sys_aio.c revision 1.18.2.3 1 /* $NetBSD: sys_aio.c,v 1.18.2.3 2010/03/11 15:04:19 yamt Exp $ */
2
3 /*
4 * Copyright (c) 2007 Mindaugas Rasiukevicius <rmind at NetBSD org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * Implementation of POSIX asynchronous I/O.
31 * Defined in the Base Definitions volume of IEEE Std 1003.1-2001.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: sys_aio.c,v 1.18.2.3 2010/03/11 15:04:19 yamt Exp $");
36
37 #ifdef _KERNEL_OPT
38 #include "opt_ddb.h"
39 #endif
40
41 #include <sys/param.h>
42 #include <sys/condvar.h>
43 #include <sys/file.h>
44 #include <sys/filedesc.h>
45 #include <sys/kernel.h>
46 #include <sys/kmem.h>
47 #include <sys/lwp.h>
48 #include <sys/mutex.h>
49 #include <sys/pool.h>
50 #include <sys/proc.h>
51 #include <sys/queue.h>
52 #include <sys/signal.h>
53 #include <sys/signalvar.h>
54 #include <sys/syscall.h>
55 #include <sys/syscallargs.h>
56 #include <sys/syscallvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/systm.h>
59 #include <sys/types.h>
60 #include <sys/vnode.h>
61 #include <sys/atomic.h>
62 #include <sys/module.h>
63 #include <sys/buf.h>
64
65 #include <uvm/uvm_extern.h>
66
67 MODULE(MODULE_CLASS_MISC, aio, NULL);
68
69 /*
70 * System-wide limits and counter of AIO operations.
71 */
72 u_int aio_listio_max = AIO_LISTIO_MAX;
73 static u_int aio_max = AIO_MAX;
74 static u_int aio_jobs_count;
75
76 static struct pool aio_job_pool;
77 static struct pool aio_lio_pool;
78 static void * aio_ehook;
79
80 static void aio_worker(void *);
81 static void aio_process(struct aio_job *);
82 static void aio_sendsig(struct proc *, struct sigevent *);
83 static int aio_enqueue_job(int, void *, struct lio_req *);
84 static void aio_exit(proc_t *, void *);
85
86 static const struct syscall_package aio_syscalls[] = {
87 { SYS_aio_cancel, 0, (sy_call_t *)sys_aio_cancel },
88 { SYS_aio_error, 0, (sy_call_t *)sys_aio_error },
89 { SYS_aio_fsync, 0, (sy_call_t *)sys_aio_fsync },
90 { SYS_aio_read, 0, (sy_call_t *)sys_aio_read },
91 { SYS_aio_return, 0, (sy_call_t *)sys_aio_return },
92 { SYS___aio_suspend50, 0, (sy_call_t *)sys___aio_suspend50 },
93 { SYS_aio_write, 0, (sy_call_t *)sys_aio_write },
94 { SYS_lio_listio, 0, (sy_call_t *)sys_lio_listio },
95 { 0, 0, NULL },
96 };
97
98 /*
99 * Tear down all AIO state.
100 */
101 static int
102 aio_fini(bool interface)
103 {
104 int error;
105 proc_t *p;
106
107 if (interface) {
108 /* Stop syscall activity. */
109 error = syscall_disestablish(NULL, aio_syscalls);
110 if (error != 0)
111 return error;
112 /* Abort if any processes are using AIO. */
113 mutex_enter(proc_lock);
114 PROCLIST_FOREACH(p, &allproc) {
115 if (p->p_aio != NULL)
116 break;
117 }
118 mutex_exit(proc_lock);
119 if (p != NULL) {
120 error = syscall_establish(NULL, aio_syscalls);
121 KASSERT(error == 0);
122 return EBUSY;
123 }
124 }
125 KASSERT(aio_jobs_count == 0);
126 exithook_disestablish(aio_ehook);
127 pool_destroy(&aio_job_pool);
128 pool_destroy(&aio_lio_pool);
129 return 0;
130 }
131
132 /*
133 * Initialize global AIO state.
134 */
135 static int
136 aio_init(void)
137 {
138 int error;
139
140 pool_init(&aio_job_pool, sizeof(struct aio_job), 0, 0, 0,
141 "aio_jobs_pool", &pool_allocator_nointr, IPL_NONE);
142 pool_init(&aio_lio_pool, sizeof(struct lio_req), 0, 0, 0,
143 "aio_lio_pool", &pool_allocator_nointr, IPL_NONE);
144 aio_ehook = exithook_establish(aio_exit, NULL);
145 error = syscall_establish(NULL, aio_syscalls);
146 if (error != 0)
147 aio_fini(false);
148 return error;
149 }
150
151 /*
152 * Module interface.
153 */
154 static int
155 aio_modcmd(modcmd_t cmd, void *arg)
156 {
157
158 switch (cmd) {
159 case MODULE_CMD_INIT:
160 return aio_init();
161 case MODULE_CMD_FINI:
162 return aio_fini(true);
163 default:
164 return ENOTTY;
165 }
166 }
167
168 /*
169 * Initialize Asynchronous I/O data structures for the process.
