sys_aio.c revision 1.31.2.1 1 /* $NetBSD: sys_aio.c,v 1.31.2.1 2010/08/17 06:47:30 uebayasi Exp $ */
2
3 /*
4 * Copyright (c) 2007 Mindaugas Rasiukevicius <rmind at NetBSD org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * Implementation of POSIX asynchronous I/O.
31 * Defined in the Base Definitions volume of IEEE Std 1003.1-2001.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: sys_aio.c,v 1.31.2.1 2010/08/17 06:47:30 uebayasi Exp $");
36
37 #ifdef _KERNEL_OPT
38 #include "opt_ddb.h"
39 #endif
40
41 #include <sys/param.h>
42 #include <sys/condvar.h>
43 #include <sys/file.h>
44 #include <sys/filedesc.h>
45 #include <sys/kernel.h>
46 #include <sys/kmem.h>
47 #include <sys/lwp.h>
48 #include <sys/mutex.h>
49 #include <sys/pool.h>
50 #include <sys/proc.h>
51 #include <sys/queue.h>
52 #include <sys/signal.h>
53 #include <sys/signalvar.h>
54 #include <sys/syscall.h>
55 #include <sys/syscallargs.h>
56 #include <sys/syscallvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/systm.h>
59 #include <sys/types.h>
60 #include <sys/vnode.h>
61 #include <sys/atomic.h>
62 #include <sys/module.h>
63 #include <sys/buf.h>
64
65 #include <uvm/uvm_extern.h>
66
67 MODULE(MODULE_CLASS_MISC, aio, NULL);
68
69 /*
70 * System-wide limits and counter of AIO operations.
71 */
72 u_int aio_listio_max = AIO_LISTIO_MAX;
73 static u_int aio_max = AIO_MAX;
74 static u_int aio_jobs_count;
75
76 static struct sysctllog *aio_sysctl;
77 static struct pool aio_job_pool;
78 static struct pool aio_lio_pool;
79 static void * aio_ehook;
80
81 static void aio_worker(void *);
82 static void aio_process(struct aio_job *);
83 static void aio_sendsig(struct proc *, struct sigevent *);
84 static int aio_enqueue_job(int, void *, struct lio_req *);
85 static void aio_exit(proc_t *, void *);
86
87 static int sysctl_aio_listio_max(SYSCTLFN_PROTO);
88 static int sysctl_aio_max(SYSCTLFN_PROTO);
89 static int sysctl_aio_init(void);
90
91 static const struct syscall_package aio_syscalls[] = {
92 { SYS_aio_cancel, 0, (sy_call_t *)sys_aio_cancel },
93 { SYS_aio_error, 0, (sy_call_t *)sys_aio_error },
94 { SYS_aio_fsync, 0, (sy_call_t *)sys_aio_fsync },
95 { SYS_aio_read, 0, (sy_call_t *)sys_aio_read },
96 { SYS_aio_return, 0, (sy_call_t *)sys_aio_return },
97 { SYS___aio_suspend50, 0, (sy_call_t *)sys___aio_suspend50 },
98 { SYS_aio_write, 0, (sy_call_t *)sys_aio_write },
99 { SYS_lio_listio, 0, (sy_call_t *)sys_lio_listio },
100 { 0, 0, NULL },
101 };
102
103 /*
104 * Tear down all AIO state.
105 */
106 static int
107 aio_fini(bool interface)
108 {
109 int error;
110 proc_t *p;
111
112 if (interface) {
113 /* Stop syscall activity. */
114 error = syscall_disestablish(NULL, aio_syscalls);
115 if (error != 0)
116 return error;
117 /* Abort if any processes are using AIO. */
118 mutex_enter(proc_lock);
119 PROCLIST_FOREACH(p, &allproc) {
120 if (p->p_aio != NULL)
121 break;
122 }
123 mutex_exit(proc_lock);
124 if (p != NULL) {
125 error = syscall_establish(NULL, aio_syscalls);
126 KASSERT(error == 0);
127 return EBUSY;
128 }
129 }
130 if (aio_sysctl != NULL)
131 sysctl_teardown(&aio_sysctl);
132
133 KASSERT(aio_jobs_count == 0);
134 exithook_disestablish(aio_ehook);
135 pool_destroy(&aio_job_pool);
136 pool_destroy(&aio_lio_pool);
137 return 0;
138 }
139
140 /*
141 * Initialize global AIO state.
142 */
143 static int
144 aio_init(void)
145 {
146 int error;
147
148 pool_init(&aio_job_pool, sizeof(struct aio_job), 0, 0, 0,
149 "aio_jobs_pool", &pool_allocator_nointr, IPL_NONE);
150 pool_init(&aio_lio_pool, sizeof(struct lio_req), 0, 0, 0,
151 "aio_lio_pool", &pool_allocator_nointr, IPL_NONE);
152 aio_ehook = exithook_establish(aio_exit, NULL);
153
154 error = sysctl_aio_init();
155 if (error != 0) {
156 (void)aio_fini(false);
157 return error;
158 }
159 error = syscall_establish(NULL, aio_syscalls);
160 if (error != 0)
161 (void)aio_fini(false);
162 return error;
163 }
164
165 /*
166 * Module interface.
