sys_aio.c revision 1.26 1 /* $NetBSD: sys_aio.c,v 1.26 2009/10/12 23:36:56 yamt Exp $ */
2
3 /*
4 * Copyright (c) 2007, Mindaugas Rasiukevicius <rmind at NetBSD org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * Implementation of POSIX asynchronous I/O.
31 * Defined in the Base Definitions volume of IEEE Std 1003.1-2001.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: sys_aio.c,v 1.26 2009/10/12 23:36:56 yamt Exp $");
36
37 #ifdef _KERNEL_OPT
38 #include "opt_ddb.h"
39 #endif
40
41 #include <sys/param.h>
42 #include <sys/condvar.h>
43 #include <sys/file.h>
44 #include <sys/filedesc.h>
45 #include <sys/kernel.h>
46 #include <sys/kmem.h>
47 #include <sys/lwp.h>
48 #include <sys/mutex.h>
49 #include <sys/pool.h>
50 #include <sys/proc.h>
51 #include <sys/queue.h>
52 #include <sys/signal.h>
53 #include <sys/signalvar.h>
54 #include <sys/syscall.h>
55 #include <sys/syscallargs.h>
56 #include <sys/syscallvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/systm.h>
59 #include <sys/types.h>
60 #include <sys/vnode.h>
61 #include <sys/atomic.h>
62 #include <sys/module.h>
63 #include <sys/buf.h>
64
65 #include <uvm/uvm_extern.h>
66
67 MODULE(MODULE_CLASS_MISC, aio, NULL);
68
69 /*
70 * System-wide limits and counter of AIO operations.
71 */
72 u_int aio_listio_max = AIO_LISTIO_MAX;
73 static u_int aio_max = AIO_MAX;
74 static u_int aio_jobs_count;
75
76 static struct pool aio_job_pool;
77 static struct pool aio_lio_pool;
78 static void *aio_ehook;
79
80 /* Prototypes */
81 static void aio_worker(void *);
82 static void aio_process(struct aio_job *);
83 static void aio_sendsig(struct proc *, struct sigevent *);
84 static int aio_enqueue_job(int, void *, struct lio_req *);
85 static void aio_exit(proc_t *, void *);
86
87 static const struct syscall_package aio_syscalls[] = {
88 { SYS_aio_cancel, 0, (sy_call_t *)sys_aio_cancel },
89 { SYS_aio_error, 0, (sy_call_t *)sys_aio_error },
90 { SYS_aio_fsync, 0, (sy_call_t *)sys_aio_fsync },
91 { SYS_aio_read, 0, (sy_call_t *)sys_aio_read },
92 { SYS_aio_return, 0, (sy_call_t *)sys_aio_return },
93 { SYS___aio_suspend50, 0, (sy_call_t *)sys___aio_suspend50 },
94 { SYS_aio_write, 0, (sy_call_t *)sys_aio_write },
95 { SYS_lio_listio, 0, (sy_call_t *)sys_lio_listio },
96 { 0, 0, NULL },
97 };
98
99 /*
100 * Tear down all AIO state.
101 */
102 static int
103 aio_fini(bool interface)
104 {
105 int error;
106 proc_t *p;
107
108 if (interface) {
109 /* Stop syscall activity. */
110 error = syscall_disestablish(NULL, aio_syscalls);
111 if (error != 0)
112 return error;
113 /* Abort if any processes are using AIO. */
114 mutex_enter(proc_lock);
115 PROCLIST_FOREACH(p, &allproc) {
116 if (p->p_aio != NULL)
117 break;
118 }
119 mutex_exit(proc_lock);
120 if (p != NULL) {
121 error = syscall_establish(NULL, aio_syscalls);
122 KASSERT(error == 0);
123 return EBUSY;
124 }
125 }
126 KASSERT(aio_jobs_count == 0);
127 exithook_disestablish(aio_ehook);
128 pool_destroy(&aio_job_pool);
129 pool_destroy(&aio_lio_pool);
130 return 0;
131 }
132
133 /*
134 * Initialize global AIO state.
135 */
136 static int
137 aio_init(void)
138 {
139 int error;
140
141 pool_init(&aio_job_pool, sizeof(struct aio_job), 0, 0, 0,
142 "aio_jobs_pool", &pool_allocator_nointr, IPL_NONE);
143 pool_init(&aio_lio_pool, sizeof(struct lio_req), 0, 0, 0,
144 "aio_lio_pool", &pool_allocator_nointr, IPL_NONE);
145 aio_ehook = exithook_establish(aio_exit, NULL);
146 error = syscall_establish(NULL, aio_syscalls);
147 if (error != 0)
148 aio_fini(false);
149 return error;
150 }
151
152 /*
153 * Module interface.
154 */
155 static int
156 aio_modcmd(modcmd_t cmd, void *arg)
157 {
158
159 switch (cmd) {
160 case MODULE_CMD_INIT:
161 return aio_init();
162 case MODULE_CMD_FINI:
163 return aio_fini(true);
164 default:
165 return ENOTTY;
166 }
167 }
168
169 /*
170 * Initialize Asynchronous I/O data structures for the process.