170 */
171 static int
172 aio_procinit(struct proc *p)
173 {
174 struct aioproc *aio;
175 struct lwp *l;
176 int error;
177 vaddr_t uaddr;
178
179 /* Allocate and initialize AIO structure */
180 aio = kmem_zalloc(sizeof(struct aioproc), KM_SLEEP);
181 if (aio == NULL)
182 return EAGAIN;
183
184 /* Initialize queue and their synchronization structures */
185 mutex_init(&aio->aio_mtx, MUTEX_DEFAULT, IPL_NONE);
186 cv_init(&aio->aio_worker_cv, "aiowork");
187 cv_init(&aio->done_cv, "aiodone");
188 TAILQ_INIT(&aio->jobs_queue);
189
190 /*
191 * Create an AIO worker thread.
192 * XXX: Currently, AIO thread is not protected against user's actions.
193 */
194 uaddr = uvm_uarea_alloc();
195 if (uaddr == 0) {
196 aio_exit(p, aio);
197 return EAGAIN;
198 }
199 error = lwp_create(curlwp, p, uaddr, 0, NULL, 0, aio_worker,
200 NULL, &l, curlwp->l_class);
201 if (error != 0) {
202 uvm_uarea_free(uaddr);
203 aio_exit(p, aio);
204 return error;
205 }
206
207 /* Recheck if we are really first */
208 mutex_enter(p->p_lock);
209 if (p->p_aio) {
210 mutex_exit(p->p_lock);
211 aio_exit(p, aio);
212 lwp_exit(l);
213 return 0;
214 }
215 p->p_aio = aio;
216
217 /* Complete the initialization of thread, and run it */
218 aio->aio_worker = l;
219 p->p_nrlwps++;
220 lwp_lock(l);
221 l->l_stat = LSRUN;
222 l->l_priority = MAXPRI_USER;
223 sched_enqueue(l, false);
224 lwp_unlock(l);
225 mutex_exit(p->p_lock);
226
227 return 0;
228 }
229
230 /*
231 * Exit of Asynchronous I/O subsystem of process.
232 */
233 static void
234 aio_exit(struct proc *p, void *cookie)
235 {
236 struct aio_job *a_job;
237 struct aioproc *aio;
238
239 if (cookie != NULL)
240 aio = cookie;
241 else if ((aio = p->p_aio) == NULL)
242 return;
243
244 /* Free AIO queue */
245 while (!TAILQ_EMPTY(&aio->jobs_queue)) {
246 a_job = TAILQ_FIRST(&aio->jobs_queue);
247 TAILQ_REMOVE(&aio->jobs_queue, a_job, list);
248 pool_put(&aio_job_pool, a_job);
249 atomic_dec_uint(&aio_jobs_count);
250 }
251
252 /* Destroy and free the entire AIO data structure */
253 cv_destroy(&aio->aio_worker_cv);
254 cv_destroy(&aio->done_cv);
255 mutex_destroy(&aio->aio_mtx);
256 kmem_free(aio, sizeof(struct aioproc));
257 }
258
259 /*
260 * AIO worker thread and processor.
261 */
262 static void
263 aio_worker(void *arg)
264 {
265 struct proc *p = curlwp->l_proc;
266 struct aioproc *aio = p->p_aio;
267 struct aio_job *a_job;
268 struct lio_req *lio;
269 sigset_t oss, nss;
270 int error, refcnt;
271
272 /*
273 * Make an empty signal mask, so it
274 * handles only SIGKILL and SIGSTOP.
275 */
276 sigfillset(&nss);
277 mutex_enter(p->p_lock);
278 error = sigprocmask1(curlwp, SIG_SETMASK, &nss, &oss);
279 mutex_exit(p->p_lock);
280 KASSERT(error == 0);
281
282 for (;;) {
283 /*
284 * Loop for each job in the queue. If there
285 * are no jobs then sleep.
286 */
287 mutex_enter(&aio->aio_mtx);
288 while ((a_job = TAILQ_FIRST(&aio->jobs_queue)) == NULL) {
289 if (cv_wait_sig(&aio->aio_worker_cv, &aio->aio_mtx)) {
290 /*
291 * Thread was interrupted - check for
292 * pending exit or suspend.
