slow mechanism for making 'low priority' cross calls is
     57   1.2        ad  *	provided.  The function to be executed runs on the remote CPU
     58   1.2        ad  *	within a bound kthread.  No queueing is provided, and the
     59   1.2        ad  *	implementation uses global state.  The function being called may
     60   1.2        ad  *	block briefly on locks, but in doing so must be careful to not
     61   1.2        ad  *	interfere with other cross calls in the system.  The function is
     62   1.2        ad  *	called with thread context and not from a soft interrupt, so it
     63   1.2        ad  *	can ensure that it is not interrupting other code running on the
     64   1.2        ad  *	CPU, and so has exclusive access to the CPU.  Since this facility
     65   1.2        ad  *	is heavyweight, it's expected that it will not be used often.
     66   1.2        ad  *
     67   1.4        ad  *	Cross calls must not allocate memory, as the pagedaemon uses
     68   1.4        ad  *	them (and memory allocation may need to wait on the pagedaemon).
     69   1.4        ad  *
     70  1.12     rmind  *	A low-overhead mechanism for high priority calls (XC_HIGHPRI) is
     71  1.12     rmind  *	also provided.  The function to be executed runs on a software
     72  1.17     rmind  *	interrupt context, at IPL_SOFTSERIAL level, and is expected to
     73  1.17     rmind  *	be very lightweight, e.g. avoid blocking.
     74   1.2        ad  */
     75  1.17     rmind 
     76   1.2        ad #include <sys/cdefs.h>
     77  1.28      maxv __KERNEL_RCSID(0, "$NetBSD: subr_xcall.c,v 1.28 2019/11/11 09:50:11 maxv Exp $");
     78   1.2        ad 
     79   1.2        ad #include <sys/types.h>
     80   1.2        ad #include <sys/param.h>
     81   1.2        ad #include <sys/xcall.h>
     82   1.2        ad #include <sys/mutex.h>
     83   1.2        ad #include <sys/condvar.h>
     84   1.2        ad #include <sys/evcnt.h>
     85   1.2        ad #include <sys/kthread.h>
     86   1.3        ad #include <sys/cpu.h>
     87   1.2        ad 
     88  1.14    martin #ifdef _RUMPKERNEL
     89  1.14    martin #include "rump_private.h"
     90  1.14    martin #endif
     91  1.14    martin 
     92  1.12     rmind /* Cross-call state box. */
     93  1.12     rmind typedef struct {
     94  1.12     rmind 	kmutex_t	xc_lock;
     95  1.12     rmind 	kcondvar_t	xc_busy;
     96  1.12     rmind 	xcfunc_t	xc_func;
     97  1.12     rmind 	void *		xc_arg1;
     98  1.12     rmind 	void *		xc_arg2;
     99  1.12     rmind 	uint64_t	xc_headp;
    100  1.12     rmind 	uint64_t	xc_donep;
    101  1.21     ozaki 	unsigned int	xc_ipl;
    102  1.12     rmind } xc_state_t;
    103  1.12     rmind 
    104  1.12     rmind /* Bit indicating high (1) or low (0) priority. */
    105  1.12     rmind #define	XC_PRI_BIT	(1ULL << 63)
    106  1.12     rmind 
    107  1.12     rmind /* Low priority xcall structures. */
    108  1.13     rmind static xc_state_t	xc_low_pri	__cacheline_aligned;
    109  1.12     rmind 
    110  1.12     rmind /* High priority xcall structures. */
    111  1.13     rmind static xc_state_t	xc_high_pri	__cacheline_aligned;
    112  1.21     ozaki static void *		xc_sihs[4]	__cacheline_aligned;
    113   1.2        ad 
    114  1.12     rmind /* Event counters. */
    115  1.13     rmind static struct evcnt	xc_unicast_ev	__cacheline_aligned;
    116  1.13     rmind static struct evcnt	xc_broadcast_ev	__cacheline_aligned;
    117  1.12     rmind 
    118  1.12     rmind static void		xc_init(void);
    119  1.12     rmind static void		xc_thread(void *);
    120  1.12     rmind 
    121  1.21     ozaki static inline uint64_t	xc_highpri(xcfunc_t, void *, void *, struct cpu_info *,
    122  1.21     ozaki 			    unsigned int);
    123  1.12     rmind static inline uint64_t	xc_lowpri(xcfunc_t, void *, void *, struct cpu_info *);
    124  1.12     rmind 
    125  1.21     ozaki /* The internal form of IPL */
    126  1.21     ozaki #define XC_IPL_MASK		0xff00
    127  1.21     ozaki /*
    128  1.21     ozaki  * Assign 0 to XC_IPL_SOFTSERIAL to treat IPL_SOFTSERIAL as the default value
    129  1.21     ozaki  * (just XC_HIGHPRI).
