Home | History | Annotate | Line # | Download | only in kern
sys_aio.c revision 1.15.6.2
      1 /*	$NetBSD: sys_aio.c,v 1.15.6.2 2008/06/02 13:24:11 mjf Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2007, Mindaugas Rasiukevicius <rmind at NetBSD org>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * Implementation of POSIX asynchronous I/O.
     31  * Defined in the Base Definitions volume of IEEE Std 1003.1-2001.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: sys_aio.c,v 1.15.6.2 2008/06/02 13:24:11 mjf Exp $");
     36 
     37 #include "opt_ddb.h"
     38 
     39 #include <sys/param.h>
     40 #include <sys/condvar.h>
     41 #include <sys/file.h>
     42 #include <sys/filedesc.h>
     43 #include <sys/kernel.h>
     44 #include <sys/kmem.h>
     45 #include <sys/lwp.h>
     46 #include <sys/mutex.h>
     47 #include <sys/pool.h>
     48 #include <sys/proc.h>
     49 #include <sys/queue.h>
     50 #include <sys/signal.h>
     51 #include <sys/signalvar.h>
     52 #include <sys/syscallargs.h>
     53 #include <sys/sysctl.h>
     54 #include <sys/systm.h>
     55 #include <sys/types.h>
     56 #include <sys/vnode.h>
     57 #include <sys/atomic.h>
     58 
     59 #include <uvm/uvm_extern.h>
     60 
     61 /*
     62  * System-wide limits and counter of AIO operations.
     63  */
     64 static u_int aio_listio_max = AIO_LISTIO_MAX;
     65 static u_int aio_max = AIO_MAX;
     66 static u_int aio_jobs_count;
     67 
     68 static struct pool aio_job_pool;
     69 static struct pool aio_lio_pool;
     70 
     71 /* Prototypes */
     72 void aio_worker(void *);
     73 static void aio_process(struct aio_job *);
     74 static void aio_sendsig(struct proc *, struct sigevent *);
     75 static int aio_enqueue_job(int, void *, struct lio_req *);
     76 
     77 /*
     78  * Initialize the AIO system.
     79  */
     80 void
     81 aio_sysinit(void)
     82 {
     83 
     84 	pool_init(&aio_job_pool, sizeof(struct aio_job), 0, 0, 0,
     85 	    "aio_jobs_pool", &pool_allocator_nointr, IPL_NONE);
     86 	pool_init(&aio_lio_pool, sizeof(struct lio_req), 0, 0, 0,
     87 	    "aio_lio_pool", &pool_allocator_nointr, IPL_NONE);
     88 }
     89 
     90 /*
     91  * Initialize Asynchronous I/O data structures for the process.
     92  */
     93 int
     94 aio_init(struct proc *p)
     95 {
     96 	struct aioproc *aio;
     97 	struct lwp *l;
     98 	int error;
     99 	bool inmem;
    100 	vaddr_t uaddr;
    101 
    102 	/* Allocate and initialize AIO structure */
    103 	aio = kmem_zalloc(sizeof(struct aioproc), KM_SLEEP);
    104 	if (aio == NULL)
    105 		return EAGAIN;
    106 
    107 	/* Initialize queue and their synchronization structures */
    108 	mutex_init(&aio->aio_mtx, MUTEX_DEFAULT, IPL_NONE);
    109 	cv_init(&aio->aio_worker_cv, "aiowork");
    110 	cv_init(&aio->done_cv, "aiodone");
    111 	TAILQ_INIT(&aio->jobs_queue);
    112 
    113 	/*
    114 	 * Create an AIO worker thread.
    115 	 * XXX: Currently, AIO thread is not protected against user's actions.
    116 	 */
    117 	inmem = uvm_uarea_alloc(&uaddr);
    118 	if (uaddr == 0) {
    119 		aio_exit(p, aio);
    120 		return EAGAIN;
    121 	}
    122 	error = lwp_create(curlwp, p, uaddr, inmem, 0, NULL, 0, aio_worker,
    123 	    NULL, &l, curlwp->l_class);
    124 	if (error != 0) {
    125 		uvm_uarea_free(uaddr, curcpu());
    126 		aio_exit(p, aio);
    127 		return error;
    128 	}
    129 
    130 	/* Recheck if we are really first */
    131 	mutex_enter(p->p_lock);
    132 	if (p->p_aio) {
    133 		mutex_exit(p->p_lock);
    134 		aio_exit(p, aio);
    135 		lwp_exit(l);
    136 		return 0;
    137 	}
    138 	p->p_aio = aio;
    139 
    140 	/* Complete the initialization of thread, and run it */
    141 	aio->aio_worker = l;
    142 	p->p_nrlwps++;
    143 	lwp_lock(l);
    144 	l->l_stat = LSRUN;
    145 	l->l_priority = MAXPRI_USER;
    146 	sched_enqueue(l, false);
    147 	lwp_unlock(l);
    148 	mutex_exit(p->p_lock);
    149 
    150 	return 0;
    151 }
    152 
    153 /*
    154  * Exit of Asynchronous I/O subsystem of process.