293 */
294 mutex_exit(&aio->aio_mtx);
295 lwp_userret(curlwp);
296 mutex_enter(&aio->aio_mtx);
297 }
298 }
299
300 /* Take the job from the queue */
301 aio->curjob = a_job;
302 TAILQ_REMOVE(&aio->jobs_queue, a_job, list);
303
304 atomic_dec_uint(&aio_jobs_count);
305 aio->jobs_count--;
306
307 mutex_exit(&aio->aio_mtx);
308
309 /* Process an AIO operation */
310 aio_process(a_job);
311
312 /* Copy data structure back to the user-space */
313 (void)copyout(&a_job->aiocbp, a_job->aiocb_uptr,
314 sizeof(struct aiocb));
315
316 mutex_enter(&aio->aio_mtx);
317 aio->curjob = NULL;
318
319 /* Decrease a reference counter, if there is a LIO structure */
320 lio = a_job->lio;
321 refcnt = (lio != NULL ? --lio->refcnt : -1);
322
323 /* Notify all suspenders */
324 cv_broadcast(&aio->done_cv);
325 mutex_exit(&aio->aio_mtx);
326
327 /* Send a signal, if any */
328 aio_sendsig(p, &a_job->aiocbp.aio_sigevent);
329
330 /* Destroy the LIO structure */
331 if (refcnt == 0) {
332 aio_sendsig(p, &lio->sig);
333 pool_put(&aio_lio_pool, lio);
334 }
335
336 /* Destroy the job */
337 pool_put(&aio_job_pool, a_job);
338 }
339
340 /* NOTREACHED */
341 }
342
343 static void
344 aio_process(struct aio_job *a_job)
345 {
346 struct proc *p = curlwp->l_proc;
347 struct aiocb *aiocbp = &a_job->aiocbp;
348 struct file *fp;
349 int fd = aiocbp->aio_fildes;
350 int error = 0;
351
352 KASSERT(a_job->aio_op != 0);
353
354 if ((a_job->aio_op & (AIO_READ | AIO_WRITE)) != 0) {
355 struct iovec aiov;
356 struct uio auio;
357
358 if (aiocbp->aio_nbytes > SSIZE_MAX) {
359 error = EINVAL;
360 goto done;
361 }
362
363 fp = fd_getfile(fd);
364 if (fp == NULL) {
365 error = EBADF;
366 goto done;
367 }
368
369 aiov.iov_base = (void *)(uintptr_t)aiocbp->aio_buf;
370 aiov.iov_len = aiocbp->aio_nbytes;
371 auio.uio_iov = &aiov;
372 auio.uio_iovcnt = 1;
373 auio.uio_resid = aiocbp->aio_nbytes;
374 auio.uio_vmspace = p->p_vmspace;
375
376 if (a_job->aio_op & AIO_READ) {
377 /*
378 * Perform a Read operation
379 */
380 KASSERT((a_job->aio_op & AIO_WRITE) == 0);
381
382 if ((fp->f_flag & FREAD) == 0) {
383 fd_putfile(fd);
384 error = EBADF;
385 goto done;
386 }
387 auio.uio_rw = UIO_READ;
388 error = (*fp->f_ops->fo_read)(fp, &aiocbp->aio_offset,
389 &auio, fp->f_cred, FOF_UPDATE_OFFSET);
390 } else {
391 /*
392 * Perform a Write operation
393 */
394 KASSERT(a_job->aio_op & AIO_WRITE);
395
396 if ((fp->f_flag & FWRITE) == 0) {
397 fd_putfile(fd);
398 error = EBADF;
399 goto done;
400 }
401 auio.uio_rw = UIO_WRITE;
402 error = (*fp->f_ops->fo_write)(fp, &aiocbp->aio_offset,
403 &auio, fp->f_cred, FOF_UPDATE_OFFSET);
404 }
405 fd_putfile(fd);
406
407 /* Store the result value */
408 a_job->aiocbp.aio_nbytes -= auio.uio_resid;
409 a_job->aiocbp._retval = (error == 0) ?
410 a_job->aiocbp.aio_nbytes : -1;
411
412 } else if ((a_job->aio_op & (AIO_SYNC | AIO_DSYNC)) != 0) {
413 /*
414 * Perform a file Sync operation
415 */
416 struct vnode *vp;
417
418 if ((error = fd_getvnode(fd, &fp)) != 0)
419 goto done;
420
421 if ((fp->f_flag & FWRITE) == 0) {
422 fd_putfile(fd);
423 error = EBADF;
424 goto done;
425 }
426
427 vp = (struct vnode *)fp->f_data;
428 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
429 if (a_job->aio_op & AIO_DSYNC) {
430 error = VOP_FSYNC(vp, fp->f_cred,
431 FSYNC_WAIT | FSYNC_DATAONLY, 0, 0);
432 } else if (a_job->aio_op & AIO_SYNC) {
433 error = VOP_FSYNC(vp, fp->f_cred,
434 FSYNC_WAIT, 0, 0);
435 }
436 VOP_UNLOCK(vp, 0);
437 fd_putfile(fd);
438
439 /* Store the result value */
440 a_job->aiocbp._retval = (error == 0) ? 0 : -1;
441
442 } else
443 panic("aio_process: invalid operation code\n");
444
445 done:
446 /* Job is done, set the error, if any */
447 a_job->aiocbp._errno = error;
448 a_job->aiocbp._state = JOB_DONE;
449 }
450
451 /*
452 * Send AIO signal.