    130  1.21     ozaki  */
    131  1.21     ozaki #define XC_IPL_SOFTSERIAL	0
    132  1.25     ozaki #define XC_IPL_SOFTNET		1
    133  1.25     ozaki #define XC_IPL_SOFTBIO		2
    134  1.25     ozaki #define XC_IPL_SOFTCLOCK	3
    135  1.25     ozaki #define XC_IPL_MAX		XC_IPL_SOFTCLOCK
    136  1.21     ozaki 
    137  1.21     ozaki CTASSERT(XC_IPL_MAX <= __arraycount(xc_sihs));
    138  1.21     ozaki 
    139  1.12     rmind /*
    140  1.12     rmind  * xc_init:
    141  1.12     rmind  *
    142  1.12     rmind  *	Initialize low and high priority cross-call structures.
    143  1.12     rmind  */
    144  1.12     rmind static void
    145  1.12     rmind xc_init(void)
    146  1.12     rmind {
    147  1.12     rmind 	xc_state_t *xclo = &xc_low_pri, *xchi = &xc_high_pri;
    148  1.12     rmind 
    149  1.12     rmind 	memset(xclo, 0, sizeof(xc_state_t));
    150  1.12     rmind 	mutex_init(&xclo->xc_lock, MUTEX_DEFAULT, IPL_NONE);
    151  1.12     rmind 	cv_init(&xclo->xc_busy, "xclocv");
    152  1.12     rmind 
    153  1.12     rmind 	memset(xchi, 0, sizeof(xc_state_t));
    154  1.17     rmind 	mutex_init(&xchi->xc_lock, MUTEX_DEFAULT, IPL_SOFTSERIAL);
    155  1.12     rmind 	cv_init(&xchi->xc_busy, "xchicv");
    156  1.21     ozaki 
    157  1.24     ozaki 	/* Set up a softint for each IPL_SOFT*. */
    158  1.21     ozaki #define SETUP_SOFTINT(xipl, sipl) do {					\
    159  1.21     ozaki 		xc_sihs[(xipl)] = softint_establish( (sipl) | SOFTINT_MPSAFE,\
    160  1.21     ozaki 		    xc__highpri_intr, NULL);				\
    161  1.21     ozaki 		KASSERT(xc_sihs[(xipl)] != NULL);			\
    162  1.21     ozaki 	} while (0)
    163  1.21     ozaki 
    164  1.21     ozaki 	SETUP_SOFTINT(XC_IPL_SOFTSERIAL, SOFTINT_SERIAL);
    165  1.24     ozaki 	/*
    166  1.24     ozaki 	 * If a IPL_SOFTXXX have the same value of the previous, we don't use
    167  1.24     ozaki 	 * the IPL (see xc_encode_ipl).  So we don't need to allocate a softint
    168  1.24     ozaki 	 * for it.