167 */
168 static int
169 aio_modcmd(modcmd_t cmd, void *arg)
170 {
171
172 switch (cmd) {
173 case MODULE_CMD_INIT:
174 return aio_init();
175 case MODULE_CMD_FINI:
176 return aio_fini(true);
177 default:
178 return ENOTTY;
179 }
180 }
181
182 /*
183 * Initialize Asynchronous I/O data structures for the process.
184 */
185 static int
186 aio_procinit(struct proc *p)
187 {
188 struct aioproc *aio;
189 struct lwp *l;
190 int error;
191 vaddr_t uaddr;
192
193 /* Allocate and initialize AIO structure */
194 aio = kmem_zalloc(sizeof(struct aioproc), KM_SLEEP);
195 if (aio == NULL)
196 return EAGAIN;
197
198 /* Initialize queue and their synchronization structures */
199 mutex_init(&aio->aio_mtx, MUTEX_DEFAULT, IPL_NONE);
200 cv_init(&aio->aio_worker_cv, "aiowork");
201 cv_init(&aio->done_cv, "aiodone");
202 TAILQ_INIT(&aio->jobs_queue);
203
204 /*
205 * Create an AIO worker thread.
206 * XXX: Currently, AIO thread is not protected against user's actions.
207 */
208 uaddr = uvm_uarea_alloc();
209 if (uaddr == 0) {
210 aio_exit(p, aio);
211 return EAGAIN;
212 }
213 error = lwp_create(curlwp, p, uaddr, 0, NULL, 0, aio_worker,
214 NULL, &l, curlwp->l_class);
215 if (error != 0) {
216 uvm_uarea_free(uaddr);
217 aio_exit(p, aio);
218 return error;
219 }
220
221 /* Recheck if we are really first */
222 mutex_enter(p->p_lock);
223 if (p->p_aio) {
224 mutex_exit(p->p_lock);
225 aio_exit(p, aio);
226 lwp_exit(l);
227 return 0;
228 }
229 p->p_aio = aio;
230
231 /* Complete the initialization of thread, and run it */
232 aio->aio_worker = l;
233 lwp_lock(l);
234 l->l_stat = LSRUN;
235 l->l_priority = MAXPRI_USER;
236 sched_enqueue(l, false);
237 lwp_unlock(l);
238 mutex_exit(p->p_lock);
239
240 return 0;
241 }
242
243 /*
244 * Exit of Asynchronous I/O subsystem of process.
245 */
246 static void
247 aio_exit(struct proc *p, void *cookie)
248 {
249 struct aio_job *a_job;
250 struct aioproc *aio;
251
252 if (cookie != NULL)
253 aio = cookie;
254 else if ((aio = p->p_aio) == NULL)
255 return;
256
257 /* Free AIO queue */
258 while (!TAILQ_EMPTY(&aio->jobs_queue)) {
259 a_job = TAILQ_FIRST(&aio->jobs_queue);
260 TAILQ_REMOVE(&aio->jobs_queue, a_job, list);
261 pool_put(&aio_job_pool, a_job);
262 atomic_dec_uint(&aio_jobs_count);
263 }
264
265 /* Destroy and free the entire AIO data structure */
266 cv_destroy(&aio->aio_worker_cv);
267 cv_destroy(&aio->done_cv);
268 mutex_destroy(&aio->aio_mtx);
269 kmem_free(aio, sizeof(struct aioproc));
270 }
271
272 /*
273 * AIO worker thread and processor.
274 */
275 static void
276 aio_worker(void *arg)
277 {
278 struct proc *p = curlwp->l_proc;
279 struct aioproc *aio = p->p_aio;
280 struct aio_job *a_job;
281 struct lio_req *lio;
282 sigset_t oss, nss;
283 int error, refcnt;
284
285 /*
286 * Make an empty signal mask, so it
287 * handles only SIGKILL and SIGSTOP.
288 */
289 sigfillset(&nss);
290 mutex_enter(p->p_lock);
291 error = sigprocmask1(curlwp, SIG_SETMASK, &nss, &oss);
292 mutex_exit(p->p_lock);
293 KASSERT(error == 0);
294
295 for (;;) {
296 /*
297 * Loop for each job in the queue. If there
298 * are no jobs then sleep.
299 */
300 mutex_enter(&aio->aio_mtx);
301 while ((a_job = TAILQ_FIRST(&aio->jobs_queue)) == NULL) {
302 if (cv_wait_sig(&aio->aio_worker_cv, &aio->aio_mtx)) {
303 /*
304 * Thread was interrupted - check for
305 * pending exit or suspend.
