sys_aio.c revision 1.28 1 /* $NetBSD: sys_aio.c,v 1.28 2009/10/12 23:43:13 yamt Exp $ */
2
3 /*
4 * Copyright (c) 2007, Mindaugas Rasiukevicius <rmind at NetBSD org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * Implementation of POSIX asynchronous I/O.
31 * Defined in the Base Definitions volume of IEEE Std 1003.1-2001.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: sys_aio.c,v 1.28 2009/10/12 23:43:13 yamt Exp $");
36
37 #ifdef _KERNEL_OPT
38 #include "opt_ddb.h"
39 #endif
40
41 #include <sys/param.h>
42 #include <sys/condvar.h>
43 #include <sys/file.h>
44 #include <sys/filedesc.h>
45 #include <sys/kernel.h>
46 #include <sys/kmem.h>
47 #include <sys/lwp.h>
48 #include <sys/mutex.h>
49 #include <sys/pool.h>
50 #include <sys/proc.h>
51 #include <sys/queue.h>
52 #include <sys/signal.h>
53 #include <sys/signalvar.h>
54 #include <sys/syscall.h>
55 #include <sys/syscallargs.h>
56 #include <sys/syscallvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/systm.h>
59 #include <sys/types.h>
60 #include <sys/vnode.h>
61 #include <sys/atomic.h>
62 #include <sys/module.h>
63 #include <sys/buf.h>
64
65 #include <uvm/uvm_extern.h>
66
67 MODULE(MODULE_CLASS_MISC, aio, NULL);
68
69 /*
70 * System-wide limits and counter of AIO operations.
71 */
72 u_int aio_listio_max = AIO_LISTIO_MAX;
73 static u_int aio_max = AIO_MAX;
74 static u_int aio_jobs_count;
75
76 static struct pool aio_job_pool;
77 static struct pool aio_lio_pool;
78 static void *aio_ehook;
79
80 /* Prototypes */
81 static void aio_worker(void *);
82 static void aio_process(struct aio_job *);
83 static void aio_sendsig(struct proc *, struct sigevent *);
84 static int aio_enqueue_job(int, void *, struct lio_req *);
85 static void aio_exit(proc_t *, void *);
86
87 static const struct syscall_package aio_syscalls[] = {
88 { SYS_aio_cancel, 0, (sy_call_t *)sys_aio_cancel },
89 { SYS_aio_error, 0, (sy_call_t *)sys_aio_error },
90 { SYS_aio_fsync, 0, (sy_call_t *)sys_aio_fsync },
91 { SYS_aio_read, 0, (sy_call_t *)sys_aio_read },
92 { SYS_aio_return, 0, (sy_call_t *)sys_aio_return },
93 { SYS___aio_suspend50, 0, (sy_call_t *)sys___aio_suspend50 },
94 { SYS_aio_write, 0, (sy_call_t *)sys_aio_write },
95 { SYS_lio_listio, 0, (sy_call_t *)sys_lio_listio },
96 { 0, 0, NULL },
97 };
98
99 /*
100 * Tear down all AIO state.
101 */
102 static int
103 aio_fini(bool interface)
104 {
105 int error;
106 proc_t *p;
107
108 if (interface) {
109 /* Stop syscall activity. */
110 error = syscall_disestablish(NULL, aio_syscalls);
111 if (error != 0)
112 return error;
113 /* Abort if any processes are using AIO. */
114 mutex_enter(proc_lock);
115 PROCLIST_FOREACH(p, &allproc) {
116 if (p->p_aio != NULL)
117 break;
118 }
119 mutex_exit(proc_lock);
120 if (p != NULL) {
121 error = syscall_establish(NULL, aio_syscalls);
122 KASSERT(error == 0);
123 return EBUSY;
124 }
125 }
126 KASSERT(aio_jobs_count == 0);
127 exithook_disestablish(aio_ehook);
128 pool_destroy(&aio_job_pool);
129 pool_destroy(&aio_lio_pool);
130 return 0;
131 }
132
133 /*
134 * Initialize global AIO state.
135 */
136 static int
137 aio_init(void)
138 {
139 int error;
140
141 pool_init(&aio_job_pool, sizeof(struct aio_job), 0, 0, 0,
142 "aio_jobs_pool", &pool_allocator_nointr, IPL_NONE);
143 pool_init(&aio_lio_pool, sizeof(struct lio_req), 0, 0, 0,
144 "aio_lio_pool", &pool_allocator_nointr, IPL_NONE);
145 aio_ehook = exithook_establish(aio_exit, NULL);
146 error = syscall_establish(NULL, aio_syscalls);
147 if (error != 0)
148 aio_fini(false);
149 return error;
150 }
151
152 /*
153 * Module interface.
154 */
155 static int
156 aio_modcmd(modcmd_t cmd, void *arg)
157 {
158
159 switch (cmd) {
160 case MODULE_CMD_INIT:
161 return aio_init();
162 case MODULE_CMD_FINI:
163 return aio_fini(true);
164 default:
165 return ENOTTY;
166 }
167 }
168
169 /*
170 * Initialize Asynchronous I/O data structures for the process.