453 */
454 static void
455 aio_sendsig(struct proc *p, struct sigevent *sig)
456 {
457 ksiginfo_t ksi;
458
459 if (sig->sigev_signo == 0 || sig->sigev_notify == SIGEV_NONE)
460 return;
461
462 KSI_INIT(&ksi);
463 ksi.ksi_signo = sig->sigev_signo;
464 ksi.ksi_code = SI_ASYNCIO;
465 ksi.ksi_value = sig->sigev_value;
466 mutex_enter(proc_lock);
467 kpsignal(p, &ksi, NULL);
468 mutex_exit(proc_lock);
469 }
470
471 /*
472 * Enqueue the job.
473 */
474 static int
475 aio_enqueue_job(int op, void *aiocb_uptr, struct lio_req *lio)
476 {
477 struct proc *p = curlwp->l_proc;
478 struct aioproc *aio;
479 struct aio_job *a_job;
480 struct aiocb aiocbp;
481 struct sigevent *sig;
482 int error;
483
484 /* Non-accurate check for the limit */
485 if (aio_jobs_count + 1 > aio_max)
486 return EAGAIN;
487
488 /* Get the data structure from user-space */
489 error = copyin(aiocb_uptr, &aiocbp, sizeof(struct aiocb));
490 if (error)
491 return error;
492
493 /* Check if signal is set, and validate it */
494 sig = &aiocbp.aio_sigevent;
495 if (sig->sigev_signo < 0 || sig->sigev_signo >= NSIG ||
496 sig->sigev_notify < SIGEV_NONE || sig->sigev_notify > SIGEV_SA)
497 return EINVAL;
498
499 /* Buffer and byte count */
500 if (((AIO_SYNC | AIO_DSYNC) & op) == 0)
501 if (aiocbp.aio_buf == NULL || aiocbp.aio_nbytes > SSIZE_MAX)
502 return EINVAL;
503
504 /* Check the opcode, if LIO_NOP - simply ignore */
505 if (op == AIO_LIO) {
506 KASSERT(lio != NULL);
507 if (aiocbp.aio_lio_opcode == LIO_WRITE)
508 op = AIO_WRITE;
509 else if (aiocbp.aio_lio_opcode == LIO_READ)
510 op = AIO_READ;
511 else
512 return (aiocbp.aio_lio_opcode == LIO_NOP) ? 0 : EINVAL;
513 } else {
514 KASSERT(lio == NULL);
515 }
516
517 /*
518 * Look for already existing job. If found - the job is in-progress.
519 * According to POSIX this is invalid, so return the error.
520 */
521 aio = p->p_aio;
522 if (aio) {
523 mutex_enter(&aio->aio_mtx);
524 if (aio->curjob) {
525 a_job = aio->curjob;
526 if (a_job->aiocb_uptr == aiocb_uptr) {
527 mutex_exit(&aio->aio_mtx);
528 return EINVAL;
529 }
530 }
531 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) {
532 if (a_job->aiocb_uptr != aiocb_uptr)
533 continue;
534 mutex_exit(&aio->aio_mtx);
535 return EINVAL;
536 }
537 mutex_exit(&aio->aio_mtx);
538 }
539
540 /*
541 * Check if AIO structure is initialized, if not - initialize it.
542 * In LIO case, we did that already. We will recheck this with
543 * the lock in aio_procinit().
544 */
545 if (lio == NULL && p->p_aio == NULL)
546 if (aio_procinit(p))
547 return EAGAIN;
548 aio = p->p_aio;
549
550 /*
551 * Set the state with errno, and copy data
552 * structure back to the user-space.
553 */
554 aiocbp._state = JOB_WIP;
555 aiocbp._errno = EINPROGRESS;
556 aiocbp._retval = -1;
557 error = copyout(&aiocbp, aiocb_uptr, sizeof(struct aiocb));
558 if (error)
559 return error;
560
561 /* Allocate and initialize a new AIO job */
562 a_job = pool_get(&aio_job_pool, PR_WAITOK);
563 memset(a_job, 0, sizeof(struct aio_job));
564
565 /*
566 * Set the data.
567 * Store the user-space pointer for searching. Since we
568 * are storing only per proc pointers - it is safe.
569 */
570 memcpy(&a_job->aiocbp, &aiocbp, sizeof(struct aiocb));
571 a_job->aiocb_uptr = aiocb_uptr;
572 a_job->aio_op |= op;
573 a_job->lio = lio;
574
575 /*
576 * Add the job to the queue, update the counters, and
577 * notify the AIO worker thread to handle the job.
578 */
579 mutex_enter(&aio->aio_mtx);
580
581 /* Fail, if the limit was reached */
582 if (atomic_inc_uint_nv(&aio_jobs_count) > aio_max ||
583 aio->jobs_count >= aio_listio_max) {
584 atomic_dec_uint(&aio_jobs_count);
585 mutex_exit(&aio->aio_mtx);
586 pool_put(&aio_job_pool, a_job);
587 return EAGAIN;
588 }
589
590 TAILQ_INSERT_TAIL(&aio->jobs_queue, a_job, list);
591 aio->jobs_count++;
592 if (lio)
593 lio->refcnt++;
594 cv_signal(&aio->aio_worker_cv);
595
596 mutex_exit(&aio->aio_mtx);
597
598 /*
599 * One would handle the errors only with aio_error() function.