    155  */
    156 void
    157 aio_exit(struct proc *p, struct aioproc *aio)
    158 {
    159 	struct aio_job *a_job;
    160 
    161 	if (aio == NULL)
    162 		return;
    163 
    164 	/* Free AIO queue */
    165 	while (!TAILQ_EMPTY(&aio->jobs_queue)) {
    166 		a_job = TAILQ_FIRST(&aio->jobs_queue);
    167 		TAILQ_REMOVE(&aio->jobs_queue, a_job, list);
    168 		pool_put(&aio_job_pool, a_job);
    169 		atomic_dec_uint(&aio_jobs_count);
    170 	}
    171 
    172 	/* Destroy and free the entire AIO data structure */
    173 	cv_destroy(&aio->aio_worker_cv);
    174 	cv_destroy(&aio->done_cv);
    175 	mutex_destroy(&aio->aio_mtx);
    176 	kmem_free(aio, sizeof(struct aioproc));
    177 }
    178 
    179 /*
    180  * AIO worker thread and processor.
    181  */
    182 void
    183 aio_worker(void *arg)
    184 {
    185 	struct proc *p = curlwp->l_proc;
    186 	struct aioproc *aio = p->p_aio;
    187 	struct aio_job *a_job;
    188 	struct lio_req *lio;
    189 	sigset_t oss, nss;
    190 	int error, refcnt;
    191 
    192 	/*
    193 	 * Make an empty signal mask, so it
    194 	 * handles only SIGKILL and SIGSTOP.
    195 	 */
    196 	sigfillset(&nss);
    197 	mutex_enter(p->p_lock);
    198 	error = sigprocmask1(curlwp, SIG_SETMASK, &nss, &oss);
    199 	mutex_exit(p->p_lock);
    200 	KASSERT(error == 0);
    201 
    202 	for (;;) {
    203 		/*
    204 		 * Loop for each job in the queue.  If there
    205 		 * are no jobs then sleep.
    206 		 */
    207 		mutex_enter(&aio->aio_mtx);
    208 		while ((a_job = TAILQ_FIRST(&aio->jobs_queue)) == NULL) {
    209 			if (cv_wait_sig(&aio->aio_worker_cv, &aio->aio_mtx)) {
    210 				/*
    211 				 * Thread was interrupted - check for
    212 				 * pending exit or suspend.
    213 				 */
    214 				mutex_exit(&aio->aio_mtx);
    215 				lwp_userret(curlwp);
    216 				mutex_enter(&aio->aio_mtx);
    217 			}
    218 		}
    219 
    220 		/* Take the job from the queue */
    221 		aio->curjob = a_job;
    222 		TAILQ_REMOVE(&aio->jobs_queue, a_job, list);
    223 
    224 		atomic_dec_uint(&aio_jobs_count);
    225 		aio->jobs_count--;
    226 
    227 		mutex_exit(&aio->aio_mtx);
    228 
    229 		/* Process an AIO operation */
    230 		aio_process(a_job);
    231 
    232 		/* Copy data structure back to the user-space */
    233 		(void)copyout(&a_job->aiocbp, a_job->aiocb_uptr,
    234 		    sizeof(struct aiocb));
    235 
    236 		mutex_enter(&aio->aio_mtx);
    237 		aio->curjob = NULL;
    238 
    239 		/* Decrease a reference counter, if there is a LIO structure */
    240 		lio = a_job->lio;
    241 		refcnt = (lio != NULL ? --lio->refcnt : -1);
    242 
    243 		/* Notify all suspenders */
    244 		cv_broadcast(&aio->done_cv);
    245 		mutex_exit(&aio->aio_mtx);
    246 
    247 		/* Send a signal, if any */
    248 		aio_sendsig(p, &a_job->aiocbp.aio_sigevent);
    249 
    250 		/* Destroy the LIO structure */
    251 		if (refcnt == 0) {
    252 			aio_sendsig(p, &lio->sig);
    253 			pool_put(&aio_lio_pool, lio);
    254 		}
    255 
    256 		/* Destroy the the job */
    257 		pool_put(&aio_job_pool, a_job);
    258 	}
    259 
    260 	/* NOTREACHED */
    261 }
    262 
    263 static void
    264 aio_process(struct aio_job *a_job)
    265 {
    266 	struct proc *p = curlwp->l_proc;
    267 	struct aiocb *aiocbp = &a_job->aiocbp;
    268 	struct file *fp;
    269 	int fd = aiocbp->aio_fildes;
    270 	int error = 0;
    271 
    272 	KASSERT(a_job->aio_op != 0);
    273 
    274 	if ((a_job->aio_op & (AIO_READ | AIO_WRITE)) != 0) {
    275 		struct iovec aiov;
    276 		struct uio auio;
    277 
    278 		if (aiocbp->aio_nbytes > SSIZE_MAX) {
    279 			error = EINVAL;
    280 			goto done;
    281 		}
    282 
    283 		fp = fd_getfile(fd);
    284 		if (fp == NULL) {
    285 			error = EBADF;
    286 			goto done;
    287 		}
    288 
    289 		aiov.iov_base = (void *)(uintptr_t)aiocbp->aio_buf;
    290 		aiov.iov_len = aiocbp->aio_nbytes;
    291 		auio.uio_iov = &aiov;
    292 		auio.uio_iovcnt = 1;
    293 		auio.uio_resid = aiocbp->aio_nbytes;
    294 		auio.uio_vmspace = p->p_vmspace;
    295 
    296 		if (a_job->aio_op & AIO_READ) {
    297 			/*
    298 			 * Perform a Read operation
    299 			 */
    300 			KASSERT((a_job->aio_op & AIO_WRITE) == 0);
    301 
    302 			if ((fp->f_flag & FREAD) == 0) {
    303 				fd_putfile(fd);
    304 				error = EBADF;
    305 				goto done;
    306 			}
    307 			auio.uio_rw = UIO_READ;
    308 			error = (*fp->f_ops->fo_read)(fp, &aiocbp->aio_offset,
    309 			    &auio, fp->f_cred, FOF_UPDATE_OFFSET);
    310 		} else {
    311 			/*
    312 			 * Perform a Write operation
    313 			 */
    314 			KASSERT(a_job->aio_op & AIO_WRITE);
    315 
    316 			if ((fp->f_flag & FWRITE) == 0) {
    317 				fd_putfile(fd);
    318 				error = EBADF;
    319 				goto done;
    320 			}
    321 			auio.uio_rw = UIO_WRITE;
    322 			error = (*fp->f_ops->fo_write)(fp, &aiocbp->aio_offset,
    323 			    &auio, fp->f_cred, FOF_UPDATE_OFFSET);
    324 		}
    325 		fd_putfile(fd);
    326 
    327 		/* Store the result value */
    328 		a_job->aiocbp.aio_nbytes -= auio.uio_resid;
    329 		a_job->aiocbp._retval = (error == 0) ?