171 */
172 static int
173 aio_procinit(struct proc *p)
174 {
175 struct aioproc *aio;
176 struct lwp *l;
177 int error;
178 bool inmem;
179 vaddr_t uaddr;
180
181 /* Allocate and initialize AIO structure */
182 aio = kmem_zalloc(sizeof(struct aioproc), KM_SLEEP);
183 if (aio == NULL)
184 return EAGAIN;
185
186 /* Initialize queue and their synchronization structures */
187 mutex_init(&aio->aio_mtx, MUTEX_DEFAULT, IPL_NONE);
188 cv_init(&aio->aio_worker_cv, "aiowork");
189 cv_init(&aio->done_cv, "aiodone");
190 TAILQ_INIT(&aio->jobs_queue);
191
192 /*
193 * Create an AIO worker thread.
194 * XXX: Currently, AIO thread is not protected against user's actions.
195 */
196 inmem = uvm_uarea_alloc(&uaddr);
197 if (uaddr == 0) {
198 aio_exit(p, aio);
199 return EAGAIN;
200 }
201 error = lwp_create(curlwp, p, uaddr, inmem, 0, NULL, 0, aio_worker,
202 NULL, &l, curlwp->l_class);
203 if (error != 0) {
204 uvm_uarea_free(uaddr, curcpu());
205 aio_exit(p, aio);
206 return error;
207 }
208
209 /* Recheck if we are really first */
210 mutex_enter(p->p_lock);
211 if (p->p_aio) {
212 mutex_exit(p->p_lock);
213 aio_exit(p, aio);
214 lwp_exit(l);
215 return 0;
216 }
217 p->p_aio = aio;
218
219 /* Complete the initialization of thread, and run it */
220 aio->aio_worker = l;
221 p->p_nrlwps++;
222 lwp_lock(l);
223 l->l_stat = LSRUN;
224 l->l_priority = MAXPRI_USER;
225 sched_enqueue(l, false);
226 lwp_unlock(l);
227 mutex_exit(p->p_lock);
228
229 return 0;
230 }
231
232 /*
233 * Exit of Asynchronous I/O subsystem of process.
234 */
235 static void
236 aio_exit(struct proc *p, void *cookie)
237 {
238 struct aio_job *a_job;
239 struct aioproc *aio;
240
241 if (cookie != NULL)
242 aio = cookie;
243 else if ((aio = p->p_aio) == NULL)
244 return;
245
246 /* Free AIO queue */
247 while (!TAILQ_EMPTY(&aio->jobs_queue)) {
248 a_job = TAILQ_FIRST(&aio->jobs_queue);
249 TAILQ_REMOVE(&aio->jobs_queue, a_job, list);
250 pool_put(&aio_job_pool, a_job);
251 atomic_dec_uint(&aio_jobs_count);
252 }
253
254 /* Destroy and free the entire AIO data structure */
255 cv_destroy(&aio->aio_worker_cv);
256 cv_destroy(&aio->done_cv);
257 mutex_destroy(&aio->aio_mtx);
258 kmem_free(aio, sizeof(struct aioproc));
259 }
260
261 /*
262 * AIO worker thread and processor.
263 */
264 static void
265 aio_worker(void *arg)
266 {
267 struct proc *p = curlwp->l_proc;
268 struct aioproc *aio = p->p_aio;
269 struct aio_job *a_job;
270 struct lio_req *lio;
271 sigset_t oss, nss;
272 int error, refcnt;
273
274 /*
275 * Make an empty signal mask, so it
276 * handles only SIGKILL and SIGSTOP.
277 */
278 sigfillset(&nss);
279 mutex_enter(p->p_lock);
280 error = sigprocmask1(curlwp, SIG_SETMASK, &nss, &oss);
281 mutex_exit(p->p_lock);
282 KASSERT(error == 0);
283
284 for (;;) {
285 /*
286 * Loop for each job in the queue. If there
287 * are no jobs then sleep.
288 */
289 mutex_enter(&aio->aio_mtx);
290 while ((a_job = TAILQ_FIRST(&aio->jobs_queue)) == NULL) {
291 if (cv_wait_sig(&aio->aio_worker_cv, &aio->aio_mtx)) {
292 /*
293 * Thread was interrupted - check for
294 * pending exit or suspend.