    169  1.24     ozaki 	 */
    170  1.24     ozaki #if IPL_SOFTNET != IPL_SOFTSERIAL
    171  1.24     ozaki 	SETUP_SOFTINT(XC_IPL_SOFTNET, SOFTINT_NET);
    172  1.24     ozaki #endif
    173  1.24     ozaki #if IPL_SOFTBIO != IPL_SOFTNET
    174  1.21     ozaki 	SETUP_SOFTINT(XC_IPL_SOFTBIO, SOFTINT_BIO);
    175  1.24     ozaki #endif
    176  1.24     ozaki #if IPL_SOFTCLOCK != IPL_SOFTBIO
    177  1.21     ozaki 	SETUP_SOFTINT(XC_IPL_SOFTCLOCK, SOFTINT_CLOCK);
    178  1.24     ozaki #endif
    179  1.21     ozaki 
    180  1.21     ozaki #undef SETUP_SOFTINT
    181  1.12     rmind 
    182  1.12     rmind 	evcnt_attach_dynamic(&xc_unicast_ev, EVCNT_TYPE_MISC, NULL,
    183  1.12     rmind 	   "crosscall", "unicast");
    184  1.12     rmind 	evcnt_attach_dynamic(&xc_broadcast_ev, EVCNT_TYPE_MISC, NULL,
    185  1.12     rmind 	   "crosscall", "broadcast");
    186  1.12     rmind }
    187   1.2        ad 
    188   1.2        ad /*
    189  1.21     ozaki  * Encode an IPL to a form that can be embedded into flags of xc_broadcast
    190  1.21     ozaki  * or xc_unicast.
    191  1.21     ozaki  */
    192  1.21     ozaki unsigned int
    193  1.21     ozaki xc_encode_ipl(int ipl)
    194  1.21     ozaki {
    195  1.21     ozaki 
    196  1.21     ozaki 	switch (ipl) {
    197  1.21     ozaki 	case IPL_SOFTSERIAL:
    198  1.21     ozaki 		return __SHIFTIN(XC_IPL_SOFTSERIAL, XC_IPL_MASK);
    199  1.23     ozaki 	/* IPL_SOFT* can be the same value (e.g., on sparc or mips). */
    200  1.23     ozaki #if IPL_SOFTNET != IPL_SOFTSERIAL
    201  1.23     ozaki 	case IPL_SOFTNET:
    202  1.23     ozaki 		return __SHIFTIN(XC_IPL_SOFTNET, XC_IPL_MASK);
    203  1.23     ozaki #endif
    204  1.23     ozaki #if IPL_SOFTBIO != IPL_SOFTNET
    205  1.21     ozaki 	case IPL_SOFTBIO:
    206  1.21     ozaki 		return __SHIFTIN(XC_IPL_SOFTBIO, XC_IPL_MASK);
    207  1.23     ozaki #endif
    208  1.22    martin #if IPL_SOFTCLOCK != IPL_SOFTBIO
    209  1.21     ozaki 	case IPL_SOFTCLOCK:
    210  1.21     ozaki 		return __SHIFTIN(XC_IPL_SOFTCLOCK, XC_IPL_MASK);
    211  1.22    martin #endif
    212  1.21     ozaki 	}
    213  1.21     ozaki 
    214  1.21     ozaki 	panic("Invalid IPL: %d", ipl);
    215  1.21     ozaki }
    216  1.21     ozaki 
    217  1.21     ozaki /*
    218  1.21     ozaki  * Extract an XC_IPL from flags of xc_broadcast or xc_unicast.
    219  1.21     ozaki  */
    220  1.21     ozaki static inline unsigned int
    221  1.21     ozaki xc_extract_ipl(unsigned int flags)
    222  1.21     ozaki {
    223  1.21     ozaki 
    224  1.21     ozaki 	return __SHIFTOUT(flags, XC_IPL_MASK);
    225  1.21     ozaki }
    226  1.21     ozaki 
    227  1.21     ozaki /*
    228   1.2        ad  * xc_init_cpu:
    229   1.2        ad  *
    230   1.2        ad  *	Initialize the cross-call subsystem.  Called once for each CPU
    231   1.2        ad  *	in the system as they are attached.