306 */
307 mutex_exit(&aio->aio_mtx);
308 lwp_userret(curlwp);
309 mutex_enter(&aio->aio_mtx);
310 }
311 }
312
313 /* Take the job from the queue */
314 aio->curjob = a_job;
315 TAILQ_REMOVE(&aio->jobs_queue, a_job, list);
316
317 atomic_dec_uint(&aio_jobs_count);
318 aio->jobs_count--;
319
320 mutex_exit(&aio->aio_mtx);
321
322 /* Process an AIO operation */
323 aio_process(a_job);
324
325 /* Copy data structure back to the user-space */
326 (void)copyout(&a_job->aiocbp, a_job->aiocb_uptr,
327 sizeof(struct aiocb));
328
329 mutex_enter(&aio->aio_mtx);
330 aio->curjob = NULL;
331
332 /* Decrease a reference counter, if there is a LIO structure */
333 lio = a_job->lio;
334 refcnt = (lio != NULL ? --lio->refcnt : -1);
335
336 /* Notify all suspenders */
337 cv_broadcast(&aio->done_cv);
338 mutex_exit(&aio->aio_mtx);
339
340 /* Send a signal, if any */
341 aio_sendsig(p, &a_job->aiocbp.aio_sigevent);
342
343 /* Destroy the LIO structure */
344 if (refcnt == 0) {
345 aio_sendsig(p, &lio->sig);
346 pool_put(&aio_lio_pool, lio);
347 }
348
349 /* Destroy the job */
350 pool_put(&aio_job_pool, a_job);
351 }
352
353 /* NOTREACHED */
354 }
355
356 static void
357 aio_process(struct aio_job *a_job)
358 {
359 struct proc *p = curlwp->l_proc;
360 struct aiocb *aiocbp = &a_job->aiocbp;
361 struct file *fp;
362 int fd = aiocbp->aio_fildes;
363 int error = 0;
364
365 KASSERT(a_job->aio_op != 0);
366
367 if ((a_job->aio_op & (AIO_READ | AIO_WRITE)) != 0) {
368 struct iovec aiov;
369 struct uio auio;
370
371 if (aiocbp->aio_nbytes > SSIZE_MAX) {
372 error = EINVAL;
373 goto done;
374 }
375
376 fp = fd_getfile(fd);
377 if (fp == NULL) {
378 error = EBADF;
379 goto done;
380 }
381
382 aiov.iov_base = (void *)(uintptr_t)aiocbp->aio_buf;
383 aiov.iov_len = aiocbp->aio_nbytes;
384 auio.uio_iov = &aiov;
385 auio.uio_iovcnt = 1;
386 auio.uio_resid = aiocbp->aio_nbytes;
387 auio.uio_vmspace = p->p_vmspace;
388
389 if (a_job->aio_op & AIO_READ) {
390 /*
391 * Perform a Read operation
392 */
393 KASSERT((a_job->aio_op & AIO_WRITE) == 0);
394
395 if ((fp->f_flag & FREAD) == 0) {
396 fd_putfile(fd);
397 error = EBADF;
398 goto done;
399 }
400 auio.uio_rw = UIO_READ;
401 error = (*fp->f_ops->fo_read)(fp, &aiocbp->aio_offset,
402 &auio, fp->f_cred, FOF_UPDATE_OFFSET);
403 } else {
404 /*
405 * Perform a Write operation
406 */
407 KASSERT(a_job->aio_op & AIO_WRITE);
408
409 if ((fp->f_flag & FWRITE) == 0) {
410 fd_putfile(fd);
411 error = EBADF;
412 goto done;
413 }
414 auio.uio_rw = UIO_WRITE;
415 error = (*fp->f_ops->fo_write)(fp, &aiocbp->aio_offset,
416 &auio, fp->f_cred, FOF_UPDATE_OFFSET);
417 }
418 fd_putfile(fd);
419
420 /* Store the result value */
421 a_job->aiocbp.aio_nbytes -= auio.uio_resid;
422 a_job->aiocbp._retval = (error == 0) ?
423 a_job->aiocbp.aio_nbytes : -1;
424
425 } else if ((a_job->aio_op & (AIO_SYNC | AIO_DSYNC)) != 0) {
426 /*
427 * Perform a file Sync operation
428 */
429 struct vnode *vp;
430
431 if ((error = fd_getvnode(fd, &fp)) != 0)
432 goto done;
433
434 if ((fp->f_flag & FWRITE) == 0) {
435 fd_putfile(fd);
436 error = EBADF;
437 goto done;
438 }
439
440 vp = (struct vnode *)fp->f_data;
441 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
442 if (a_job->aio_op & AIO_DSYNC) {
443 error = VOP_FSYNC(vp, fp->f_cred,
444 FSYNC_WAIT | FSYNC_DATAONLY, 0, 0);
445 } else if (a_job->aio_op & AIO_SYNC) {
446 error = VOP_FSYNC(vp, fp->f_cred,
447 FSYNC_WAIT, 0, 0);
448 }
449 VOP_UNLOCK(vp);
450 fd_putfile(fd);
451
452 /* Store the result value */
453 a_job->aiocbp._retval = (error == 0) ? 0 : -1;
454
455 } else
456 panic("aio_process: invalid operation code\n");
457
458 done:
459 /* Job is done, set the error, if any */
460 a_job->aiocbp._errno = error;
461 a_job->aiocbp._state = JOB_DONE;
462 }
463
464 /*
465 * Send AIO signal.