295 */
296 mutex_exit(&aio->aio_mtx);
297 lwp_userret(curlwp);
298 mutex_enter(&aio->aio_mtx);
299 }
300 }
301
302 /* Take the job from the queue */
303 aio->curjob = a_job;
304 TAILQ_REMOVE(&aio->jobs_queue, a_job, list);
305
306 atomic_dec_uint(&aio_jobs_count);
307 aio->jobs_count--;
308
309 mutex_exit(&aio->aio_mtx);
310
311 /* Process an AIO operation */
312 aio_process(a_job);
313
314 /* Copy data structure back to the user-space */
315 (void)copyout(&a_job->aiocbp, a_job->aiocb_uptr,
316 sizeof(struct aiocb));
317
318 mutex_enter(&aio->aio_mtx);
319 aio->curjob = NULL;
320
321 /* Decrease a reference counter, if there is a LIO structure */
322 lio = a_job->lio;
323 refcnt = (lio != NULL ? --lio->refcnt : -1);
324
325 /* Notify all suspenders */
326 cv_broadcast(&aio->done_cv);
327 mutex_exit(&aio->aio_mtx);
328
329 /* Send a signal, if any */
330 aio_sendsig(p, &a_job->aiocbp.aio_sigevent);
331
332 /* Destroy the LIO structure */
333 if (refcnt == 0) {
334 aio_sendsig(p, &lio->sig);
335 pool_put(&aio_lio_pool, lio);
336 }
337
338 /* Destroy the the job */
339 pool_put(&aio_job_pool, a_job);
340 }
341
342 /* NOTREACHED */
343 }
344
345 static void
346 aio_process(struct aio_job *a_job)
347 {
348 struct proc *p = curlwp->l_proc;
349 struct aiocb *aiocbp = &a_job->aiocbp;
350 struct file *fp;
351 int fd = aiocbp->aio_fildes;
352 int error = 0;
353
354 KASSERT(a_job->aio_op != 0);
355
356 if ((a_job->aio_op & (AIO_READ | AIO_WRITE)) != 0) {
357 struct iovec aiov;
358 struct uio auio;
359
360 if (aiocbp->aio_nbytes > SSIZE_MAX) {
361 error = EINVAL;
362 goto done;
363 }
364
365 fp = fd_getfile(fd);
366 if (fp == NULL) {
367 error = EBADF;
368 goto done;
369 }
370
371 aiov.iov_base = (void *)(uintptr_t)aiocbp->aio_buf;
372 aiov.iov_len = aiocbp->aio_nbytes;
373 auio.uio_iov = &aiov;
374 auio.uio_iovcnt = 1;
375 auio.uio_resid = aiocbp->aio_nbytes;
376 auio.uio_vmspace = p->p_vmspace;
377
378 if (a_job->aio_op & AIO_READ) {
379 /*
380 * Perform a Read operation
381 */
382 KASSERT((a_job->aio_op & AIO_WRITE) == 0);
383
384 if ((fp->f_flag & FREAD) == 0) {
385 fd_putfile(fd);
386 error = EBADF;
387 goto done;
388 }
389 auio.uio_rw = UIO_READ;
390 error = (*fp->f_ops->fo_read)(fp, &aiocbp->aio_offset,
391 &auio, fp->f_cred, FOF_UPDATE_OFFSET);
392 } else {
393 /*
394 * Perform a Write operation
395 */
396 KASSERT(a_job->aio_op & AIO_WRITE);
397
398 if ((fp->f_flag & FWRITE) == 0) {
399 fd_putfile(fd);
400 error = EBADF;
401 goto done;
402 }
403 auio.uio_rw = UIO_WRITE;
404 error = (*fp->f_ops->fo_write)(fp, &aiocbp->aio_offset,
405 &auio, fp->f_cred, FOF_UPDATE_OFFSET);
406 }
407 fd_putfile(fd);
408
409 /* Store the result value */
410 a_job->aiocbp.aio_nbytes -= auio.uio_resid;
411 a_job->aiocbp._retval = (error == 0) ?
412 a_job->aiocbp.aio_nbytes : -1;
413
414 } else if ((a_job->aio_op & (AIO_SYNC | AIO_DSYNC)) != 0) {
415 /*
416 * Perform a file Sync operation
417 */
418 struct vnode *vp;
419
420 if ((error = fd_getvnode(fd, &fp)) != 0)
421 goto done;
422
423 if ((fp->f_flag & FWRITE) == 0) {
424 fd_putfile(fd);
425 error = EBADF;
426 goto done;
427 }
428
429 vp = (struct vnode *)fp->f_data;
430 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
431 if (a_job->aio_op & AIO_DSYNC) {
432 error = VOP_FSYNC(vp, fp->f_cred,
433 FSYNC_WAIT | FSYNC_DATAONLY, 0, 0);
434 } else if (a_job->aio_op & AIO_SYNC) {
435 error = VOP_FSYNC(vp, fp->f_cred,
436 FSYNC_WAIT, 0, 0);
437 }
438 VOP_UNLOCK(vp, 0);
439 fd_putfile(fd);
440
441 /* Store the result value */
442 a_job->aiocbp._retval = (error == 0) ? 0 : -1;
443
444 } else
445 panic("aio_process: invalid operation code\n");
446
447 done:
448 /* Job is done, set the error, if any */
449 a_job->aiocbp._errno = error;
450 a_job->aiocbp._state = JOB_DONE;
451 }
452
453 /*
454 * Send AIO signal.
