subr_xcall.c revision 1.28 1 1.28 maxv /* $NetBSD: subr_xcall.c,v 1.28 2019/11/11 09:50:11 maxv Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.12 rmind * Copyright (c) 2007-2010 The NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.12 rmind * by Andrew Doran and Mindaugas Rasiukevicius.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad *
19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.2 ad */
31 1.2 ad
32 1.2 ad /*
33 1.2 ad * Cross call support
34 1.2 ad *
35 1.2 ad * Background
36 1.2 ad *
37 1.2 ad * Sometimes it is necessary to modify hardware state that is tied
38 1.2 ad * directly to individual CPUs (such as a CPU's local timer), and
39 1.2 ad * these updates can not be done remotely by another CPU. The LWP
40 1.2 ad * requesting the update may be unable to guarantee that it will be
41 1.2 ad * running on the CPU where the update must occur, when the update
42 1.2 ad * occurs.
43 1.2 ad *
44 1.2 ad * Additionally, it's sometimes necessary to modify per-CPU software
45 1.2 ad * state from a remote CPU. Where these update operations are so
46 1.2 ad * rare or the access to the per-CPU data so frequent that the cost
47 1.2 ad * of using locking or atomic operations to provide coherency is
48 1.4 ad * prohibitive, another way must be found.
49 1.2 ad *
50 1.2 ad * Cross calls help to solve these types of problem by allowing
51 1.2 ad * any CPU in the system to request that an arbitrary function be
52 1.2 ad * executed on any other CPU.
53 1.2 ad *
54 1.2 ad * Implementation
55 1.2 ad *
56 1.2 ad * A slow mechanism for making 'low priority' cross calls is
57 1.2 ad * provided. The function to be executed runs on the remote CPU
58 1.2 ad * within a bound kthread. No queueing is provided, and the
59 1.2 ad * implementation uses global state. The function being called may
60 1.2 ad * block briefly on locks, but in doing so must be careful to not
61 1.2 ad * interfere with other cross calls in the system. The function is
62 1.2 ad * called with thread context and not from a soft interrupt, so it
63 1.2 ad * can ensure that it is not interrupting other code running on the
64 1.2 ad * CPU, and so has exclusive access to the CPU. Since this facility
65 1.2 ad * is heavyweight, it's expected that it will not be used often.
66 1.2 ad *
67 1.4 ad * Cross calls must not allocate memory, as the pagedaemon uses
68 1.4 ad * them (and memory allocation may need to wait on the pagedaemon).
69 1.4 ad *
70 1.12 rmind * A low-overhead mechanism for high priority calls (XC_HIGHPRI) is
71 1.12 rmind * also provided. The function to be executed runs on a software
72 1.17 rmind * interrupt context, at IPL_SOFTSERIAL level, and is expected to
73 1.17 rmind * be very lightweight, e.g. avoid blocking.
