sys_aio.c revision 1.31.4.1 1 /* $NetBSD: sys_aio.c,v 1.31.4.1 2010/07/03 01:19:54 rmind Exp $ */
2
3 /*
4 * Copyright (c) 2007 Mindaugas Rasiukevicius <rmind at NetBSD org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * Implementation of POSIX asynchronous I/O.
31 * Defined in the Base Definitions volume of IEEE Std 1003.1-2001.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: sys_aio.c,v 1.31.4.1 2010/07/03 01:19:54 rmind Exp $");
36
37 #ifdef _KERNEL_OPT
38 #include "opt_ddb.h"
39 #endif
40
41 #include <sys/param.h>
42 #include <sys/condvar.h>
43 #include <sys/file.h>
44 #include <sys/filedesc.h>
45 #include <sys/kernel.h>
46 #include <sys/kmem.h>
47 #include <sys/lwp.h>
48 #include <sys/mutex.h>
49 #include <sys/pool.h>
50 #include <sys/proc.h>
51 #include <sys/queue.h>
52 #include <sys/signal.h>
53 #include <sys/signalvar.h>
54 #include <sys/syscall.h>
55 #include <sys/syscallargs.h>
56 #include <sys/syscallvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/systm.h>
59 #include <sys/types.h>
60 #include <sys/vnode.h>
61 #include <sys/atomic.h>
62 #include <sys/module.h>
63 #include <sys/buf.h>
64
65 #include <uvm/uvm_extern.h>
66
67 MODULE(MODULE_CLASS_MISC, aio, NULL);
68
69 /*
70 * System-wide limits and counter of AIO operations.
71 */
72 u_int aio_listio_max = AIO_LISTIO_MAX;
73 static u_int aio_max = AIO_MAX;
74 static u_int aio_jobs_count;
75
76 static struct pool aio_job_pool;
77 static struct pool aio_lio_pool;
78 static void * aio_ehook;
79
80 static void aio_worker(void *);
81 static void aio_process(struct aio_job *);
82 static void aio_sendsig(struct proc *, struct sigevent *);
83 static int aio_enqueue_job(int, void *, struct lio_req *);
84 static void aio_exit(proc_t *, void *);
85
86 static const struct syscall_package aio_syscalls[] = {
87 { SYS_aio_cancel, 0, (sy_call_t *)sys_aio_cancel },
88 { SYS_aio_error, 0, (sy_call_t *)sys_aio_error },
89 { SYS_aio_fsync, 0, (sy_call_t *)sys_aio_fsync },
90 { SYS_aio_read, 0, (sy_call_t *)sys_aio_read },
91 { SYS_aio_return, 0, (sy_call_t *)sys_aio_return },
92 { SYS___aio_suspend50, 0, (sy_call_t *)sys___aio_suspend50 },
93 { SYS_aio_write, 0, (sy_call_t *)sys_aio_write },
94 { SYS_lio_listio, 0, (sy_call_t *)sys_lio_listio },
95 { 0, 0, NULL },
96 };
97
98 /*
99 * Tear down all AIO state.
100 */
101 static int
102 aio_fini(bool interface)
103 {
104 int error;
105 proc_t *p;
106
107 if (interface) {
108 /* Stop syscall activity. */
109 error = syscall_disestablish(NULL, aio_syscalls);
110 if (error != 0)
111 return error;
112 /* Abort if any processes are using AIO. */
113 mutex_enter(proc_lock);
114 PROCLIST_FOREACH(p, &allproc) {
115 if (p->p_aio != NULL)
116 break;
117 }
118 mutex_exit(proc_lock);
119 if (p != NULL) {
120 error = syscall_establish(NULL, aio_syscalls);
121 KASSERT(error == 0);
122 return EBUSY;
123 }
124 }
125 KASSERT(aio_jobs_count == 0);
126 exithook_disestablish(aio_ehook);
127 pool_destroy(&aio_job_pool);
128 pool_destroy(&aio_lio_pool);
129 return 0;
130 }
131
132 /*
133 * Initialize global AIO state.