    232   1.2        ad  */
    233   1.2        ad void
    234   1.2        ad xc_init_cpu(struct cpu_info *ci)
    235   1.2        ad {
    236  1.11     pooka 	static bool again = false;
    237  1.16    martin 	int error __diagused;
    238   1.2        ad 
    239   1.2        ad 	if (!again) {
    240   1.2        ad 		/* Autoconfiguration will prevent re-entry. */
    241  1.12     rmind 		xc_init();
    242   1.2        ad 		again = true;
    243   1.2        ad 	}
    244   1.2        ad 	cv_init(&ci->ci_data.cpu_xcall, "xcall");
    245   1.2        ad 	error = kthread_create(PRI_XCALL, KTHREAD_MPSAFE, ci, xc_thread,
    246   1.6    martin 	    NULL, NULL, "xcall/%u", ci->ci_index);
    247  1.12     rmind 	KASSERT(error == 0);
    248   1.2        ad }
    249   1.2        ad 
    250   1.2        ad /*
    251   1.7        ad  * xc_broadcast:
    252   1.2        ad  *
    253   1.2        ad  *	Trigger a call on all CPUs in the system.
    254   1.2        ad  */
    255   1.2        ad uint64_t
    256  1.21     ozaki xc_broadcast(unsigned int flags, xcfunc_t func, void *arg1, void *arg2)
    257   1.2        ad {
    258   1.2        ad 
    259  1.12     rmind 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
    260  1.26     ozaki 	ASSERT_SLEEPABLE();
    261  1.12     rmind 
    262   1.2        ad 	if ((flags & XC_HIGHPRI) != 0) {
    263  1.21     ozaki 		int ipl = xc_extract_ipl(flags);
    264  1.21     ozaki 		return xc_highpri(func, arg1, arg2, NULL, ipl);
    265   1.2        ad 	} else {
    266  1.12     rmind 		return xc_lowpri(func, arg1, arg2, NULL);
    267   1.2        ad 	}
    268   1.2        ad }
    269   1.2        ad 
    270  1.27       uwe 
    271  1.27       uwe static void
    272  1.27       uwe xc_nop(void *arg1, void *arg2)
    273  1.27       uwe {
    274  1.27       uwe 
    275  1.27       uwe     return;
    276  1.27       uwe }
    277  1.27       uwe 
    278  1.27       uwe 
    279  1.27       uwe /*
    280  1.27       uwe  * xc_barrier:
    281  1.27       uwe  *
    282  1.27       uwe  *	Broadcast a nop to all CPUs in the system.
    283  1.27       uwe  */
    284  1.27       uwe void
    285  1.27       uwe xc_barrier(unsigned int flags)
    286  1.27       uwe {
    287  1.27       uwe 	uint64_t where;
    288  1.27       uwe 
    289  1.27       uwe 	where = xc_broadcast(flags, xc_nop, NULL, NULL);
    290  1.27       uwe 	xc_wait(where);
    291  1.27       uwe }
    292  1.27       uwe 
    293  1.27       uwe 
    294   1.2        ad /*
    295   1.2        ad  * xc_unicast:
    296   1.2        ad  *
    297   1.2        ad  *	Trigger a call on one CPU.
    298   1.2        ad  */
    299   1.2        ad uint64_t
    300  1.21     ozaki xc_unicast(unsigned int flags, xcfunc_t func, void *arg1, void *arg2,
    301   1.2        ad 	   struct cpu_info *ci)
    302   1.2        ad {
    303   1.2        ad 
    304  1.12     rmind 	KASSERT(ci != NULL);
    305  1.12     rmind 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
    306  1.26     ozaki 	ASSERT_SLEEPABLE();
    307  1.12     rmind 
    308   1.2        ad 	if ((flags & XC_HIGHPRI) != 0) {
    309  1.21     ozaki 		int ipl = xc_extract_ipl(flags);
    310  1.21     ozaki 		return xc_highpri(func, arg1, arg2, ci, ipl);
    311  1.12     rmind 	} else {
    312  1.12     rmind 		return xc_lowpri(func, arg1, arg2, ci);
    313  1.12     rmind 	}
    314  1.12     rmind }
    315  1.12     rmind 
    316  1.12     rmind /*
    317  1.12     rmind  * xc_wait:
    318  1.12     rmind  *
    319  1.12     rmind  *	Wait for a cross call to complete.
