sys_aio.c revision 1.20 1 /* $NetBSD: sys_aio.c,v 1.20 2008/11/14 23:33:45 ad Exp $ */
2
3 /*
4 * Copyright (c) 2007, Mindaugas Rasiukevicius <rmind at NetBSD org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * Implementation of POSIX asynchronous I/O.
31 * Defined in the Base Definitions volume of IEEE Std 1003.1-2001.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: sys_aio.c,v 1.20 2008/11/14 23:33:45 ad Exp $");
36
37 #ifdef _KERNEL_OPT
38 #include "opt_ddb.h"
39 #endif
40
41 #include <sys/param.h>
42 #include <sys/condvar.h>
43 #include <sys/file.h>
44 #include <sys/filedesc.h>
45 #include <sys/kernel.h>
46 #include <sys/kmem.h>
47 #include <sys/lwp.h>
48 #include <sys/mutex.h>
49 #include <sys/pool.h>
50 #include <sys/proc.h>
51 #include <sys/queue.h>
52 #include <sys/signal.h>
53 #include <sys/signalvar.h>
54 #include <sys/syscall.h>
55 #include <sys/syscallargs.h>
56 #include <sys/syscallvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/systm.h>
59 #include <sys/types.h>
60 #include <sys/vnode.h>
61 #include <sys/atomic.h>
62 #include <sys/module.h>
63
64 #include <uvm/uvm_extern.h>
65
66 MODULE(MODULE_CLASS_MISC, aio, NULL);
67
68 /*
69 * System-wide limits and counter of AIO operations.
70 */
71 static u_int aio_listio_max = AIO_LISTIO_MAX;
72 static u_int aio_max = AIO_MAX;
73 static u_int aio_jobs_count;
74
75 static struct pool aio_job_pool;
76 static struct pool aio_lio_pool;
77 static void *aio_ehook;
78
79 /* Prototypes */
80 void aio_worker(void *);
81 static void aio_process(struct aio_job *);
82 static void aio_sendsig(struct proc *, struct sigevent *);
83 static int aio_enqueue_job(int, void *, struct lio_req *);
84 static void aio_exit(proc_t *, void *);
85
86 static const struct syscall_package aio_syscalls[] = {
87 { SYS_aio_cancel, 0, (sy_call_t *)sys_aio_cancel },
88 { SYS_aio_error, 0, (sy_call_t *)sys_aio_error },
89 { SYS_aio_fsync, 0, (sy_call_t *)sys_aio_fsync },
90 { SYS_aio_read, 0, (sy_call_t *)sys_aio_read },
91 { SYS_aio_return, 0, (sy_call_t *)sys_aio_return },
92 { SYS_aio_suspend, 0, (sy_call_t *)sys_aio_suspend },
93 { SYS_aio_write, 0, (sy_call_t *)sys_aio_write },
94 { SYS_lio_listio, 0, (sy_call_t *)sys_lio_listio },
95 { 0, 0, NULL },
96 };
97
98 /*
99 * Tear down all AIO state.
100 */
101 static int
102 aio_fini(bool interface)
103 {
104 int error;
105 proc_t *p;
106
107 if (interface) {
108 /* Stop syscall activity. */
109 error = syscall_disestablish(NULL, aio_syscalls);
110 if (error != 0)
111 return error;
112 /* Abort if any processes are using AIO. */
113 mutex_enter(proc_lock);
114 PROCLIST_FOREACH(p, &allproc) {
115 if (p->p_aio != NULL)
116 break;
117 }
118 mutex_exit(proc_lock);
119 if (p != NULL) {
120 error = syscall_establish(NULL, aio_syscalls);
121 KASSERT(error == 0);
122 return EBUSY;
123 }
124 }
125 KASSERT(aio_jobs_count == 0);
126 exithook_disestablish(aio_ehook);
127 pool_destroy(&aio_job_pool);
128 pool_destroy(&aio_lio_pool);
129 return 0;
130 }
131
132 /*
133 * Initialize global AIO state.
134 */
135 static int
136 aio_init(void)
137 {
138 int error;
139
140 pool_init(&aio_job_pool, sizeof(struct aio_job), 0, 0, 0,
141 "aio_jobs_pool", &pool_allocator_nointr, IPL_NONE);
142 pool_init(&aio_lio_pool, sizeof(struct lio_req), 0, 0, 0,
143 "aio_lio_pool", &pool_allocator_nointr, IPL_NONE);
144 aio_ehook = exithook_establish(aio_exit, NULL);
145 error = syscall_establish(NULL, aio_syscalls);
146 if (error != 0)
147 aio_fini(false);
148 return error;
149 }
150
151 /*
152 * Module interface.
153 */
154 static int
155 aio_modcmd(modcmd_t cmd, void *arg)
156 {
157
158 switch (cmd) {
159 case MODULE_CMD_INIT:
160 return aio_init();
161 case MODULE_CMD_FINI:
162 return aio_fini(true);
163 default:
164 return ENOTTY;
165 }
166 }
167
168 /*
169 * Initialize Asynchronous I/O data structures for the process.