455 */
456 static void
457 aio_sendsig(struct proc *p, struct sigevent *sig)
458 {
459 ksiginfo_t ksi;
460
461 if (sig->sigev_signo == 0 || sig->sigev_notify == SIGEV_NONE)
462 return;
463
464 KSI_INIT(&ksi);
465 ksi.ksi_signo = sig->sigev_signo;
466 ksi.ksi_code = SI_ASYNCIO;
467 ksi.ksi_value = sig->sigev_value;
468 mutex_enter(proc_lock);
469 kpsignal(p, &ksi, NULL);
470 mutex_exit(proc_lock);
471 }
472
473 /*
474 * Enqueue the job.
475 */
476 static int
477 aio_enqueue_job(int op, void *aiocb_uptr, struct lio_req *lio)
478 {
479 struct proc *p = curlwp->l_proc;
480 struct aioproc *aio;
481 struct aio_job *a_job;
482 struct aiocb aiocbp;
483 struct sigevent *sig;
484 int error;
485
486 /* Non-accurate check for the limit */
487 if (aio_jobs_count + 1 > aio_max)
488 return EAGAIN;
489
490 /* Get the data structure from user-space */
491 error = copyin(aiocb_uptr, &aiocbp, sizeof(struct aiocb));
492 if (error)
493 return error;
494
495 /* Check if signal is set, and validate it */
496 sig = &aiocbp.aio_sigevent;
497 if (sig->sigev_signo < 0 || sig->sigev_signo >= NSIG ||
498 sig->sigev_notify < SIGEV_NONE || sig->sigev_notify > SIGEV_SA)
499 return EINVAL;
500
501 /* Buffer and byte count */
502 if (((AIO_SYNC | AIO_DSYNC) & op) == 0)
503 if (aiocbp.aio_buf == NULL || aiocbp.aio_nbytes > SSIZE_MAX)
504 return EINVAL;
505
506 /* Check the opcode, if LIO_NOP - simply ignore */
507 if (op == AIO_LIO) {
508 KASSERT(lio != NULL);
509 if (aiocbp.aio_lio_opcode == LIO_WRITE)
510 op = AIO_WRITE;
511 else if (aiocbp.aio_lio_opcode == LIO_READ)
512 op = AIO_READ;
513 else
514 return (aiocbp.aio_lio_opcode == LIO_NOP) ? 0 : EINVAL;
515 } else {
516 KASSERT(lio == NULL);
517 }
518
519 /*
520 * Look for already existing job. If found - the job is in-progress.
521 * According to POSIX this is invalid, so return the error.
522 */
523 aio = p->p_aio;
524 if (aio) {
525 mutex_enter(&aio->aio_mtx);
526 if (aio->curjob) {
527 a_job = aio->curjob;
528 if (a_job->aiocb_uptr == aiocb_uptr) {
529 mutex_exit(&aio->aio_mtx);
530 return EINVAL;
531 }
532 }
533 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) {
534 if (a_job->aiocb_uptr != aiocb_uptr)
535 continue;
536 mutex_exit(&aio->aio_mtx);
537 return EINVAL;
538 }
539 mutex_exit(&aio->aio_mtx);
540 }
541
542 /*
543 * Check if AIO structure is initialized, if not - initialize it.
544 * In LIO case, we did that already. We will recheck this with
545 * the lock in aio_procinit().
546 */
547 if (lio == NULL && p->p_aio == NULL)
548 if (aio_procinit(p))
549 return EAGAIN;
550 aio = p->p_aio;
551
552 /*
553 * Set the state with errno, and copy data
554 * structure back to the user-space.
555 */
556 aiocbp._state = JOB_WIP;
557 aiocbp._errno = EINPROGRESS;
558 aiocbp._retval = -1;
559 error = copyout(&aiocbp, aiocb_uptr, sizeof(struct aiocb));
560 if (error)
561 return error;
562
563 /* Allocate and initialize a new AIO job */
564 a_job = pool_get(&aio_job_pool, PR_WAITOK);
565 memset(a_job, 0, sizeof(struct aio_job));
566
567 /*
568 * Set the data.
569 * Store the user-space pointer for searching. Since we
570 * are storing only per proc pointers - it is safe.
571 */
572 memcpy(&a_job->aiocbp, &aiocbp, sizeof(struct aiocb));
573 a_job->aiocb_uptr = aiocb_uptr;
574 a_job->aio_op |= op;
575 a_job->lio = lio;
576
577 /*
578 * Add the job to the queue, update the counters, and
579 * notify the AIO worker thread to handle the job.
580 */
581 mutex_enter(&aio->aio_mtx);
582
583 /* Fail, if the limit was reached */
584 if (atomic_inc_uint_nv(&aio_jobs_count) > aio_max ||
585 aio->jobs_count >= aio_listio_max) {
586 atomic_dec_uint(&aio_jobs_count);
587 mutex_exit(&aio->aio_mtx);
588 pool_put(&aio_job_pool, a_job);
589 return EAGAIN;
590 }
591
592 TAILQ_INSERT_TAIL(&aio->jobs_queue, a_job, list);
593 aio->jobs_count++;
594 if (lio)
595 lio->refcnt++;
596 cv_signal(&aio->aio_worker_cv);
597
598 mutex_exit(&aio->aio_mtx);
599
600 /*
601 * One would handle the errors only with aio_error() function.