171 */
172 static int
173 aio_procinit(struct proc *p)
174 {
175 struct aioproc *aio;
176 struct lwp *l;
177 int error;
178 bool inmem;
179 vaddr_t uaddr;
180
181 /* Allocate and initialize AIO structure */
182 aio = kmem_zalloc(sizeof(struct aioproc), KM_SLEEP);
183 if (aio == NULL)
184 return EAGAIN;
185
186 /* Initialize queue and their synchronization structures */
187 mutex_init(&aio->aio_mtx, MUTEX_DEFAULT, IPL_NONE);
188 cv_init(&aio->aio_worker_cv, "aiowork");
189 cv_init(&aio->done_cv, "aiodone");
190 TAILQ_INIT(&aio->jobs_queue);
191
192 /*
193 * Create an AIO worker thread.
194 * XXX: Currently, AIO thread is not protected against user's actions.
195 */
196 inmem = uvm_uarea_alloc(&uaddr);
197 if (uaddr == 0) {
198 aio_exit(p, aio);
199 return EAGAIN;
200 }
201 error = lwp_create(curlwp, p, uaddr, inmem, 0, NULL, 0, aio_worker,
202 NULL, &l, curlwp->l_class);
203 if (error != 0) {
204 uvm_uarea_free(uaddr, curcpu());
205 aio_exit(p, aio);
206 return error;
207 }
208
209 /* Recheck if we are really first */
210 mutex_enter(p->p_lock);
211 if (p->p_aio) {
212 mutex_exit(p->p_lock);
213 aio_exit(p, aio);
214 lwp_exit(l);
215 return 0;
216 }
217 p->p_aio = aio;
218
219 /* Complete the initialization of thread, and run it */
220 aio->aio_worker = l;
221 p->p_nrlwps++;
222 lwp_lock(l);
223 l->l_stat = LSRUN;
224 l->l_priority = MAXPRI_USER;
225 sched_enqueue(l, false);
226 lwp_unlock(l);
227 mutex_exit(p->p_lock);
228
229 return 0;
230 }
231
232 /*
233 * Exit of Asynchronous I/O subsystem of process.
234 */
235 static void
236 aio_exit(struct proc *p, void *cookie)
237 {
238 struct aio_job *a_job;
239 struct aioproc *aio;
240
241 if (cookie != NULL)
242 aio = cookie;
243 else if ((aio = p->p_aio) == NULL)
244 return;
245
246 /* Free AIO queue */
247 while (!TAILQ_EMPTY(&aio->jobs_queue)) {
248 a_job = TAILQ_FIRST(&aio->jobs_queue);
249 TAILQ_REMOVE(&aio->jobs_queue, a_job, list);
250 pool_put(&aio_job_pool, a_job);
251 atomic_dec_uint(&aio_jobs_count);
252 }
253
254 /* Destroy and free the entire AIO data structure */
255 cv_destroy(&aio->aio_worker_cv);
256 cv_destroy(&aio->done_cv);
257 mutex_destroy(&aio->aio_mtx);
258 kmem_free(aio, sizeof(struct aioproc));
259 }
260
261 /*
262 * AIO worker thread and processor.
263 */
264 static void
265 aio_worker(void *arg)
266 {
267 struct proc *p = curlwp->l_proc;
268 struct aioproc *aio = p->p_aio;
269 struct aio_job *a_job;
270 struct lio_req *lio;
271 sigset_t oss, nss;
272 int error, refcnt;
273
274 /*
275 * Make an empty signal mask, so it
276 * handles only SIGKILL and SIGSTOP.
277 */
278 sigfillset(&nss);
279 mutex_enter(p->p_lock);
280 error = sigprocmask1(curlwp, SIG_SETMASK, &nss, &oss);
281 mutex_exit(p->p_lock);
282 KASSERT(error == 0);
283
284 for (;;) {
285 /*
286 * Loop for each job in the queue. If there
287 * are no jobs then sleep.
288 */
289 mutex_enter(&aio->aio_mtx);
290 while ((a_job = TAILQ_FIRST(&aio->jobs_queue)) == NULL) {
291 if (cv_wait_sig(&aio->aio_worker_cv, &aio->aio_mtx)) {
292 /*
293 * Thread was interrupted - check for
294 * pending exit or suspend.