600 * This way is appropriate according to POSIX.
601 */
602 return 0;
603 }
604
605 /*
606 * Syscall functions.
607 */
608
609 int
610 sys_aio_cancel(struct lwp *l, const struct sys_aio_cancel_args *uap,
611 register_t *retval)
612 {
613 /* {
614 syscallarg(int) fildes;
615 syscallarg(struct aiocb *) aiocbp;
616 } */
617 struct proc *p = l->l_proc;
618 struct aioproc *aio;
619 struct aio_job *a_job;
620 struct aiocb *aiocbp_ptr;
621 struct lio_req *lio;
622 struct filedesc *fdp = p->p_fd;
623 unsigned int cn, errcnt, fildes;
624 fdtab_t *dt;
625
626 TAILQ_HEAD(, aio_job) tmp_jobs_list;
627
628 /* Check for invalid file descriptor */
629 fildes = (unsigned int)SCARG(uap, fildes);
630 dt = fdp->fd_dt;
631 if (fildes >= dt->dt_nfiles)
632 return EBADF;
633 if (dt->dt_ff[fildes] == NULL || dt->dt_ff[fildes]->ff_file == NULL)
634 return EBADF;
635
636 /* Check if AIO structure is initialized */
637 if (p->p_aio == NULL) {
638 *retval = AIO_NOTCANCELED;
639 return 0;
640 }
641
642 aio = p->p_aio;
643 aiocbp_ptr = (struct aiocb *)SCARG(uap, aiocbp);
644
645 mutex_enter(&aio->aio_mtx);
646
647 /* Cancel the jobs, and remove them from the queue */
648 cn = 0;
649 TAILQ_INIT(&tmp_jobs_list);
650 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) {
651 if (aiocbp_ptr) {
652 if (aiocbp_ptr != a_job->aiocb_uptr)
653 continue;
654 if (fildes != a_job->aiocbp.aio_fildes) {
655 mutex_exit(&aio->aio_mtx);
656 return EBADF;
657 }
658 } else if (a_job->aiocbp.aio_fildes != fildes)
659 continue;
660
661 TAILQ_REMOVE(&aio->jobs_queue, a_job, list);
662 TAILQ_INSERT_TAIL(&tmp_jobs_list, a_job, list);
663
664 /* Decrease the counters */
665 atomic_dec_uint(&aio_jobs_count);
666 aio->jobs_count--;
667 lio = a_job->lio;
668 if (lio != NULL && --lio->refcnt != 0)
669 a_job->lio = NULL;
670
671 cn++;
672 if (aiocbp_ptr)
673 break;
674 }
675
676 /* There are canceled jobs */
677 if (cn)
678 *retval = AIO_CANCELED;
679
680 /* We cannot cancel current job */
681 a_job = aio->curjob;
682 if (a_job && ((a_job->aiocbp.aio_fildes == fildes) ||
683 (a_job->aiocb_uptr == aiocbp_ptr)))
684 *retval = AIO_NOTCANCELED;
685
686 mutex_exit(&aio->aio_mtx);
687
688 /* Free the jobs after the lock */
689 errcnt = 0;
690 while (!TAILQ_EMPTY(&tmp_jobs_list)) {
691 a_job = TAILQ_FIRST(&tmp_jobs_list);
692 TAILQ_REMOVE(&tmp_jobs_list, a_job, list);
693 /* Set the errno and copy structures back to the user-space */
694 a_job->aiocbp._errno = ECANCELED;
695 a_job->aiocbp._state = JOB_DONE;
696 if (copyout(&a_job->aiocbp, a_job->aiocb_uptr,
697 sizeof(struct aiocb)))
698 errcnt++;
699 /* Send a signal if any */
700 aio_sendsig(p, &a_job->aiocbp.aio_sigevent);
701 if (a_job->lio) {
702 lio = a_job->lio;
703 aio_sendsig(p, &lio->sig);
704 pool_put(&aio_lio_pool, lio);
705 }
706 pool_put(&aio_job_pool, a_job);
707 }
708
709 if (errcnt)
710 return EFAULT;
711
712 /* Set a correct return value */
713 if (*retval == 0)
714 *retval = AIO_ALLDONE;
715
716 return 0;
717 }
718
719 int
720 sys_aio_error(struct lwp *l, const struct sys_aio_error_args *uap,
721 register_t *retval)
722 {
723 /* {
724 syscallarg(const struct aiocb *) aiocbp;
725 } */
726 struct proc *p = l->l_proc;
727 struct aioproc *aio = p->p_aio;
728 struct aiocb aiocbp;
729 int error;
730
731 if (aio == NULL)
732 return EINVAL;
733
734 error = copyin(SCARG(uap, aiocbp), &aiocbp, sizeof(struct aiocb));
735 if (error)