    330 		    a_job->aiocbp.aio_nbytes : -1;
    331 
    332 	} else if ((a_job->aio_op & (AIO_SYNC | AIO_DSYNC)) != 0) {
    333 		/*
    334 		 * Perform a file Sync operation
    335 		 */
    336 		struct vnode *vp;
    337 
    338 		if ((error = fd_getvnode(fd, &fp)) != 0)
    339 			goto done;
    340 
    341 		if ((fp->f_flag & FWRITE) == 0) {
    342 			fd_putfile(fd);
    343 			error = EBADF;
    344 			goto done;
    345 		}
    346 
    347 		vp = (struct vnode *)fp->f_data;
    348 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    349 		if (a_job->aio_op & AIO_DSYNC) {
    350 			error = VOP_FSYNC(vp, fp->f_cred,
    351 			    FSYNC_WAIT | FSYNC_DATAONLY, 0, 0);
    352 		} else if (a_job->aio_op & AIO_SYNC) {
    353 			error = VOP_FSYNC(vp, fp->f_cred,
    354 			    FSYNC_WAIT, 0, 0);
    355 			if (error == 0 && bioopsp != NULL &&
    356 			    vp->v_mount &&
    357 			    (vp->v_mount->mnt_flag & MNT_SOFTDEP))
    358 			    bioopsp->io_fsync(vp, 0);
    359 		}
    360 		VOP_UNLOCK(vp, 0);
    361 		fd_putfile(fd);
    362 
    363 		/* Store the result value */
    364 		a_job->aiocbp._retval = (error == 0) ? 0 : -1;
    365 
    366 	} else
    367 		panic("aio_process: invalid operation code\n");
    368 
    369 done:
    370 	/* Job is done, set the error, if any */
    371 	a_job->aiocbp._errno = error;
    372 	a_job->aiocbp._state = JOB_DONE;
    373 }
    374 
    375 /*
    376  * Send AIO signal.
    377  */
    378 static void
    379 aio_sendsig(struct proc *p, struct sigevent *sig)
    380 {
    381 	ksiginfo_t ksi;
    382 
    383 	if (sig->sigev_signo == 0 || sig->sigev_notify == SIGEV_NONE)
    384 		return;
    385 
    386 	KSI_INIT(&ksi);
    387 	ksi.ksi_signo = sig->sigev_signo;
    388 	ksi.ksi_code = SI_ASYNCIO;
    389 	ksi.ksi_value = sig->sigev_value;
    390 	mutex_enter(proc_lock);
    391 	kpsignal(p, &ksi, NULL);
    392 	mutex_exit(proc_lock);
    393 }
    394 
    395 /*
    396  * Enqueue the job.
    397  */
    398 static int
    399 aio_enqueue_job(int op, void *aiocb_uptr, struct lio_req *lio)
    400 {
    401 	struct proc *p = curlwp->l_proc;
    402 	struct aioproc *aio;
    403 	struct aio_job *a_job;
    404 	struct aiocb aiocbp;
    405 	struct sigevent *sig;
    406 	int error;
    407 
    408 	/* Non-accurate check for the limit */
    409 	if (aio_jobs_count + 1 > aio_max)
    410 		return EAGAIN;
    411 
    412 	/* Get the data structure from user-space */
    413 	error = copyin(aiocb_uptr, &aiocbp, sizeof(struct aiocb));
    414 	if (error)
    415 		return error;
    416 
    417 	/* Check if signal is set, and validate it */
    418 	sig = &aiocbp.aio_sigevent;
    419 	if (sig->sigev_signo < 0 || sig->sigev_signo >= NSIG ||
    420 	    sig->sigev_notify < SIGEV_NONE || sig->sigev_notify > SIGEV_SA)
    421 		return EINVAL;
    422 
    423 	/* Buffer and byte count */
    424 	if (((AIO_SYNC | AIO_DSYNC) & op) == 0)
    425 		if (aiocbp.aio_buf == NULL || aiocbp.aio_nbytes > SSIZE_MAX)
    426 			return EINVAL;
    427 
    428 	/* Check the opcode, if LIO_NOP - simply ignore */
    429 	if (op == AIO_LIO) {
    430 		KASSERT(lio != NULL);
    431 		if (aiocbp.aio_lio_opcode == LIO_WRITE)
    432 			op = AIO_WRITE;
    433 		else if (aiocbp.aio_lio_opcode == LIO_READ)
    434 			op = AIO_READ;
    435 		else
    436 			return (aiocbp.aio_lio_opcode == LIO_NOP) ? 0 : EINVAL;
    437 	} else {
    438 		KASSERT(lio == NULL);
    439 	}
    440 
    441 	/*
    442 	 * Look for already existing job.  If found - the job is in-progress.
