sys_aio.c revision 1.21 1 /* $NetBSD: sys_aio.c,v 1.21 2008/11/16 19:34:29 pooka Exp $ */
2
3 /*
4 * Copyright (c) 2007, Mindaugas Rasiukevicius <rmind at NetBSD org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * Implementation of POSIX asynchronous I/O.
31 * Defined in the Base Definitions volume of IEEE Std 1003.1-2001.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: sys_aio.c,v 1.21 2008/11/16 19:34:29 pooka Exp $");
36
37 #ifdef _KERNEL_OPT
38 #include "opt_ddb.h"
39 #endif
40
41 #include <sys/param.h>
42 #include <sys/condvar.h>
43 #include <sys/file.h>
44 #include <sys/filedesc.h>
45 #include <sys/kernel.h>
46 #include <sys/kmem.h>
47 #include <sys/lwp.h>
48 #include <sys/mutex.h>
49 #include <sys/pool.h>
50 #include <sys/proc.h>
51 #include <sys/queue.h>
52 #include <sys/signal.h>
53 #include <sys/signalvar.h>
54 #include <sys/syscall.h>
55 #include <sys/syscallargs.h>
56 #include <sys/syscallvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/systm.h>
59 #include <sys/types.h>
60 #include <sys/vnode.h>
61 #include <sys/atomic.h>
62 #include <sys/module.h>
63 #include <sys/buf.h>
64
65 #include <uvm/uvm_extern.h>
66
67 MODULE(MODULE_CLASS_MISC, aio, NULL);
68
69 /*
70 * System-wide limits and counter of AIO operations.
71 */
72 static u_int aio_listio_max = AIO_LISTIO_MAX;
73 static u_int aio_max = AIO_MAX;
74 static u_int aio_jobs_count;
75
76 static struct pool aio_job_pool;
77 static struct pool aio_lio_pool;
78 static void *aio_ehook;
79
80 /* Prototypes */
81 void aio_worker(void *);
82 static void aio_process(struct aio_job *);
83 static void aio_sendsig(struct proc *, struct sigevent *);
84 static int aio_enqueue_job(int, void *, struct lio_req *);
85 static void aio_exit(proc_t *, void *);
86
87 static const struct syscall_package aio_syscalls[] = {
88 { SYS_aio_cancel, 0, (sy_call_t *)sys_aio_cancel },
89 { SYS_aio_error, 0, (sy_call_t *)sys_aio_error },
90 { SYS_aio_fsync, 0, (sy_call_t *)sys_aio_fsync },
91 { SYS_aio_read, 0, (sy_call_t *)sys_aio_read },
92 { SYS_aio_return, 0, (sy_call_t *)sys_aio_return },
93 { SYS_aio_suspend, 0, (sy_call_t *)sys_aio_suspend },
94 { SYS_aio_write, 0, (sy_call_t *)sys_aio_write },
95 { SYS_lio_listio, 0, (sy_call_t *)sys_lio_listio },
96 { 0, 0, NULL },
97 };
98
99 /*
100 * Tear down all AIO state.
101 */
102 static int
103 aio_fini(bool interface)
104 {
105 int error;
106 proc_t *p;
107
108 if (interface) {
109 /* Stop syscall activity. */
110 error = syscall_disestablish(NULL, aio_syscalls);
111 if (error != 0)
112 return error;
113 /* Abort if any processes are using AIO. */
114 mutex_enter(proc_lock);
115 PROCLIST_FOREACH(p, &allproc) {
116 if (p->p_aio != NULL)
117 break;
118 }
119 mutex_exit(proc_lock);
120 if (p != NULL) {
121 error = syscall_establish(NULL, aio_syscalls);
122 KASSERT(error == 0);
123 return EBUSY;
124 }
125 }
126 KASSERT(aio_jobs_count == 0);
127 exithook_disestablish(aio_ehook);
128 pool_destroy(&aio_job_pool);
129 pool_destroy(&aio_lio_pool);
130 return 0;
131 }
132
133 /*
134 * Initialize global AIO state.
135 */
136 static int
137 aio_init(void)
138 {
139 int error;
140
141 pool_init(&aio_job_pool, sizeof(struct aio_job), 0, 0, 0,
142 "aio_jobs_pool", &pool_allocator_nointr, IPL_NONE);
143 pool_init(&aio_lio_pool, sizeof(struct lio_req), 0, 0, 0,
144 "aio_lio_pool", &pool_allocator_nointr, IPL_NONE);
145 aio_ehook = exithook_establish(aio_exit, NULL);
146 error = syscall_establish(NULL, aio_syscalls);
147 if (error != 0)
148 aio_fini(false);
149 return error;
150 }
151
152 /*
153 * Module interface.
154 */
155 static int
156 aio_modcmd(modcmd_t cmd, void *arg)
157 {
158
159 switch (cmd) {
160 case MODULE_CMD_INIT:
161 return aio_init();
162 case MODULE_CMD_FINI:
163 return aio_fini(true);
164 default:
165 return ENOTTY;
166 }
167 }
168
169 /*
170 * Initialize Asynchronous I/O data structures for the process.
