Home | History | Annotate | Line # | Download | only in kern
subr_xcall.c revision 1.31
      1 /*	$NetBSD: subr_xcall.c,v 1.31 2019/12/01 17:06:00 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2007-2010, 2019 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran and Mindaugas Rasiukevicius.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Cross call support
     34  *
     35  * Background
     36  *
     37  *	Sometimes it is necessary to modify hardware state that is tied
     38  *	directly to individual CPUs (such as a CPU's local timer), and
     39  *	these updates can not be done remotely by another CPU.  The LWP
     40  *	requesting the update may be unable to guarantee that it will be
     41  *	running on the CPU where the update must occur, when the update
     42  *	occurs.
     43  *
     44  *	Additionally, it's sometimes necessary to modify per-CPU software
     45  *	state from a remote CPU.  Where these update operations are so
     46  *	rare or the access to the per-CPU data so frequent that the cost
     47  *	of using locking or atomic operations to provide coherency is
     48  *	prohibitive, another way must be found.
     49  *
     50  *	Cross calls help to solve these types of problem by allowing
     51  *	any CPU in the system to request that an arbitrary function be
     52  *	executed on any other CPU.
     53  *
     54  * Implementation
     55  *
     56  *	A slow mechanism for making 'low priority' cross calls is
     57  *	provided.  The function to be executed runs on the remote CPU
     58  *	within a bound kthread.  No queueing is provided, and the
     59  *	implementation uses global state.  The function being called may
     60  *	block briefly on locks, but in doing so must be careful to not
     61  *	interfere with other cross calls in the system.  The function is
     62  *	called with thread context and not from a soft interrupt, so it
     63  *	can ensure that it is not interrupting other code running on the
     64  *	CPU, and so has exclusive access to the CPU.  Since this facility
     65  *	is heavyweight, it's expected that it will not be used often.
     66  *
     67  *	Cross calls must not allocate memory, as the pagedaemon uses
     68  *	them (and memory allocation may need to wait on the pagedaemon).
     69  *
     70  *	A low-overhead mechanism for high priority calls (XC_HIGHPRI) is
     71  *	also provided.  The function to be executed runs on a software
     72  *	interrupt context, at IPL_SOFTSERIAL level, and is expected to
     73  *	be very lightweight, e.g. avoid blocking.
     74  */
     75 
     76 #include <sys/cdefs.h>
     77 __KERNEL_RCSID(0, "$NetBSD: subr_xcall.c,v 1.31 2019/12/01 17:06:00 ad Exp $");
     78 
     79 #include <sys/types.h>
     80 #include <sys/param.h>
     81 #include <sys/xcall.h>
     82 #include <sys/mutex.h>
     83 #include <sys/condvar.h>
     84 #include <sys/evcnt.h>
     85 #include <sys/kthread.h>
     86 #include <sys/cpu.h>
     87 #include <sys/atomic.h>
     88 
     89 #ifdef _RUMPKERNEL
     90 #include "rump_private.h"
     91 #endif
     92 
     93 /* Cross-call state box. */
     94 typedef struct {
     95 	kmutex_t	xc_lock;
     96 	kcondvar_t	xc_busy;
     97 	xcfunc_t	xc_func;
     98 	void *		xc_arg1;
     99 	void *		xc_arg2;
    100 	uint64_t	xc_headp;
    101 	uint64_t	xc_donep;
    102 	unsigned int	xc_ipl;
    103 } xc_state_t;
    104 
    105 /* Bit indicating high (1) or low (0) priority. */
    106 #define	XC_PRI_BIT	(1ULL << 63)
    107 
    108 /* Low priority xcall structures. */
    109 static xc_state_t	xc_low_pri	__cacheline_aligned;
    110 
    111 /* High priority xcall structures. */
    112 static xc_state_t	xc_high_pri	__cacheline_aligned;
    113 static void *		xc_sihs[4]	__cacheline_aligned;
    114 
    115 /* Event counters. */
    116 static struct evcnt	xc_unicast_ev	__cacheline_aligned;
    117 static struct evcnt	xc_broadcast_ev	__cacheline_aligned;
    118 
    119 static void		xc_init(void);
    120 static void		xc_thread(void *);
    121 
    122 static inline uint64_t	xc_highpri(xcfunc_t, void *, void *, struct cpu_info *,
    123 			    unsigned int);
    124 static inline uint64_t	xc_lowpri(xcfunc_t, void *, void *, struct cpu_info *);
    125 
    126 /* The internal form of IPL */
    127 #define XC_IPL_MASK		0xff00
    128 /*
    129  * Assign 0 to XC_IPL_SOFTSERIAL to treat IPL_SOFTSERIAL as the default value
    130  * (just XC_HIGHPRI).