134 */
135 static int
136 aio_init(void)
137 {
138 int error;
139
140 pool_init(&aio_job_pool, sizeof(struct aio_job), 0, 0, 0,
141 "aio_jobs_pool", &pool_allocator_nointr, IPL_NONE);
142 pool_init(&aio_lio_pool, sizeof(struct lio_req), 0, 0, 0,
143 "aio_lio_pool", &pool_allocator_nointr, IPL_NONE);
144 aio_ehook = exithook_establish(aio_exit, NULL);
145 error = syscall_establish(NULL, aio_syscalls);
146 if (error != 0)
147 aio_fini(false);
148 return error;
149 }
150
151 /*
152 * Module interface.
153 */
154 static int
155 aio_modcmd(modcmd_t cmd, void *arg)
156 {
157
158 switch (cmd) {
159 case MODULE_CMD_INIT:
160 return aio_init();
161 case MODULE_CMD_FINI:
162 return aio_fini(true);
163 default:
164 return ENOTTY;
165 }
166 }
167
168 /*
169 * Initialize Asynchronous I/O data structures for the process.
170 */
171 static int
172 aio_procinit(struct proc *p)
173 {
174 struct aioproc *aio;
175 struct lwp *l;
176 int error;
177 vaddr_t uaddr;
178
179 /* Allocate and initialize AIO structure */
180 aio = kmem_zalloc(sizeof(struct aioproc), KM_SLEEP);
181 if (aio == NULL)
182 return EAGAIN;
183
184 /* Initialize queue and their synchronization structures */
185 mutex_init(&aio->aio_mtx, MUTEX_DEFAULT, IPL_NONE);
186 cv_init(&aio->aio_worker_cv, "aiowork");
187 cv_init(&aio->done_cv, "aiodone");
188 TAILQ_INIT(&aio->jobs_queue);
189
190 /*
191 * Create an AIO worker thread.
192 * XXX: Currently, AIO thread is not protected against user's actions.
193 */
194 uaddr = uvm_uarea_alloc();
195 if (uaddr == 0) {
196 aio_exit(p, aio);
197 return EAGAIN;
198 }
199 error = lwp_create(curlwp, p, uaddr, 0, NULL, 0, aio_worker,
200 NULL, &l, curlwp->l_class);
201 if (error != 0) {
202 uvm_uarea_free(uaddr);
203 aio_exit(p, aio);
204 return error;
205 }
206
207 /* Recheck if we are really first */
208 mutex_enter(p->p_lock);
209 if (p->p_aio) {
210 mutex_exit(p->p_lock);
211 aio_exit(p, aio);
212 lwp_exit(l);
213 return 0;
214 }
215 p->p_aio = aio;
216
217 /* Complete the initialization of thread, and run it */
218 aio->aio_worker = l;
219 lwp_lock(l);
220 l->l_stat = LSRUN;
221 l->l_priority = MAXPRI_USER;
222 sched_enqueue(l, false);
223 lwp_unlock(l);
224 mutex_exit(p->p_lock);
225
226 return 0;
227 }
228
229 /*
230 * Exit of Asynchronous I/O subsystem of process.
231 */
232 static void
233 aio_exit(struct proc *p, void *cookie)
234 {
235 struct aio_job *a_job;
236 struct aioproc *aio;
237
238 if (cookie != NULL)
239 aio = cookie;
240 else if ((aio = p->p_aio) == NULL)
241 return;
242
243 /* Free AIO queue */
244 while (!TAILQ_EMPTY(&aio->jobs_queue)) {
245 a_job = TAILQ_FIRST(&aio->jobs_queue);
246 TAILQ_REMOVE(&aio->jobs_queue, a_job, list);
247 pool_put(&aio_job_pool, a_job);
248 atomic_dec_uint(&aio_jobs_count);
249 }
250
251 /* Destroy and free the entire AIO data structure */
252 cv_destroy(&aio->aio_worker_cv);
253 cv_destroy(&aio->done_cv);
254 mutex_destroy(&aio->aio_mtx);
255 kmem_free(aio, sizeof(struct aioproc));
256 }
257
258 /*
259 * AIO worker thread and processor.