295 */
296 mutex_exit(&aio->aio_mtx);
297 lwp_userret(curlwp);
298 mutex_enter(&aio->aio_mtx);
299 }
300 }
301
302 /* Take the job from the queue */
303 aio->curjob = a_job;
304 TAILQ_REMOVE(&aio->jobs_queue, a_job, list);
305
306 atomic_dec_uint(&aio_jobs_count);
307 aio->jobs_count--;
308
309 mutex_exit(&aio->aio_mtx);
310
311 /* Process an AIO operation */
312 aio_process(a_job);
313
314 /* Copy data structure back to the user-space */
315 (void)copyout(&a_job->aiocbp, a_job->aiocb_uptr,
316 sizeof(struct aiocb));
317
318 mutex_enter(&aio->aio_mtx);
319 aio->curjob = NULL;
320
321 /* Decrease a reference counter, if there is a LIO structure */
322 lio = a_job->lio;
323 refcnt = (lio != NULL ? --lio->refcnt : -1);
324
325 /* Notify all suspenders */
326 cv_broadcast(&aio->done_cv);
327 mutex_exit(&aio->aio_mtx);
328
329 /* Send a signal, if any */
330 aio_sendsig(p, &a_job->aiocbp.aio_sigevent);
331
332 /* Destroy the LIO structure */
333 if (refcnt == 0) {
334 aio_sendsig(p, &lio->sig);
335 pool_put(&aio_lio_pool, lio);
336 }
337
338 /* Destroy the the job */
339 pool_put(&aio_job_pool, a_job);
340 }
341
342 /* NOTREACHED */
343 }
344
345 static void
346 aio_process(struct aio_job *a_job)
347 {
348 struct proc *p = curlwp->l_proc;
349 struct aiocb *aiocbp = &a_job->aiocbp;
350 struct file *fp;
351 int fd = aiocbp->aio_fildes;
352 int error = 0;
353
354 KASSERT(a_job->aio_op != 0);
355
356 if ((a_job->aio_op & (AIO_READ | AIO_WRITE)) != 0) {
357 struct iovec aiov;
358 struct uio auio;
359
360 if (aiocbp->aio_nbytes > SSIZE_MAX) {
361 error = EINVAL;
362 goto done;
363 }
364
365 fp = fd_getfile(fd);
366 if (fp == NULL) {
367 error = EBADF;
368 goto done;
369 }
370
371 aiov.iov_base = (void *)(uintptr_t)aiocbp->aio_buf;
372 aiov.iov_len = aiocbp->aio_nbytes;
373 auio.uio_iov = &aiov;
374 auio.uio_iovcnt = 1;
375 auio.uio_resid = aiocbp->aio_nbytes;
376 auio.uio_vmspace = p->p_vmspace;
377
378 if (a_job->aio_op & AIO_READ) {
379 /*
380 * Perform a Read operation
381 */
382 KASSERT((a_job->aio_op & AIO_WRITE) == 0);
383
384 if ((fp->f_flag & FREAD) == 0) {
385 fd_putfile(fd);
386 error = EBADF;
387 goto done;
388 }
389 auio.uio_rw = UIO_READ;
390 error = (*fp->f_ops->fo_read)(fp, &aiocbp->aio_offset,
391 &auio, fp->f_cred, FOF_UPDATE_OFFSET);
392 } else {
393 /*
394 * Perform a Write operation
395 */
396 KASSERT(a_job->aio_op & AIO_WRITE);
397
398 if ((fp->f_flag & FWRITE) == 0) {
399 fd_putfile(fd);
400 error = EBADF;
401 goto done;
402 }
403 auio.uio_rw = UIO_WRITE;
404 error = (*fp->f_ops->fo_write)(fp, &aiocbp->aio_offset,
405 &auio, fp->f_cred, FOF_UPDATE_OFFSET);
406 }
407 fd_putfile(fd);
408
409 /* Store the result value */
410 a_job->aiocbp.aio_nbytes -= auio.uio_resid;
411 a_job->aiocbp._retval = (error == 0) ?
412 a_job->aiocbp.aio_nbytes : -1;
413
414 } else if ((a_job->aio_op & (AIO_SYNC | AIO_DSYNC)) != 0) {
415 /*
416 * Perform a file Sync operation
417 */
418 struct vnode *vp;
419
420 if ((error = fd_getvnode(fd, &fp)) != 0)
421 goto done;
422
423 if ((fp->f_flag & FWRITE) == 0) {
424 fd_putfile(fd);
425 error = EBADF;
426 goto done;
427 }
428
429 vp = (struct vnode *)fp->f_data;
430 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
431 if (a_job->aio_op & AIO_DSYNC) {
432 error = VOP_FSYNC(vp, fp->f_cred,
433 FSYNC_WAIT | FSYNC_DATAONLY, 0, 0);
434 } else if (a_job->aio_op & AIO_SYNC) {
435 error = VOP_FSYNC(vp, fp->f_cred,
436 FSYNC_WAIT, 0, 0);
437 }
438 VOP_UNLOCK(vp, 0);
439 fd_putfile(fd);
440
441 /* Store the result value */
442 a_job->aiocbp._retval = (error == 0) ? 0 : -1;
443
444 } else
445 panic("aio_process: invalid operation code\n");
446
447 done:
448 /* Job is done, set the error, if any */
449 a_job->aiocbp._errno = error;
450 a_job->aiocbp._state = JOB_DONE;
451 }
452
453 /*
454 * Send AIO signal.