170 */
171 static int
172 aio_procinit(struct proc *p)
173 {
174 struct aioproc *aio;
175 struct lwp *l;
176 int error;
177 bool inmem;
178 vaddr_t uaddr;
179
180 /* Allocate and initialize AIO structure */
181 aio = kmem_zalloc(sizeof(struct aioproc), KM_SLEEP);
182 if (aio == NULL)
183 return EAGAIN;
184
185 /* Initialize queue and their synchronization structures */
186 mutex_init(&aio->aio_mtx, MUTEX_DEFAULT, IPL_NONE);
187 cv_init(&aio->aio_worker_cv, "aiowork");
188 cv_init(&aio->done_cv, "aiodone");
189 TAILQ_INIT(&aio->jobs_queue);
190
191 /*
192 * Create an AIO worker thread.
193 * XXX: Currently, AIO thread is not protected against user's actions.
194 */
195 inmem = uvm_uarea_alloc(&uaddr);
196 if (uaddr == 0) {
197 aio_exit(p, aio);
198 return EAGAIN;
199 }
200 error = lwp_create(curlwp, p, uaddr, inmem, 0, NULL, 0, aio_worker,
201 NULL, &l, curlwp->l_class);
202 if (error != 0) {
203 uvm_uarea_free(uaddr, curcpu());
204 aio_exit(p, aio);
205 return error;
206 }
207
208 /* Recheck if we are really first */
209 mutex_enter(p->p_lock);
210 if (p->p_aio) {
211 mutex_exit(p->p_lock);
212 aio_exit(p, aio);
213 lwp_exit(l);
214 return 0;
215 }
216 p->p_aio = aio;
217
218 /* Complete the initialization of thread, and run it */
219 aio->aio_worker = l;
220 p->p_nrlwps++;
221 lwp_lock(l);
222 l->l_stat = LSRUN;
223 l->l_priority = MAXPRI_USER;
224 sched_enqueue(l, false);
225 lwp_unlock(l);
226 mutex_exit(p->p_lock);
227
228 return 0;
229 }
230
231 /*
232 * Exit of Asynchronous I/O subsystem of process.
233 */
234 static void
235 aio_exit(struct proc *p, void *cookie)
236 {
237 struct aio_job *a_job;
238 struct aioproc *aio;
239
240 if (cookie != NULL)
241 aio = cookie;
242 else if ((aio = p->p_aio) == NULL)
243 return;
244
245 /* Free AIO queue */
246 while (!TAILQ_EMPTY(&aio->jobs_queue)) {
247 a_job = TAILQ_FIRST(&aio->jobs_queue);
248 TAILQ_REMOVE(&aio->jobs_queue, a_job, list);
249 pool_put(&aio_job_pool, a_job);
250 atomic_dec_uint(&aio_jobs_count);
251 }
252
253 /* Destroy and free the entire AIO data structure */
254 cv_destroy(&aio->aio_worker_cv);
255 cv_destroy(&aio->done_cv);
256 mutex_destroy(&aio->aio_mtx);
257 kmem_free(aio, sizeof(struct aioproc));
258 }
259
260 /*
261 * AIO worker thread and processor.
262 */
263 void
264 aio_worker(void *arg)
265 {
266 struct proc *p = curlwp->l_proc;
267 struct aioproc *aio = p->p_aio;
268 struct aio_job *a_job;
269 struct lio_req *lio;
270 sigset_t oss, nss;
271 int error, refcnt;
272
273 /*
274 * Make an empty signal mask, so it
275 * handles only SIGKILL and SIGSTOP.
276 */
277 sigfillset(&nss);
278 mutex_enter(p->p_lock);
279 error = sigprocmask1(curlwp, SIG_SETMASK, &nss, &oss);
280 mutex_exit(p->p_lock);
281 KASSERT(error == 0);
282
283 for (;;) {
284 /*
285 * Loop for each job in the queue. If there
286 * are no jobs then sleep.
287 */
288 mutex_enter(&aio->aio_mtx);
289 while ((a_job = TAILQ_FIRST(&aio->jobs_queue)) == NULL) {
290 if (cv_wait_sig(&aio->aio_worker_cv, &aio->aio_mtx)) {
291 /*
292 * Thread was interrupted - check for
293 * pending exit or suspend.