260 */
261 static void
262 aio_worker(void *arg)
263 {
264 struct proc *p = curlwp->l_proc;
265 struct aioproc *aio = p->p_aio;
266 struct aio_job *a_job;
267 struct lio_req *lio;
268 sigset_t oss, nss;
269 int error, refcnt;
270
271 /*
272 * Make an empty signal mask, so it
273 * handles only SIGKILL and SIGSTOP.
274 */
275 sigfillset(&nss);
276 mutex_enter(p->p_lock);
277 error = sigprocmask1(curlwp, SIG_SETMASK, &nss, &oss);
278 mutex_exit(p->p_lock);
279 KASSERT(error == 0);
280
281 for (;;) {
282 /*
283 * Loop for each job in the queue. If there
284 * are no jobs then sleep.
285 */
286 mutex_enter(&aio->aio_mtx);
287 while ((a_job = TAILQ_FIRST(&aio->jobs_queue)) == NULL) {
288 if (cv_wait_sig(&aio->aio_worker_cv, &aio->aio_mtx)) {
289 /*
290 * Thread was interrupted - check for
291 * pending exit or suspend.
292 */
293 mutex_exit(&aio->aio_mtx);
294 lwp_userret(curlwp);
295 mutex_enter(&aio->aio_mtx);
296 }
297 }
298
299 /* Take the job from the queue */
300 aio->curjob = a_job;
301 TAILQ_REMOVE(&aio->jobs_queue, a_job, list);
302
303 atomic_dec_uint(&aio_jobs_count);
304 aio->jobs_count--;
305
306 mutex_exit(&aio->aio_mtx);
307
308 /* Process an AIO operation */
309 aio_process(a_job);
310
311 /* Copy data structure back to the user-space */
312 (void)copyout(&a_job->aiocbp, a_job->aiocb_uptr,
313 sizeof(struct aiocb));
314
315 mutex_enter(&aio->aio_mtx);
316 aio->curjob = NULL;
317
318 /* Decrease a reference counter, if there is a LIO structure */
319 lio = a_job->lio;
320 refcnt = (lio != NULL ? --lio->refcnt : -1);
321
322 /* Notify all suspenders */
323 cv_broadcast(&aio->done_cv);
324 mutex_exit(&aio->aio_mtx);
325
326 /* Send a signal, if any */
327 aio_sendsig(p, &a_job->aiocbp.aio_sigevent);
328
329 /* Destroy the LIO structure */
330 if (refcnt == 0) {
331 aio_sendsig(p, &lio->sig);
332 pool_put(&aio_lio_pool, lio);
333 }
334
335 /* Destroy the job */
336 pool_put(&aio_job_pool, a_job);
337 }
338
339 /* NOTREACHED */
340 }
341
342 static void
343 aio_process(struct aio_job *a_job)
344 {
345 struct proc *p = curlwp->l_proc;
346 struct aiocb *aiocbp = &a_job->aiocbp;
347 struct file *fp;
348 int fd = aiocbp->aio_fildes;
349 int error = 0;
350
351 KASSERT(a_job->aio_op != 0);
352
353 if ((a_job->aio_op & (AIO_READ | AIO_WRITE)) != 0) {
354 struct iovec aiov;
355 struct uio auio;
356
357 if (aiocbp->aio_nbytes > SSIZE_MAX) {
358 error = EINVAL;
359 goto done;
360 }
361
362 fp = fd_getfile(fd);
363 if (fp == NULL) {
364 error = EBADF;
365 goto done;
366 }
367
368 aiov.iov_base = (void *)(uintptr_t)aiocbp->aio_buf;
369 aiov.iov_len = aiocbp->aio_nbytes;
370 auio.uio_iov = &aiov;
371 auio.uio_iovcnt = 1;
372 auio.uio_resid = aiocbp->aio_nbytes;
373 auio.uio_vmspace = p->p_vmspace;
374
375 if (a_job->aio_op & AIO_READ) {
376 /*
377 * Perform a Read operation
378 */
379 KASSERT((a_job->aio_op & AIO_WRITE) == 0);
380
381 if ((fp->f_flag & FREAD) == 0) {
382 fd_putfile(fd);
383 error = EBADF;
384 goto done;
385 }
386 auio.uio_rw = UIO_READ;
387 error = (*fp->f_ops->fo_read)(fp, &aiocbp->aio_offset,
388 &auio, fp->f_cred, FOF_UPDATE_OFFSET);
389 } else {
390 /*
391 * Perform a Write operation
392 */
393 KASSERT(a_job->aio_op & AIO_WRITE);
394
395 if ((fp->f_flag & FWRITE) == 0) {
396 fd_putfile(fd);
397 error = EBADF;
398 goto done;
399 }
400 auio.uio_rw = UIO_WRITE;
401 error = (*fp->f_ops->fo_write)(fp, &aiocbp->aio_offset,
402 &auio, fp->f_cred, FOF_UPDATE_OFFSET);
403 }
404 fd_putfile(fd);
405
406 /* Store the result value */
407 a_job->aiocbp.aio_nbytes -= auio.uio_resid;
408 a_job->aiocbp._retval = (error == 0) ?