455 */
456 static void
457 aio_sendsig(struct proc *p, struct sigevent *sig)
458 {
459 ksiginfo_t ksi;
460
461 if (sig->sigev_signo == 0 || sig->sigev_notify == SIGEV_NONE)
462 return;
463
464 KSI_INIT(&ksi);
465 ksi.ksi_signo = sig->sigev_signo;
466 ksi.ksi_code = SI_ASYNCIO;
467 ksi.ksi_value = sig->sigev_value;
468 mutex_enter(proc_lock);
469 kpsignal(p, &ksi, NULL);
470 mutex_exit(proc_lock);
471 }
472
473 /*
474 * Enqueue the job.
475 */
476 static int
477 aio_enqueue_job(int op, void *aiocb_uptr, struct lio_req *lio)
478 {
479 struct proc *p = curlwp->l_proc;
480 struct aioproc *aio;
481 struct aio_job *a_job;
482 struct aiocb aiocbp;
483 struct sigevent *sig;
484 int error;
485
486 /* Non-accurate check for the limit */
487 if (aio_jobs_count + 1 > aio_max)
488 return EAGAIN;
489
490 /* Get the data structure from user-space */
491 error = copyin(aiocb_uptr, &aiocbp, sizeof(struct aiocb));
492 if (error)
493 return error;
494
495 /* Check if signal is set, and validate it */
496 sig = &aiocbp.aio_sigevent;
497 if (sig->sigev_signo < 0 || sig->sigev_signo >= NSIG ||
498 sig->sigev_notify < SIGEV_NONE || sig->sigev_notify > SIGEV_SA)
499 return EINVAL;
500
501 /* Buffer and byte count */
502 if (((AIO_SYNC | AIO_DSYNC) & op) == 0)
503 if (aiocbp.aio_buf == NULL || aiocbp.aio_nbytes > SSIZE_MAX)
504 return EINVAL;
505
506 /* Check the opcode, if LIO_NOP - simply ignore */
507 if (op == AIO_LIO) {
508 KASSERT(lio != NULL);
509 if (aiocbp.aio_lio_opcode == LIO_WRITE)
510 op = AIO_WRITE;
511 else if (aiocbp.aio_lio_opcode == LIO_READ)
512 op = AIO_READ;
513 else
514 return (aiocbp.aio_lio_opcode == LIO_NOP) ? 0 : EINVAL;
515 } else {
516 KASSERT(lio == NULL);
517 }
518
519 /*
520 * Look for already existing job. If found - the job is in-progress.
521 * According to POSIX this is invalid, so return the error.
522 */
523 aio = p->p_aio;
524 if (aio) {
525 mutex_enter(&aio->aio_mtx);
526 if (aio->curjob) {
527 a_job = aio->curjob;
528 if (a_job->aiocb_uptr == aiocb_uptr) {
529 mutex_exit(&aio->aio_mtx);
530 return EINVAL;
531 }
532 }
533 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) {
534 if (a_job->aiocb_uptr != aiocb_uptr)
535 continue;
536 mutex_exit(&aio->aio_mtx);
537 return EINVAL;
538 }
539 mutex_exit(&aio->aio_mtx);
540 }
541
542 /*
543 * Check if AIO structure is initialized, if not - initialize it.
544 * In LIO case, we did that already. We will recheck this with
545 * the lock in aio_procinit().
546 */
547 if (lio == NULL && p->p_aio == NULL)
548 if (aio_procinit(p))
549 return EAGAIN;
550 aio = p->p_aio;
551
552 /*
553 * Set the state with errno, and copy data
554 * structure back to the user-space.
555 */
556 aiocbp._state = JOB_WIP;
557 aiocbp._errno = EINPROGRESS;
558 aiocbp._retval = -1;
559 error = copyout(&aiocbp, aiocb_uptr, sizeof(struct aiocb));
560 if (error)
561 return error;
562
563 /* Allocate and initialize a new AIO job */
564 a_job = pool_get(&aio_job_pool, PR_WAITOK);
565 memset(a_job, 0, sizeof(struct aio_job));
566
567 /*
568 * Set the data.
569 * Store the user-space pointer for searching. Since we
570 * are storing only per proc pointers - it is safe.
571 */
572 memcpy(&a_job->aiocbp, &aiocbp, sizeof(struct aiocb));
573 a_job->aiocb_uptr = aiocb_uptr;
574 a_job->aio_op |= op;
575 a_job->lio = lio;
576
577 /*
578 * Add the job to the queue, update the counters, and
579 * notify the AIO worker thread to handle the job.
580 */
581 mutex_enter(&aio->aio_mtx);
582
583 /* Fail, if the limit was reached */
584 if (atomic_inc_uint_nv(&aio_jobs_count) > aio_max ||
585 aio->jobs_count >= aio_listio_max) {
586 atomic_dec_uint(&aio_jobs_count);
587 mutex_exit(&aio->aio_mtx);
588 pool_put(&aio_job_pool, a_job);
589 return EAGAIN;
590 }
591
592 TAILQ_INSERT_TAIL(&aio->jobs_queue, a_job, list);
593 aio->jobs_count++;
594 if (lio)
595 lio->refcnt++;
596 cv_signal(&aio->aio_worker_cv);
597
598 mutex_exit(&aio->aio_mtx);
599
600 /*
601 * One would handle the errors only with aio_error() function.