602 * This way is appropriate according to POSIX.
603 */
604 return 0;
605 }
606
607 /*
608 * Syscall functions.
609 */
610
611 int
612 sys_aio_cancel(struct lwp *l, const struct sys_aio_cancel_args *uap,
613 register_t *retval)
614 {
615 /* {
616 syscallarg(int) fildes;
617 syscallarg(struct aiocb *) aiocbp;
618 } */
619 struct proc *p = l->l_proc;
620 struct aioproc *aio;
621 struct aio_job *a_job;
622 struct aiocb *aiocbp_ptr;
623 struct lio_req *lio;
624 struct filedesc *fdp = p->p_fd;
625 unsigned int cn, errcnt, fildes;
626 fdtab_t *dt;
627
628 TAILQ_HEAD(, aio_job) tmp_jobs_list;
629
630 /* Check for invalid file descriptor */
631 fildes = (unsigned int)SCARG(uap, fildes);
632 dt = fdp->fd_dt;
633 if (fildes >= dt->dt_nfiles)
634 return EBADF;
635 if (dt->dt_ff[fildes] == NULL || dt->dt_ff[fildes]->ff_file == NULL)
636 return EBADF;
637
638 /* Check if AIO structure is initialized */
639 if (p->p_aio == NULL) {
640 *retval = AIO_NOTCANCELED;
641 return 0;
642 }
643
644 aio = p->p_aio;
645 aiocbp_ptr = (struct aiocb *)SCARG(uap, aiocbp);
646
647 mutex_enter(&aio->aio_mtx);
648
649 /* Cancel the jobs, and remove them from the queue */
650 cn = 0;
651 TAILQ_INIT(&tmp_jobs_list);
652 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) {
653 if (aiocbp_ptr) {
654 if (aiocbp_ptr != a_job->aiocb_uptr)
655 continue;
656 if (fildes != a_job->aiocbp.aio_fildes) {
657 mutex_exit(&aio->aio_mtx);
658 return EBADF;
659 }
660 } else if (a_job->aiocbp.aio_fildes != fildes)
661 continue;
662
663 TAILQ_REMOVE(&aio->jobs_queue, a_job, list);
664 TAILQ_INSERT_TAIL(&tmp_jobs_list, a_job, list);
665
666 /* Decrease the counters */
667 atomic_dec_uint(&aio_jobs_count);
668 aio->jobs_count--;
669 lio = a_job->lio;
670 if (lio != NULL && --lio->refcnt != 0)
671 a_job->lio = NULL;
672
673 cn++;
674 if (aiocbp_ptr)
675 break;
676 }
677
678 /* There are canceled jobs */
679 if (cn)
680 *retval = AIO_CANCELED;
681
682 /* We cannot cancel current job */
683 a_job = aio->curjob;
684 if (a_job && ((a_job->aiocbp.aio_fildes == fildes) ||
685 (a_job->aiocb_uptr == aiocbp_ptr)))
686 *retval = AIO_NOTCANCELED;
687
688 mutex_exit(&aio->aio_mtx);
689
690 /* Free the jobs after the lock */
691 errcnt = 0;
692 while (!TAILQ_EMPTY(&tmp_jobs_list)) {
693 a_job = TAILQ_FIRST(&tmp_jobs_list);
694 TAILQ_REMOVE(&tmp_jobs_list, a_job, list);
695 /* Set the errno and copy structures back to the user-space */
696 a_job->aiocbp._errno = ECANCELED;
697 a_job->aiocbp._state = JOB_DONE;
698 if (copyout(&a_job->aiocbp, a_job->aiocb_uptr,
699 sizeof(struct aiocb)))
700 errcnt++;
701 /* Send a signal if any */
702 aio_sendsig(p, &a_job->aiocbp.aio_sigevent);
703 if (a_job->lio) {
704 lio = a_job->lio;
705 aio_sendsig(p, &lio->sig);
706 pool_put(&aio_lio_pool, lio);
707 }
708 pool_put(&aio_job_pool, a_job);
709 }
710
711 if (errcnt)
712 return EFAULT;
713
714 /* Set a correct return value */
715 if (*retval == 0)
716 *retval = AIO_ALLDONE;
717
718 return 0;
719 }
720
721 int
722 sys_aio_error(struct lwp *l, const struct sys_aio_error_args *uap,
723 register_t *retval)
724 {
725 /* {
726 syscallarg(const struct aiocb *) aiocbp;
727 } */
728 struct proc *p = l->l_proc;
729 struct aioproc *aio = p->p_aio;
730 struct aiocb aiocbp;
731 int error;
732
733 if (aio == NULL)
734 return EINVAL;
735
736 error = copyin(SCARG(uap, aiocbp), &aiocbp, sizeof(struct aiocb));
737 if (error)