    443 	 * According to POSIX this is invalid, so return the error.
    444 	 */
    445 	aio = p->p_aio;
    446 	if (aio) {
    447 		mutex_enter(&aio->aio_mtx);
    448 		if (aio->curjob) {
    449 			a_job = aio->curjob;
    450 			if (a_job->aiocb_uptr == aiocb_uptr) {
    451 				mutex_exit(&aio->aio_mtx);
    452 				return EINVAL;
    453 			}
    454 		}
    455 		TAILQ_FOREACH(a_job, &aio->jobs_queue, list) {
    456 			if (a_job->aiocb_uptr != aiocb_uptr)
    457 				continue;
    458 			mutex_exit(&aio->aio_mtx);
    459 			return EINVAL;
    460 		}
    461 		mutex_exit(&aio->aio_mtx);
    462 	}
    463 
    464 	/*
    465 	 * Check if AIO structure is initialized, if not - initialize it.
    466 	 * In LIO case, we did that already.  We will recheck this with
    467 	 * the lock in aio_init().
    468 	 */
    469 	if (lio == NULL && p->p_aio == NULL)
    470 		if (aio_init(p))
    471 			return EAGAIN;
    472 	aio = p->p_aio;
    473 
    474 	/*
    475 	 * Set the state with errno, and copy data
    476 	 * structure back to the user-space.
    477 	 */
    478 	aiocbp._state = JOB_WIP;
    479 	aiocbp._errno = EINPROGRESS;
    480 	aiocbp._retval = -1;
    481 	error = copyout(&aiocbp, aiocb_uptr, sizeof(struct aiocb));
    482 	if (error)
    483 		return error;
    484 
    485 	/* Allocate and initialize a new AIO job */
    486 	a_job = pool_get(&aio_job_pool, PR_WAITOK);
    487 	memset(a_job, 0, sizeof(struct aio_job));
    488 
    489 	/*
    490 	 * Set the data.
    491 	 * Store the user-space pointer for searching.  Since we
    492 	 * are storing only per proc pointers - it is safe.
    493 	 */
    494 	memcpy(&a_job->aiocbp, &aiocbp, sizeof(struct aiocb));
    495 	a_job->aiocb_uptr = aiocb_uptr;
    496 	a_job->aio_op |= op;
    497 	a_job->lio = lio;
    498 
    499 	/*
    500 	 * Add the job to the queue, update the counters, and
    501 	 * notify the AIO worker thread to handle the job.
    502 	 */
    503 	mutex_enter(&aio->aio_mtx);
    504 
    505 	/* Fail, if the limit was reached */
    506 	if (atomic_inc_uint_nv(&aio_jobs_count) > aio_max ||
    507 	    aio->jobs_count >= aio_listio_max) {
    508 		atomic_dec_uint(&aio_jobs_count);
    509 		mutex_exit(&aio->aio_mtx);
    510 		pool_put(&aio_job_pool, a_job);
    511 		return EAGAIN;
    512 	}
    513 
    514 	TAILQ_INSERT_TAIL(&aio->jobs_queue, a_job, list);
    515 	aio->jobs_count++;
    516 	if (lio)
    517 		lio->refcnt++;
    518 	cv_signal(&aio->aio_worker_cv);
    519 
    520 	mutex_exit(&aio->aio_mtx);
    521 
    522 	/*
    523 	 * One would handle the errors only with aio_error() function.
    524 	 * This way is appropriate according to POSIX.
    525 	 */
    526 	return 0;
    527 }
    528 
    529 /*
    530  * Syscall functions.