294 */
295 mutex_exit(&aio->aio_mtx);
296 lwp_userret(curlwp);
297 mutex_enter(&aio->aio_mtx);
298 }
299 }
300
301 /* Take the job from the queue */
302 aio->curjob = a_job;
303 TAILQ_REMOVE(&aio->jobs_queue, a_job, list);
304
305 atomic_dec_uint(&aio_jobs_count);
306 aio->jobs_count--;
307
308 mutex_exit(&aio->aio_mtx);
309
310 /* Process an AIO operation */
311 aio_process(a_job);
312
313 /* Copy data structure back to the user-space */
314 (void)copyout(&a_job->aiocbp, a_job->aiocb_uptr,
315 sizeof(struct aiocb));
316
317 mutex_enter(&aio->aio_mtx);
318 aio->curjob = NULL;
319
320 /* Decrease a reference counter, if there is a LIO structure */
321 lio = a_job->lio;
322 refcnt = (lio != NULL ? --lio->refcnt : -1);
323
324 /* Notify all suspenders */
325 cv_broadcast(&aio->done_cv);
326 mutex_exit(&aio->aio_mtx);
327
328 /* Send a signal, if any */
329 aio_sendsig(p, &a_job->aiocbp.aio_sigevent);
330
331 /* Destroy the LIO structure */
332 if (refcnt == 0) {
333 aio_sendsig(p, &lio->sig);
334 pool_put(&aio_lio_pool, lio);
335 }
336
337 /* Destroy the the job */
338 pool_put(&aio_job_pool, a_job);
339 }
340
341 /* NOTREACHED */
342 }
343
344 static void
345 aio_process(struct aio_job *a_job)
346 {
347 struct proc *p = curlwp->l_proc;
348 struct aiocb *aiocbp = &a_job->aiocbp;
349 struct file *fp;
350 int fd = aiocbp->aio_fildes;
351 int error = 0;
352
353 KASSERT(a_job->aio_op != 0);
354
355 if ((a_job->aio_op & (AIO_READ | AIO_WRITE)) != 0) {
356 struct iovec aiov;
357 struct uio auio;
358
359 if (aiocbp->aio_nbytes > SSIZE_MAX) {
360 error = EINVAL;
361 goto done;
362 }
363
364 fp = fd_getfile(fd);
365 if (fp == NULL) {
366 error = EBADF;
367 goto done;
368 }
369
370 aiov.iov_base = (void *)(uintptr_t)aiocbp->aio_buf;
371 aiov.iov_len = aiocbp->aio_nbytes;
372 auio.uio_iov = &aiov;
373 auio.uio_iovcnt = 1;
374 auio.uio_resid = aiocbp->aio_nbytes;
375 auio.uio_vmspace = p->p_vmspace;
376
377 if (a_job->aio_op & AIO_READ) {
378 /*
379 * Perform a Read operation
380 */
381 KASSERT((a_job->aio_op & AIO_WRITE) == 0);
382
383 if ((fp->f_flag & FREAD) == 0) {
384 fd_putfile(fd);
385 error = EBADF;
386 goto done;
387 }
388 auio.uio_rw = UIO_READ;
389 error = (*fp->f_ops->fo_read)(fp, &aiocbp->aio_offset,
390 &auio, fp->f_cred, FOF_UPDATE_OFFSET);
391 } else {
392 /*
393 * Perform a Write operation
394 */
395 KASSERT(a_job->aio_op & AIO_WRITE);
396
397 if ((fp->f_flag & FWRITE) == 0) {
398 fd_putfile(fd);
399 error = EBADF;
400 goto done;
401 }
402 auio.uio_rw = UIO_WRITE;
403 error = (*fp->f_ops->fo_write)(fp, &aiocbp->aio_offset,
404 &auio, fp->f_cred, FOF_UPDATE_OFFSET);
405 }
406 fd_putfile(fd);
407
408 /* Store the result value */
409 a_job->aiocbp.aio_nbytes -= auio.uio_resid;
410 a_job->aiocbp._retval = (error == 0) ?
411 a_job->aiocbp.aio_nbytes : -1;
412
413 } else if ((a_job->aio_op & (AIO_SYNC | AIO_DSYNC)) != 0) {
414 /*
415 * Perform a file Sync operation
416 */
417 struct vnode *vp;
418
419 if ((error = fd_getvnode(fd, &fp)) != 0)
420 goto done;
421
422 if ((fp->f_flag & FWRITE) == 0) {
423 fd_putfile(fd);
424 error = EBADF;
425 goto done;
426 }
427
428 vp = (struct vnode *)fp->f_data;
429 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
430 if (a_job->aio_op & AIO_DSYNC) {
431 error = VOP_FSYNC(vp, fp->f_cred,
432 FSYNC_WAIT | FSYNC_DATAONLY, 0, 0);
433 } else if (a_job->aio_op & AIO_SYNC) {
434 error = VOP_FSYNC(vp, fp->f_cred,
435 FSYNC_WAIT, 0, 0);
436 if (error == 0 && bioopsp != NULL &&
437 vp->v_mount &&
438 (vp->v_mount->mnt_flag & MNT_SOFTDEP))
439 bioopsp->io_fsync(vp, 0);
440 }
441 VOP_UNLOCK(vp, 0);
442 fd_putfile(fd);
443
444 /* Store the result value */
445 a_job->aiocbp._retval = (error == 0) ? 0 : -1;
446
447 } else
448 panic("aio_process: invalid operation code\n");
449
450 done:
451 /* Job is done, set the error, if any */
452 a_job->aiocbp._errno = error;
453 a_job->aiocbp._state = JOB_DONE;
454 }
455
456 /*
457 * Send AIO signal.