466 */
467 static void
468 aio_sendsig(struct proc *p, struct sigevent *sig)
469 {
470 ksiginfo_t ksi;
471
472 if (sig->sigev_signo == 0 || sig->sigev_notify == SIGEV_NONE)
473 return;
474
475 KSI_INIT(&ksi);
476 ksi.ksi_signo = sig->sigev_signo;
477 ksi.ksi_code = SI_ASYNCIO;
478 ksi.ksi_value = sig->sigev_value;
479 mutex_enter(proc_lock);
480 kpsignal(p, &ksi, NULL);
481 mutex_exit(proc_lock);
482 }
483
484 /*
485 * Enqueue the job.
486 */
487 static int
488 aio_enqueue_job(int op, void *aiocb_uptr, struct lio_req *lio)
489 {
490 struct proc *p = curlwp->l_proc;
491 struct aioproc *aio;
492 struct aio_job *a_job;
493 struct aiocb aiocbp;
494 struct sigevent *sig;
495 int error;
496
497 /* Non-accurate check for the limit */
498 if (aio_jobs_count + 1 > aio_max)
499 return EAGAIN;
500
501 /* Get the data structure from user-space */
502 error = copyin(aiocb_uptr, &aiocbp, sizeof(struct aiocb));
503 if (error)
504 return error;
505
506 /* Check if signal is set, and validate it */
507 sig = &aiocbp.aio_sigevent;
508 if (sig->sigev_signo < 0 || sig->sigev_signo >= NSIG ||
509 sig->sigev_notify < SIGEV_NONE || sig->sigev_notify > SIGEV_SA)
510 return EINVAL;
511
512 /* Buffer and byte count */
513 if (((AIO_SYNC | AIO_DSYNC) & op) == 0)
514 if (aiocbp.aio_buf == NULL || aiocbp.aio_nbytes > SSIZE_MAX)
515 return EINVAL;
516
517 /* Check the opcode, if LIO_NOP - simply ignore */
518 if (op == AIO_LIO) {
519 KASSERT(lio != NULL);
520 if (aiocbp.aio_lio_opcode == LIO_WRITE)
521 op = AIO_WRITE;
522 else if (aiocbp.aio_lio_opcode == LIO_READ)
523 op = AIO_READ;
524 else
525 return (aiocbp.aio_lio_opcode == LIO_NOP) ? 0 : EINVAL;
526 } else {
527 KASSERT(lio == NULL);
528 }
529
530 /*
531 * Look for already existing job. If found - the job is in-progress.
532 * According to POSIX this is invalid, so return the error.
533 */
534 aio = p->p_aio;
535 if (aio) {
536 mutex_enter(&aio->aio_mtx);
537 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) {
538 if (a_job->aiocb_uptr != aiocb_uptr)
539 continue;
540 mutex_exit(&aio->aio_mtx);
541 return EINVAL;
542 }
543 mutex_exit(&aio->aio_mtx);
544 }
545
546 /*
547 * Check if AIO structure is initialized, if not - initialize it.
548 * In LIO case, we did that already. We will recheck this with
549 * the lock in aio_procinit().
550 */
551 if (lio == NULL && p->p_aio == NULL)
552 if (aio_procinit(p))
553 return EAGAIN;
554 aio = p->p_aio;
555
556 /*
557 * Set the state with errno, and copy data
558 * structure back to the user-space.
559 */
560 aiocbp._state = JOB_WIP;
561 aiocbp._errno = EINPROGRESS;
562 aiocbp._retval = -1;
563 error = copyout(&aiocbp, aiocb_uptr, sizeof(struct aiocb));
564 if (error)
565 return error;
566
567 /* Allocate and initialize a new AIO job */
568 a_job = pool_get(&aio_job_pool, PR_WAITOK);
569 memset(a_job, 0, sizeof(struct aio_job));
570
571 /*
572 * Set the data.
573 * Store the user-space pointer for searching. Since we
574 * are storing only per proc pointers - it is safe.
575 */
576 memcpy(&a_job->aiocbp, &aiocbp, sizeof(struct aiocb));
577 a_job->aiocb_uptr = aiocb_uptr;
578 a_job->aio_op |= op;
579 a_job->lio = lio;
580
581 /*
582 * Add the job to the queue, update the counters, and
583 * notify the AIO worker thread to handle the job.
584 */
585 mutex_enter(&aio->aio_mtx);
586
587 /* Fail, if the limit was reached */
588 if (atomic_inc_uint_nv(&aio_jobs_count) > aio_max ||
589 aio->jobs_count >= aio_listio_max) {
590 atomic_dec_uint(&aio_jobs_count);
591 mutex_exit(&aio->aio_mtx);
592 pool_put(&aio_job_pool, a_job);
593 return EAGAIN;
594 }
595
596 TAILQ_INSERT_TAIL(&aio->jobs_queue, a_job, list);
597 aio->jobs_count++;
598 if (lio)
599 lio->refcnt++;
600 cv_signal(&aio->aio_worker_cv);
601
602 mutex_exit(&aio->aio_mtx);
603
604 /*
605 * One would handle the errors only with aio_error() function.