    131  */
    132 #define XC_IPL_SOFTSERIAL	0
    133 #define XC_IPL_SOFTNET		1
    134 #define XC_IPL_SOFTBIO		2
    135 #define XC_IPL_SOFTCLOCK	3
    136 #define XC_IPL_MAX		XC_IPL_SOFTCLOCK
    137 
    138 CTASSERT(XC_IPL_MAX <= __arraycount(xc_sihs));
    139 
    140 /*
    141  * xc_init:
    142  *
    143  *	Initialize low and high priority cross-call structures.
    144  */
    145 static void
    146 xc_init(void)
    147 {
    148 	xc_state_t *xclo = &xc_low_pri, *xchi = &xc_high_pri;
    149 
    150 	memset(xclo, 0, sizeof(xc_state_t));
    151 	mutex_init(&xclo->xc_lock, MUTEX_DEFAULT, IPL_NONE);
    152 	cv_init(&xclo->xc_busy, "xclocv");
    153 
    154 	memset(xchi, 0, sizeof(xc_state_t));
    155 	mutex_init(&xchi->xc_lock, MUTEX_DEFAULT, IPL_SOFTSERIAL);
    156 	cv_init(&xchi->xc_busy, "xchicv");
    157 
    158 	/* Set up a softint for each IPL_SOFT*. */
    159 #define SETUP_SOFTINT(xipl, sipl) do {					\
    160 		xc_sihs[(xipl)] = softint_establish( (sipl) | SOFTINT_MPSAFE,\
    161 		    xc__highpri_intr, NULL);				\
    162 		KASSERT(xc_sihs[(xipl)] != NULL);			\
    163 	} while (0)
    164 
    165 	SETUP_SOFTINT(XC_IPL_SOFTSERIAL, SOFTINT_SERIAL);
    166 	/*
    167 	 * If a IPL_SOFTXXX have the same value of the previous, we don't use
    168 	 * the IPL (see xc_encode_ipl).  So we don't need to allocate a softint
    169 	 * for it.
    170 	 */
    171 #if IPL_SOFTNET != IPL_SOFTSERIAL
    172 	SETUP_SOFTINT(XC_IPL_SOFTNET, SOFTINT_NET);
    173 #endif
    174 #if IPL_SOFTBIO != IPL_SOFTNET
    175 	SETUP_SOFTINT(XC_IPL_SOFTBIO, SOFTINT_BIO);
    176 #endif
    177 #if IPL_SOFTCLOCK != IPL_SOFTBIO
    178 	SETUP_SOFTINT(XC_IPL_SOFTCLOCK, SOFTINT_CLOCK);
    179 #endif
    180 
    181 #undef SETUP_SOFTINT
    182 
    183 	evcnt_attach_dynamic(&xc_unicast_ev, EVCNT_TYPE_MISC, NULL,
    184 	   "crosscall", "unicast");
    185 	evcnt_attach_dynamic(&xc_broadcast_ev, EVCNT_TYPE_MISC, NULL,
    186 	   "crosscall", "broadcast");
    187 }
    188 
    189 /*
    190  * Encode an IPL to a form that can be embedded into flags of xc_broadcast
    191  * or xc_unicast.