738 return error;
739
740 if (aiocbp._state == JOB_NONE)
741 return EINVAL;
742
743 *retval = aiocbp._errno;
744
745 return 0;
746 }
747
748 int
749 sys_aio_fsync(struct lwp *l, const struct sys_aio_fsync_args *uap,
750 register_t *retval)
751 {
752 /* {
753 syscallarg(int) op;
754 syscallarg(struct aiocb *) aiocbp;
755 } */
756 int op = SCARG(uap, op);
757
758 if ((op != O_DSYNC) && (op != O_SYNC))
759 return EINVAL;
760
761 op = O_DSYNC ? AIO_DSYNC : AIO_SYNC;
762
763 return aio_enqueue_job(op, SCARG(uap, aiocbp), NULL);
764 }
765
766 int
767 sys_aio_read(struct lwp *l, const struct sys_aio_read_args *uap,
768 register_t *retval)
769 {
770 /* {
771 syscallarg(struct aiocb *) aiocbp;
772 } */
773
774 return aio_enqueue_job(AIO_READ, SCARG(uap, aiocbp), NULL);
775 }
776
777 int
778 sys_aio_return(struct lwp *l, const struct sys_aio_return_args *uap,
779 register_t *retval)
780 {
781 /* {
782 syscallarg(struct aiocb *) aiocbp;
783 } */
784 struct proc *p = l->l_proc;
785 struct aioproc *aio = p->p_aio;
786 struct aiocb aiocbp;
787 int error;
788
789 if (aio == NULL)
790 return EINVAL;
791
792 error = copyin(SCARG(uap, aiocbp), &aiocbp, sizeof(struct aiocb));
793 if (error)
794 return error;
795
796 if (aiocbp._errno == EINPROGRESS || aiocbp._state != JOB_DONE)
797 return EINVAL;
798
799 *retval = aiocbp._retval;
800
801 /* Reset the internal variables */
802 aiocbp._errno = 0;
803 aiocbp._retval = -1;
804 aiocbp._state = JOB_NONE;
805 error = copyout(&aiocbp, SCARG(uap, aiocbp), sizeof(struct aiocb));
806
807 return error;
808 }
809
810 int
811 sys___aio_suspend50(struct lwp *l, const struct sys___aio_suspend50_args *uap,
812 register_t *retval)
813 {
814 /* {
815 syscallarg(const struct aiocb *const[]) list;
816 syscallarg(int) nent;
817 syscallarg(const struct timespec *) timeout;
818 } */
819 struct aiocb **list;
820 struct timespec ts;
821 int error, nent;
822
823 nent = SCARG(uap, nent);
824 if (nent <= 0 || nent > aio_listio_max)
825 return EAGAIN;
826
827 if (SCARG(uap, timeout)) {
828 /* Convert timespec to ticks */
829 error = copyin(SCARG(uap, timeout), &ts,
830 sizeof(struct timespec));
831 if (error)
832 return error;
833 }
834 list = kmem_alloc(nent * sizeof(*list), KM_SLEEP);
835 error = copyin(SCARG(uap, list), list, nent * sizeof(*list));
836 if (error)
837 goto out;
838 error = aio_suspend1(l, list, nent, SCARG(uap, timeout) ? &ts : NULL);
839 out:
840 kmem_free(list, nent * sizeof(*list));
841 return error;
842 }
843
844 int
845 aio_suspend1(struct lwp *l, struct aiocb **aiocbp_list, int nent,
846 struct timespec *ts)
847 {
848 struct proc *p = l->l_proc;
849 struct aioproc *aio;
850 struct aio_job *a_job;
851 int i, error, timo;
852
853 if (p->p_aio == NULL)
854 return EAGAIN;
855 aio = p->p_aio;
856
857 if (ts) {
858 timo = mstohz((ts->tv_sec * 1000) + (ts->tv_nsec / 1000000));
859 if (timo == 0 && ts->tv_sec == 0 && ts->tv_nsec > 0)
860 timo = 1;
861 if (timo <= 0)
862 return EAGAIN;
863 } else
864 timo = 0;
865
866 /* Get the list from user-space */
867
868 mutex_enter(&aio->aio_mtx);
869 for (;;) {
870
871 for (i = 0; i < nent; i++) {
872
873 /* Skip NULL entries */
874 if (aiocbp_list[i] == NULL)
875 continue;
876
877 /* Skip current job */
878 if (aio->curjob) {
879 a_job = aio->curjob;
880 if (a_job->aiocb_uptr == aiocbp_list[i])
881 continue;
882 }
883
884 /* Look for a job in the queue */