171 */
172 static int
173 aio_procinit(struct proc *p)
174 {
175 struct aioproc *aio;
176 struct lwp *l;
177 int error;
178 bool inmem;
179 vaddr_t uaddr;
180
181 /* Allocate and initialize AIO structure */
182 aio = kmem_zalloc(sizeof(struct aioproc), KM_SLEEP);
183 if (aio == NULL)
184 return EAGAIN;
185
186 /* Initialize queue and their synchronization structures */
187 mutex_init(&aio->aio_mtx, MUTEX_DEFAULT, IPL_NONE);
188 cv_init(&aio->aio_worker_cv, "aiowork");
189 cv_init(&aio->done_cv, "aiodone");
190 TAILQ_INIT(&aio->jobs_queue);
191
192 /*
193 * Create an AIO worker thread.
194 * XXX: Currently, AIO thread is not protected against user's actions.
195 */
196 inmem = uvm_uarea_alloc(&uaddr);
197 if (uaddr == 0) {
198 aio_exit(p, aio);
199 return EAGAIN;
200 }
201 error = lwp_create(curlwp, p, uaddr, inmem, 0, NULL, 0, aio_worker,
202 NULL, &l, curlwp->l_class);
203 if (error != 0) {
204 uvm_uarea_free(uaddr, curcpu());
205 aio_exit(p, aio);
206 return error;
207 }
208
209 /* Recheck if we are really first */
210 mutex_enter(p->p_lock);
211 if (p->p_aio) {
212 mutex_exit(p->p_lock);
213 aio_exit(p, aio);
214 lwp_exit(l);
215 return 0;
216 }
217 p->p_aio = aio;
218
219 /* Complete the initialization of thread, and run it */
220 aio->aio_worker = l;
221 p->p_nrlwps++;
222 lwp_lock(l);
223 l->l_stat = LSRUN;
224 l->l_priority = MAXPRI_USER;
225 sched_enqueue(l, false);
226 lwp_unlock(l);
227 mutex_exit(p->p_lock);
228
229 return 0;
230 }
231
232 /*
233 * Exit of Asynchronous I/O subsystem of process.
234 */
235 static void
236 aio_exit(struct proc *p, void *cookie)
237 {
238 struct aio_job *a_job;
239 struct aioproc *aio;
240
241 if (cookie != NULL)
242 aio = cookie;
243 else if ((aio = p->p_aio) == NULL)
244 return;
245
246 /* Free AIO queue */
247 while (!TAILQ_EMPTY(&aio->jobs_queue)) {
248 a_job = TAILQ_FIRST(&aio->jobs_queue);
249 TAILQ_REMOVE(&aio->jobs_queue, a_job, list);
250 pool_put(&aio_job_pool, a_job);
251 atomic_dec_uint(&aio_jobs_count);
252 }
253
254 /* Destroy and free the entire AIO data structure */
255 cv_destroy(&aio->aio_worker_cv);
256 cv_destroy(&aio->done_cv);
257 mutex_destroy(&aio->aio_mtx);
258 kmem_free(aio, sizeof(struct aioproc));
259 }
260
261 /*
262 * AIO worker thread and processor.
263 */
264 void
265 aio_worker(void *arg)
266 {
267 struct proc *p = curlwp->l_proc;
268 struct aioproc *aio = p->p_aio;
269 struct aio_job *a_job;
270 struct lio_req *lio;
271 sigset_t oss, nss;
272 int error, refcnt;
273
274 /*
275 * Make an empty signal mask, so it
276 * handles only SIGKILL and SIGSTOP.
277 */
278 sigfillset(&nss);
279 mutex_enter(p->p_lock);
280 error = sigprocmask1(curlwp, SIG_SETMASK, &nss, &oss);
281 mutex_exit(p->p_lock);
282 KASSERT(error == 0);
283
284 for (;;) {
285 /*
286 * Loop for each job in the queue. If there
287 * are no jobs then sleep.
288 */
289 mutex_enter(&aio->aio_mtx);
290 while ((a_job = TAILQ_FIRST(&aio->jobs_queue)) == NULL) {
291 if (cv_wait_sig(&aio->aio_worker_cv, &aio->aio_mtx)) {
292 /*
293 * Thread was interrupted - check for
294 * pending exit or suspend.