458 */
459 static void
460 aio_sendsig(struct proc *p, struct sigevent *sig)
461 {
462 ksiginfo_t ksi;
463
464 if (sig->sigev_signo == 0 || sig->sigev_notify == SIGEV_NONE)
465 return;
466
467 KSI_INIT(&ksi);
468 ksi.ksi_signo = sig->sigev_signo;
469 ksi.ksi_code = SI_ASYNCIO;
470 ksi.ksi_value = sig->sigev_value;
471 mutex_enter(proc_lock);
472 kpsignal(p, &ksi, NULL);
473 mutex_exit(proc_lock);
474 }
475
476 /*
477 * Enqueue the job.
478 */
479 static int
480 aio_enqueue_job(int op, void *aiocb_uptr, struct lio_req *lio)
481 {
482 struct proc *p = curlwp->l_proc;
483 struct aioproc *aio;
484 struct aio_job *a_job;
485 struct aiocb aiocbp;
486 struct sigevent *sig;
487 int error;
488
489 /* Non-accurate check for the limit */
490 if (aio_jobs_count + 1 > aio_max)
491 return EAGAIN;
492
493 /* Get the data structure from user-space */
494 error = copyin(aiocb_uptr, &aiocbp, sizeof(struct aiocb));
495 if (error)
496 return error;
497
498 /* Check if signal is set, and validate it */
499 sig = &aiocbp.aio_sigevent;
500 if (sig->sigev_signo < 0 || sig->sigev_signo >= NSIG ||
501 sig->sigev_notify < SIGEV_NONE || sig->sigev_notify > SIGEV_SA)
502 return EINVAL;
503
504 /* Buffer and byte count */
505 if (((AIO_SYNC | AIO_DSYNC) & op) == 0)
506 if (aiocbp.aio_buf == NULL || aiocbp.aio_nbytes > SSIZE_MAX)
507 return EINVAL;
508
509 /* Check the opcode, if LIO_NOP - simply ignore */
510 if (op == AIO_LIO) {
511 KASSERT(lio != NULL);
512 if (aiocbp.aio_lio_opcode == LIO_WRITE)
513 op = AIO_WRITE;
514 else if (aiocbp.aio_lio_opcode == LIO_READ)
515 op = AIO_READ;
516 else
517 return (aiocbp.aio_lio_opcode == LIO_NOP) ? 0 : EINVAL;
518 } else {
519 KASSERT(lio == NULL);
520 }
521
522 /*
523 * Look for already existing job. If found - the job is in-progress.
524 * According to POSIX this is invalid, so return the error.
525 */
526 aio = p->p_aio;
527 if (aio) {
528 mutex_enter(&aio->aio_mtx);
529 if (aio->curjob) {
530 a_job = aio->curjob;
531 if (a_job->aiocb_uptr == aiocb_uptr) {
532 mutex_exit(&aio->aio_mtx);
533 return EINVAL;
534 }
535 }
536 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) {
537 if (a_job->aiocb_uptr != aiocb_uptr)
538 continue;
539 mutex_exit(&aio->aio_mtx);
540 return EINVAL;
541 }
542 mutex_exit(&aio->aio_mtx);
543 }
544
545 /*
546 * Check if AIO structure is initialized, if not - initialize it.
547 * In LIO case, we did that already. We will recheck this with
548 * the lock in aio_procinit().
549 */
550 if (lio == NULL && p->p_aio == NULL)
551 if (aio_procinit(p))
552 return EAGAIN;
553 aio = p->p_aio;
554
555 /*
556 * Set the state with errno, and copy data
557 * structure back to the user-space.
558 */
559 aiocbp._state = JOB_WIP;
560 aiocbp._errno = EINPROGRESS;
561 aiocbp._retval = -1;
562 error = copyout(&aiocbp, aiocb_uptr, sizeof(struct aiocb));
563 if (error)
564 return error;
565
566 /* Allocate and initialize a new AIO job */
567 a_job = pool_get(&aio_job_pool, PR_WAITOK);
568 memset(a_job, 0, sizeof(struct aio_job));
569
570 /*
571 * Set the data.
572 * Store the user-space pointer for searching. Since we
573 * are storing only per proc pointers - it is safe.
574 */
575 memcpy(&a_job->aiocbp, &aiocbp, sizeof(struct aiocb));
576 a_job->aiocb_uptr = aiocb_uptr;
577 a_job->aio_op |= op;
578 a_job->lio = lio;
579
580 /*
581 * Add the job to the queue, update the counters, and
582 * notify the AIO worker thread to handle the job.