885 TAILQ_FOREACH(a_job, &aio->jobs_queue, list)
886 if (a_job->aiocb_uptr == aiocbp_list[i])
887 break;
888
889 if (a_job == NULL) {
890 struct aiocb aiocbp;
891
892 mutex_exit(&aio->aio_mtx);
893
894 error = copyin(aiocbp_list[i], &aiocbp,
895 sizeof(struct aiocb));
896 if (error == 0 && aiocbp._state != JOB_DONE) {
897 mutex_enter(&aio->aio_mtx);
898 continue;
899 }
900 return error;
901 }
902 }
903
904 /* Wait for a signal or when timeout occurs */
905 error = cv_timedwait_sig(&aio->done_cv, &aio->aio_mtx, timo);
906 if (error) {
907 if (error == EWOULDBLOCK)
908 error = EAGAIN;
909 break;
910 }
911 }
912 mutex_exit(&aio->aio_mtx);
913 return error;
914 }
915
916 int
917 sys_aio_write(struct lwp *l, const struct sys_aio_write_args *uap,
918 register_t *retval)
919 {
920 /* {
921 syscallarg(struct aiocb *) aiocbp;
922 } */
923
924 return aio_enqueue_job(AIO_WRITE, SCARG(uap, aiocbp), NULL);
925 }
926
927 int
928 sys_lio_listio(struct lwp *l, const struct sys_lio_listio_args *uap,
929 register_t *retval)
930 {
931 /* {
932 syscallarg(int) mode;
933 syscallarg(struct aiocb *const[]) list;
934 syscallarg(int) nent;
935 syscallarg(struct sigevent *) sig;
936 } */
937 struct proc *p = l->l_proc;
938 struct aioproc *aio;
939 struct aiocb **aiocbp_list;
940 struct lio_req *lio;
941 int i, error, errcnt, mode, nent;
942
943 mode = SCARG(uap, mode);
944 nent = SCARG(uap, nent);
945
946 /* Non-accurate checks for the limit and invalid values */
947 if (nent < 1 || nent > aio_listio_max)
948 return EINVAL;
949 if (aio_jobs_count + nent > aio_max)
950 return EAGAIN;
951
952 /* Check if AIO structure is initialized, if not - initialize it */
953 if (p->p_aio == NULL)
954 if (aio_procinit(p))
955 return EAGAIN;
956 aio = p->p_aio;
957
958 /* Create a LIO structure */
959 lio = pool_get(&aio_lio_pool, PR_WAITOK);
960 lio->refcnt = 1;
961 error = 0;
962
963 switch (mode) {
964 case LIO_WAIT:
965 memset(&lio->sig, 0, sizeof(struct sigevent));
966 break;
967 case LIO_NOWAIT:
968 /* Check for signal, validate it */
969 if (SCARG(uap, sig)) {
970 struct sigevent *sig = &lio->sig;
971
972 error = copyin(SCARG(uap, sig), &lio->sig,
973 sizeof(struct sigevent));
974 if (error == 0 &&
975 (sig->sigev_signo < 0 ||
976 sig->sigev_signo >= NSIG ||
977 sig->sigev_notify < SIGEV_NONE ||
978 sig->sigev_notify > SIGEV_SA))
979 error = EINVAL;
980 } else
981 memset(&lio->sig, 0, sizeof(struct sigevent));
982 break;
983 default:
984 error = EINVAL;
985 break;
986 }
987
988 if (error != 0) {
989 pool_put(&aio_lio_pool, lio);
990 return error;
991 }
992
993 /* Get the list from user-space */
994 aiocbp_list = kmem_alloc(nent * sizeof(*aiocbp_list), KM_SLEEP);
995 error = copyin(SCARG(uap, list), aiocbp_list,
996 nent * sizeof(*aiocbp_list));
997 if (error) {
998 mutex_enter(&aio->aio_mtx);
999 goto err;
1000 }
1001
1002 /* Enqueue all jobs */
1003 errcnt = 0;
1004 for (i = 0; i < nent; i++) {
1005 error = aio_enqueue_job(AIO_LIO, aiocbp_list[i], lio);
1006 /*
1007 * According to POSIX, in such error case it may
1008 * fail with other I/O operations initiated.
1009 */
1010 if (error)
1011 errcnt++;
1012 }
1013
1014 mutex_enter(&aio->aio_mtx);
1015
1016 /* Return an error, if any */
1017 if (errcnt) {
1018 error = EIO;
1019 goto err;
1020 }
1021
1022 if (mode == LIO_WAIT) {
1023 /*
1024 * Wait for AIO completion. In such case,
1025 * the LIO structure will be freed here.