602 * This way is appropriate according to POSIX.
603 */
604 return 0;
605 }
606
607 /*
608 * Syscall functions.
609 */
610
611 int
612 sys_aio_cancel(struct lwp *l, const struct sys_aio_cancel_args *uap, register_t *retval)
613 {
614 /* {
615 syscallarg(int) fildes;
616 syscallarg(struct aiocb *) aiocbp;
617 } */
618 struct proc *p = l->l_proc;
619 struct aioproc *aio;
620 struct aio_job *a_job;
621 struct aiocb *aiocbp_ptr;
622 struct lio_req *lio;
623 struct filedesc *fdp = p->p_fd;
624 unsigned int cn, errcnt, fildes;
625 fdtab_t *dt;
626
627 TAILQ_HEAD(, aio_job) tmp_jobs_list;
628
629 /* Check for invalid file descriptor */
630 fildes = (unsigned int)SCARG(uap, fildes);
631 dt = fdp->fd_dt;
632 if (fildes >= dt->dt_nfiles)
633 return EBADF;
634 if (dt->dt_ff[fildes] == NULL || dt->dt_ff[fildes]->ff_file == NULL)
635 return EBADF;
636
637 /* Check if AIO structure is initialized */
638 if (p->p_aio == NULL) {
639 *retval = AIO_NOTCANCELED;
640 return 0;
641 }
642
643 aio = p->p_aio;
644 aiocbp_ptr = (struct aiocb *)SCARG(uap, aiocbp);
645
646 mutex_enter(&aio->aio_mtx);
647
648 /* Cancel the jobs, and remove them from the queue */
649 cn = 0;
650 TAILQ_INIT(&tmp_jobs_list);
651 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) {
652 if (aiocbp_ptr) {
653 if (aiocbp_ptr != a_job->aiocb_uptr)
654 continue;
655 if (fildes != a_job->aiocbp.aio_fildes) {
656 mutex_exit(&aio->aio_mtx);
657 return EBADF;
658 }
659 } else if (a_job->aiocbp.aio_fildes != fildes)
660 continue;
661
662 TAILQ_REMOVE(&aio->jobs_queue, a_job, list);
663 TAILQ_INSERT_TAIL(&tmp_jobs_list, a_job, list);
664
665 /* Decrease the counters */
666 atomic_dec_uint(&aio_jobs_count);
667 aio->jobs_count--;
668 lio = a_job->lio;
669 if (lio != NULL && --lio->refcnt != 0)
670 a_job->lio = NULL;
671
672 cn++;
673 if (aiocbp_ptr)
674 break;
675 }
676
677 /* There are canceled jobs */
678 if (cn)
679 *retval = AIO_CANCELED;
680
681 /* We cannot cancel current job */
682 a_job = aio->curjob;
683 if (a_job && ((a_job->aiocbp.aio_fildes == fildes) ||
684 (a_job->aiocb_uptr == aiocbp_ptr)))
685 *retval = AIO_NOTCANCELED;
686
687 mutex_exit(&aio->aio_mtx);
688
689 /* Free the jobs after the lock */
690 errcnt = 0;
691 while (!TAILQ_EMPTY(&tmp_jobs_list)) {
692 a_job = TAILQ_FIRST(&tmp_jobs_list);
693 TAILQ_REMOVE(&tmp_jobs_list, a_job, list);
694 /* Set the errno and copy structures back to the user-space */
695 a_job->aiocbp._errno = ECANCELED;
696 a_job->aiocbp._state = JOB_DONE;
697 if (copyout(&a_job->aiocbp, a_job->aiocb_uptr,
698 sizeof(struct aiocb)))
699 errcnt++;
700 /* Send a signal if any */
701 aio_sendsig(p, &a_job->aiocbp.aio_sigevent);
702 if (a_job->lio) {
703 lio = a_job->lio;
704 aio_sendsig(p, &lio->sig);
705 pool_put(&aio_lio_pool, lio);
706 }
707 pool_put(&aio_job_pool, a_job);
708 }
709
710 if (errcnt)
711 return EFAULT;
712
713 /* Set a correct return value */
714 if (*retval == 0)
715 *retval = AIO_ALLDONE;
716
717 return 0;
718 }
719
720 int
721 sys_aio_error(struct lwp *l, const struct sys_aio_error_args *uap, register_t *retval)
722 {
723 /* {
724 syscallarg(const struct aiocb *) aiocbp;
725 } */
726 struct proc *p = l->l_proc;
727 struct aioproc *aio = p->p_aio;
728 struct aiocb aiocbp;
729 int error;
730
731 if (aio == NULL)
732 return EINVAL;
733
734 error = copyin(SCARG(uap, aiocbp), &aiocbp, sizeof(struct aiocb));
735 if (error)