74 1.2 ad */
75 1.17 rmind
76 1.2 ad #include <sys/cdefs.h>
77 1.28 maxv __KERNEL_RCSID(0, "$NetBSD: subr_xcall.c,v 1.28 2019/11/11 09:50:11 maxv Exp $");
78 1.2 ad
79 1.2 ad #include <sys/types.h>
80 1.2 ad #include <sys/param.h>
81 1.2 ad #include <sys/xcall.h>
82 1.2 ad #include <sys/mutex.h>
83 1.2 ad #include <sys/condvar.h>
84 1.2 ad #include <sys/evcnt.h>
85 1.2 ad #include <sys/kthread.h>
86 1.3 ad #include <sys/cpu.h>
87 1.2 ad
88 1.14 martin #ifdef _RUMPKERNEL
89 1.14 martin #include "rump_private.h"
90 1.14 martin #endif
91 1.14 martin
92 1.12 rmind /* Cross-call state box. */
93 1.12 rmind typedef struct {
94 1.12 rmind kmutex_t xc_lock;
95 1.12 rmind kcondvar_t xc_busy;
96 1.12 rmind xcfunc_t xc_func;
97 1.12 rmind void * xc_arg1;
98 1.12 rmind void * xc_arg2;
99 1.12 rmind uint64_t xc_headp;
100 1.12 rmind uint64_t xc_donep;
101 1.21 ozaki unsigned int xc_ipl;
102 1.12 rmind } xc_state_t;
103 1.12 rmind
104 1.12 rmind /* Bit indicating high (1) or low (0) priority. */
105 1.12 rmind #define XC_PRI_BIT (1ULL << 63)
106 1.12 rmind
107 1.12 rmind /* Low priority xcall structures. */
108 1.13 rmind static xc_state_t xc_low_pri __cacheline_aligned;
109 1.12 rmind
110 1.12 rmind /* High priority xcall structures. */
111 1.13 rmind static xc_state_t xc_high_pri __cacheline_aligned;
112 1.21 ozaki static void * xc_sihs[4] __cacheline_aligned;
113 1.2 ad
114 1.12 rmind /* Event counters. */
115 1.13 rmind static struct evcnt xc_unicast_ev __cacheline_aligned;
116 1.13 rmind static struct evcnt xc_broadcast_ev __cacheline_aligned;
117 1.12 rmind
118 1.12 rmind static void xc_init(void);
119 1.12 rmind static void xc_thread(void *);
120 1.12 rmind
121 1.21 ozaki static inline uint64_t xc_highpri(xcfunc_t, void *, void *, struct cpu_info *,
122 1.21 ozaki unsigned int);
123 1.12 rmind static inline uint64_t xc_lowpri(xcfunc_t, void *, void *, struct cpu_info *);
124 1.12 rmind
125 1.21 ozaki /* The internal form of IPL */
126 1.21 ozaki #define XC_IPL_MASK 0xff00
127 1.21 ozaki /*
128 1.21 ozaki * Assign 0 to XC_IPL_SOFTSERIAL to treat IPL_SOFTSERIAL as the default value
129 1.21 ozaki * (just XC_HIGHPRI).
130 1.21 ozaki */
131 1.21 ozaki #define XC_IPL_SOFTSERIAL 0
132 1.25 ozaki #define XC_IPL_SOFTNET 1
133 1.25 ozaki #define XC_IPL_SOFTBIO 2
134 1.25 ozaki #define XC_IPL_SOFTCLOCK 3
135 1.25 ozaki #define XC_IPL_MAX XC_IPL_SOFTCLOCK
136 1.21 ozaki
137 1.21 ozaki CTASSERT(XC_IPL_MAX <= __arraycount(xc_sihs));
138 1.21 ozaki
139 1.12 rmind /*
140 1.12 rmind * xc_init:
141 1.12 rmind *
142 1.12 rmind * Initialize low and high priority cross-call structures.
143 1.12 rmind */
144 1.12 rmind static void
145 1.12 rmind xc_init(void)
146 1.12 rmind {
147 1.12 rmind xc_state_t *xclo = &xc_low_pri, *xchi = &xc_high_pri;
148 1.12 rmind
149 1.12 rmind memset(xclo, 0, sizeof(xc_state_t));
150 1.12 rmind mutex_init(&xclo->xc_lock, MUTEX_DEFAULT, IPL_NONE);
151 1.12 rmind cv_init(&xclo->xc_busy, "xclocv");
152 1.12 rmind
153 1.12 rmind memset(xchi, 0, sizeof(xc_state_t));
154 1.17 rmind mutex_init(&xchi->xc_lock, MUTEX_DEFAULT, IPL_SOFTSERIAL);
155 1.12 rmind cv_init(&xchi->xc_busy, "xchicv");
156 1.21 ozaki
157 1.24 ozaki /* Set up a softint for each IPL_SOFT*. */
158 1.21 ozaki #define SETUP_SOFTINT(xipl, sipl) do { \
159 1.21 ozaki xc_sihs[(xipl)] = softint_establish( (sipl) | SOFTINT_MPSAFE,\
160 1.21 ozaki xc__highpri_intr, NULL); \
161 1.21 ozaki KASSERT(xc_sihs[(xipl)] != NULL); \
162 1.21 ozaki } while (0)
163 1.21 ozaki
164 1.21 ozaki SETUP_SOFTINT(XC_IPL_SOFTSERIAL, SOFTINT_SERIAL);
165 1.24 ozaki /*
166 1.24 ozaki * If a IPL_SOFTXXX have the same value of the previous, we don't use
167 1.24 ozaki * the IPL (see xc_encode_ipl). So we don't need to allocate a softint
168 1.24 ozaki * for it.