295 */
296 mutex_exit(&aio->aio_mtx);
297 lwp_userret(curlwp);
298 mutex_enter(&aio->aio_mtx);
299 }
300 }
301
302 /* Take the job from the queue */
303 aio->curjob = a_job;
304 TAILQ_REMOVE(&aio->jobs_queue, a_job, list);
305
306 atomic_dec_uint(&aio_jobs_count);
307 aio->jobs_count--;
308
309 mutex_exit(&aio->aio_mtx);
310
311 /* Process an AIO operation */
312 aio_process(a_job);
313
314 /* Copy data structure back to the user-space */
315 (void)copyout(&a_job->aiocbp, a_job->aiocb_uptr,
316 sizeof(struct aiocb));
317
318 mutex_enter(&aio->aio_mtx);
319 aio->curjob = NULL;
320
321 /* Decrease a reference counter, if there is a LIO structure */
322 lio = a_job->lio;
323 refcnt = (lio != NULL ? --lio->refcnt : -1);
324
325 /* Notify all suspenders */
326 cv_broadcast(&aio->done_cv);
327 mutex_exit(&aio->aio_mtx);
328
329 /* Send a signal, if any */
330 aio_sendsig(p, &a_job->aiocbp.aio_sigevent);
331
332 /* Destroy the LIO structure */
333 if (refcnt == 0) {
334 aio_sendsig(p, &lio->sig);
335 pool_put(&aio_lio_pool, lio);
336 }
337
338 /* Destroy the the job */
339 pool_put(&aio_job_pool, a_job);
340 }
341
342 /* NOTREACHED */
343 }
344
345 static void
346 aio_process(struct aio_job *a_job)
347 {
348 struct proc *p = curlwp->l_proc;
349 struct aiocb *aiocbp = &a_job->aiocbp;
350 struct file *fp;
351 int fd = aiocbp->aio_fildes;
352 int error = 0;
353
354 KASSERT(a_job->aio_op != 0);
355
356 if ((a_job->aio_op & (AIO_READ | AIO_WRITE)) != 0) {
357 struct iovec aiov;
358 struct uio auio;
359
360 if (aiocbp->aio_nbytes > SSIZE_MAX) {
361 error = EINVAL;
362 goto done;
363 }
364
365 fp = fd_getfile(fd);
366 if (fp == NULL) {
367 error = EBADF;
368 goto done;
369 }
370
371 aiov.iov_base = (void *)(uintptr_t)aiocbp->aio_buf;
372 aiov.iov_len = aiocbp->aio_nbytes;
373 auio.uio_iov = &aiov;
374 auio.uio_iovcnt = 1;
375 auio.uio_resid = aiocbp->aio_nbytes;
376 auio.uio_vmspace = p->p_vmspace;
377
378 if (a_job->aio_op & AIO_READ) {
379 /*
380 * Perform a Read operation
381 */
382 KASSERT((a_job->aio_op & AIO_WRITE) == 0);
383
384 if ((fp->f_flag & FREAD) == 0) {
385 fd_putfile(fd);
386 error = EBADF;
387 goto done;
388 }
389 auio.uio_rw = UIO_READ;
390 error = (*fp->f_ops->fo_read)(fp, &aiocbp->aio_offset,
391 &auio, fp->f_cred, FOF_UPDATE_OFFSET);
392 } else {
393 /*
394 * Perform a Write operation
395 */
396 KASSERT(a_job->aio_op & AIO_WRITE);
397
398 if ((fp->f_flag & FWRITE) == 0) {
399 fd_putfile(fd);
400 error = EBADF;
401 goto done;
402 }
403 auio.uio_rw = UIO_WRITE;
404 error = (*fp->f_ops->fo_write)(fp, &aiocbp->aio_offset,
405 &auio, fp->f_cred, FOF_UPDATE_OFFSET);
406 }
407 fd_putfile(fd);
408
409 /* Store the result value */
410 a_job->aiocbp.aio_nbytes -= auio.uio_resid;
411 a_job->aiocbp._retval = (error == 0) ?
412 a_job->aiocbp.aio_nbytes : -1;
413
414 } else if ((a_job->aio_op & (AIO_SYNC | AIO_DSYNC)) != 0) {
415 /*
416 * Perform a file Sync operation
417 */
418 struct vnode *vp;
419
420 if ((error = fd_getvnode(fd, &fp)) != 0)
421 goto done;
422
423 if ((fp->f_flag & FWRITE) == 0) {
424 fd_putfile(fd);
425 error = EBADF;
426 goto done;
427 }
428
429 vp = (struct vnode *)fp->f_data;
430 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
431 if (a_job->aio_op & AIO_DSYNC) {
432 error = VOP_FSYNC(vp, fp->f_cred,
433 FSYNC_WAIT | FSYNC_DATAONLY, 0, 0);
434 } else if (a_job->aio_op & AIO_SYNC) {
435 error = VOP_FSYNC(vp, fp->f_cred,
436 FSYNC_WAIT, 0, 0);
437 if (error == 0 && bioopsp != NULL &&
438 vp->v_mount &&
439 (vp->v_mount->mnt_flag & MNT_SOFTDEP))
440 bioopsp->io_fsync(vp, 0);
441 }
442 VOP_UNLOCK(vp, 0);
443 fd_putfile(fd);
444
445 /* Store the result value */
446 a_job->aiocbp._retval = (error == 0) ? 0 : -1;
447
448 } else
449 panic("aio_process: invalid operation code\n");
450
451 done:
452 /* Job is done, set the error, if any */
453 a_job->aiocbp._errno = error;
454 a_job->aiocbp._state = JOB_DONE;
455 }
456
457 /*
458 * Send AIO signal.