    320  1.12     rmind  */
    321  1.12     rmind void
    322  1.12     rmind xc_wait(uint64_t where)
    323  1.12     rmind {
    324  1.12     rmind 	xc_state_t *xc;
    325  1.12     rmind 
    326  1.12     rmind 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
    327  1.26     ozaki 	ASSERT_SLEEPABLE();
    328  1.12     rmind 
    329  1.12     rmind 	/* Determine whether it is high or low priority cross-call. */
    330  1.12     rmind 	if ((where & XC_PRI_BIT) != 0) {
    331  1.12     rmind 		xc = &xc_high_pri;
    332  1.12     rmind 		where &= ~XC_PRI_BIT;
    333   1.2        ad 	} else {
    334  1.12     rmind 		xc = &xc_low_pri;
    335  1.12     rmind 	}
    336  1.12     rmind 
    337  1.28      maxv 	/* Block until awoken. */
    338  1.12     rmind 	mutex_enter(&xc->xc_lock);
    339  1.12     rmind 	while (xc->xc_donep < where) {
    340  1.12     rmind 		cv_wait(&xc->xc_busy, &xc->xc_lock);
    341   1.2        ad 	}
    342  1.12     rmind 	mutex_exit(&xc->xc_lock);
    343   1.2        ad }
    344   1.2        ad 
    345   1.2        ad /*
    346   1.2        ad  * xc_lowpri:
    347   1.2        ad  *
    348   1.2        ad  *	Trigger a low priority call on one or more CPUs.
    349   1.2        ad  */
    350  1.12     rmind static inline uint64_t
    351  1.12     rmind xc_lowpri(xcfunc_t func, void *arg1, void *arg2, struct cpu_info *ci)
    352   1.2        ad {
    353  1.12     rmind 	xc_state_t *xc = &xc_low_pri;
    354   1.2        ad 	CPU_INFO_ITERATOR cii;
    355  1.10  uebayasi 	uint64_t where;
    356   1.2        ad 
    357  1.12     rmind 	mutex_enter(&xc->xc_lock);
    358  1.19     ozaki 	while (xc->xc_headp != xc->xc_donep) {
    359  1.12     rmind 		cv_wait(&xc->xc_busy, &xc->xc_lock);
    360  1.12     rmind 	}
    361  1.12     rmind 	xc->xc_arg1 = arg1;
    362  1.12     rmind 	xc->xc_arg2 = arg2;
    363  1.12     rmind 	xc->xc_func = func;
    364   1.2        ad 	if (ci == NULL) {
    365   1.2        ad 		xc_broadcast_ev.ev_count++;
    366   1.2        ad 		for (CPU_INFO_FOREACH(cii, ci)) {
    367   1.8        ad 			if ((ci->ci_schedstate.spc_flags & SPCF_RUNNING) == 0)
    368   1.8        ad 				continue;
    369  1.12     rmind 			xc->xc_headp += 1;
    370   1.2        ad 			ci->ci_data.cpu_xcall_pending = true;
    371   1.2        ad 			cv_signal(&ci->ci_data.cpu_xcall);
    372   1.2        ad 		}
    373   1.2        ad 	} else {
    374   1.2        ad 		xc_unicast_ev.ev_count++;
    375  1.12     rmind 		xc->xc_headp += 1;
    376   1.2        ad 		ci->ci_data.cpu_xcall_pending = true;
    377   1.2        ad 		cv_signal(&ci->ci_data.cpu_xcall);
    378   1.2        ad 	}
    379  1.19     ozaki 	KASSERT(xc->xc_donep < xc->xc_headp);
    380  1.12     rmind 	where = xc->xc_headp;
    381  1.12     rmind 	mutex_exit(&xc->xc_lock);
    382   1.2        ad 
    383  1.12     rmind 	/* Return a low priority ticket. */
    384  1.12     rmind 	KASSERT((where & XC_PRI_BIT) == 0);
    385   1.2        ad 	return where;
    386   1.2        ad }
    387   1.2        ad 
    388   1.2        ad /*
    389   1.2        ad  * xc_thread:
    390   1.2        ad  *
    391   1.2        ad  *	One thread per-CPU to dispatch low priority calls.