169 1.24 ozaki */
170 1.24 ozaki #if IPL_SOFTNET != IPL_SOFTSERIAL
171 1.24 ozaki SETUP_SOFTINT(XC_IPL_SOFTNET, SOFTINT_NET);
172 1.24 ozaki #endif
173 1.24 ozaki #if IPL_SOFTBIO != IPL_SOFTNET
174 1.21 ozaki SETUP_SOFTINT(XC_IPL_SOFTBIO, SOFTINT_BIO);
175 1.24 ozaki #endif
176 1.24 ozaki #if IPL_SOFTCLOCK != IPL_SOFTBIO
177 1.21 ozaki SETUP_SOFTINT(XC_IPL_SOFTCLOCK, SOFTINT_CLOCK);
178 1.24 ozaki #endif
179 1.21 ozaki
180 1.21 ozaki #undef SETUP_SOFTINT
181 1.12 rmind
182 1.12 rmind evcnt_attach_dynamic(&xc_unicast_ev, EVCNT_TYPE_MISC, NULL,
183 1.12 rmind "crosscall", "unicast");
184 1.12 rmind evcnt_attach_dynamic(&xc_broadcast_ev, EVCNT_TYPE_MISC, NULL,
185 1.12 rmind "crosscall", "broadcast");
186 1.12 rmind }
187 1.2 ad
188 1.2 ad /*
189 1.21 ozaki * Encode an IPL to a form that can be embedded into flags of xc_broadcast
190 1.21 ozaki * or xc_unicast.
191 1.21 ozaki */
192 1.21 ozaki unsigned int
193 1.21 ozaki xc_encode_ipl(int ipl)
194 1.21 ozaki {
195 1.21 ozaki
196 1.21 ozaki switch (ipl) {
197 1.21 ozaki case IPL_SOFTSERIAL:
198 1.21 ozaki return __SHIFTIN(XC_IPL_SOFTSERIAL, XC_IPL_MASK);
199 1.23 ozaki /* IPL_SOFT* can be the same value (e.g., on sparc or mips). */
200 1.23 ozaki #if IPL_SOFTNET != IPL_SOFTSERIAL
201 1.23 ozaki case IPL_SOFTNET:
202 1.23 ozaki return __SHIFTIN(XC_IPL_SOFTNET, XC_IPL_MASK);
203 1.23 ozaki #endif
204 1.23 ozaki #if IPL_SOFTBIO != IPL_SOFTNET
205 1.21 ozaki case IPL_SOFTBIO:
206 1.21 ozaki return __SHIFTIN(XC_IPL_SOFTBIO, XC_IPL_MASK);
207 1.23 ozaki #endif
208 1.22 martin #if IPL_SOFTCLOCK != IPL_SOFTBIO
209 1.21 ozaki case IPL_SOFTCLOCK:
210 1.21 ozaki return __SHIFTIN(XC_IPL_SOFTCLOCK, XC_IPL_MASK);
211 1.22 martin #endif
212 1.21 ozaki }
213 1.21 ozaki
214 1.21 ozaki panic("Invalid IPL: %d", ipl);
215 1.21 ozaki }
216 1.21 ozaki
217 1.21 ozaki /*
218 1.21 ozaki * Extract an XC_IPL from flags of xc_broadcast or xc_unicast.