    192  */
    193 unsigned int
    194 xc_encode_ipl(int ipl)
    195 {
    196 
    197 	switch (ipl) {
    198 	case IPL_SOFTSERIAL:
    199 		return __SHIFTIN(XC_IPL_SOFTSERIAL, XC_IPL_MASK);
    200 	/* IPL_SOFT* can be the same value (e.g., on sparc or mips). */
    201 #if IPL_SOFTNET != IPL_SOFTSERIAL
    202 	case IPL_SOFTNET:
    203 		return __SHIFTIN(XC_IPL_SOFTNET, XC_IPL_MASK);
    204 #endif
    205 #if IPL_SOFTBIO != IPL_SOFTNET
    206 	case IPL_SOFTBIO:
    207 		return __SHIFTIN(XC_IPL_SOFTBIO, XC_IPL_MASK);
    208 #endif
    209 #if IPL_SOFTCLOCK != IPL_SOFTBIO
    210 	case IPL_SOFTCLOCK:
    211 		return __SHIFTIN(XC_IPL_SOFTCLOCK, XC_IPL_MASK);
    212 #endif
    213 	}
    214 
    215 	panic("Invalid IPL: %d", ipl);
    216 }
    217 
    218 /*
    219  * Extract an XC_IPL from flags of xc_broadcast or xc_unicast.
    220  */
    221 static inline unsigned int
    222 xc_extract_ipl(unsigned int flags)
    223 {
    224 
    225 	return __SHIFTOUT(flags, XC_IPL_MASK);
    226 }
    227 
    228 /*
    229  * xc_init_cpu:
    230  *
    231  *	Initialize the cross-call subsystem.  Called once for each CPU
    232  *	in the system as they are attached.
    233  */
    234 void
    235 xc_init_cpu(struct cpu_info *ci)
    236 {
    237 	static bool again = false;
    238 	int error __diagused;
    239 
    240 	if (!again) {
    241 		/* Autoconfiguration will prevent re-entry. */
    242 		xc_init();
    243 		again = true;
    244 	}
    245 	cv_init(&ci->ci_data.cpu_xcall, "xcall");
    246 	error = kthread_create(PRI_XCALL, KTHREAD_MPSAFE, ci, xc_thread,
    247 	    NULL, NULL, "xcall/%u", ci->ci_index);
    248 	KASSERT(error == 0);
    249 }
    250 
    251 /*
    252  * xc_broadcast:
    253  *
    254  *	Trigger a call on all CPUs in the system.
    255  */
    256 uint64_t
    257 xc_broadcast(unsigned int flags, xcfunc_t func, void *arg1, void *arg2)
    258 {
    259 
    260 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
    261 	ASSERT_SLEEPABLE();
    262 
    263 	if (__predict_false(!mp_online)) {
    264 		(*func)(arg1, arg2);
    265 		return 0;
    266 	}
    267 
    268 	if ((flags & XC_HIGHPRI) != 0) {
    269 		int ipl = xc_extract_ipl(flags);
    270 		return xc_highpri(func, arg1, arg2, NULL, ipl);
    271 	} else {
    272 		return xc_lowpri(func, arg1, arg2, NULL);
    273 	}
    274 }
    275 
    276 
    277 static void
    278 xc_nop(void *arg1, void *arg2)
    279 {
    280 
    281     return;
    282 }
    283 
    284 
    285 /*
    286  * xc_barrier:
    287  *
    288  *	Broadcast a nop to all CPUs in the system.
    289  */
    290 void
    291 xc_barrier(unsigned int flags)
    292 {
    293 	uint64_t where;
    294 
    295 	where = xc_broadcast(flags, xc_nop, NULL, NULL);
    296 	xc_wait(where);
    297 }
    298 
    299 
    300 /*
    301  * xc_unicast:
    302  *
    303  *	Trigger a call on one CPU.
    304  */
    305 uint64_t
    306 xc_unicast(unsigned int flags, xcfunc_t func, void *arg1, void *arg2,
    307 	   struct cpu_info *ci)
    308 {
    309 	int s;
    310 
    311 	KASSERT(ci != NULL);
    312 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
    313 	ASSERT_SLEEPABLE();
    314 
    315 	if (__predict_false(!mp_online)) {
    316 		KASSERT(ci == curcpu());
    317 		s = splsoftserial();
    318 		(*func)(arg1, arg2);
    319 		splx(s);
    320 		return 0;
    321 	}
    322 
    323 	if ((flags & XC_HIGHPRI) != 0) {
    324 		int ipl = xc_extract_ipl(flags);
    325 		return xc_highpri(func, arg1, arg2, ci, ipl);
    326 	} else {
    327 		return xc_lowpri(func, arg1, arg2, ci);
    328 	}
    329 }
    330 
    331 /*
    332  * xc_wait:
    333  *
    334  *	Wait for a cross call to complete.