736 return error;
737
738 if (aiocbp._state == JOB_NONE)
739 return EINVAL;
740
741 *retval = aiocbp._errno;
742
743 return 0;
744 }
745
746 int
747 sys_aio_fsync(struct lwp *l, const struct sys_aio_fsync_args *uap, register_t *retval)
748 {
749 /* {
750 syscallarg(int) op;
751 syscallarg(struct aiocb *) aiocbp;
752 } */
753 int op = SCARG(uap, op);
754
755 if ((op != O_DSYNC) && (op != O_SYNC))
756 return EINVAL;
757
758 op = O_DSYNC ? AIO_DSYNC : AIO_SYNC;
759
760 return aio_enqueue_job(op, SCARG(uap, aiocbp), NULL);
761 }
762
763 int
764 sys_aio_read(struct lwp *l, const struct sys_aio_read_args *uap, register_t *retval)
765 {
766 /* {
767 syscallarg(struct aiocb *) aiocbp;
768 } */
769
770 return aio_enqueue_job(AIO_READ, SCARG(uap, aiocbp), NULL);
771 }
772
773 int
774 sys_aio_return(struct lwp *l, const struct sys_aio_return_args *uap, register_t *retval)
775 {
776 /* {
777 syscallarg(struct aiocb *) aiocbp;
778 } */
779 struct proc *p = l->l_proc;
780 struct aioproc *aio = p->p_aio;
781 struct aiocb aiocbp;
782 int error;
783
784 if (aio == NULL)
785 return EINVAL;
786
787 error = copyin(SCARG(uap, aiocbp), &aiocbp, sizeof(struct aiocb));
788 if (error)
789 return error;
790
791 if (aiocbp._errno == EINPROGRESS || aiocbp._state != JOB_DONE)
792 return EINVAL;
793
794 *retval = aiocbp._retval;
795
796 /* Reset the internal variables */
797 aiocbp._errno = 0;
798 aiocbp._retval = -1;
799 aiocbp._state = JOB_NONE;
800 error = copyout(&aiocbp, SCARG(uap, aiocbp), sizeof(struct aiocb));
801
802 return error;
803 }
804
805 int
806 sys___aio_suspend50(struct lwp *l, const struct sys___aio_suspend50_args *uap,
807 register_t *retval)
808 {
809 /* {
810 syscallarg(const struct aiocb *const[]) list;
811 syscallarg(int) nent;
812 syscallarg(const struct timespec *) timeout;
813 } */
814 struct aiocb **list;
815 struct timespec ts;
816 int error, nent;
817
818 nent = SCARG(uap, nent);
819 if (nent <= 0 || nent > aio_listio_max)
820 return EAGAIN;
821
822 if (SCARG(uap, timeout)) {
823 /* Convert timespec to ticks */
824 error = copyin(SCARG(uap, timeout), &ts,
825 sizeof(struct timespec));
826 if (error)
827 return error;
828 }
829 list = kmem_zalloc(nent * sizeof(struct aio_job), KM_SLEEP);
830 error = copyin(SCARG(uap, list), list, nent * sizeof(struct aiocb));
831 if (error)
832 goto out;
833 error = aio_suspend1(l, list, nent, SCARG(uap, timeout) ? &ts : NULL);
834 out:
835 kmem_free(list, nent * sizeof(struct aio_job));
836 return error;
837 }
838
839 int
840 aio_suspend1(struct lwp *l, struct aiocb **aiocbp_list, int nent,
841 struct timespec *ts)
842 {
843 struct proc *p = l->l_proc;
844 struct aioproc *aio;
845 struct aio_job *a_job;
846 int i, error, timo;
847
848 if (p->p_aio == NULL)
849 return EAGAIN;
850 aio = p->p_aio;
851
852 if (ts) {
853 timo = mstohz((ts->tv_sec * 1000) + (ts->tv_nsec / 1000000));
854 if (timo == 0 && ts->tv_sec == 0 && ts->tv_nsec > 0)
855 timo = 1;
856 if (timo <= 0)
857 return EAGAIN;
858 } else
859 timo = 0;
860
861 /* Get the list from user-space */
862
863 mutex_enter(&aio->aio_mtx);
864 for (;;) {
865
866 for (i = 0; i < nent; i++) {
867
868 /* Skip NULL entries */
869 if (aiocbp_list[i] == NULL)
870 continue;
871
872 /* Skip current job */
873 if (aio->curjob) {
874 a_job = aio->curjob;
875 if (a_job->aiocb_uptr == aiocbp_list[i])
876 continue;
877 }
878
879 /* Look for a job in the queue */