219 1.21 ozaki */
220 1.21 ozaki static inline unsigned int
221 1.21 ozaki xc_extract_ipl(unsigned int flags)
222 1.21 ozaki {
223 1.21 ozaki
224 1.21 ozaki return __SHIFTOUT(flags, XC_IPL_MASK);
225 1.21 ozaki }
226 1.21 ozaki
227 1.21 ozaki /*
228 1.2 ad * xc_init_cpu:
229 1.2 ad *
230 1.2 ad * Initialize the cross-call subsystem. Called once for each CPU
231 1.2 ad * in the system as they are attached.
232 1.2 ad */
233 1.2 ad void
234 1.2 ad xc_init_cpu(struct cpu_info *ci)
235 1.2 ad {
236 1.11 pooka static bool again = false;
237 1.16 martin int error __diagused;
238 1.2 ad
239 1.2 ad if (!again) {
240 1.2 ad /* Autoconfiguration will prevent re-entry. */
241 1.12 rmind xc_init();
242 1.2 ad again = true;
243 1.2 ad }
244 1.2 ad cv_init(&ci->ci_data.cpu_xcall, "xcall");
245 1.2 ad error = kthread_create(PRI_XCALL, KTHREAD_MPSAFE, ci, xc_thread,
246 1.6 martin NULL, NULL, "xcall/%u", ci->ci_index);
247 1.12 rmind KASSERT(error == 0);
248 1.2 ad }
249 1.2 ad
250 1.2 ad /*
251 1.7 ad * xc_broadcast:
252 1.2 ad *
253 1.2 ad * Trigger a call on all CPUs in the system.
254 1.2 ad */
255 1.2 ad uint64_t
256 1.21 ozaki xc_broadcast(unsigned int flags, xcfunc_t func, void *arg1, void *arg2)
257 1.2 ad {
258 1.2 ad
259 1.12 rmind KASSERT(!cpu_intr_p() && !cpu_softintr_p());
260 1.26 ozaki ASSERT_SLEEPABLE();
261 1.12 rmind
262 1.2 ad if ((flags & XC_HIGHPRI) != 0) {
263 1.21 ozaki int ipl = xc_extract_ipl(flags);
264 1.21 ozaki return xc_highpri(func, arg1, arg2, NULL, ipl);
265 1.2 ad } else {
266 1.12 rmind return xc_lowpri(func, arg1, arg2, NULL);
267 1.2 ad }
268 1.2 ad }
269 1.2 ad
270 1.27 uwe
271 1.27 uwe static void
272 1.27 uwe xc_nop(void *arg1, void *arg2)
273 1.27 uwe {
274 1.27 uwe
275 1.27 uwe return;
276 1.27 uwe }
277 1.27 uwe
278 1.27 uwe
279 1.27 uwe /*
280 1.27 uwe * xc_barrier:
281 1.27 uwe *
282 1.27 uwe * Broadcast a nop to all CPUs in the system.
283 1.27 uwe */
284 1.27 uwe void
285 1.27 uwe xc_barrier(unsigned int flags)
286 1.27 uwe {
287 1.27 uwe uint64_t where;
288 1.27 uwe
289 1.27 uwe where = xc_broadcast(flags, xc_nop, NULL, NULL);
290 1.27 uwe xc_wait(where);
291 1.27 uwe }
292 1.27 uwe
293 1.27 uwe
294 1.2 ad /*
295 1.2 ad * xc_unicast:
296 1.2 ad *
297 1.2 ad * Trigger a call on one CPU.