736 return error;
737
738 if (aiocbp._state == JOB_NONE)
739 return EINVAL;
740
741 *retval = aiocbp._errno;
742
743 return 0;
744 }
745
746 int
747 sys_aio_fsync(struct lwp *l, const struct sys_aio_fsync_args *uap,
748 register_t *retval)
749 {
750 /* {
751 syscallarg(int) op;
752 syscallarg(struct aiocb *) aiocbp;
753 } */
754 int op = SCARG(uap, op);
755
756 if ((op != O_DSYNC) && (op != O_SYNC))
757 return EINVAL;
758
759 op = O_DSYNC ? AIO_DSYNC : AIO_SYNC;
760
761 return aio_enqueue_job(op, SCARG(uap, aiocbp), NULL);
762 }
763
764 int
765 sys_aio_read(struct lwp *l, const struct sys_aio_read_args *uap,
766 register_t *retval)
767 {
768 /* {
769 syscallarg(struct aiocb *) aiocbp;
770 } */
771
772 return aio_enqueue_job(AIO_READ, SCARG(uap, aiocbp), NULL);
773 }
774
775 int
776 sys_aio_return(struct lwp *l, const struct sys_aio_return_args *uap,
777 register_t *retval)
778 {
779 /* {
780 syscallarg(struct aiocb *) aiocbp;
781 } */
782 struct proc *p = l->l_proc;
783 struct aioproc *aio = p->p_aio;
784 struct aiocb aiocbp;
785 int error;
786
787 if (aio == NULL)
788 return EINVAL;
789
790 error = copyin(SCARG(uap, aiocbp), &aiocbp, sizeof(struct aiocb));
791 if (error)
792 return error;
793
794 if (aiocbp._errno == EINPROGRESS || aiocbp._state != JOB_DONE)
795 return EINVAL;
796
797 *retval = aiocbp._retval;
798
799 /* Reset the internal variables */
800 aiocbp._errno = 0;
801 aiocbp._retval = -1;
802 aiocbp._state = JOB_NONE;
803 error = copyout(&aiocbp, SCARG(uap, aiocbp), sizeof(struct aiocb));
804
805 return error;
806 }
807
808 int
809 sys___aio_suspend50(struct lwp *l, const struct sys___aio_suspend50_args *uap,
810 register_t *retval)
811 {
812 /* {
813 syscallarg(const struct aiocb *const[]) list;
814 syscallarg(int) nent;
815 syscallarg(const struct timespec *) timeout;
816 } */
817 struct aiocb **list;
818 struct timespec ts;
819 int error, nent;
820
821 nent = SCARG(uap, nent);
822 if (nent <= 0 || nent > aio_listio_max)
823 return EAGAIN;
824
825 if (SCARG(uap, timeout)) {
826 /* Convert timespec to ticks */
827 error = copyin(SCARG(uap, timeout), &ts,
828 sizeof(struct timespec));
829 if (error)
830 return error;
831 }
832
833 list = kmem_alloc(nent * sizeof(*list), KM_SLEEP);
834 error = copyin(SCARG(uap, list), list, nent * sizeof(*list));
835 if (error)
836 goto out;
837 error = aio_suspend1(l, list, nent, SCARG(uap, timeout) ? &ts : NULL);
838 out:
839 kmem_free(list, nent * sizeof(*list));
840 return error;
841 }
842
843 int
844 aio_suspend1(struct lwp *l, struct aiocb **aiocbp_list, int nent,
845 struct timespec *ts)
846 {
847 struct proc *p = l->l_proc;
848 struct aioproc *aio;
849 struct aio_job *a_job;
850 int i, error, timo;
851
852 if (p->p_aio == NULL)
853 return EAGAIN;
854 aio = p->p_aio;
855
856 if (ts) {
857 timo = mstohz((ts->tv_sec * 1000) + (ts->tv_nsec / 1000000));
858 if (timo == 0 && ts->tv_sec == 0 && ts->tv_nsec > 0)
859 timo = 1;
860 if (timo <= 0)
861 return EAGAIN;
862 } else
863 timo = 0;
864
865 mutex_enter(&aio->aio_mtx);
866 for (;;) {
867 for (i = 0; i < nent; i++) {
868
869 /* Skip NULL entries */
870 if (aiocbp_list[i] == NULL)
871 continue;
872
873 /* Skip current job */
874 if (aio->curjob) {
875 a_job = aio->curjob;
876 if (a_job->aiocb_uptr == aiocbp_list[i])
877 continue;
878 }
879
880 /* Look for a job in the queue */
881 TAILQ_FOREACH(a_job, &aio->jobs_queue, list)