583 */
584 mutex_enter(&aio->aio_mtx);
585
586 /* Fail, if the limit was reached */
587 if (atomic_inc_uint_nv(&aio_jobs_count) > aio_max ||
588 aio->jobs_count >= aio_listio_max) {
589 atomic_dec_uint(&aio_jobs_count);
590 mutex_exit(&aio->aio_mtx);
591 pool_put(&aio_job_pool, a_job);
592 return EAGAIN;
593 }
594
595 TAILQ_INSERT_TAIL(&aio->jobs_queue, a_job, list);
596 aio->jobs_count++;
597 if (lio)
598 lio->refcnt++;
599 cv_signal(&aio->aio_worker_cv);
600
601 mutex_exit(&aio->aio_mtx);
602
603 /*
604 * One would handle the errors only with aio_error() function.
605 * This way is appropriate according to POSIX.
606 */
607 return 0;
608 }
609
610 /*
611 * Syscall functions.
612 */
613
614 int
615 sys_aio_cancel(struct lwp *l, const struct sys_aio_cancel_args *uap, register_t *retval)
616 {
617 /* {
618 syscallarg(int) fildes;
619 syscallarg(struct aiocb *) aiocbp;
620 } */
621 struct proc *p = l->l_proc;
622 struct aioproc *aio;
623 struct aio_job *a_job;
624 struct aiocb *aiocbp_ptr;
625 struct lio_req *lio;
626 struct filedesc *fdp = p->p_fd;
627 unsigned int cn, errcnt, fildes;
628
629 TAILQ_HEAD(, aio_job) tmp_jobs_list;
630
631 /* Check for invalid file descriptor */
632 fildes = (unsigned int)SCARG(uap, fildes);
633 if (fildes >= fdp->fd_nfiles)
634 return EBADF;
635 membar_consumer();
636 if (fdp->fd_ofiles[fildes] == NULL || fdp->fd_ofiles[fildes]->ff_file == NULL)
637 return EBADF;
638
639 /* Check if AIO structure is initialized */
640 if (p->p_aio == NULL) {
641 *retval = AIO_NOTCANCELED;
642 return 0;
643 }
644
645 aio = p->p_aio;
646 aiocbp_ptr = (struct aiocb *)SCARG(uap, aiocbp);
647
648 mutex_enter(&aio->aio_mtx);
649
650 /* Cancel the jobs, and remove them from the queue */
651 cn = 0;
652 TAILQ_INIT(&tmp_jobs_list);
653 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) {
654 if (aiocbp_ptr) {
655 if (aiocbp_ptr != a_job->aiocb_uptr)
656 continue;
657 if (fildes != a_job->aiocbp.aio_fildes) {
658 mutex_exit(&aio->aio_mtx);
659 return EBADF;
660 }
661 } else if (a_job->aiocbp.aio_fildes != fildes)
662 continue;
663
664 TAILQ_REMOVE(&aio->jobs_queue, a_job, list);
665 TAILQ_INSERT_TAIL(&tmp_jobs_list, a_job, list);
666
667 /* Decrease the counters */
668 atomic_dec_uint(&aio_jobs_count);
669 aio->jobs_count--;
670 lio = a_job->lio;
671 if (lio != NULL && --lio->refcnt != 0)
672 a_job->lio = NULL;
673
674 cn++;
675 if (aiocbp_ptr)
676 break;
677 }
678
679 /* There are canceled jobs */
680 if (cn)
681 *retval = AIO_CANCELED;
682
683 /* We cannot cancel current job */
684 a_job = aio->curjob;
685 if (a_job && ((a_job->aiocbp.aio_fildes == fildes) ||
686 (a_job->aiocb_uptr == aiocbp_ptr)))
687 *retval = AIO_NOTCANCELED;
688
689 mutex_exit(&aio->aio_mtx);
690
691 /* Free the jobs after the lock */
692 errcnt = 0;
693 while (!TAILQ_EMPTY(&tmp_jobs_list)) {
694 a_job = TAILQ_FIRST(&tmp_jobs_list);
695 TAILQ_REMOVE(&tmp_jobs_list, a_job, list);
696 /* Set the errno and copy structures back to the user-space */
697 a_job->aiocbp._errno = ECANCELED;
698 a_job->aiocbp._state = JOB_DONE;
699 if (copyout(&a_job->aiocbp, a_job->aiocb_uptr,
700 sizeof(struct aiocb)))
701 errcnt++;
702 /* Send a signal if any */
703 aio_sendsig(p, &a_job->aiocbp.aio_sigevent);
704 if (a_job->lio) {
705 lio = a_job->lio;
706 aio_sendsig(p, &lio->sig);
707 pool_put(&aio_lio_pool, lio);
708 }
709 pool_put(&aio_job_pool, a_job);
710 }
711
712 if (errcnt)
713 return EFAULT;
714
715 /* Set a correct return value */
716 if (*retval == 0)
717 *retval = AIO_ALLDONE;
718
719 return 0;
720 }
721