298 1.2 ad */
299 1.2 ad uint64_t
300 1.21 ozaki xc_unicast(unsigned int flags, xcfunc_t func, void *arg1, void *arg2,
301 1.2 ad struct cpu_info *ci)
302 1.2 ad {
303 1.2 ad
304 1.12 rmind KASSERT(ci != NULL);
305 1.12 rmind KASSERT(!cpu_intr_p() && !cpu_softintr_p());
306 1.26 ozaki ASSERT_SLEEPABLE();
307 1.12 rmind
308 1.2 ad if ((flags & XC_HIGHPRI) != 0) {
309 1.21 ozaki int ipl = xc_extract_ipl(flags);
310 1.21 ozaki return xc_highpri(func, arg1, arg2, ci, ipl);
311 1.12 rmind } else {
312 1.12 rmind return xc_lowpri(func, arg1, arg2, ci);
313 1.12 rmind }
314 1.12 rmind }
315 1.12 rmind
316 1.12 rmind /*
317 1.12 rmind * xc_wait:
318 1.12 rmind *
319 1.12 rmind * Wait for a cross call to complete.
320 1.12 rmind */
321 1.12 rmind void
322 1.12 rmind xc_wait(uint64_t where)
323 1.12 rmind {
324 1.12 rmind xc_state_t *xc;
325 1.12 rmind
326 1.12 rmind KASSERT(!cpu_intr_p() && !cpu_softintr_p());
327 1.26 ozaki ASSERT_SLEEPABLE();
328 1.12 rmind
329 1.12 rmind /* Determine whether it is high or low priority cross-call. */
330 1.12 rmind if ((where & XC_PRI_BIT) != 0) {
331 1.12 rmind xc = &xc_high_pri;
332 1.12 rmind where &= ~XC_PRI_BIT;
333 1.2 ad } else {
334 1.12 rmind xc = &xc_low_pri;
335 1.12 rmind }
336 1.12 rmind
337 1.28 maxv /* Block until awoken. */
338 1.12 rmind mutex_enter(&xc->xc_lock);
339 1.12 rmind while (xc->xc_donep < where) {
340 1.12 rmind cv_wait(&xc->xc_busy, &xc->xc_lock);
341 1.2 ad }
342 1.12 rmind mutex_exit(&xc->xc_lock);
343 1.2 ad }
344 1.2 ad
345 1.2 ad /*
346 1.2 ad * xc_lowpri:
347 1.2 ad *
348 1.2 ad * Trigger a low priority call on one or more CPUs.
349 1.2 ad */
350 1.12 rmind static inline uint64_t
351 1.12 rmind xc_lowpri(xcfunc_t func, void *arg1, void *arg2, struct cpu_info *ci)
352 1.2 ad {
353 1.12 rmind xc_state_t *xc = &xc_low_pri;
354 1.2 ad CPU_INFO_ITERATOR cii;
355 1.10 uebayasi uint64_t where;
356 1.2 ad
357 1.12 rmind mutex_enter(&xc->xc_lock);
358 1.19 ozaki while (xc->xc_headp != xc->xc_donep) {
359 1.12 rmind cv_wait(&xc->xc_busy, &xc->xc_lock);
360 1.12 rmind }
361 1.12 rmind xc->xc_arg1 = arg1;
362 1.12 rmind xc->xc_arg2 = arg2;
363 1.12 rmind xc->xc_func = func;
364 1.2 ad if (ci == NULL) {
365 1.2 ad xc_broadcast_ev.ev_count++;
366 1.2 ad for (CPU_INFO_FOREACH(cii, ci)) {
367 1.8 ad if ((ci->ci_schedstate.spc_flags & SPCF_RUNNING) == 0)
368 1.8 ad continue;
369 1.12 rmind xc->xc_headp += 1;
370 1.2 ad ci->ci_data.cpu_xcall_pending = true;
371 1.2 ad cv_signal(&ci->ci_data.cpu_xcall);
372 1.2 ad }
373 1.2 ad } else {
374 1.2 ad xc_unicast_ev.ev_count++;
375 1.12 rmind xc->xc_headp += 1;
376 1.2 ad ci->ci_data.cpu_xcall_pending = true;
377 1.2 ad cv_signal(&ci->ci_data.cpu_xcall);
378 1.2 ad }
379 1.19 ozaki KASSERT(xc->xc_donep < xc->xc_headp);
380 1.12 rmind where = xc->xc_headp;
381 1.12 rmind mutex_exit(&xc->xc_lock);
382 1.2 ad
383 1.12 rmind /* Return a low priority ticket. */
384 1.12 rmind KASSERT((where & XC_PRI_BIT) == 0);
385 1.2 ad return where;
386 1.2 ad }
387 1.2 ad
388 1.2 ad /*
389 1.2 ad * xc_thread:
390 1.2 ad *
391 1.2 ad * One thread per-CPU to dispatch low priority calls.