459 */
460 static void
461 aio_sendsig(struct proc *p, struct sigevent *sig)
462 {
463 ksiginfo_t ksi;
464
465 if (sig->sigev_signo == 0 || sig->sigev_notify == SIGEV_NONE)
466 return;
467
468 KSI_INIT(&ksi);
469 ksi.ksi_signo = sig->sigev_signo;
470 ksi.ksi_code = SI_ASYNCIO;
471 ksi.ksi_value = sig->sigev_value;
472 mutex_enter(proc_lock);
473 kpsignal(p, &ksi, NULL);
474 mutex_exit(proc_lock);
475 }
476
477 /*
478 * Enqueue the job.
479 */
480 static int
481 aio_enqueue_job(int op, void *aiocb_uptr, struct lio_req *lio)
482 {
483 struct proc *p = curlwp->l_proc;
484 struct aioproc *aio;
485 struct aio_job *a_job;
486 struct aiocb aiocbp;
487 struct sigevent *sig;
488 int error;
489
490 /* Non-accurate check for the limit */
491 if (aio_jobs_count + 1 > aio_max)
492 return EAGAIN;
493
494 /* Get the data structure from user-space */
495 error = copyin(aiocb_uptr, &aiocbp, sizeof(struct aiocb));
496 if (error)
497 return error;
498
499 /* Check if signal is set, and validate it */
500 sig = &aiocbp.aio_sigevent;
501 if (sig->sigev_signo < 0 || sig->sigev_signo >= NSIG ||
502 sig->sigev_notify < SIGEV_NONE || sig->sigev_notify > SIGEV_SA)
503 return EINVAL;
504
505 /* Buffer and byte count */
506 if (((AIO_SYNC | AIO_DSYNC) & op) == 0)
507 if (aiocbp.aio_buf == NULL || aiocbp.aio_nbytes > SSIZE_MAX)
508 return EINVAL;
509
510 /* Check the opcode, if LIO_NOP - simply ignore */
511 if (op == AIO_LIO) {
512 KASSERT(lio != NULL);
513 if (aiocbp.aio_lio_opcode == LIO_WRITE)
514 op = AIO_WRITE;
515 else if (aiocbp.aio_lio_opcode == LIO_READ)
516 op = AIO_READ;
517 else
518 return (aiocbp.aio_lio_opcode == LIO_NOP) ? 0 : EINVAL;
519 } else {
520 KASSERT(lio == NULL);
521 }
522
523 /*
524 * Look for already existing job. If found - the job is in-progress.
525 * According to POSIX this is invalid, so return the error.
526 */
527 aio = p->p_aio;
528 if (aio) {
529 mutex_enter(&aio->aio_mtx);
530 if (aio->curjob) {
531 a_job = aio->curjob;
532 if (a_job->aiocb_uptr == aiocb_uptr) {
533 mutex_exit(&aio->aio_mtx);
534 return EINVAL;
535 }
536 }
537 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) {
538 if (a_job->aiocb_uptr != aiocb_uptr)
539 continue;
540 mutex_exit(&aio->aio_mtx);
541 return EINVAL;
542 }
543 mutex_exit(&aio->aio_mtx);
544 }
545
546 /*
547 * Check if AIO structure is initialized, if not - initialize it.
548 * In LIO case, we did that already. We will recheck this with
549 * the lock in aio_procinit().
550 */
551 if (lio == NULL && p->p_aio == NULL)
552 if (aio_procinit(p))
553 return EAGAIN;
554 aio = p->p_aio;
555
556 /*
557 * Set the state with errno, and copy data
558 * structure back to the user-space.
559 */
560 aiocbp._state = JOB_WIP;
561 aiocbp._errno = EINPROGRESS;
562 aiocbp._retval = -1;
563 error = copyout(&aiocbp, aiocb_uptr, sizeof(struct aiocb));
564 if (error)
565 return error;
566
567 /* Allocate and initialize a new AIO job */
568 a_job = pool_get(&aio_job_pool, PR_WAITOK);
569 memset(a_job, 0, sizeof(struct aio_job));
570
571 /*
572 * Set the data.
573 * Store the user-space pointer for searching. Since we
574 * are storing only per proc pointers - it is safe.
575 */
576 memcpy(&a_job->aiocbp, &aiocbp, sizeof(struct aiocb));
577 a_job->aiocb_uptr = aiocb_uptr;
578 a_job->aio_op |= op;
579 a_job->lio = lio;
580
581 /*
582 * Add the job to the queue, update the counters, and
583 * notify the AIO worker thread to handle the job.