409 a_job->aiocbp.aio_nbytes : -1;
410
411 } else if ((a_job->aio_op & (AIO_SYNC | AIO_DSYNC)) != 0) {
412 /*
413 * Perform a file Sync operation
414 */
415 struct vnode *vp;
416
417 if ((error = fd_getvnode(fd, &fp)) != 0)
418 goto done;
419
420 if ((fp->f_flag & FWRITE) == 0) {
421 fd_putfile(fd);
422 error = EBADF;
423 goto done;
424 }
425
426 vp = (struct vnode *)fp->f_data;
427 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
428 if (a_job->aio_op & AIO_DSYNC) {
429 error = VOP_FSYNC(vp, fp->f_cred,
430 FSYNC_WAIT | FSYNC_DATAONLY, 0, 0);
431 } else if (a_job->aio_op & AIO_SYNC) {
432 error = VOP_FSYNC(vp, fp->f_cred,
433 FSYNC_WAIT, 0, 0);
434 }
435 VOP_UNLOCK(vp);
436 fd_putfile(fd);
437
438 /* Store the result value */
439 a_job->aiocbp._retval = (error == 0) ? 0 : -1;
440
441 } else
442 panic("aio_process: invalid operation code\n");
443
444 done:
445 /* Job is done, set the error, if any */
446 a_job->aiocbp._errno = error;
447 a_job->aiocbp._state = JOB_DONE;
448 }
449
450 /*
451 * Send AIO signal.
452 */
453 static void
454 aio_sendsig(struct proc *p, struct sigevent *sig)
455 {
456 ksiginfo_t ksi;
457
458 if (sig->sigev_signo == 0 || sig->sigev_notify == SIGEV_NONE)
459 return;
460
461 KSI_INIT(&ksi);
462 ksi.ksi_signo = sig->sigev_signo;
463 ksi.ksi_code = SI_ASYNCIO;
464 ksi.ksi_value = sig->sigev_value;
465 mutex_enter(proc_lock);
466 kpsignal(p, &ksi, NULL);
467 mutex_exit(proc_lock);
468 }
469
470 /*
471 * Enqueue the job.
472 */
473 static int
474 aio_enqueue_job(int op, void *aiocb_uptr, struct lio_req *lio)
475 {
476 struct proc *p = curlwp->l_proc;
477 struct aioproc *aio;
478 struct aio_job *a_job;
479 struct aiocb aiocbp;
480 struct sigevent *sig;
481 int error;
482
483 /* Non-accurate check for the limit */
484 if (aio_jobs_count + 1 > aio_max)
485 return EAGAIN;
486
487 /* Get the data structure from user-space */
488 error = copyin(aiocb_uptr, &aiocbp, sizeof(struct aiocb));
489 if (error)
490 return error;
491
492 /* Check if signal is set, and validate it */
493 sig = &aiocbp.aio_sigevent;
494 if (sig->sigev_signo < 0 || sig->sigev_signo >= NSIG ||
495 sig->sigev_notify < SIGEV_NONE || sig->sigev_notify > SIGEV_SA)
496 return EINVAL;
497
498 /* Buffer and byte count */
499 if (((AIO_SYNC | AIO_DSYNC) & op) == 0)
500 if (aiocbp.aio_buf == NULL || aiocbp.aio_nbytes > SSIZE_MAX)
501 return EINVAL;
502
503 /* Check the opcode, if LIO_NOP - simply ignore */
504 if (op == AIO_LIO) {
505 KASSERT(lio != NULL);
506 if (aiocbp.aio_lio_opcode == LIO_WRITE)
507 op = AIO_WRITE;
508 else if (aiocbp.aio_lio_opcode == LIO_READ)
509 op = AIO_READ;
510 else
511 return (aiocbp.aio_lio_opcode == LIO_NOP) ? 0 : EINVAL;
512 } else {
513 KASSERT(lio == NULL);
514 }
515
516 /*
517 * Look for already existing job. If found - the job is in-progress.