392 1.2 ad */
393 1.2 ad static void
394 1.2 ad xc_thread(void *cookie)
395 1.2 ad {
396 1.12 rmind struct cpu_info *ci = curcpu();
397 1.12 rmind xc_state_t *xc = &xc_low_pri;
398 1.2 ad void *arg1, *arg2;
399 1.2 ad xcfunc_t func;
400 1.2 ad
401 1.12 rmind mutex_enter(&xc->xc_lock);
402 1.2 ad for (;;) {
403 1.2 ad while (!ci->ci_data.cpu_xcall_pending) {
404 1.19 ozaki if (xc->xc_headp == xc->xc_donep) {
405 1.12 rmind cv_broadcast(&xc->xc_busy);
406 1.12 rmind }
407 1.12 rmind cv_wait(&ci->ci_data.cpu_xcall, &xc->xc_lock);
408 1.2 ad KASSERT(ci == curcpu());
409 1.2 ad }
410 1.2 ad ci->ci_data.cpu_xcall_pending = false;
411 1.12 rmind func = xc->xc_func;
412 1.12 rmind arg1 = xc->xc_arg1;
413 1.12 rmind arg2 = xc->xc_arg2;
414 1.12 rmind mutex_exit(&xc->xc_lock);
415 1.2 ad
416 1.12 rmind KASSERT(func != NULL);
417 1.2 ad (*func)(arg1, arg2);
418 1.2 ad
419 1.12 rmind mutex_enter(&xc->xc_lock);
420 1.12 rmind xc->xc_donep++;
421 1.2 ad }
422 1.2 ad /* NOTREACHED */
423 1.2 ad }
424 1.12 rmind
425 1.12 rmind /*
426 1.12 rmind * xc_ipi_handler:
427 1.12 rmind *
428 1.12 rmind * Handler of cross-call IPI.
429 1.12 rmind */
430 1.12 rmind void
431 1.12 rmind xc_ipi_handler(void)
432 1.12 rmind {
433 1.21 ozaki xc_state_t *xc = & xc_high_pri;
434 1.21 ozaki
435 1.21 ozaki KASSERT(xc->xc_ipl < __arraycount(xc_sihs));
436 1.24 ozaki KASSERT(xc_sihs[xc->xc_ipl] != NULL);
437 1.21 ozaki
438 1.14 martin /* Executes xc__highpri_intr() via software interrupt. */
439 1.21 ozaki softint_schedule(xc_sihs[xc->xc_ipl]);
440 1.12 rmind }
441 1.12 rmind
442 1.12 rmind /*
443 1.14 martin * xc__highpri_intr:
444 1.12 rmind *
445 1.12 rmind * A software interrupt handler for high priority calls.
446 1.12 rmind */
447 1.14 martin void
448 1.14 martin xc__highpri_intr(void *dummy)
449 1.12 rmind {
450 1.12 rmind xc_state_t *xc = &xc_high_pri;
451 1.12 rmind void *arg1, *arg2;
452 1.12 rmind xcfunc_t func;
453 1.12 rmind
454 1.20 martin KASSERTMSG(!cpu_intr_p(), "high priority xcall for function %p",
455 1.20 martin xc->xc_func);
456 1.12 rmind /*
457 1.12 rmind * Lock-less fetch of function and its arguments.