584 */
585 mutex_enter(&aio->aio_mtx);
586
587 /* Fail, if the limit was reached */
588 if (atomic_inc_uint_nv(&aio_jobs_count) > aio_max ||
589 aio->jobs_count >= aio_listio_max) {
590 atomic_dec_uint(&aio_jobs_count);
591 mutex_exit(&aio->aio_mtx);
592 pool_put(&aio_job_pool, a_job);
593 return EAGAIN;
594 }
595
596 TAILQ_INSERT_TAIL(&aio->jobs_queue, a_job, list);
597 aio->jobs_count++;
598 if (lio)
599 lio->refcnt++;
600 cv_signal(&aio->aio_worker_cv);
601
602 mutex_exit(&aio->aio_mtx);
603
604 /*
605 * One would handle the errors only with aio_error() function.
606 * This way is appropriate according to POSIX.
607 */
608 return 0;
609 }
610
611 /*
612 * Syscall functions.
613 */
614
615 int
616 sys_aio_cancel(struct lwp *l, const struct sys_aio_cancel_args *uap, register_t *retval)
617 {
618 /* {
619 syscallarg(int) fildes;
620 syscallarg(struct aiocb *) aiocbp;
621 } */
622 struct proc *p = l->l_proc;
623 struct aioproc *aio;
624 struct aio_job *a_job;
625 struct aiocb *aiocbp_ptr;
626 struct lio_req *lio;
627 struct filedesc *fdp = p->p_fd;
628 unsigned int cn, errcnt, fildes;
629
630 TAILQ_HEAD(, aio_job) tmp_jobs_list;
631
632 /* Check for invalid file descriptor */
633 fildes = (unsigned int)SCARG(uap, fildes);
634 if (fildes >= fdp->fd_nfiles)
635 return EBADF;
636 membar_consumer();
637 if (fdp->fd_ofiles[fildes] == NULL || fdp->fd_ofiles[fildes]->ff_file == NULL)
638 return EBADF;
639
640 /* Check if AIO structure is initialized */
641 if (p->p_aio == NULL) {
642 *retval = AIO_NOTCANCELED;
643 return 0;
644 }
645
646 aio = p->p_aio;
647 aiocbp_ptr = (struct aiocb *)SCARG(uap, aiocbp);
648
649 mutex_enter(&aio->aio_mtx);
650
651 /* Cancel the jobs, and remove them from the queue */
652 cn = 0;
653 TAILQ_INIT(&tmp_jobs_list);
654 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) {
655 if (aiocbp_ptr) {
656 if (aiocbp_ptr != a_job->aiocb_uptr)
657 continue;
658 if (fildes != a_job->aiocbp.aio_fildes) {
659 mutex_exit(&aio->aio_mtx);
660 return EBADF;
661 }
662 } else if (a_job->aiocbp.aio_fildes != fildes)
663 continue;
664
665 TAILQ_REMOVE(&aio->jobs_queue, a_job, list);
666 TAILQ_INSERT_TAIL(&tmp_jobs_list, a_job, list);
667
668 /* Decrease the counters */
669 atomic_dec_uint(&aio_jobs_count);
670 aio->jobs_count--;
671 lio = a_job->lio;
672 if (lio != NULL && --lio->refcnt != 0)
673 a_job->lio = NULL;
674
675 cn++;
676 if (aiocbp_ptr)
677 break;
678 }
679
680 /* There are canceled jobs */
681 if (cn)
682 *retval = AIO_CANCELED;
683
684 /* We cannot cancel current job */
685 a_job = aio->curjob;
686 if (a_job && ((a_job->aiocbp.aio_fildes == fildes) ||
687 (a_job->aiocb_uptr == aiocbp_ptr)))
688 *retval = AIO_NOTCANCELED;
689
690 mutex_exit(&aio->aio_mtx);
691
692 /* Free the jobs after the lock */
693 errcnt = 0;
694 while (!TAILQ_EMPTY(&tmp_jobs_list)) {
695 a_job = TAILQ_FIRST(&tmp_jobs_list);
696 TAILQ_REMOVE(&tmp_jobs_list, a_job, list);
697 /* Set the errno and copy structures back to the user-space */
698 a_job->aiocbp._errno = ECANCELED;
699 a_job->aiocbp._state = JOB_DONE;
700 if (copyout(&a_job->aiocbp, a_job->aiocb_uptr,
701 sizeof(struct aiocb)))
702 errcnt++;
703 /* Send a signal if any */
704 aio_sendsig(p, &a_job->aiocbp.aio_sigevent);
705 if (a_job->lio) {
706 lio = a_job->lio;
707 aio_sendsig(p, &lio->sig);
708 pool_put(&aio_lio_pool, lio);
709 }
710 pool_put(&aio_job_pool, a_job);
711 }
712
713 if (errcnt)
714 return EFAULT;
715
716 /* Set a correct return value */
717 if (*retval == 0)
718 *retval = AIO_ALLDONE;
719
720 return 0;
721 }
722