518 * According to POSIX this is invalid, so return the error.
519 */
520 aio = p->p_aio;
521 if (aio) {
522 mutex_enter(&aio->aio_mtx);
523 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) {
524 if (a_job->aiocb_uptr != aiocb_uptr)
525 continue;
526 mutex_exit(&aio->aio_mtx);
527 return EINVAL;
528 }
529 mutex_exit(&aio->aio_mtx);
530 }
531
532 /*
533 * Check if AIO structure is initialized, if not - initialize it.
534 * In LIO case, we did that already. We will recheck this with
535 * the lock in aio_procinit().
536 */
537 if (lio == NULL && p->p_aio == NULL)
538 if (aio_procinit(p))
539 return EAGAIN;
540 aio = p->p_aio;
541
542 /*
543 * Set the state with errno, and copy data
544 * structure back to the user-space.
545 */
546 aiocbp._state = JOB_WIP;
547 aiocbp._errno = EINPROGRESS;
548 aiocbp._retval = -1;
549 error = copyout(&aiocbp, aiocb_uptr, sizeof(struct aiocb));
550 if (error)
551 return error;
552
553 /* Allocate and initialize a new AIO job */
554 a_job = pool_get(&aio_job_pool, PR_WAITOK);
555 memset(a_job, 0, sizeof(struct aio_job));
556
557 /*
558 * Set the data.
559 * Store the user-space pointer for searching. Since we
560 * are storing only per proc pointers - it is safe.
561 */
562 memcpy(&a_job->aiocbp, &aiocbp, sizeof(struct aiocb));
563 a_job->aiocb_uptr = aiocb_uptr;
564 a_job->aio_op |= op;
565 a_job->lio = lio;
566
567 /*
568 * Add the job to the queue, update the counters, and
569 * notify the AIO worker thread to handle the job.
570 */
571 mutex_enter(&aio->aio_mtx);
572
573 /* Fail, if the limit was reached */
574 if (atomic_inc_uint_nv(&aio_jobs_count) > aio_max ||
575 aio->jobs_count >= aio_listio_max) {
576 atomic_dec_uint(&aio_jobs_count);
577 mutex_exit(&aio->aio_mtx);
578 pool_put(&aio_job_pool, a_job);
579 return EAGAIN;
580 }
581
582 TAILQ_INSERT_TAIL(&aio->jobs_queue, a_job, list);
583 aio->jobs_count++;
584 if (lio)
585 lio->refcnt++;
586 cv_signal(&aio->aio_worker_cv);
587
588 mutex_exit(&aio->aio_mtx);
589
590 /*
591 * One would handle the errors only with aio_error() function.
592 * This way is appropriate according to POSIX.
593 */
594 return 0;
595 }
596
597 /*
598 * Syscall functions.