    531  */
    532 
    533 int
    534 sys_aio_cancel(struct lwp *l, const struct sys_aio_cancel_args *uap, register_t *retval)
    535 {
    536 	/* {
    537 		syscallarg(int) fildes;
    538 		syscallarg(struct aiocb *) aiocbp;
    539 	} */
    540 	struct proc *p = l->l_proc;
    541 	struct aioproc *aio;
    542 	struct aio_job *a_job;
    543 	struct aiocb *aiocbp_ptr;
    544 	struct lio_req *lio;
    545 	struct filedesc	*fdp = p->p_fd;
    546 	unsigned int cn, errcnt, fildes;
    547 
    548 	TAILQ_HEAD(, aio_job) tmp_jobs_list;
    549 
    550 	/* Check for invalid file descriptor */
    551 	fildes = (unsigned int)SCARG(uap, fildes);
    552 	if (fildes >= fdp->fd_nfiles)
    553 		return EBADF;
    554 	membar_consumer();
    555 	if (fdp->fd_ofiles[fildes] == NULL || fdp->fd_ofiles[fildes]->ff_file == NULL)
    556 		return EBADF;
    557 
    558 	/* Check if AIO structure is initialized */
    559 	if (p->p_aio == NULL) {
    560 		*retval = AIO_NOTCANCELED;
    561 		return 0;
    562 	}
    563 
    564 	aio = p->p_aio;
    565 	aiocbp_ptr = (struct aiocb *)SCARG(uap, aiocbp);
    566 
    567 	mutex_enter(&aio->aio_mtx);
    568 
    569 	/* Cancel the jobs, and remove them from the queue */
    570 	cn = 0;
    571 	TAILQ_INIT(&tmp_jobs_list);
    572 	TAILQ_FOREACH(a_job, &aio->jobs_queue, list) {
    573 		if (aiocbp_ptr) {
    574 			if (aiocbp_ptr != a_job->aiocb_uptr)
    575 				continue;
    576 			if (fildes != a_job->aiocbp.aio_fildes) {
    577 				mutex_exit(&aio->aio_mtx);
    578 				return EBADF;
    579 			}
    580 		} else if (a_job->aiocbp.aio_fildes != fildes)
    581 			continue;
    582 
    583 		TAILQ_REMOVE(&aio->jobs_queue, a_job, list);
    584 		TAILQ_INSERT_TAIL(&tmp_jobs_list, a_job, list);
    585 
    586 		/* Decrease the counters */
    587 		atomic_dec_uint(&aio_jobs_count);
    588 		aio->jobs_count--;
    589 		lio = a_job->lio;
    590 		if (lio != NULL && --lio->refcnt != 0)
    591 			a_job->lio = NULL;
    592 
    593 		cn++;
    594 		if (aiocbp_ptr)
    595 			break;
    596 	}
    597 
    598 	/* There are canceled jobs */
    599 	if (cn)
    600 		*retval = AIO_CANCELED;
    601 
    602 	/* We cannot cancel current job */
    603 	a_job = aio->curjob;
    604 	if (a_job && ((a_job->aiocbp.aio_fildes == fildes) ||
    605 	    (a_job->aiocb_uptr == aiocbp_ptr)))
    606 		*retval = AIO_NOTCANCELED;
    607 
    608 	mutex_exit(&aio->aio_mtx);
    609 
    610 	/* Free the jobs after the lock */
    611 	errcnt = 0;
    612 	while (!TAILQ_EMPTY(&tmp_jobs_list)) {
    613 		a_job = TAILQ_FIRST(&tmp_jobs_list);
    614 		TAILQ_REMOVE(&tmp_jobs_list, a_job, list);
    615 		/* Set the errno and copy structures back to the user-space */
    616 		a_job->aiocbp._errno = ECANCELED;
    617 		a_job->aiocbp._state = JOB_DONE;
    618 		if (copyout(&a_job->aiocbp, a_job->aiocb_uptr,
    619 		    sizeof(struct aiocb)))
    620 			errcnt++;
    621 		/* Send a signal if any */
    622 		aio_sendsig(p, &a_job->aiocbp.aio_sigevent);
    623 		if (a_job->lio) {
    624 			lio = a_job->lio;
    625 			aio_sendsig(p, &lio->sig);
    626 			pool_put(&aio_lio_pool, lio);
    627 		}
    628 		pool_put(&aio_job_pool, a_job);
    629 	}
    630 
    631 	if (errcnt)
    632 		return EFAULT;
    633 
    634 	/* Set a correct return value */
    635 	if (*retval == 0)
    636 		*retval = AIO_ALLDONE;
    637 
    638 	return 0;
    639 }
    640 
    641 int
    642 sys_aio_error(struct lwp *l, const struct sys_aio_error_args *uap, register_t *retval)
    643 {
    644 	/* {
    645 		syscallarg(const struct aiocb *) aiocbp;
    646 	} */
    647 	struct proc *p = l->l_proc;
    648 	struct aioproc *aio = p->p_aio;
    649 	struct aiocb aiocbp;
    650 	int error;
    651 
    652 	if (aio == NULL)
    653 		return EINVAL;
    654 
    655 	error = copyin(SCARG(uap, aiocbp), &aiocbp, sizeof(struct aiocb));
    656 	if (error)
    657 		return error;
    658 
    659 	if (aiocbp._state == JOB_NONE)
    660 		return EINVAL;
    661 