606 * This way is appropriate according to POSIX.
607 */
608 return 0;
609 }
610
611 /*
612 * Syscall functions.
613 */
614
615 int
616 sys_aio_cancel(struct lwp *l, const struct sys_aio_cancel_args *uap,
617 register_t *retval)
618 {
619 /* {
620 syscallarg(int) fildes;
621 syscallarg(struct aiocb *) aiocbp;
622 } */
623 struct proc *p = l->l_proc;
624 struct aioproc *aio;
625 struct aio_job *a_job;
626 struct aiocb *aiocbp_ptr;
627 struct lio_req *lio;
628 struct filedesc *fdp = p->p_fd;
629 unsigned int cn, errcnt, fildes;
630 fdtab_t *dt;
631
632 TAILQ_HEAD(, aio_job) tmp_jobs_list;
633
634 /* Check for invalid file descriptor */
635 fildes = (unsigned int)SCARG(uap, fildes);
636 dt = fdp->fd_dt;
637 if (fildes >= dt->dt_nfiles)
638 return EBADF;
639 if (dt->dt_ff[fildes] == NULL || dt->dt_ff[fildes]->ff_file == NULL)
640 return EBADF;
641
642 /* Check if AIO structure is initialized */
643 if (p->p_aio == NULL) {
644 *retval = AIO_NOTCANCELED;
645 return 0;
646 }
647
648 aio = p->p_aio;
649 aiocbp_ptr = (struct aiocb *)SCARG(uap, aiocbp);
650
651 mutex_enter(&aio->aio_mtx);
652
653 /* Cancel the jobs, and remove them from the queue */
654 cn = 0;
655 TAILQ_INIT(&tmp_jobs_list);
656 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) {
657 if (aiocbp_ptr) {
658 if (aiocbp_ptr != a_job->aiocb_uptr)
659 continue;
660 if (fildes != a_job->aiocbp.aio_fildes) {
661 mutex_exit(&aio->aio_mtx);
662 return EBADF;
663 }
664 } else if (a_job->aiocbp.aio_fildes != fildes)
665 continue;
666
667 TAILQ_REMOVE(&aio->jobs_queue, a_job, list);
668 TAILQ_INSERT_TAIL(&tmp_jobs_list, a_job, list);
669
670 /* Decrease the counters */
671 atomic_dec_uint(&aio_jobs_count);
672 aio->jobs_count--;
673 lio = a_job->lio;
674 if (lio != NULL && --lio->refcnt != 0)
675 a_job->lio = NULL;
676
677 cn++;
678 if (aiocbp_ptr)
679 break;
680 }
681
682 /* There are canceled jobs */
683 if (cn)
684 *retval = AIO_CANCELED;
685
686 /* We cannot cancel current job */
687 a_job = aio->curjob;
688 if (a_job && ((a_job->aiocbp.aio_fildes == fildes) ||
689 (a_job->aiocb_uptr == aiocbp_ptr)))
690 *retval = AIO_NOTCANCELED;
691
692 mutex_exit(&aio->aio_mtx);
693
694 /* Free the jobs after the lock */
695 errcnt = 0;
696 while (!TAILQ_EMPTY(&tmp_jobs_list)) {
697 a_job = TAILQ_FIRST(&tmp_jobs_list);
698 TAILQ_REMOVE(&tmp_jobs_list, a_job, list);
699 /* Set the errno and copy structures back to the user-space */
700 a_job->aiocbp._errno = ECANCELED;
701 a_job->aiocbp._state = JOB_DONE;
702 if (copyout(&a_job->aiocbp, a_job->aiocb_uptr,
703 sizeof(struct aiocb)))
704 errcnt++;
705 /* Send a signal if any */
706 aio_sendsig(p, &a_job->aiocbp.aio_sigevent);
707 if (a_job->lio) {
708 lio = a_job->lio;
709 aio_sendsig(p, &lio->sig);
710 pool_put(&aio_lio_pool, lio);
711 }
712 pool_put(&aio_job_pool, a_job);
713 }
714
715 if (errcnt)
716 return EFAULT;
717
718 /* Set a correct return value */
719 if (*retval == 0)
720 *retval = AIO_ALLDONE;
721
722 return 0;
723 }
724
725 int
726 sys_aio_error(struct lwp *l, const struct sys_aio_error_args *uap,
727 register_t *retval)
728 {
729 /* {
730 syscallarg(const struct aiocb *) aiocbp;
731 } */
732 struct proc *p = l->l_proc;
733 struct aioproc *aio = p->p_aio;
734 struct aiocb aiocbp;
735 int error;
736
737 if (aio == NULL)
738 return EINVAL;
739
740 error = copyin(SCARG(uap, aiocbp), &aiocbp, sizeof(struct aiocb));
741 if (error)