    335  */
    336 void
    337 xc_wait(uint64_t where)
    338 {
    339 	xc_state_t *xc;
    340 
    341 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
    342 	ASSERT_SLEEPABLE();
    343 
    344 	if (__predict_false(!mp_online)) {
    345 		return;
    346 	}
    347 
    348 	/* Determine whether it is high or low priority cross-call. */
    349 	if ((where & XC_PRI_BIT) != 0) {
    350 		xc = &xc_high_pri;
    351 		where &= ~XC_PRI_BIT;
    352 	} else {
    353 		xc = &xc_low_pri;
    354 	}
    355 
    356 	/* Block until awoken. */
    357 	mutex_enter(&xc->xc_lock);
    358 	while (xc->xc_donep < where) {
    359 		cv_wait(&xc->xc_busy, &xc->xc_lock);
    360 	}
    361 	mutex_exit(&xc->xc_lock);
    362 }
    363 
    364 /*
    365  * xc_lowpri:
    366  *
    367  *	Trigger a low priority call on one or more CPUs.
    368  */
    369 static inline uint64_t
    370 xc_lowpri(xcfunc_t func, void *arg1, void *arg2, struct cpu_info *ci)
    371 {
    372 	xc_state_t *xc = &xc_low_pri;
    373 	CPU_INFO_ITERATOR cii;
    374 	uint64_t where;
    375 
    376 	mutex_enter(&xc->xc_lock);
    377 	while (xc->xc_headp != xc->xc_donep) {
    378 		cv_wait(&xc->xc_busy, &xc->xc_lock);
    379 	}
    380 	xc->xc_arg1 = arg1;
    381 	xc->xc_arg2 = arg2;
    382 	xc->xc_func = func;
    383 	if (ci == NULL) {
    384 		xc_broadcast_ev.ev_count++;
    385 		for (CPU_INFO_FOREACH(cii, ci)) {
    386 			if ((ci->ci_schedstate.spc_flags & SPCF_RUNNING) == 0)
    387 				continue;
    388 			xc->xc_headp += 1;
    389 			ci->ci_data.cpu_xcall_pending = true;
    390 			cv_signal(&ci->ci_data.cpu_xcall);
    391 		}
    392 	} else {
    393 		xc_unicast_ev.ev_count++;
    394 		xc->xc_headp += 1;
    395 		ci->ci_data.cpu_xcall_pending = true;
    396 		cv_signal(&ci->ci_data.cpu_xcall);
    397 	}
    398 	KASSERT(xc->xc_donep < xc->xc_headp);
    399 	where = xc->xc_headp;
    400 	mutex_exit(&xc->xc_lock);
    401 
    402 	/* Return a low priority ticket. */
    403 	KASSERT((where & XC_PRI_BIT) == 0);
    404 	return where;
    405 }
    406 
    407 /*
    408  * xc_thread:
    409  *
    410  *	One thread per-CPU to dispatch low priority calls.
    411  */
    412 static void
    413 xc_thread(void *cookie)
    414 {
    415 	struct cpu_info *ci = curcpu();
    416 	xc_state_t *xc = &xc_low_pri;
    417 	void *arg1, *arg2;
    418 	xcfunc_t func;
    419 
    420 	mutex_enter(&xc->xc_lock);
    421 	for (;;) {
    422 		while (!ci->ci_data.cpu_xcall_pending) {
    423 			if (xc->xc_headp == xc->xc_donep) {
    424 				cv_broadcast(&xc->xc_busy);
    425 			}
    426 			cv_wait(&ci->ci_data.cpu_xcall, &xc->xc_lock);
    427 			KASSERT(ci == curcpu());
    428 		}
    429 		ci->ci_data.cpu_xcall_pending = false;
    430 		func = xc->xc_func;
    431 		arg1 = xc->xc_arg1;
    432 		arg2 = xc->xc_arg2;
    433 		mutex_exit(&xc->xc_lock);
    434 
    435 		KASSERT(func != NULL);
    436 		(*func)(arg1, arg2);
    437 
    438 		mutex_enter(&xc->xc_lock);
    439 		xc->xc_donep++;
    440 	}
    441 	/* NOTREACHED */
    442 }
    443 
    444 /*
    445  * xc_ipi_handler:
    446  *
    447  *	Handler of cross-call IPI.