880 TAILQ_FOREACH(a_job, &aio->jobs_queue, list)
881 if (a_job->aiocb_uptr == aiocbp_list[i])
882 break;
883
884 if (a_job == NULL) {
885 struct aiocb aiocbp;
886
887 mutex_exit(&aio->aio_mtx);
888
889 error = copyin(aiocbp_list[i], &aiocbp,
890 sizeof(struct aiocb));
891 if (error == 0 && aiocbp._state != JOB_DONE) {
892 mutex_enter(&aio->aio_mtx);
893 continue;
894 }
895 return error;
896 }
897 }
898
899 /* Wait for a signal or when timeout occurs */
900 error = cv_timedwait_sig(&aio->done_cv, &aio->aio_mtx, timo);
901 if (error) {
902 if (error == EWOULDBLOCK)
903 error = EAGAIN;
904 break;
905 }
906 }
907 mutex_exit(&aio->aio_mtx);
908 return error;
909 }
910
911 int
912 sys_aio_write(struct lwp *l, const struct sys_aio_write_args *uap, register_t *retval)
913 {
914 /* {
915 syscallarg(struct aiocb *) aiocbp;
916 } */
917
918 return aio_enqueue_job(AIO_WRITE, SCARG(uap, aiocbp), NULL);
919 }
920
921 int
922 sys_lio_listio(struct lwp *l, const struct sys_lio_listio_args *uap, register_t *retval)
923 {
924 /* {
925 syscallarg(int) mode;
926 syscallarg(struct aiocb *const[]) list;
927 syscallarg(int) nent;
928 syscallarg(struct sigevent *) sig;
929 } */
930 struct proc *p = l->l_proc;
931 struct aioproc *aio;
932 struct aiocb **aiocbp_list;
933 struct lio_req *lio;
934 int i, error, errcnt, mode, nent;
935
936 mode = SCARG(uap, mode);
937 nent = SCARG(uap, nent);
938
939 /* Non-accurate checks for the limit and invalid values */
940 if (nent < 1 || nent > aio_listio_max)
941 return EINVAL;
942 if (aio_jobs_count + nent > aio_max)
943 return EAGAIN;
944
945 /* Check if AIO structure is initialized, if not - initialize it */
946 if (p->p_aio == NULL)
947 if (aio_procinit(p))
948 return EAGAIN;
949 aio = p->p_aio;
950
951 /* Create a LIO structure */
952 lio = pool_get(&aio_lio_pool, PR_WAITOK);
953 lio->refcnt = 1;
954 error = 0;
955
956 switch (mode) {
957 case LIO_WAIT:
958 memset(&lio->sig, 0, sizeof(struct sigevent));
959 break;
960 case LIO_NOWAIT:
961 /* Check for signal, validate it */
962 if (SCARG(uap, sig)) {
963 struct sigevent *sig = &lio->sig;
964
965 error = copyin(SCARG(uap, sig), &lio->sig,
966 sizeof(struct sigevent));
967 if (error == 0 &&
968 (sig->sigev_signo < 0 ||
969 sig->sigev_signo >= NSIG ||
970 sig->sigev_notify < SIGEV_NONE ||
971 sig->sigev_notify > SIGEV_SA))
972 error = EINVAL;
973 } else
974 memset(&lio->sig, 0, sizeof(struct sigevent));
975 break;
976 default:
977 error = EINVAL;
978 break;
979 }
980
981 if (error != 0) {
982 pool_put(&aio_lio_pool, lio);
983 return error;
984 }
985
986 /* Get the list from user-space */
987 aiocbp_list = kmem_zalloc(nent * sizeof(struct aio_job), KM_SLEEP);
988 error = copyin(SCARG(uap, list), aiocbp_list,
989 nent * sizeof(struct aiocb));
990 if (error) {
991 mutex_enter(&aio->aio_mtx);
992 goto err;
993 }
994
995 /* Enqueue all jobs */
996 errcnt = 0;
997 for (i = 0; i < nent; i++) {
998 error = aio_enqueue_job(AIO_LIO, aiocbp_list[i], lio);
999 /*
1000 * According to POSIX, in such error case it may
1001 * fail with other I/O operations initiated.
1002 */
1003 if (error)
1004 errcnt++;
1005 }
1006
1007 mutex_enter(&aio->aio_mtx);
1008
1009 /* Return an error, if any */
1010 if (errcnt) {
1011 error = EIO;
1012 goto err;
1013 }
1014
1015 if (mode == LIO_WAIT) {
1016 /*
1017 * Wait for AIO completion. In such case,
1018 * the LIO structure will be freed here.