722 int
723 sys_aio_error(struct lwp *l, const struct sys_aio_error_args *uap, register_t *retval)
724 {
725 /* {
726 syscallarg(const struct aiocb *) aiocbp;
727 } */
728 struct proc *p = l->l_proc;
729 struct aioproc *aio = p->p_aio;
730 struct aiocb aiocbp;
731 int error;
732
733 if (aio == NULL)
734 return EINVAL;
735
736 error = copyin(SCARG(uap, aiocbp), &aiocbp, sizeof(struct aiocb));
737 if (error)
738 return error;
739
740 if (aiocbp._state == JOB_NONE)
741 return EINVAL;
742
743 *retval = aiocbp._errno;
744
745 return 0;
746 }
747
748 int
749 sys_aio_fsync(struct lwp *l, const struct sys_aio_fsync_args *uap, register_t *retval)
750 {
751 /* {
752 syscallarg(int) op;
753 syscallarg(struct aiocb *) aiocbp;
754 } */
755 int op = SCARG(uap, op);
756
757 if ((op != O_DSYNC) && (op != O_SYNC))
758 return EINVAL;
759
760 op = O_DSYNC ? AIO_DSYNC : AIO_SYNC;
761
762 return aio_enqueue_job(op, SCARG(uap, aiocbp), NULL);
763 }
764
765 int
766 sys_aio_read(struct lwp *l, const struct sys_aio_read_args *uap, register_t *retval)
767 {
768 /* {
769 syscallarg(struct aiocb *) aiocbp;
770 } */
771
772 return aio_enqueue_job(AIO_READ, SCARG(uap, aiocbp), NULL);
773 }
774
775 int
776 sys_aio_return(struct lwp *l, const struct sys_aio_return_args *uap, register_t *retval)
777 {
778 /* {
779 syscallarg(struct aiocb *) aiocbp;
780 } */
781 struct proc *p = l->l_proc;
782 struct aioproc *aio = p->p_aio;
783 struct aiocb aiocbp;
784 int error;
785
786 if (aio == NULL)
787 return EINVAL;
788
789 error = copyin(SCARG(uap, aiocbp), &aiocbp, sizeof(struct aiocb));
790 if (error)
791 return error;
792
793 if (aiocbp._errno == EINPROGRESS || aiocbp._state != JOB_DONE)
794 return EINVAL;
795
796 *retval = aiocbp._retval;
797
798 /* Reset the internal variables */
799 aiocbp._errno = 0;
800 aiocbp._retval = -1;
801 aiocbp._state = JOB_NONE;
802 error = copyout(&aiocbp, SCARG(uap, aiocbp), sizeof(struct aiocb));
803
804 return error;
805 }
806
807 int
808 sys_aio_suspend(struct lwp *l, const struct sys_aio_suspend_args *uap, register_t *retval)
809 {
810 /* {
811 syscallarg(const struct aiocb *const[]) list;
812 syscallarg(int) nent;
813 syscallarg(const struct timespec *) timeout;
814 } */
815 struct proc *p = l->l_proc;
816 struct aioproc *aio;
817 struct aio_job *a_job;
818 struct aiocb **aiocbp_list;
819 struct timespec ts;
820 int i, error, nent, timo;
821
822 if (p->p_aio == NULL)
823 return EAGAIN;
824 aio = p->p_aio;
825
826 nent = SCARG(uap, nent);
827 if (nent <= 0 || nent > aio_listio_max)
828 return EAGAIN;
829
830 if (SCARG(uap, timeout)) {
831 /* Convert timespec to ticks */
832 error = copyin(SCARG(uap, timeout), &ts,
833 sizeof(struct timespec));
834 if (error)
835 return error;
836 timo = mstohz((ts.tv_sec * 1000) + (ts.tv_nsec / 1000000));
837 if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
838 timo = 1;
839 if (timo <= 0)
840 return EAGAIN;
841 } else
842 timo = 0;
843
844 /* Get the list from user-space */
845 aiocbp_list = kmem_zalloc(nent * sizeof(struct aio_job), KM_SLEEP);
846 error = copyin(SCARG(uap, list), aiocbp_list,
847 nent * sizeof(struct aiocb));
848 if (error) {
849 kmem_free(aiocbp_list, nent * sizeof(struct aio_job));
850 return error;
851 }
852
853 mutex_enter(&aio->aio_mtx);
854 for (;;) {
855
856 for (i = 0; i < nent; i++) {
857
858 /* Skip NULL entries */
859 if (aiocbp_list[i] == NULL)
860 continue;
861
862 /* Skip current job */
863 if (aio->curjob) {
864 a_job = aio->curjob;
865 if (a_job->aiocb_uptr == aiocbp_list[i])
866 continue;
867 }
868