    448  */
    449 void
    450 xc_ipi_handler(void)
    451 {
    452 	xc_state_t *xc = & xc_high_pri;
    453 
    454 	KASSERT(xc->xc_ipl < __arraycount(xc_sihs));
    455 	KASSERT(xc_sihs[xc->xc_ipl] != NULL);
    456 
    457 	/* Executes xc__highpri_intr() via software interrupt. */
    458 	softint_schedule(xc_sihs[xc->xc_ipl]);
    459 }
    460 
    461 /*
    462  * xc__highpri_intr:
    463  *
    464  *	A software interrupt handler for high priority calls.
    465  */
    466 void
    467 xc__highpri_intr(void *dummy)
    468 {
    469 	xc_state_t *xc = &xc_high_pri;
    470 	void *arg1, *arg2;
    471 	xcfunc_t func;
    472 
    473 	KASSERTMSG(!cpu_intr_p(), "high priority xcall for function %p",
    474 	    xc->xc_func);
    475 	/*
    476 	 * Lock-less fetch of function and its arguments.
    477 	 * Safe since it cannot change at this point.
    478 	 */
    479 	func = xc->xc_func;
    480 	arg1 = xc->xc_arg1;
    481 	arg2 = xc->xc_arg2;
    482 
    483 	KASSERT(func != NULL);
    484 	(*func)(arg1, arg2);
    485 
    486 	/*
    487 	 * Note the request as done, and if we have reached the head,
    488 	 * cross-call has been processed - notify waiters, if any.
    489 	 */
    490 	mutex_enter(&xc->xc_lock);
    491 	KASSERT(xc->xc_donep < xc->xc_headp);
    492 	if (++xc->xc_donep == xc->xc_headp) {
    493 		cv_broadcast(&xc->xc_busy);
    494 	}
    495 	mutex_exit(&xc->xc_lock);
    496 }
    497 
    498 /*
    499  * xc_highpri:
    500  *
    501  *	Trigger a high priority call on one or more CPUs.
    502  */
    503 static inline uint64_t
    504 xc_highpri(xcfunc_t func, void *arg1, void *arg2, struct cpu_info *ci,
    505     unsigned int ipl)
    506 {
    507 	xc_state_t *xc = &xc_high_pri;
    508 	uint64_t where;
    509 
    510 	mutex_enter(&xc->xc_lock);
    511 	while (xc->xc_headp != xc->xc_donep) {
    512 		cv_wait(&xc->xc_busy, &xc->xc_lock);
    513 	}
    514 	xc->xc_func = func;
    515 	xc->xc_arg1 = arg1;
    516 	xc->xc_arg2 = arg2;
    517 	xc->xc_headp += (ci ? 1 : ncpu);
    518 	xc->xc_ipl = ipl;
    519 	where = xc->xc_headp;
    520 	mutex_exit(&xc->xc_lock);
    521 
    522 	/*
    523 	 * Send the IPI once lock is released.
    524 	 * Note: it will handle the local CPU case.
    525 	 */
    526 
    527 #ifdef _RUMPKERNEL
    528 	rump_xc_highpri(ci);
    529 #else
    530 #ifdef MULTIPROCESSOR
    531 	kpreempt_disable();
    532 	if (curcpu() == ci) {
    533 		/* Unicast: local CPU. */
    534 		xc_ipi_handler();
    535 	} else if (ci) {
    536 		/* Unicast: remote CPU. */
    537 		xc_send_ipi(ci);
    538 	} else {
    539 		/* Broadcast: all, including local. */
    540 		xc_send_ipi(NULL);
    541 		xc_ipi_handler();
    542 	}
    543 	kpreempt_enable();
    544 #else
    545 	KASSERT(ci == NULL || curcpu() == ci);
    546 	xc_ipi_handler();
    547 #endif
    548 #endif
    549 
    550 	/* Indicate a high priority ticket. */
    551 	return (where | XC_PRI_BIT);
    552 }
    553