    662 	*retval = aiocbp._errno;
    663 
    664 	return 0;
    665 }
    666 
    667 int
    668 sys_aio_fsync(struct lwp *l, const struct sys_aio_fsync_args *uap, register_t *retval)
    669 {
    670 	/* {
    671 		syscallarg(int) op;
    672 		syscallarg(struct aiocb *) aiocbp;
    673 	} */
    674 	int op = SCARG(uap, op);
    675 
    676 	if ((op != O_DSYNC) && (op != O_SYNC))
    677 		return EINVAL;
    678 
    679 	op = O_DSYNC ? AIO_DSYNC : AIO_SYNC;
    680 
    681 	return aio_enqueue_job(op, SCARG(uap, aiocbp), NULL);
    682 }
    683 
    684 int
    685 sys_aio_read(struct lwp *l, const struct sys_aio_read_args *uap, register_t *retval)
    686 {
    687 	/* {
    688 		syscallarg(struct aiocb *) aiocbp;
    689 	} */
    690 
    691 	return aio_enqueue_job(AIO_READ, SCARG(uap, aiocbp), NULL);
    692 }
    693 
    694 int
    695 sys_aio_return(struct lwp *l, const struct sys_aio_return_args *uap, register_t *retval)
    696 {
    697 	/* {
    698 		syscallarg(struct aiocb *) aiocbp;
    699 	} */
    700 	struct proc *p = l->l_proc;
    701 	struct aioproc *aio = p->p_aio;
    702 	struct aiocb aiocbp;
    703 	int error;
    704 
    705 	if (aio == NULL)
    706 		return EINVAL;
    707 
    708 	error = copyin(SCARG(uap, aiocbp), &aiocbp, sizeof(struct aiocb));
    709 	if (error)
    710 		return error;
    711 
    712 	if (aiocbp._errno == EINPROGRESS || aiocbp._state != JOB_DONE)
    713 		return EINVAL;
    714 
    715 	*retval = aiocbp._retval;
    716 
    717 	/* Reset the internal variables */
    718 	aiocbp._errno = 0;
    719 	aiocbp._retval = -1;
    720 	aiocbp._state = JOB_NONE;
    721 	error = copyout(&aiocbp, SCARG(uap, aiocbp), sizeof(struct aiocb));
    722 
    723 	return error;
    724 }
    725 
    726 int
    727 sys_aio_suspend(struct lwp *l, const struct sys_aio_suspend_args *uap, register_t *retval)
    728 {
    729 	/* {
    730 		syscallarg(const struct aiocb *const[]) list;
    731 		syscallarg(int) nent;
    732 		syscallarg(const struct timespec *) timeout;
    733 	} */
    734 	struct proc *p = l->l_proc;
    735 	struct aioproc *aio;
    736 	struct aio_job *a_job;
    737 	struct aiocb **aiocbp_list;
    738 	struct timespec ts;
    739 	int i, error, nent, timo;
    740 
    741 	if (p->p_aio == NULL)
    742 		return EAGAIN;
    743 	aio = p->p_aio;
    744 
    745 	nent = SCARG(uap, nent);
    746 	if (nent <= 0 || nent > aio_listio_max)
    747 		return EAGAIN;
    748 
    749 	if (SCARG(uap, timeout)) {
    750 		/* Convert timespec to ticks */
    751 		error = copyin(SCARG(uap, timeout), &ts,
    752 		    sizeof(struct timespec));
    753 		if (error)
    754 			return error;
    755 		timo = mstohz((ts.tv_sec * 1000) + (ts.tv_nsec / 1000000));
    756 		if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
    757 			timo = 1;
    758 		if (timo <= 0)
    759 			return EAGAIN;
    760 	} else
    761 		timo = 0;
    762 
    763 	/* Get the list from user-space */
    764 	aiocbp_list = kmem_zalloc(nent * sizeof(struct aio_job), KM_SLEEP);
    765 	error = copyin(SCARG(uap, list), aiocbp_list,
    766 	    nent * sizeof(struct aiocb));
    767 	if (error) {
    768 		kmem_free(aiocbp_list, nent * sizeof(struct aio_job));
    769 		return error;
    770 	}
    771 
    772 	mutex_enter(&aio->aio_mtx);
    773 	for (;;) {
    774 
    775 		for (i = 0; i < nent; i++) {
    776 
    777 			/* Skip NULL entries */
    778 			if (aiocbp_list[i] == NULL)
    779 				continue;
    780 
    781 			/* Skip current job */
    782 			if (aio->curjob) {
    783 				a_job = aio->curjob;
    784 				if (a_job->aiocb_uptr == aiocbp_list[i])
    785 					continue;
    786 			}
    787 
    788 			/* Look for a job in the queue */
    789 			TAILQ_FOREACH(a_job, &aio->jobs_queue, list)
    790 				if (a_job->aiocb_uptr == aiocbp_list[i])
    791 					break;
    792 
    793 			if (a_job == NULL) {
    794 				struct aiocb aiocbp;
    795 
    796 				mutex_exit(&aio->aio_mtx);
    797 
    798 				error = copyin(aiocbp_list[i], &aiocbp,