723 int
724 sys_aio_error(struct lwp *l, const struct sys_aio_error_args *uap, register_t *retval)
725 {
726 /* {
727 syscallarg(const struct aiocb *) aiocbp;
728 } */
729 struct proc *p = l->l_proc;
730 struct aioproc *aio = p->p_aio;
731 struct aiocb aiocbp;
732 int error;
733
734 if (aio == NULL)
735 return EINVAL;
736
737 error = copyin(SCARG(uap, aiocbp), &aiocbp, sizeof(struct aiocb));
738 if (error)
739 return error;
740
741 if (aiocbp._state == JOB_NONE)
742 return EINVAL;
743
744 *retval = aiocbp._errno;
745
746 return 0;
747 }
748
749 int
750 sys_aio_fsync(struct lwp *l, const struct sys_aio_fsync_args *uap, register_t *retval)
751 {
752 /* {
753 syscallarg(int) op;
754 syscallarg(struct aiocb *) aiocbp;
755 } */
756 int op = SCARG(uap, op);
757
758 if ((op != O_DSYNC) && (op != O_SYNC))
759 return EINVAL;
760
761 op = O_DSYNC ? AIO_DSYNC : AIO_SYNC;
762
763 return aio_enqueue_job(op, SCARG(uap, aiocbp), NULL);
764 }
765
766 int
767 sys_aio_read(struct lwp *l, const struct sys_aio_read_args *uap, register_t *retval)
768 {
769 /* {
770 syscallarg(struct aiocb *) aiocbp;
771 } */
772
773 return aio_enqueue_job(AIO_READ, SCARG(uap, aiocbp), NULL);
774 }
775
776 int
777 sys_aio_return(struct lwp *l, const struct sys_aio_return_args *uap, register_t *retval)
778 {
779 /* {
780 syscallarg(struct aiocb *) aiocbp;
781 } */
782 struct proc *p = l->l_proc;
783 struct aioproc *aio = p->p_aio;
784 struct aiocb aiocbp;
785 int error;
786
787 if (aio == NULL)
788 return EINVAL;
789
790 error = copyin(SCARG(uap, aiocbp), &aiocbp, sizeof(struct aiocb));
791 if (error)
792 return error;
793
794 if (aiocbp._errno == EINPROGRESS || aiocbp._state != JOB_DONE)
795 return EINVAL;
796
797 *retval = aiocbp._retval;
798
799 /* Reset the internal variables */
800 aiocbp._errno = 0;
801 aiocbp._retval = -1;
802 aiocbp._state = JOB_NONE;
803 error = copyout(&aiocbp, SCARG(uap, aiocbp), sizeof(struct aiocb));
804
805 return error;
806 }
807
808 int
809 sys_aio_suspend(struct lwp *l, const struct sys_aio_suspend_args *uap, register_t *retval)
810 {
811 /* {
812 syscallarg(const struct aiocb *const[]) list;
813 syscallarg(int) nent;
814 syscallarg(const struct timespec *) timeout;
815 } */
816 struct proc *p = l->l_proc;
817 struct aioproc *aio;
818 struct aio_job *a_job;
819 struct aiocb **aiocbp_list;
820 struct timespec ts;
821 int i, error, nent, timo;
822
823 if (p->p_aio == NULL)
824 return EAGAIN;
825 aio = p->p_aio;
826
827 nent = SCARG(uap, nent);
828 if (nent <= 0 || nent > aio_listio_max)
829 return EAGAIN;
830
831 if (SCARG(uap, timeout)) {
832 /* Convert timespec to ticks */
833 error = copyin(SCARG(uap, timeout), &ts,
834 sizeof(struct timespec));
835 if (error)
836 return error;
837 timo = mstohz((ts.tv_sec * 1000) + (ts.tv_nsec / 1000000));
838 if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
839 timo = 1;
840 if (timo <= 0)
841 return EAGAIN;
842 } else
843 timo = 0;
844
845 /* Get the list from user-space */
846 aiocbp_list = kmem_zalloc(nent * sizeof(struct aio_job), KM_SLEEP);
847 error = copyin(SCARG(uap, list), aiocbp_list,
848 nent * sizeof(struct aiocb));
849 if (error) {
850 kmem_free(aiocbp_list, nent * sizeof(struct aio_job));
851 return error;
852 }
853
854 mutex_enter(&aio->aio_mtx);
855 for (;;) {
856
857 for (i = 0; i < nent; i++) {
858
859 /* Skip NULL entries */
860 if (aiocbp_list[i] == NULL)
861 continue;
862
863 /* Skip current job */
864 if (aio->curjob) {
865 a_job = aio->curjob;
866 if (a_job->aiocb_uptr == aiocbp_list[i])
867 continue;
868 }
869