869 /* Look for a job in the queue */
870 TAILQ_FOREACH(a_job, &aio->jobs_queue, list)
871 if (a_job->aiocb_uptr == aiocbp_list[i])
872 break;
873
874 if (a_job == NULL) {
875 struct aiocb aiocbp;
876
877 mutex_exit(&aio->aio_mtx);
878
879 error = copyin(aiocbp_list[i], &aiocbp,
880 sizeof(struct aiocb));
881 if (error == 0 && aiocbp._state != JOB_DONE) {
882 mutex_enter(&aio->aio_mtx);
883 continue;
884 }
885
886 kmem_free(aiocbp_list,
887 nent * sizeof(struct aio_job));
888 return error;
889 }
890 }
891
892 /* Wait for a signal or when timeout occurs */
893 error = cv_timedwait_sig(&aio->done_cv, &aio->aio_mtx, timo);
894 if (error) {
895 if (error == EWOULDBLOCK)
896 error = EAGAIN;
897 break;
898 }
899 }
900 mutex_exit(&aio->aio_mtx);
901
902 kmem_free(aiocbp_list, nent * sizeof(struct aio_job));
903 return error;
904 }
905
906 int
907 sys_aio_write(struct lwp *l, const struct sys_aio_write_args *uap, register_t *retval)
908 {
909 /* {
910 syscallarg(struct aiocb *) aiocbp;
911 } */
912
913 return aio_enqueue_job(AIO_WRITE, SCARG(uap, aiocbp), NULL);
914 }
915
916 int
917 sys_lio_listio(struct lwp *l, const struct sys_lio_listio_args *uap, register_t *retval)
918 {
919 /* {
920 syscallarg(int) mode;
921 syscallarg(struct aiocb *const[]) list;
922 syscallarg(int) nent;
923 syscallarg(struct sigevent *) sig;
924 } */
925 struct proc *p = l->l_proc;
926 struct aioproc *aio;
927 struct aiocb **aiocbp_list;
928 struct lio_req *lio;
929 int i, error, errcnt, mode, nent;
930
931 mode = SCARG(uap, mode);
932 nent = SCARG(uap, nent);
933
934 /* Non-accurate checks for the limit and invalid values */
935 if (nent < 1 || nent > aio_listio_max)
936 return EINVAL;
937 if (aio_jobs_count + nent > aio_max)
938 return EAGAIN;
939
940 /* Check if AIO structure is initialized, if not - initialize it */
941 if (p->p_aio == NULL)
942 if (aio_procinit(p))
943 return EAGAIN;
944 aio = p->p_aio;
945
946 /* Create a LIO structure */
947 lio = pool_get(&aio_lio_pool, PR_WAITOK);
948 lio->refcnt = 1;
949 error = 0;
950
951 switch (mode) {
952 case LIO_WAIT:
953 memset(&lio->sig, 0, sizeof(struct sigevent));
954 break;
955 case LIO_NOWAIT:
956 /* Check for signal, validate it */
957 if (SCARG(uap, sig)) {
958 struct sigevent *sig = &lio->sig;
959
960 error = copyin(SCARG(uap, sig), &lio->sig,
961 sizeof(struct sigevent));
962 if (error == 0 &&
963 (sig->sigev_signo < 0 ||
964 sig->sigev_signo >= NSIG ||
965 sig->sigev_notify < SIGEV_NONE ||
966 sig->sigev_notify > SIGEV_SA))
967 error = EINVAL;
968 } else
969 memset(&lio->sig, 0, sizeof(struct sigevent));
970 break;
971 default:
972 error = EINVAL;
973 break;
974 }
975
976 if (error != 0) {
977 pool_put(&aio_lio_pool, lio);
978 return error;
979 }
980
981 /* Get the list from user-space */
982 aiocbp_list = kmem_zalloc(nent * sizeof(struct aio_job), KM_SLEEP);
983 error = copyin(SCARG(uap, list), aiocbp_list,
984 nent * sizeof(struct aiocb));
985 if (error) {
986 mutex_enter(&aio->aio_mtx);
987 goto err;
988 }
989
990 /* Enqueue all jobs */
991 errcnt = 0;
992 for (i = 0; i < nent; i++) {
993 error = aio_enqueue_job(AIO_LIO, aiocbp_list[i], lio);
994 /*
995 * According to POSIX, in such error case it may
996 * fail with other I/O operations initiated.
997 */
998 if (error)
999 errcnt++;
1000 }
1001
1002 mutex_enter(&aio->aio_mtx);
1003
1004 /* Return an error, if any */
1005 if (errcnt) {
1006 error = EIO;
1007 goto err;
1008 }
1009
1010 if (mode == LIO_WAIT) {
1011 /*
1012 * Wait for AIO completion. In such case,
1013 * the LIO structure will be freed here.