1019 */
1020 while (lio->refcnt > 1 && error == 0)
1021 error = cv_wait_sig(&aio->done_cv, &aio->aio_mtx);
1022 if (error)
1023 error = EINTR;
1024 }
1025
1026 err:
1027 if (--lio->refcnt != 0)
1028 lio = NULL;
1029 mutex_exit(&aio->aio_mtx);
1030 if (lio != NULL) {
1031 aio_sendsig(p, &lio->sig);
1032 pool_put(&aio_lio_pool, lio);
1033 }
1034 kmem_free(aiocbp_list, nent * sizeof(struct aio_job));
1035 return error;
1036 }
1037
1038 /*
1039 * SysCtl
1040 */
1041
1042 static int
1043 sysctl_aio_listio_max(SYSCTLFN_ARGS)
1044 {
1045 struct sysctlnode node;
1046 int error, newsize;
1047
1048 node = *rnode;
1049 node.sysctl_data = &newsize;
1050
1051 newsize = aio_listio_max;
1052 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1053 if (error || newp == NULL)
1054 return error;
1055
1056 if (newsize < 1 || newsize > aio_max)
1057 return EINVAL;
1058 aio_listio_max = newsize;
1059
1060 return 0;
1061 }
1062
1063 static int
1064 sysctl_aio_max(SYSCTLFN_ARGS)
1065 {
1066 struct sysctlnode node;
1067 int error, newsize;
1068
1069 node = *rnode;
1070 node.sysctl_data = &newsize;
1071
1072 newsize = aio_max;
1073 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1074 if (error || newp == NULL)
1075 return error;
1076
1077 if (newsize < 1 || newsize < aio_listio_max)
1078 return EINVAL;
1079 aio_max = newsize;
1080
1081 return 0;
1082 }
1083
1084 SYSCTL_SETUP(sysctl_aio_setup, "sysctl aio setup")
1085 {
1086
1087 sysctl_createv(clog, 0, NULL, NULL,
1088 CTLFLAG_PERMANENT,
1089 CTLTYPE_NODE, "kern", NULL,
1090 NULL, 0, NULL, 0,
1091 CTL_KERN, CTL_EOL);
1092 sysctl_createv(clog, 0, NULL, NULL,
1093 CTLFLAG_PERMANENT | CTLFLAG_IMMEDIATE,
1094 CTLTYPE_INT, "posix_aio",
1095 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
1096 "Asynchronous I/O option to which the "
1097 "system attempts to conform"),
1098 NULL, _POSIX_ASYNCHRONOUS_IO, NULL, 0,
1099 CTL_KERN, CTL_CREATE, CTL_EOL);
1100 sysctl_createv(clog, 0, NULL, NULL,
1101 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1102 CTLTYPE_INT, "aio_listio_max",
1103 SYSCTL_DESCR("Maximum number of asynchronous I/O "
1104 "operations in a single list I/O call"),
1105 sysctl_aio_listio_max, 0, &aio_listio_max, 0,
1106 CTL_KERN, CTL_CREATE, CTL_EOL);
1107 sysctl_createv(clog, 0, NULL, NULL,
1108 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1109 CTLTYPE_INT, "aio_max",
1110 SYSCTL_DESCR("Maximum number of asynchronous I/O "
1111 "operations"),
1112 sysctl_aio_max, 0, &aio_max, 0,
1113 CTL_KERN, CTL_CREATE, CTL_EOL);
1114 }
1115
1116 /*
1117 * Debugging
1118 */
1119 #if defined(DDB)
1120 void
1121 aio_print_jobs(void (*pr)(const char *, ...))
1122 {
1123 struct proc *p = (curlwp == NULL ? NULL : curlwp->l_proc);
1124 struct aioproc *aio;
1125 struct aio_job *a_job;
1126 struct aiocb *aiocbp;
1127
1128 if (p == NULL) {
1129 (*pr)("AIO: We are not in the processes right now.\n");
1130 return;
1131 }
1132
1133 aio = p->p_aio;
1134 if (aio == NULL) {
1135 (*pr)("AIO data is not initialized (PID = %d).\n", p->p_pid);
1136 return;
1137 }
1138
1139 (*pr)("AIO: PID = %d\n", p->p_pid);
1140 (*pr)("AIO: Global count of the jobs = %u\n", aio_jobs_count);
1141 (*pr)("AIO: Count of the jobs = %u\n", aio->jobs_count);
1142
1143 if (aio->curjob) {
1144 a_job = aio->curjob;
1145 (*pr)("\nAIO current job:\n");
1146 (*pr)(" opcode = %d, errno = %d, state = %d, aiocb_ptr = %p\n",
1147 a_job->aio_op, a_job->aiocbp._errno,
1148 a_job->aiocbp._state, a_job->aiocb_uptr);
1149 aiocbp = &a_job->aiocbp;
1150 (*pr)(" fd = %d, offset = %u, buf = %p, nbytes = %u\n",
1151 aiocbp->aio_fildes, aiocbp->aio_offset,
1152 aiocbp->aio_buf, aiocbp->aio_nbytes);
1153 }
1154
1155 (*pr)("\nAIO queue:\n");
1156 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) {
1157 (*pr)(" opcode = %d, errno = %d, state = %d, aiocb_ptr = %p\n",
1158 a_job->aio_op, a_job->aiocbp._errno,
1159 a_job->aiocbp._state, a_job->aiocb_uptr);
1160 aiocbp = &a_job->aiocbp;
1161 (*pr)(" fd = %d, offset = %u, buf = %p, nbytes = %u\n",
1162 aiocbp->aio_fildes, aiocbp->aio_offset,
1163 aiocbp->aio_buf, aiocbp->aio_nbytes);
1164 }
1165 }
1166 #endif /* defined(DDB) */
1167