1026 */
1027 while (lio->refcnt > 1 && error == 0)
1028 error = cv_wait_sig(&aio->done_cv, &aio->aio_mtx);
1029 if (error)
1030 error = EINTR;
1031 }
1032
1033 err:
1034 if (--lio->refcnt != 0)
1035 lio = NULL;
1036 mutex_exit(&aio->aio_mtx);
1037 if (lio != NULL) {
1038 aio_sendsig(p, &lio->sig);
1039 pool_put(&aio_lio_pool, lio);
1040 }
1041 kmem_free(aiocbp_list, nent * sizeof(*aiocbp_list));
1042 return error;
1043 }
1044
1045 /*
1046 * SysCtl
1047 */
1048
1049 static int
1050 sysctl_aio_listio_max(SYSCTLFN_ARGS)
1051 {
1052 struct sysctlnode node;
1053 int error, newsize;
1054
1055 node = *rnode;
1056 node.sysctl_data = &newsize;
1057
1058 newsize = aio_listio_max;
1059 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1060 if (error || newp == NULL)
1061 return error;
1062
1063 if (newsize < 1 || newsize > aio_max)
1064 return EINVAL;
1065 aio_listio_max = newsize;
1066
1067 return 0;
1068 }
1069
1070 static int
1071 sysctl_aio_max(SYSCTLFN_ARGS)
1072 {
1073 struct sysctlnode node;
1074 int error, newsize;
1075
1076 node = *rnode;
1077 node.sysctl_data = &newsize;
1078
1079 newsize = aio_max;
1080 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1081 if (error || newp == NULL)
1082 return error;
1083
1084 if (newsize < 1 || newsize < aio_listio_max)
1085 return EINVAL;
1086 aio_max = newsize;
1087
1088 return 0;
1089 }
1090
1091 SYSCTL_SETUP(sysctl_aio_setup, "sysctl aio setup")
1092 {
1093
1094 sysctl_createv(clog, 0, NULL, NULL,
1095 CTLFLAG_PERMANENT,
1096 CTLTYPE_NODE, "kern", NULL,
1097 NULL, 0, NULL, 0,
1098 CTL_KERN, CTL_EOL);
1099 sysctl_createv(clog, 0, NULL, NULL,
1100 CTLFLAG_PERMANENT | CTLFLAG_IMMEDIATE,
1101 CTLTYPE_INT, "posix_aio",
1102 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
1103 "Asynchronous I/O option to which the "
1104 "system attempts to conform"),
1105 NULL, _POSIX_ASYNCHRONOUS_IO, NULL, 0,
1106 CTL_KERN, CTL_CREATE, CTL_EOL);
1107 sysctl_createv(clog, 0, NULL, NULL,
1108 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1109 CTLTYPE_INT, "aio_listio_max",
1110 SYSCTL_DESCR("Maximum number of asynchronous I/O "
1111 "operations in a single list I/O call"),
1112 sysctl_aio_listio_max, 0, &aio_listio_max, 0,
1113 CTL_KERN, CTL_CREATE, CTL_EOL);
1114 sysctl_createv(clog, 0, NULL, NULL,
1115 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1116 CTLTYPE_INT, "aio_max",
1117 SYSCTL_DESCR("Maximum number of asynchronous I/O "
1118 "operations"),
1119 sysctl_aio_max, 0, &aio_max, 0,
1120 CTL_KERN, CTL_CREATE, CTL_EOL);
1121 }
1122
1123 /*
1124 * Debugging
1125 */
1126 #if defined(DDB)
1127 void
1128 aio_print_jobs(void (*pr)(const char *, ...))
1129 {
1130 struct proc *p = (curlwp == NULL ? NULL : curlwp->l_proc);
1131 struct aioproc *aio;
1132 struct aio_job *a_job;
1133 struct aiocb *aiocbp;
1134
1135 if (p == NULL) {
1136 (*pr)("AIO: We are not in the processes right now.\n");
1137 return;
1138 }
1139
1140 aio = p->p_aio;
1141 if (aio == NULL) {
1142 (*pr)("AIO data is not initialized (PID = %d).\n", p->p_pid);
1143 return;
1144 }
1145
1146 (*pr)("AIO: PID = %d\n", p->p_pid);
1147 (*pr)("AIO: Global count of the jobs = %u\n", aio_jobs_count);
1148 (*pr)("AIO: Count of the jobs = %u\n", aio->jobs_count);
1149
1150 if (aio->curjob) {
1151 a_job = aio->curjob;
1152 (*pr)("\nAIO current job:\n");
1153 (*pr)(" opcode = %d, errno = %d, state = %d, aiocb_ptr = %p\n",
1154 a_job->aio_op, a_job->aiocbp._errno,
1155 a_job->aiocbp._state, a_job->aiocb_uptr);
1156 aiocbp = &a_job->aiocbp;
1157 (*pr)(" fd = %d, offset = %u, buf = %p, nbytes = %u\n",
1158 aiocbp->aio_fildes, aiocbp->aio_offset,
1159 aiocbp->aio_buf, aiocbp->aio_nbytes);
1160 }
1161
1162 (*pr)("\nAIO queue:\n");
1163 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) {
1164 (*pr)(" opcode = %d, errno = %d, state = %d, aiocb_ptr = %p\n",
1165 a_job->aio_op, a_job->aiocbp._errno,
1166 a_job->aiocbp._state, a_job->aiocb_uptr);
1167 aiocbp = &a_job->aiocbp;
1168 (*pr)(" fd = %d, offset = %u, buf = %p, nbytes = %u\n",
1169 aiocbp->aio_fildes, aiocbp->aio_offset,
1170 aiocbp->aio_buf, aiocbp->aio_nbytes);
1171 }
1172 }
1173 #endif /* defined(DDB) */
1174