458 1.12 rmind * Safe since it cannot change at this point.
459 1.12 rmind */
460 1.12 rmind func = xc->xc_func;
461 1.12 rmind arg1 = xc->xc_arg1;
462 1.12 rmind arg2 = xc->xc_arg2;
463 1.12 rmind
464 1.12 rmind KASSERT(func != NULL);
465 1.12 rmind (*func)(arg1, arg2);
466 1.12 rmind
467 1.12 rmind /*
468 1.12 rmind * Note the request as done, and if we have reached the head,
469 1.12 rmind * cross-call has been processed - notify waiters, if any.
470 1.12 rmind */
471 1.12 rmind mutex_enter(&xc->xc_lock);
472 1.28 maxv KASSERT(xc->xc_donep < xc->xc_headp);
473 1.12 rmind if (++xc->xc_donep == xc->xc_headp) {
474 1.12 rmind cv_broadcast(&xc->xc_busy);
475 1.12 rmind }
476 1.12 rmind mutex_exit(&xc->xc_lock);
477 1.12 rmind }
478 1.12 rmind
479 1.12 rmind /*
480 1.12 rmind * xc_highpri:
481 1.12 rmind *
482 1.12 rmind * Trigger a high priority call on one or more CPUs.
483 1.12 rmind */
484 1.12 rmind static inline uint64_t
485 1.21 ozaki xc_highpri(xcfunc_t func, void *arg1, void *arg2, struct cpu_info *ci,
486 1.21 ozaki unsigned int ipl)
487 1.12 rmind {
488 1.12 rmind xc_state_t *xc = &xc_high_pri;
489 1.12 rmind uint64_t where;
490 1.12 rmind
491 1.12 rmind mutex_enter(&xc->xc_lock);
492 1.12 rmind while (xc->xc_headp != xc->xc_donep) {
493 1.12 rmind cv_wait(&xc->xc_busy, &xc->xc_lock);
494 1.12 rmind }
495 1.12 rmind xc->xc_func = func;
496 1.12 rmind xc->xc_arg1 = arg1;
497 1.12 rmind xc->xc_arg2 = arg2;
498 1.12 rmind xc->xc_headp += (ci ? 1 : ncpu);
499 1.21 ozaki xc->xc_ipl = ipl;
500 1.12 rmind where = xc->xc_headp;
501 1.12 rmind mutex_exit(&xc->xc_lock);
502 1.12 rmind
503 1.12 rmind /*
504 1.12 rmind * Send the IPI once lock is released.
505 1.12 rmind * Note: it will handle the local CPU case.
506 1.12 rmind */
507 1.12 rmind
508 1.14 martin #ifdef _RUMPKERNEL
509 1.14 martin rump_xc_highpri(ci);
510 1.14 martin #else
511 1.12 rmind #ifdef MULTIPROCESSOR
512 1.12 rmind kpreempt_disable();
513 1.12 rmind if (curcpu() == ci) {
514 1.12 rmind /* Unicast: local CPU. */
515 1.12 rmind xc_ipi_handler();
516 1.12 rmind } else if (ci) {
517 1.12 rmind /* Unicast: remote CPU. */
518 1.12 rmind xc_send_ipi(ci);
519 1.12 rmind } else {
520 1.12 rmind /* Broadcast: all, including local. */
521 1.12 rmind xc_send_ipi(NULL);
522 1.12 rmind xc_ipi_handler();
523 1.12 rmind }
524 1.12 rmind kpreempt_enable();
525 1.12 rmind #else
526 1.15 rmind KASSERT(ci == NULL || curcpu() == ci);
527 1.12 rmind xc_ipi_handler();
528 1.12 rmind #endif
529 1.14 martin #endif
530 1.12 rmind
531 1.12 rmind /* Indicate a high priority ticket. */
532 1.12 rmind return (where | XC_PRI_BIT);
533 1.12 rmind }
534