742 return error;
743
744 if (aiocbp._state == JOB_NONE)
745 return EINVAL;
746
747 *retval = aiocbp._errno;
748
749 return 0;
750 }
751
752 int
753 sys_aio_fsync(struct lwp *l, const struct sys_aio_fsync_args *uap,
754 register_t *retval)
755 {
756 /* {
757 syscallarg(int) op;
758 syscallarg(struct aiocb *) aiocbp;
759 } */
760 int op = SCARG(uap, op);
761
762 if ((op != O_DSYNC) && (op != O_SYNC))
763 return EINVAL;
764
765 op = O_DSYNC ? AIO_DSYNC : AIO_SYNC;
766
767 return aio_enqueue_job(op, SCARG(uap, aiocbp), NULL);
768 }
769
770 int
771 sys_aio_read(struct lwp *l, const struct sys_aio_read_args *uap,
772 register_t *retval)
773 {
774 /* {
775 syscallarg(struct aiocb *) aiocbp;
776 } */
777
778 return aio_enqueue_job(AIO_READ, SCARG(uap, aiocbp), NULL);
779 }
780
781 int
782 sys_aio_return(struct lwp *l, const struct sys_aio_return_args *uap,
783 register_t *retval)
784 {
785 /* {
786 syscallarg(struct aiocb *) aiocbp;
787 } */
788 struct proc *p = l->l_proc;
789 struct aioproc *aio = p->p_aio;
790 struct aiocb aiocbp;
791 int error;
792
793 if (aio == NULL)
794 return EINVAL;
795
796 error = copyin(SCARG(uap, aiocbp), &aiocbp, sizeof(struct aiocb));
797 if (error)
798 return error;
799
800 if (aiocbp._errno == EINPROGRESS || aiocbp._state != JOB_DONE)
801 return EINVAL;
802
803 *retval = aiocbp._retval;
804
805 /* Reset the internal variables */
806 aiocbp._errno = 0;
807 aiocbp._retval = -1;
808 aiocbp._state = JOB_NONE;
809 error = copyout(&aiocbp, SCARG(uap, aiocbp), sizeof(struct aiocb));
810
811 return error;
812 }
813
814 int
815 sys___aio_suspend50(struct lwp *l, const struct sys___aio_suspend50_args *uap,
816 register_t *retval)
817 {
818 /* {
819 syscallarg(const struct aiocb *const[]) list;
820 syscallarg(int) nent;
821 syscallarg(const struct timespec *) timeout;
822 } */
823 struct aiocb **list;
824 struct timespec ts;
825 int error, nent;
826
827 nent = SCARG(uap, nent);
828 if (nent <= 0 || nent > aio_listio_max)
829 return EAGAIN;
830
831 if (SCARG(uap, timeout)) {
832 /* Convert timespec to ticks */
833 error = copyin(SCARG(uap, timeout), &ts,
834 sizeof(struct timespec));
835 if (error)
836 return error;
837 }
838
839 list = kmem_alloc(nent * sizeof(*list), KM_SLEEP);
840 error = copyin(SCARG(uap, list), list, nent * sizeof(*list));
841 if (error)
842 goto out;
843 error = aio_suspend1(l, list, nent, SCARG(uap, timeout) ? &ts : NULL);
844 out:
845 kmem_free(list, nent * sizeof(*list));
846 return error;
847 }
848
849 int
850 aio_suspend1(struct lwp *l, struct aiocb **aiocbp_list, int nent,
851 struct timespec *ts)
852 {
853 struct proc *p = l->l_proc;
854 struct aioproc *aio;
855 struct aio_job *a_job;
856 int i, error, timo;
857
858 if (p->p_aio == NULL)
859 return EAGAIN;
860 aio = p->p_aio;
861
862 if (ts) {
863 timo = mstohz((ts->tv_sec * 1000) + (ts->tv_nsec / 1000000));
864 if (timo == 0 && ts->tv_sec == 0 && ts->tv_nsec > 0)
865 timo = 1;
866 if (timo <= 0)
867 return EAGAIN;
868 } else
869 timo = 0;
870
871 mutex_enter(&aio->aio_mtx);
872 for (;;) {
873 for (i = 0; i < nent; i++) {
874
875 /* Skip NULL entries */
876 if (aiocbp_list[i] == NULL)
877 continue;
878
879 /* Skip current job */
880 if (aio->curjob) {
881 a_job = aio->curjob;
882 if (a_job->aiocb_uptr == aiocbp_list[i])
883 continue;
884 }
885
886 /* Look for a job in the queue */
887 TAILQ_FOREACH(a_job, &aio->jobs_queue, list)