870 /* Look for a job in the queue */
871 TAILQ_FOREACH(a_job, &aio->jobs_queue, list)
872 if (a_job->aiocb_uptr == aiocbp_list[i])
873 break;
874
875 if (a_job == NULL) {
876 struct aiocb aiocbp;
877
878 mutex_exit(&aio->aio_mtx);
879
880 error = copyin(aiocbp_list[i], &aiocbp,
881 sizeof(struct aiocb));
882 if (error == 0 && aiocbp._state != JOB_DONE) {
883 mutex_enter(&aio->aio_mtx);
884 continue;
885 }
886
887 kmem_free(aiocbp_list,
888 nent * sizeof(struct aio_job));
889 return error;
890 }
891 }
892
893 /* Wait for a signal or when timeout occurs */
894 error = cv_timedwait_sig(&aio->done_cv, &aio->aio_mtx, timo);
895 if (error) {
896 if (error == EWOULDBLOCK)
897 error = EAGAIN;
898 break;
899 }
900 }
901 mutex_exit(&aio->aio_mtx);
902
903 kmem_free(aiocbp_list, nent * sizeof(struct aio_job));
904 return error;
905 }
906
907 int
908 sys_aio_write(struct lwp *l, const struct sys_aio_write_args *uap, register_t *retval)
909 {
910 /* {
911 syscallarg(struct aiocb *) aiocbp;
912 } */
913
914 return aio_enqueue_job(AIO_WRITE, SCARG(uap, aiocbp), NULL);
915 }
916
917 int
918 sys_lio_listio(struct lwp *l, const struct sys_lio_listio_args *uap, register_t *retval)
919 {
920 /* {
921 syscallarg(int) mode;
922 syscallarg(struct aiocb *const[]) list;
923 syscallarg(int) nent;
924 syscallarg(struct sigevent *) sig;
925 } */
926 struct proc *p = l->l_proc;
927 struct aioproc *aio;
928 struct aiocb **aiocbp_list;
929 struct lio_req *lio;
930 int i, error, errcnt, mode, nent;
931
932 mode = SCARG(uap, mode);
933 nent = SCARG(uap, nent);
934
935 /* Non-accurate checks for the limit and invalid values */
936 if (nent < 1 || nent > aio_listio_max)
937 return EINVAL;
938 if (aio_jobs_count + nent > aio_max)
939 return EAGAIN;
940
941 /* Check if AIO structure is initialized, if not - initialize it */
942 if (p->p_aio == NULL)
943 if (aio_procinit(p))
944 return EAGAIN;
945 aio = p->p_aio;
946
947 /* Create a LIO structure */
948 lio = pool_get(&aio_lio_pool, PR_WAITOK);
949 lio->refcnt = 1;
950 error = 0;
951
952 switch (mode) {
953 case LIO_WAIT:
954 memset(&lio->sig, 0, sizeof(struct sigevent));
955 break;
956 case LIO_NOWAIT:
957 /* Check for signal, validate it */
958 if (SCARG(uap, sig)) {
959 struct sigevent *sig = &lio->sig;
960
961 error = copyin(SCARG(uap, sig), &lio->sig,
962 sizeof(struct sigevent));
963 if (error == 0 &&
964 (sig->sigev_signo < 0 ||
965 sig->sigev_signo >= NSIG ||
966 sig->sigev_notify < SIGEV_NONE ||
967 sig->sigev_notify > SIGEV_SA))
968 error = EINVAL;
969 } else
970 memset(&lio->sig, 0, sizeof(struct sigevent));
971 break;
972 default:
973 error = EINVAL;
974 break;
975 }
976
977 if (error != 0) {
978 pool_put(&aio_lio_pool, lio);
979 return error;
980 }
981
982 /* Get the list from user-space */
983 aiocbp_list = kmem_zalloc(nent * sizeof(struct aio_job), KM_SLEEP);
984 error = copyin(SCARG(uap, list), aiocbp_list,
985 nent * sizeof(struct aiocb));
986 if (error) {
987 mutex_enter(&aio->aio_mtx);
988 goto err;
989 }
990
991 /* Enqueue all jobs */
992 errcnt = 0;
993 for (i = 0; i < nent; i++) {
994 error = aio_enqueue_job(AIO_LIO, aiocbp_list[i], lio);
995 /*
996 * According to POSIX, in such error case it may
997 * fail with other I/O operations initiated.
998 */
999 if (error)
1000 errcnt++;
1001 }
1002
1003 mutex_enter(&aio->aio_mtx);
1004
1005 /* Return an error, if any */
1006 if (errcnt) {
1007 error = EIO;
1008 goto err;
1009 }
1010
1011 if (mode == LIO_WAIT) {
1012 /*
1013 * Wait for AIO completion. In such case,
1014 * the LIO structure will be freed here.