    392   1.2        ad  */
    393   1.2        ad static void
    394   1.2        ad xc_thread(void *cookie)
    395   1.2        ad {
    396  1.12     rmind 	struct cpu_info *ci = curcpu();
    397  1.12     rmind 	xc_state_t *xc = &xc_low_pri;
    398   1.2        ad 	void *arg1, *arg2;
    399   1.2        ad 	xcfunc_t func;
    400   1.2        ad 
    401  1.12     rmind 	mutex_enter(&xc->xc_lock);
    402   1.2        ad 	for (;;) {
    403   1.2        ad 		while (!ci->ci_data.cpu_xcall_pending) {
    404  1.19     ozaki 			if (xc->xc_headp == xc->xc_donep) {
    405  1.12     rmind 				cv_broadcast(&xc->xc_busy);
    406  1.12     rmind 			}
    407  1.12     rmind 			cv_wait(&ci->ci_data.cpu_xcall, &xc->xc_lock);
    408   1.2        ad 			KASSERT(ci == curcpu());
    409   1.2        ad 		}
    410   1.2        ad 		ci->ci_data.cpu_xcall_pending = false;
    411  1.12     rmind 		func = xc->xc_func;
    412  1.12     rmind 		arg1 = xc->xc_arg1;
    413  1.12     rmind 		arg2 = xc->xc_arg2;
    414  1.12     rmind 		mutex_exit(&xc->xc_lock);
    415   1.2        ad 
    416  1.12     rmind 		KASSERT(func != NULL);
    417   1.2        ad 		(*func)(arg1, arg2);
    418   1.2        ad 
    419  1.12     rmind 		mutex_enter(&xc->xc_lock);
    420  1.12     rmind 		xc->xc_donep++;
    421   1.2        ad 	}
    422   1.2        ad 	/* NOTREACHED */
    423   1.2        ad }
    424  1.12     rmind 
    425  1.12     rmind /*
    426  1.12     rmind  * xc_ipi_handler:
    427  1.12     rmind  *
    428  1.12     rmind  *	Handler of cross-call IPI.
    429  1.12     rmind  */
    430  1.12     rmind void
    431  1.12     rmind xc_ipi_handler(void)
    432  1.12     rmind {
    433  1.21     ozaki 	xc_state_t *xc = & xc_high_pri;
    434  1.21     ozaki 
    435  1.21     ozaki 	KASSERT(xc->xc_ipl < __arraycount(xc_sihs));
    436  1.24     ozaki 	KASSERT(xc_sihs[xc->xc_ipl] != NULL);
    437  1.21     ozaki 
    438  1.14    martin 	/* Executes xc__highpri_intr() via software interrupt. */
    439  1.21     ozaki 	softint_schedule(xc_sihs[xc->xc_ipl]);
    440  1.12     rmind }
    441  1.12     rmind 
    442  1.12     rmind /*
    443  1.14    martin  * xc__highpri_intr:
    444  1.12     rmind  *
    445  1.12     rmind  *	A software interrupt handler for high priority calls.
    446  1.12     rmind  */
    447  1.14    martin void
    448  1.14    martin xc__highpri_intr(void *dummy)
    449  1.12     rmind {
    450  1.12     rmind 	xc_state_t *xc = &xc_high_pri;
    451  1.12     rmind 	void *arg1, *arg2;
    452  1.12     rmind 	xcfunc_t func;
    453  1.12     rmind 
    454  1.20    martin 	KASSERTMSG(!cpu_intr_p(), "high priority xcall for function %p",
    455  1.20    martin 	    xc->xc_func);
    456  1.12     rmind 	/*
    457  1.12     rmind 	 * Lock-less fetch of function and its arguments.
    458  1.12     rmind 	 * Safe since it cannot change at this point.