888 if (a_job->aiocb_uptr == aiocbp_list[i])
889 break;
890
891 if (a_job == NULL) {
892 struct aiocb aiocbp;
893
894 mutex_exit(&aio->aio_mtx);
895
896 /* Check if the job is done. */
897 error = copyin(aiocbp_list[i], &aiocbp,
898 sizeof(struct aiocb));
899 if (error == 0 && aiocbp._state != JOB_DONE) {
900 mutex_enter(&aio->aio_mtx);
901 continue;
902 }
903 return error;
904 }
905 }
906
907 /* Wait for a signal or when timeout occurs */
908 error = cv_timedwait_sig(&aio->done_cv, &aio->aio_mtx, timo);
909 if (error) {
910 if (error == EWOULDBLOCK)
911 error = EAGAIN;
912 break;
913 }
914 }
915 mutex_exit(&aio->aio_mtx);
916 return error;
917 }
918
919 int
920 sys_aio_write(struct lwp *l, const struct sys_aio_write_args *uap,
921 register_t *retval)
922 {
923 /* {
924 syscallarg(struct aiocb *) aiocbp;
925 } */
926
927 return aio_enqueue_job(AIO_WRITE, SCARG(uap, aiocbp), NULL);
928 }
929
930 int
931 sys_lio_listio(struct lwp *l, const struct sys_lio_listio_args *uap,
932 register_t *retval)
933 {
934 /* {
935 syscallarg(int) mode;
936 syscallarg(struct aiocb *const[]) list;
937 syscallarg(int) nent;
938 syscallarg(struct sigevent *) sig;
939 } */
940 struct proc *p = l->l_proc;
941 struct aioproc *aio;
942 struct aiocb **aiocbp_list;
943 struct lio_req *lio;
944 int i, error, errcnt, mode, nent;
945
946 mode = SCARG(uap, mode);
947 nent = SCARG(uap, nent);
948
949 /* Non-accurate checks for the limit and invalid values */
950 if (nent < 1 || nent > aio_listio_max)
951 return EINVAL;
952 if (aio_jobs_count + nent > aio_max)
953 return EAGAIN;
954
955 /* Check if AIO structure is initialized, if not - initialize it */
956 if (p->p_aio == NULL)
957 if (aio_procinit(p))
958 return EAGAIN;
959 aio = p->p_aio;
960
961 /* Create a LIO structure */
962 lio = pool_get(&aio_lio_pool, PR_WAITOK);
963 lio->refcnt = 1;
964 error = 0;
965
966 switch (mode) {
967 case LIO_WAIT:
968 memset(&lio->sig, 0, sizeof(struct sigevent));
969 break;
970 case LIO_NOWAIT:
971 /* Check for signal, validate it */
972 if (SCARG(uap, sig)) {
973 struct sigevent *sig = &lio->sig;
974
975 error = copyin(SCARG(uap, sig), &lio->sig,
976 sizeof(struct sigevent));
977 if (error == 0 &&
978 (sig->sigev_signo < 0 ||
979 sig->sigev_signo >= NSIG ||
980 sig->sigev_notify < SIGEV_NONE ||
981 sig->sigev_notify > SIGEV_SA))
982 error = EINVAL;
983 } else
984 memset(&lio->sig, 0, sizeof(struct sigevent));
985 break;
986 default:
987 error = EINVAL;
988 break;
989 }
990
991 if (error != 0) {
992 pool_put(&aio_lio_pool, lio);
993 return error;
994 }
995
996 /* Get the list from user-space */
997 aiocbp_list = kmem_alloc(nent * sizeof(*aiocbp_list), KM_SLEEP);
998 error = copyin(SCARG(uap, list), aiocbp_list,
999 nent * sizeof(*aiocbp_list));
1000 if (error) {
1001 mutex_enter(&aio->aio_mtx);
1002 goto err;
1003 }
1004
1005 /* Enqueue all jobs */
1006 errcnt = 0;
1007 for (i = 0; i < nent; i++) {
1008 error = aio_enqueue_job(AIO_LIO, aiocbp_list[i], lio);
1009 /*
1010 * According to POSIX, in such error case it may
1011 * fail with other I/O operations initiated.
1012 */
1013 if (error)
1014 errcnt++;
1015 }
1016
1017 mutex_enter(&aio->aio_mtx);
1018
1019 /* Return an error, if any */
1020 if (errcnt) {
1021 error = EIO;
1022 goto err;
1023 }
1024
1025 if (mode == LIO_WAIT) {
1026 /*
1027 * Wait for AIO completion. In such case,
1028 * the LIO structure will be freed here.