1015 */
1016 while (lio->refcnt > 1 && error == 0)
1017 error = cv_wait_sig(&aio->done_cv, &aio->aio_mtx);
1018 if (error)
1019 error = EINTR;
1020 }
1021
1022 err:
1023 if (--lio->refcnt != 0)
1024 lio = NULL;
1025 mutex_exit(&aio->aio_mtx);
1026 if (lio != NULL) {
1027 aio_sendsig(p, &lio->sig);
1028 pool_put(&aio_lio_pool, lio);
1029 }
1030 kmem_free(aiocbp_list, nent * sizeof(struct aio_job));
1031 return error;
1032 }
1033
1034 /*
1035 * SysCtl
1036 */
1037
1038 static int
1039 sysctl_aio_listio_max(SYSCTLFN_ARGS)
1040 {
1041 struct sysctlnode node;
1042 int error, newsize;
1043
1044 node = *rnode;
1045 node.sysctl_data = &newsize;
1046
1047 newsize = aio_listio_max;
1048 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1049 if (error || newp == NULL)
1050 return error;
1051
1052 if (newsize < 1 || newsize > aio_max)
1053 return EINVAL;
1054 aio_listio_max = newsize;
1055
1056 return 0;
1057 }
1058
1059 static int
1060 sysctl_aio_max(SYSCTLFN_ARGS)
1061 {
1062 struct sysctlnode node;
1063 int error, newsize;
1064
1065 node = *rnode;
1066 node.sysctl_data = &newsize;
1067
1068 newsize = aio_max;
1069 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1070 if (error || newp == NULL)
1071 return error;
1072
1073 if (newsize < 1 || newsize < aio_listio_max)
1074 return EINVAL;
1075 aio_max = newsize;
1076
1077 return 0;
1078 }
1079
1080 SYSCTL_SETUP(sysctl_aio_setup, "sysctl aio setup")
1081 {
1082
1083 sysctl_createv(clog, 0, NULL, NULL,
1084 CTLFLAG_PERMANENT,
1085 CTLTYPE_NODE, "kern", NULL,
1086 NULL, 0, NULL, 0,
1087 CTL_KERN, CTL_EOL);
1088 sysctl_createv(clog, 0, NULL, NULL,
1089 CTLFLAG_PERMANENT | CTLFLAG_IMMEDIATE,
1090 CTLTYPE_INT, "posix_aio",
1091 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
1092 "Asynchronous I/O option to which the "
1093 "system attempts to conform"),
1094 NULL, _POSIX_ASYNCHRONOUS_IO, NULL, 0,
1095 CTL_KERN, CTL_CREATE, CTL_EOL);
1096 sysctl_createv(clog, 0, NULL, NULL,
1097 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1098 CTLTYPE_INT, "aio_listio_max",
1099 SYSCTL_DESCR("Maximum number of asynchronous I/O "
1100 "operations in a single list I/O call"),
1101 sysctl_aio_listio_max, 0, &aio_listio_max, 0,
1102 CTL_KERN, CTL_CREATE, CTL_EOL);
1103 sysctl_createv(clog, 0, NULL, NULL,
1104 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1105 CTLTYPE_INT, "aio_max",
1106 SYSCTL_DESCR("Maximum number of asynchronous I/O "
1107 "operations"),
1108 sysctl_aio_max, 0, &aio_max, 0,
1109 CTL_KERN, CTL_CREATE, CTL_EOL);
1110 }
1111
1112 /*
1113 * Debugging
1114 */
1115 #if defined(DDB)
1116 void
1117 aio_print_jobs(void (*pr)(const char *, ...))
1118 {
1119 struct proc *p = (curlwp == NULL ? NULL : curlwp->l_proc);
1120 struct aioproc *aio;
1121 struct aio_job *a_job;
1122 struct aiocb *aiocbp;
1123
1124 if (p == NULL) {
1125 (*pr)("AIO: We are not in the processes right now.\n");
1126 return;
1127 }
1128
1129 aio = p->p_aio;
1130 if (aio == NULL) {
1131 (*pr)("AIO data is not initialized (PID = %d).\n", p->p_pid);
1132 return;
1133 }
1134
1135 (*pr)("AIO: PID = %d\n", p->p_pid);
1136 (*pr)("AIO: Global count of the jobs = %u\n", aio_jobs_count);
1137 (*pr)("AIO: Count of the jobs = %u\n", aio->jobs_count);
1138
1139 if (aio->curjob) {
1140 a_job = aio->curjob;
1141 (*pr)("\nAIO current job:\n");
1142 (*pr)(" opcode = %d, errno = %d, state = %d, aiocb_ptr = %p\n",
1143 a_job->aio_op, a_job->aiocbp._errno,
1144 a_job->aiocbp._state, a_job->aiocb_uptr);
1145 aiocbp = &a_job->aiocbp;
1146 (*pr)(" fd = %d, offset = %u, buf = %p, nbytes = %u\n",
1147 aiocbp->aio_fildes, aiocbp->aio_offset,
1148 aiocbp->aio_buf, aiocbp->aio_nbytes);
1149 }
1150
1151 (*pr)("\nAIO queue:\n");
1152 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) {
1153 (*pr)(" opcode = %d, errno = %d, state = %d, aiocb_ptr = %p\n",
1154 a_job->aio_op, a_job->aiocbp._errno,
1155 a_job->aiocbp._state, a_job->aiocb_uptr);
1156 aiocbp = &a_job->aiocbp;
1157 (*pr)(" fd = %d, offset = %u, buf = %p, nbytes = %u\n",
1158 aiocbp->aio_fildes, aiocbp->aio_offset,
1159 aiocbp->aio_buf, aiocbp->aio_nbytes);
1160 }
1161 }
1162 #endif /* defined(DDB) */
1163