    459  1.12     rmind 	 */
    460  1.12     rmind 	func = xc->xc_func;
    461  1.12     rmind 	arg1 = xc->xc_arg1;
    462  1.12     rmind 	arg2 = xc->xc_arg2;
    463  1.12     rmind 
    464  1.12     rmind 	KASSERT(func != NULL);
    465  1.12     rmind 	(*func)(arg1, arg2);
    466  1.12     rmind 
    467  1.12     rmind 	/*
    468  1.12     rmind 	 * Note the request as done, and if we have reached the head,
    469  1.12     rmind 	 * cross-call has been processed - notify waiters, if any.
    470  1.12     rmind 	 */
    471  1.12     rmind 	mutex_enter(&xc->xc_lock);
    472  1.28      maxv 	KASSERT(xc->xc_donep < xc->xc_headp);
    473  1.12     rmind 	if (++xc->xc_donep == xc->xc_headp) {
    474  1.12     rmind 		cv_broadcast(&xc->xc_busy);
    475  1.12     rmind 	}
    476  1.12     rmind 	mutex_exit(&xc->xc_lock);
    477  1.12     rmind }
    478  1.12     rmind 
    479  1.12     rmind /*
    480  1.12     rmind  * xc_highpri:
    481  1.12     rmind  *
    482  1.12     rmind  *	Trigger a high priority call on one or more CPUs.
    483  1.12     rmind  */
    484  1.12     rmind static inline uint64_t
    485  1.21     ozaki xc_highpri(xcfunc_t func, void *arg1, void *arg2, struct cpu_info *ci,
    486  1.21     ozaki     unsigned int ipl)
    487  1.12     rmind {
    488  1.12     rmind 	xc_state_t *xc = &xc_high_pri;
    489  1.12     rmind 	uint64_t where;
    490  1.12     rmind 
    491  1.12     rmind 	mutex_enter(&xc->xc_lock);
    492  1.12     rmind 	while (xc->xc_headp != xc->xc_donep) {
    493  1.12     rmind 		cv_wait(&xc->xc_busy, &xc->xc_lock);
    494  1.12     rmind 	}
    495  1.12     rmind 	xc->xc_func = func;
    496  1.12     rmind 	xc->xc_arg1 = arg1;
    497  1.12     rmind 	xc->xc_arg2 = arg2;
    498  1.12     rmind 	xc->xc_headp += (ci ? 1 : ncpu);
    499  1.21     ozaki 	xc->xc_ipl = ipl;
    500  1.12     rmind 	where = xc->xc_headp;
    501  1.12     rmind 	mutex_exit(&xc->xc_lock);
    502  1.12     rmind 
    503  1.12     rmind 	/*
    504  1.12     rmind 	 * Send the IPI once lock is released.
    505  1.12     rmind 	 * Note: it will handle the local CPU case.
    506  1.12     rmind 	 */
    507  1.12     rmind 
    508  1.14    martin #ifdef _RUMPKERNEL
    509  1.14    martin 	rump_xc_highpri(ci);
    510  1.14    martin #else
    511  1.12     rmind #ifdef MULTIPROCESSOR
    512  1.12     rmind 	kpreempt_disable();
    513  1.12     rmind 	if (curcpu() == ci) {
    514  1.12     rmind 		/* Unicast: local CPU. */
    515  1.12     rmind 		xc_ipi_handler();
    516  1.12     rmind 	} else if (ci) {
    517  1.12     rmind 		/* Unicast: remote CPU. */
    518  1.12     rmind 		xc_send_ipi(ci);
    519  1.12     rmind 	} else {
    520  1.12     rmind 		/* Broadcast: all, including local. */
    521  1.12     rmind 		xc_send_ipi(NULL);
    522  1.12     rmind 		xc_ipi_handler();
    523  1.12     rmind 	}
    524  1.12     rmind 	kpreempt_enable();
    525  1.12     rmind #else
    526  1.15     rmind 	KASSERT(ci == NULL || curcpu() == ci);
    527  1.12     rmind 	xc_ipi_handler();
    528  1.12     rmind #endif
    529  1.14    martin #endif
    530  1.12     rmind 
    531  1.12     rmind 	/* Indicate a high priority ticket. */
    532  1.12     rmind 	return (where | XC_PRI_BIT);
    533  1.12     rmind }
    534