    799 				    sizeof(struct aiocb));
    800 				if (error == 0 && aiocbp._state != JOB_DONE) {
    801 					mutex_enter(&aio->aio_mtx);
    802 					continue;
    803 				}
    804 
    805 				kmem_free(aiocbp_list,
    806 				    nent * sizeof(struct aio_job));
    807 				return error;
    808 			}
    809 		}
    810 
    811 		/* Wait for a signal or when timeout occurs */
    812 		error = cv_timedwait_sig(&aio->done_cv, &aio->aio_mtx, timo);
    813 		if (error) {
    814 			if (error == EWOULDBLOCK)
    815 				error = EAGAIN;
    816 			break;
    817 		}
    818 	}
    819 	mutex_exit(&aio->aio_mtx);
    820 
    821 	kmem_free(aiocbp_list, nent * sizeof(struct aio_job));
    822 	return error;
    823 }
    824 
    825 int
    826 sys_aio_write(struct lwp *l, const struct sys_aio_write_args *uap, register_t *retval)
    827 {
    828 	/* {
    829 		syscallarg(struct aiocb *) aiocbp;
    830 	} */
    831 
    832 	return aio_enqueue_job(AIO_WRITE, SCARG(uap, aiocbp), NULL);
    833 }
    834 
    835 int
    836 sys_lio_listio(struct lwp *l, const struct sys_lio_listio_args *uap, register_t *retval)
    837 {
    838 	/* {
    839 		syscallarg(int) mode;
    840 		syscallarg(struct aiocb *const[]) list;
    841 		syscallarg(int) nent;
    842 		syscallarg(struct sigevent *) sig;
    843 	} */
    844 	struct proc *p = l->l_proc;
    845 	struct aioproc *aio;
    846 	struct aiocb **aiocbp_list;
    847 	struct lio_req *lio;
    848 	int i, error, errcnt, mode, nent;
    849 
    850 	mode = SCARG(uap, mode);
    851 	nent = SCARG(uap, nent);
    852 
    853 	/* Non-accurate checks for the limit and invalid values */
    854 	if (nent < 1 || nent > aio_listio_max)
    855 		return EINVAL;
    856 	if (aio_jobs_count + nent > aio_max)
    857 		return EAGAIN;
    858 
    859 	/* Check if AIO structure is initialized, if not - initialize it */
    860 	if (p->p_aio == NULL)
    861 		if (aio_init(p))
    862 			return EAGAIN;
    863 	aio = p->p_aio;
    864 
    865 	/* Create a LIO structure */
    866 	lio = pool_get(&aio_lio_pool, PR_WAITOK);
    867 	lio->refcnt = 1;
    868 	error = 0;
    869 
    870 	switch (mode) {
    871 	case LIO_WAIT:
    872 		memset(&lio->sig, 0, sizeof(struct sigevent));
    873 		break;
    874 	case LIO_NOWAIT:
    875 		/* Check for signal, validate it */
    876 		if (SCARG(uap, sig)) {
    877 			struct sigevent *sig = &lio->sig;
    878 
    879 			error = copyin(SCARG(uap, sig), &lio->sig,
    880 			    sizeof(struct sigevent));
    881 			if (error == 0 &&
    882 			    (sig->sigev_signo < 0 ||
    883 			    sig->sigev_signo >= NSIG ||
    884 			    sig->sigev_notify < SIGEV_NONE ||
    885 			    sig->sigev_notify > SIGEV_SA))
    886 				error = EINVAL;
    887 		} else
    888 			memset(&lio->sig, 0, sizeof(struct sigevent));
    889 		break;
    890 	default:
    891 		error = EINVAL;
    892 		break;
    893 	}
    894 
    895 	if (error != 0) {
    896 		pool_put(&aio_lio_pool, lio);
    897 		return error;
    898 	}
    899 
    900 	/* Get the list from user-space */
    901 	aiocbp_list = kmem_zalloc(nent * sizeof(struct aio_job), KM_SLEEP);
    902 	error = copyin(SCARG(uap, list), aiocbp_list,
    903 	    nent * sizeof(struct aiocb));
    904 	if (error) {
    905 		mutex_enter(&aio->aio_mtx);
    906 		goto err;
    907 	}
    908 
    909 	/* Enqueue all jobs */
    910 	errcnt = 0;
    911 	for (i = 0; i < nent; i++) {
    912 		error = aio_enqueue_job(AIO_LIO, aiocbp_list[i], lio);
    913 		/*
    914 		 * According to POSIX, in such error case it may
    915 		 * fail with other I/O operations initiated.
    916 		 */
    917 		if (error)
    918 			errcnt++;
    919 	}
    920 
    921 	mutex_enter(&aio->aio_mtx);
    922 
    923 	/* Return an error, if any */
    924 	if (errcnt) {
    925 		error = EIO;
    926 		goto err;
    927 	}
    928 
    929 	if (mode == LIO_WAIT) {
    930 		/*
    931 		 * Wait for AIO completion.  In such case,
    932 		 * the LIO structure will be freed here.