1029 */
1030 while (lio->refcnt > 1 && error == 0)
1031 error = cv_wait_sig(&aio->done_cv, &aio->aio_mtx);
1032 if (error)
1033 error = EINTR;
1034 }
1035
1036 err:
1037 if (--lio->refcnt != 0)
1038 lio = NULL;
1039 mutex_exit(&aio->aio_mtx);
1040 if (lio != NULL) {
1041 aio_sendsig(p, &lio->sig);
1042 pool_put(&aio_lio_pool, lio);
1043 }
1044 kmem_free(aiocbp_list, nent * sizeof(*aiocbp_list));
1045 return error;
1046 }
1047
1048 /*
1049 * SysCtl
1050 */
1051
1052 static int
1053 sysctl_aio_listio_max(SYSCTLFN_ARGS)
1054 {
1055 struct sysctlnode node;
1056 int error, newsize;
1057
1058 node = *rnode;
1059 node.sysctl_data = &newsize;
1060
1061 newsize = aio_listio_max;
1062 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1063 if (error || newp == NULL)
1064 return error;
1065
1066 if (newsize < 1 || newsize > aio_max)
1067 return EINVAL;
1068 aio_listio_max = newsize;
1069
1070 return 0;
1071 }
1072
1073 static int
1074 sysctl_aio_max(SYSCTLFN_ARGS)
1075 {
1076 struct sysctlnode node;
1077 int error, newsize;
1078
1079 node = *rnode;
1080 node.sysctl_data = &newsize;
1081
1082 newsize = aio_max;
1083 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1084 if (error || newp == NULL)
1085 return error;
1086
1087 if (newsize < 1 || newsize < aio_listio_max)
1088 return EINVAL;
1089 aio_max = newsize;
1090
1091 return 0;
1092 }
1093
1094 static int
1095 sysctl_aio_init(void)
1096 {
1097 int rv;
1098
1099 aio_sysctl = NULL;
1100
1101 rv = sysctl_createv(&aio_sysctl, 0, NULL, NULL,
1102 CTLFLAG_PERMANENT,
1103 CTLTYPE_NODE, "kern", NULL,
1104 NULL, 0, NULL, 0,
1105 CTL_KERN, CTL_EOL);
1106
1107 if (rv != 0)
1108 return rv;
1109
1110 rv = sysctl_createv(&aio_sysctl, 0, NULL, NULL,
1111 CTLFLAG_PERMANENT | CTLFLAG_IMMEDIATE,
1112 CTLTYPE_INT, "posix_aio",
1113 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
1114 "Asynchronous I/O option to which the "
1115 "system attempts to conform"),
1116 NULL, _POSIX_ASYNCHRONOUS_IO, NULL, 0,
1117 CTL_KERN, CTL_CREATE, CTL_EOL);
1118
1119 if (rv != 0)
1120 return rv;
1121
1122 rv = sysctl_createv(&aio_sysctl, 0, NULL, NULL,
1123 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1124 CTLTYPE_INT, "aio_listio_max",
1125 SYSCTL_DESCR("Maximum number of asynchronous I/O "
1126 "operations in a single list I/O call"),
1127 sysctl_aio_listio_max, 0, &aio_listio_max, 0,
1128 CTL_KERN, CTL_CREATE, CTL_EOL);
1129
1130 if (rv != 0)
1131 return rv;
1132
1133 rv = sysctl_createv(&aio_sysctl, 0, NULL, NULL,
1134 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1135 CTLTYPE_INT, "aio_max",
1136 SYSCTL_DESCR("Maximum number of asynchronous I/O "
1137 "operations"),
1138 sysctl_aio_max, 0, &aio_max, 0,
1139 CTL_KERN, CTL_CREATE, CTL_EOL);
1140
1141 return rv;
1142 }
1143
1144 /*
1145 * Debugging
1146 */
1147 #if defined(DDB)
1148 void
1149 aio_print_jobs(void (*pr)(const char *, ...))
1150 {
1151 struct proc *p = (curlwp == NULL ? NULL : curlwp->l_proc);
1152 struct aioproc *aio;
1153 struct aio_job *a_job;
1154 struct aiocb *aiocbp;
1155
1156 if (p == NULL) {
1157 (*pr)("AIO: We are not in the processes right now.\n");
1158 return;
1159 }
1160
1161 aio = p->p_aio;
1162 if (aio == NULL) {
1163 (*pr)("AIO data is not initialized (PID = %d).\n", p->p_pid);
1164 return;
1165 }
1166
1167 (*pr)("AIO: PID = %d\n", p->p_pid);
1168 (*pr)("AIO: Global count of the jobs = %u\n", aio_jobs_count);
1169 (*pr)("AIO: Count of the jobs = %u\n", aio->jobs_count);
1170
1171 if (aio->curjob) {
1172 a_job = aio->curjob;
1173 (*pr)("\nAIO current job:\n");
1174 (*pr)(" opcode = %d, errno = %d, state = %d, aiocb_ptr = %p\n",
1175 a_job->aio_op, a_job->aiocbp._errno,
1176 a_job->aiocbp._state, a_job->aiocb_uptr);
1177 aiocbp = &a_job->aiocbp;
1178 (*pr)(" fd = %d, offset = %u, buf = %p, nbytes = %u\n",
1179 aiocbp->aio_fildes, aiocbp->aio_offset,
1180 aiocbp->aio_buf, aiocbp->aio_nbytes);
1181 }
1182
1183 (*pr)("\nAIO queue:\n");
1184 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) {
1185 (*pr)(" opcode = %d, errno = %d, state = %d, aiocb_ptr = %p\n",
1186 a_job->aio_op, a_job->aiocbp._errno,
1187 a_job->aiocbp._state, a_job->aiocb_uptr);
1188 aiocbp = &a_job->aiocbp;
1189 (*pr)(" fd = %d, offset = %u, buf = %p, nbytes = %u\n",
1190 aiocbp->aio_fildes, aiocbp->aio_offset,
1191 aiocbp->aio_buf, aiocbp->aio_nbytes);
1192 }
1193 }
1194 #endif /* defined(DDB) */
1195