1014 */
1015 while (lio->refcnt > 1 && error == 0)
1016 error = cv_wait_sig(&aio->done_cv, &aio->aio_mtx);
1017 if (error)
1018 error = EINTR;
1019 }
1020
1021 err:
1022 if (--lio->refcnt != 0)
1023 lio = NULL;
1024 mutex_exit(&aio->aio_mtx);
1025 if (lio != NULL) {
1026 aio_sendsig(p, &lio->sig);
1027 pool_put(&aio_lio_pool, lio);
1028 }
1029 kmem_free(aiocbp_list, nent * sizeof(struct aio_job));
1030 return error;
1031 }
1032
1033 /*
1034 * SysCtl
1035 */
1036
1037 static int
1038 sysctl_aio_listio_max(SYSCTLFN_ARGS)
1039 {
1040 struct sysctlnode node;
1041 int error, newsize;
1042
1043 node = *rnode;
1044 node.sysctl_data = &newsize;
1045
1046 newsize = aio_listio_max;
1047 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1048 if (error || newp == NULL)
1049 return error;
1050
1051 if (newsize < 1 || newsize > aio_max)
1052 return EINVAL;
1053 aio_listio_max = newsize;
1054
1055 return 0;
1056 }
1057
1058 static int
1059 sysctl_aio_max(SYSCTLFN_ARGS)
1060 {
1061 struct sysctlnode node;
1062 int error, newsize;
1063
1064 node = *rnode;
1065 node.sysctl_data = &newsize;
1066
1067 newsize = aio_max;
1068 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1069 if (error || newp == NULL)
1070 return error;
1071
1072 if (newsize < 1 || newsize < aio_listio_max)
1073 return EINVAL;
1074 aio_max = newsize;
1075
1076 return 0;
1077 }
1078
1079 SYSCTL_SETUP(sysctl_aio_setup, "sysctl aio setup")
1080 {
1081
1082 sysctl_createv(clog, 0, NULL, NULL,
1083 CTLFLAG_PERMANENT,
1084 CTLTYPE_NODE, "kern", NULL,
1085 NULL, 0, NULL, 0,
1086 CTL_KERN, CTL_EOL);
1087 sysctl_createv(clog, 0, NULL, NULL,
1088 CTLFLAG_PERMANENT | CTLFLAG_IMMEDIATE,
1089 CTLTYPE_INT, "posix_aio",
1090 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
1091 "Asynchronous I/O option to which the "
1092 "system attempts to conform"),
1093 NULL, _POSIX_ASYNCHRONOUS_IO, NULL, 0,
1094 CTL_KERN, CTL_CREATE, CTL_EOL);
1095 sysctl_createv(clog, 0, NULL, NULL,
1096 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1097 CTLTYPE_INT, "aio_listio_max",
1098 SYSCTL_DESCR("Maximum number of asynchronous I/O "
1099 "operations in a single list I/O call"),
1100 sysctl_aio_listio_max, 0, &aio_listio_max, 0,
1101 CTL_KERN, CTL_CREATE, CTL_EOL);
1102 sysctl_createv(clog, 0, NULL, NULL,
1103 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1104 CTLTYPE_INT, "aio_max",
1105 SYSCTL_DESCR("Maximum number of asynchronous I/O "
1106 "operations"),
1107 sysctl_aio_max, 0, &aio_max, 0,
1108 CTL_KERN, CTL_CREATE, CTL_EOL);
1109 }
1110
1111 /*
1112 * Debugging
1113 */
1114 #if defined(DDB)
1115 void
1116 aio_print_jobs(void (*pr)(const char *, ...))
1117 {
1118 struct proc *p = (curlwp == NULL ? NULL : curlwp->l_proc);
1119 struct aioproc *aio;
1120 struct aio_job *a_job;
1121 struct aiocb *aiocbp;
1122
1123 if (p == NULL) {
1124 (*pr)("AIO: We are not in the processes right now.\n");
1125 return;
1126 }
1127
1128 aio = p->p_aio;
1129 if (aio == NULL) {
1130 (*pr)("AIO data is not initialized (PID = %d).\n", p->p_pid);
1131 return;
1132 }
1133
1134 (*pr)("AIO: PID = %d\n", p->p_pid);
1135 (*pr)("AIO: Global count of the jobs = %u\n", aio_jobs_count);
1136 (*pr)("AIO: Count of the jobs = %u\n", aio->jobs_count);
1137
1138 if (aio->curjob) {
1139 a_job = aio->curjob;
1140 (*pr)("\nAIO current job:\n");
1141 (*pr)(" opcode = %d, errno = %d, state = %d, aiocb_ptr = %p\n",
1142 a_job->aio_op, a_job->aiocbp._errno,
1143 a_job->aiocbp._state, a_job->aiocb_uptr);
1144 aiocbp = &a_job->aiocbp;
1145 (*pr)(" fd = %d, offset = %u, buf = %p, nbytes = %u\n",
1146 aiocbp->aio_fildes, aiocbp->aio_offset,
1147 aiocbp->aio_buf, aiocbp->aio_nbytes);
1148 }
1149
1150 (*pr)("\nAIO queue:\n");
1151 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) {
1152 (*pr)(" opcode = %d, errno = %d, state = %d, aiocb_ptr = %p\n",
1153 a_job->aio_op, a_job->aiocbp._errno,
1154 a_job->aiocbp._state, a_job->aiocb_uptr);
1155 aiocbp = &a_job->aiocbp;
1156 (*pr)(" fd = %d, offset = %u, buf = %p, nbytes = %u\n",
1157 aiocbp->aio_fildes, aiocbp->aio_offset,
1158 aiocbp->aio_buf, aiocbp->aio_nbytes);
1159 }
1160 }
1161 #endif /* defined(DDB) */
1162