882 if (a_job->aiocb_uptr == aiocbp_list[i])
883 break;
884
885 if (a_job == NULL) {
886 struct aiocb aiocbp;
887
888 mutex_exit(&aio->aio_mtx);
889
890 /* Check if the job is done. */
891 error = copyin(aiocbp_list[i], &aiocbp,
892 sizeof(struct aiocb));
893 if (error == 0 && aiocbp._state != JOB_DONE) {
894 mutex_enter(&aio->aio_mtx);
895 continue;
896 }
897 return error;
898 }
899 }
900
901 /* Wait for a signal or when timeout occurs */
902 error = cv_timedwait_sig(&aio->done_cv, &aio->aio_mtx, timo);
903 if (error) {
904 if (error == EWOULDBLOCK)
905 error = EAGAIN;
906 break;
907 }
908 }
909 mutex_exit(&aio->aio_mtx);
910 return error;
911 }
912
913 int
914 sys_aio_write(struct lwp *l, const struct sys_aio_write_args *uap,
915 register_t *retval)
916 {
917 /* {
918 syscallarg(struct aiocb *) aiocbp;
919 } */
920
921 return aio_enqueue_job(AIO_WRITE, SCARG(uap, aiocbp), NULL);
922 }
923
924 int
925 sys_lio_listio(struct lwp *l, const struct sys_lio_listio_args *uap,
926 register_t *retval)
927 {
928 /* {
929 syscallarg(int) mode;
930 syscallarg(struct aiocb *const[]) list;
931 syscallarg(int) nent;
932 syscallarg(struct sigevent *) sig;
933 } */
934 struct proc *p = l->l_proc;
935 struct aioproc *aio;
936 struct aiocb **aiocbp_list;
937 struct lio_req *lio;
938 int i, error, errcnt, mode, nent;
939
940 mode = SCARG(uap, mode);
941 nent = SCARG(uap, nent);
942
943 /* Non-accurate checks for the limit and invalid values */
944 if (nent < 1 || nent > aio_listio_max)
945 return EINVAL;
946 if (aio_jobs_count + nent > aio_max)
947 return EAGAIN;
948
949 /* Check if AIO structure is initialized, if not - initialize it */
950 if (p->p_aio == NULL)
951 if (aio_procinit(p))
952 return EAGAIN;
953 aio = p->p_aio;
954
955 /* Create a LIO structure */
956 lio = pool_get(&aio_lio_pool, PR_WAITOK);
957 lio->refcnt = 1;
958 error = 0;
959
960 switch (mode) {
961 case LIO_WAIT:
962 memset(&lio->sig, 0, sizeof(struct sigevent));
963 break;
964 case LIO_NOWAIT:
965 /* Check for signal, validate it */
966 if (SCARG(uap, sig)) {
967 struct sigevent *sig = &lio->sig;
968
969 error = copyin(SCARG(uap, sig), &lio->sig,
970 sizeof(struct sigevent));
971 if (error == 0 &&
972 (sig->sigev_signo < 0 ||
973 sig->sigev_signo >= NSIG ||
974 sig->sigev_notify < SIGEV_NONE ||
975 sig->sigev_notify > SIGEV_SA))
976 error = EINVAL;
977 } else
978 memset(&lio->sig, 0, sizeof(struct sigevent));
979 break;
980 default:
981 error = EINVAL;
982 break;
983 }
984
985 if (error != 0) {
986 pool_put(&aio_lio_pool, lio);
987 return error;
988 }
989
990 /* Get the list from user-space */
991 aiocbp_list = kmem_alloc(nent * sizeof(*aiocbp_list), KM_SLEEP);
992 error = copyin(SCARG(uap, list), aiocbp_list,
993 nent * sizeof(*aiocbp_list));
994 if (error) {
995 mutex_enter(&aio->aio_mtx);
996 goto err;
997 }
998
999 /* Enqueue all jobs */
1000 errcnt = 0;
1001 for (i = 0; i < nent; i++) {
1002 error = aio_enqueue_job(AIO_LIO, aiocbp_list[i], lio);
1003 /*
1004 * According to POSIX, in such error case it may
1005 * fail with other I/O operations initiated.
1006 */
1007 if (error)
1008 errcnt++;
1009 }
1010
1011 mutex_enter(&aio->aio_mtx);
1012
1013 /* Return an error, if any */
1014 if (errcnt) {
1015 error = EIO;
1016 goto err;
1017 }
1018
1019 if (mode == LIO_WAIT) {
1020 /*
1021 * Wait for AIO completion. In such case,
1022 * the LIO structure will be freed here.