    933 		 */
    934 		while (lio->refcnt > 1 && error == 0)
    935 			error = cv_wait_sig(&aio->done_cv, &aio->aio_mtx);
    936 		if (error)
    937 			error = EINTR;
    938 	}
    939 
    940 err:
    941 	if (--lio->refcnt != 0)
    942 		lio = NULL;
    943 	mutex_exit(&aio->aio_mtx);
    944 	if (lio != NULL) {
    945 		aio_sendsig(p, &lio->sig);
    946 		pool_put(&aio_lio_pool, lio);
    947 	}
    948 	kmem_free(aiocbp_list, nent * sizeof(struct aio_job));
    949 	return error;
    950 }
    951 
    952 /*
    953  * SysCtl
    954  */
    955 
    956 static int
    957 sysctl_aio_listio_max(SYSCTLFN_ARGS)
    958 {
    959 	struct sysctlnode node;
    960 	int error, newsize;
    961 
    962 	node = *rnode;
    963 	node.sysctl_data = &newsize;
    964 
    965 	newsize = aio_listio_max;
    966 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    967 	if (error || newp == NULL)
    968 		return error;
    969 
    970 	if (newsize < 1 || newsize > aio_max)
    971 		return EINVAL;
    972 	aio_listio_max = newsize;
    973 
    974 	return 0;
    975 }
    976 
    977 static int
    978 sysctl_aio_max(SYSCTLFN_ARGS)
    979 {
    980 	struct sysctlnode node;
    981 	int error, newsize;
    982 
    983 	node = *rnode;
    984 	node.sysctl_data = &newsize;
    985 
    986 	newsize = aio_max;
    987 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    988 	if (error || newp == NULL)
    989 		return error;
    990 
    991 	if (newsize < 1 || newsize < aio_listio_max)
    992 		return EINVAL;
    993 	aio_max = newsize;
    994 
    995 	return 0;
    996 }
    997 
    998 SYSCTL_SETUP(sysctl_aio_setup, "sysctl aio setup")
    999 {
   1000 
   1001 	sysctl_createv(clog, 0, NULL, NULL,
   1002 		CTLFLAG_PERMANENT,
   1003 		CTLTYPE_NODE, "kern", NULL,
   1004 		NULL, 0, NULL, 0,
   1005 		CTL_KERN, CTL_EOL);
   1006 	sysctl_createv(clog, 0, NULL, NULL,
   1007 		CTLFLAG_PERMANENT | CTLFLAG_IMMEDIATE,
   1008 		CTLTYPE_INT, "posix_aio",
   1009 		SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
   1010 			     "Asynchronous I/O option to which the "
   1011 			     "system attempts to conform"),
   1012 		NULL, _POSIX_ASYNCHRONOUS_IO, NULL, 0,
   1013 		CTL_KERN, CTL_CREATE, CTL_EOL);
   1014 	sysctl_createv(clog, 0, NULL, NULL,
   1015 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   1016 		CTLTYPE_INT, "aio_listio_max",
   1017 		SYSCTL_DESCR("Maximum number of asynchronous I/O "
   1018 			     "operations in a single list I/O call"),
   1019 		sysctl_aio_listio_max, 0, &aio_listio_max, 0,
   1020 		CTL_KERN, CTL_CREATE, CTL_EOL);
   1021 	sysctl_createv(clog, 0, NULL, NULL,
   1022 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   1023 		CTLTYPE_INT, "aio_max",
   1024 		SYSCTL_DESCR("Maximum number of asynchronous I/O "
   1025 			     "operations"),
   1026 		sysctl_aio_max, 0, &aio_max, 0,
   1027 		CTL_KERN, CTL_CREATE, CTL_EOL);
   1028 }
   1029 
   1030 /*
   1031  * Debugging
   1032  */
   1033 #if defined(DDB)
   1034 void
   1035 aio_print_jobs(void (*pr)(const char *, ...))
   1036 {
   1037 	struct proc *p = (curlwp == NULL ? NULL : curlwp->l_proc);
   1038 	struct aioproc *aio;
   1039 	struct aio_job *a_job;
   1040 	struct aiocb *aiocbp;
   1041 
   1042 	if (p == NULL) {
   1043 		(*pr)("AIO: We are not in the processes right now.\n");
   1044 		return;
   1045 	}
   1046 
   1047 	aio = p->p_aio;
   1048 	if (aio == NULL) {
   1049 		(*pr)("AIO data is not initialized (PID = %d).\n", p->p_pid);
   1050 		return;
   1051 	}
   1052 
   1053 	(*pr)("AIO: PID = %d\n", p->p_pid);
   1054 	(*pr)("AIO: Global count of the jobs = %u\n", aio_jobs_count);
   1055 	(*pr)("AIO: Count of the jobs = %u\n", aio->jobs_count);
   1056 
   1057 	if (aio->curjob) {
   1058 		a_job = aio->curjob;
   1059 		(*pr)("\nAIO current job:\n");
   1060 		(*pr)(" opcode = %d, errno = %d, state = %d, aiocb_ptr = %p\n",
   1061 		    a_job->aio_op, a_job->aiocbp._errno,
   1062 		    a_job->aiocbp._state, a_job->aiocb_uptr);
   1063 		aiocbp = &a_job->aiocbp;
   1064 		(*pr)("   fd = %d, offset = %u, buf = %p, nbytes = %u\n",
   1065 		    aiocbp->aio_fildes, aiocbp->aio_offset,
   1066 		    aiocbp->aio_buf, aiocbp->aio_nbytes);
   1067 	}
   1068 
   1069 	(*pr)("\nAIO queue:\n");
   1070 	TAILQ_FOREACH(a_job, &aio->jobs_queue, list) {
   1071 		(*pr)(" opcode = %d, errno = %d, state = %d, aiocb_ptr = %p\n",
   1072 		    a_job->aio_op, a_job->aiocbp._errno,
   1073 		    a_job->aiocbp._state, a_job->aiocb_uptr);
   1074 		aiocbp = &a_job->aiocbp;
   1075 		(*pr)("   fd = %d, offset = %u, buf = %p, nbytes = %u\n",
   1076 		    aiocbp->aio_fildes, aiocbp->aio_offset,
   1077 		    aiocbp->aio_buf, aiocbp->aio_nbytes);
   1078 	}
   1079 }
   1080 #endif /* defined(DDB) */
   1081