1023 */
1024 while (lio->refcnt > 1 && error == 0)
1025 error = cv_wait_sig(&aio->done_cv, &aio->aio_mtx);
1026 if (error)
1027 error = EINTR;
1028 }
1029
1030 err:
1031 if (--lio->refcnt != 0)
1032 lio = NULL;
1033 mutex_exit(&aio->aio_mtx);
1034 if (lio != NULL) {
1035 aio_sendsig(p, &lio->sig);
1036 pool_put(&aio_lio_pool, lio);
1037 }
1038 kmem_free(aiocbp_list, nent * sizeof(*aiocbp_list));
1039 return error;
1040 }
1041
1042 /*
1043 * SysCtl
1044 */
1045
1046 static int
1047 sysctl_aio_listio_max(SYSCTLFN_ARGS)
1048 {
1049 struct sysctlnode node;
1050 int error, newsize;
1051
1052 node = *rnode;
1053 node.sysctl_data = &newsize;
1054
1055 newsize = aio_listio_max;
1056 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1057 if (error || newp == NULL)
1058 return error;
1059
1060 if (newsize < 1 || newsize > aio_max)
1061 return EINVAL;
1062 aio_listio_max = newsize;
1063
1064 return 0;
1065 }
1066
1067 static int
1068 sysctl_aio_max(SYSCTLFN_ARGS)
1069 {
1070 struct sysctlnode node;
1071 int error, newsize;
1072
1073 node = *rnode;
1074 node.sysctl_data = &newsize;
1075
1076 newsize = aio_max;
1077 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1078 if (error || newp == NULL)
1079 return error;
1080
1081 if (newsize < 1 || newsize < aio_listio_max)
1082 return EINVAL;
1083 aio_max = newsize;
1084
1085 return 0;
1086 }
1087
1088 SYSCTL_SETUP(sysctl_aio_setup, "sysctl aio setup")
1089 {
1090
1091 sysctl_createv(clog, 0, NULL, NULL,
1092 CTLFLAG_PERMANENT,
1093 CTLTYPE_NODE, "kern", NULL,
1094 NULL, 0, NULL, 0,
1095 CTL_KERN, CTL_EOL);
1096 sysctl_createv(clog, 0, NULL, NULL,
1097 CTLFLAG_PERMANENT | CTLFLAG_IMMEDIATE,
1098 CTLTYPE_INT, "posix_aio",
1099 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
1100 "Asynchronous I/O option to which the "
1101 "system attempts to conform"),
1102 NULL, _POSIX_ASYNCHRONOUS_IO, NULL, 0,
1103 CTL_KERN, CTL_CREATE, CTL_EOL);
1104 sysctl_createv(clog, 0, NULL, NULL,
1105 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1106 CTLTYPE_INT, "aio_listio_max",
1107 SYSCTL_DESCR("Maximum number of asynchronous I/O "
1108 "operations in a single list I/O call"),
1109 sysctl_aio_listio_max, 0, &aio_listio_max, 0,
1110 CTL_KERN, CTL_CREATE, CTL_EOL);
1111 sysctl_createv(clog, 0, NULL, NULL,
1112 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1113 CTLTYPE_INT, "aio_max",
1114 SYSCTL_DESCR("Maximum number of asynchronous I/O "
1115 "operations"),
1116 sysctl_aio_max, 0, &aio_max, 0,
1117 CTL_KERN, CTL_CREATE, CTL_EOL);
1118 }
1119
1120 /*
1121 * Debugging
1122 */
1123 #if defined(DDB)
1124 void
1125 aio_print_jobs(void (*pr)(const char *, ...))
1126 {
1127 struct proc *p = (curlwp == NULL ? NULL : curlwp->l_proc);
1128 struct aioproc *aio;
1129 struct aio_job *a_job;
1130 struct aiocb *aiocbp;
1131
1132 if (p == NULL) {
1133 (*pr)("AIO: We are not in the processes right now.\n");
1134 return;
1135 }
1136
1137 aio = p->p_aio;
1138 if (aio == NULL) {
1139 (*pr)("AIO data is not initialized (PID = %d).\n", p->p_pid);
1140 return;
1141 }
1142
1143 (*pr)("AIO: PID = %d\n", p->p_pid);
1144 (*pr)("AIO: Global count of the jobs = %u\n", aio_jobs_count);
1145 (*pr)("AIO: Count of the jobs = %u\n", aio->jobs_count);
1146
1147 if (aio->curjob) {
1148 a_job = aio->curjob;
1149 (*pr)("\nAIO current job:\n");
1150 (*pr)(" opcode = %d, errno = %d, state = %d, aiocb_ptr = %p\n",
1151 a_job->aio_op, a_job->aiocbp._errno,
1152 a_job->aiocbp._state, a_job->aiocb_uptr);
1153 aiocbp = &a_job->aiocbp;
1154 (*pr)(" fd = %d, offset = %u, buf = %p, nbytes = %u\n",
1155 aiocbp->aio_fildes, aiocbp->aio_offset,
1156 aiocbp->aio_buf, aiocbp->aio_nbytes);
1157 }
1158
1159 (*pr)("\nAIO queue:\n");
1160 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) {
1161 (*pr)(" opcode = %d, errno = %d, state = %d, aiocb_ptr = %p\n",
1162 a_job->aio_op, a_job->aiocbp._errno,
1163 a_job->aiocbp._state, a_job->aiocb_uptr);
1164 aiocbp = &a_job->aiocbp;
1165 (*pr)(" fd = %d, offset = %u, buf = %p, nbytes = %u\n",
1166 aiocbp->aio_fildes, aiocbp->aio_offset,
1167 aiocbp->aio_buf, aiocbp->aio_nbytes);
1168 }
1169 }
1170 #endif /* defined(DDB) */
1171