599 */
600
601 int
602 sys_aio_cancel(struct lwp *l, const struct sys_aio_cancel_args *uap,
603 register_t *retval)
604 {
605 /* {
606 syscallarg(int) fildes;
607 syscallarg(struct aiocb *) aiocbp;
608 } */
609 struct proc *p = l->l_proc;
610 struct aioproc *aio;
611 struct aio_job *a_job;
612 struct aiocb *aiocbp_ptr;
613 struct lio_req *lio;
614 struct filedesc *fdp = p->p_fd;
615 unsigned int cn, errcnt, fildes;
616 fdtab_t *dt;
617
618 TAILQ_HEAD(, aio_job) tmp_jobs_list;
619
620 /* Check for invalid file descriptor */
621 fildes = (unsigned int)SCARG(uap, fildes);
622 dt = fdp->fd_dt;
623 if (fildes >= dt->dt_nfiles)
624 return EBADF;
625 if (dt->dt_ff[fildes] == NULL || dt->dt_ff[fildes]->ff_file == NULL)
626 return EBADF;
627
628 /* Check if AIO structure is initialized */
629 if (p->p_aio == NULL) {
630 *retval = AIO_NOTCANCELED;
631 return 0;
632 }
633
634 aio = p->p_aio;
635 aiocbp_ptr = (struct aiocb *)SCARG(uap, aiocbp);
636
637 mutex_enter(&aio->aio_mtx);
638
639 /* Cancel the jobs, and remove them from the queue */
640 cn = 0;
641 TAILQ_INIT(&tmp_jobs_list);
642 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) {
643 if (aiocbp_ptr) {
644 if (aiocbp_ptr != a_job->aiocb_uptr)
645 continue;
646 if (fildes != a_job->aiocbp.aio_fildes) {
647 mutex_exit(&aio->aio_mtx);
648 return EBADF;
649 }
650 } else if (a_job->aiocbp.aio_fildes != fildes)
651 continue;
652
653 TAILQ_REMOVE(&aio->jobs_queue, a_job, list);
654 TAILQ_INSERT_TAIL(&tmp_jobs_list, a_job, list);
655
656 /* Decrease the counters */
657 atomic_dec_uint(&aio_jobs_count);
658 aio->jobs_count--;
659 lio = a_job->lio;
660 if (lio != NULL && --lio->refcnt != 0)
661 a_job->lio = NULL;
662
663 cn++;
664 if (aiocbp_ptr)
665 break;
666 }
667
668 /* There are canceled jobs */
669 if (cn)
670 *retval = AIO_CANCELED;
671
672 /* We cannot cancel current job */
673 a_job = aio->curjob;
674 if (a_job && ((a_job->aiocbp.aio_fildes == fildes) ||
675 (a_job->aiocb_uptr == aiocbp_ptr)))
676 *retval = AIO_NOTCANCELED;
677
678 mutex_exit(&aio->aio_mtx);
679
680 /* Free the jobs after the lock */
681 errcnt = 0;
682 while (!TAILQ_EMPTY(&tmp_jobs_list)) {
683 a_job = TAILQ_FIRST(&tmp_jobs_list);
684 TAILQ_REMOVE(&tmp_jobs_list, a_job, list);
685 /* Set the errno and copy structures back to the user-space */
686 a_job->aiocbp._errno = ECANCELED;
687 a_job->aiocbp._state = JOB_DONE;
688 if (copyout(&a_job->aiocbp, a_job->aiocb_uptr,
689 sizeof(struct aiocb)))
690 errcnt++;
691 /* Send a signal if any */
692 aio_sendsig(p, &a_job->aiocbp.aio_sigevent);
693 if (a_job->lio) {
694 lio = a_job->lio;
695 aio_sendsig(p, &lio->sig);
696 pool_put(&aio_lio_pool, lio);
697 }
698 pool_put(&aio_job_pool, a_job);
699 }
700
701 if (errcnt)
702 return EFAULT;
703
704 /* Set a correct return value */
705 if (*retval == 0)
706 *retval = AIO_ALLDONE;
707
708 return 0;
709 }
710
711 int
712 sys_aio_error(struct lwp *l, const struct sys_aio_error_args *uap,
713 register_t *retval)
714 {
715 /* {
716 syscallarg(const struct aiocb *) aiocbp;
717 } */
718 struct proc *p = l->l_proc;
719 struct aioproc *aio = p->p_aio;
720 struct aiocb aiocbp;
721 int error;
722
723 if (aio == NULL)
724 return EINVAL;
725
726 error = copyin(SCARG(uap, aiocbp), &aiocbp, sizeof(struct aiocb));
727 if (error)
728 return error;
729
730 if (aiocbp._state == JOB_NONE)
731 return EINVAL;
732
733 *retval = aiocbp._errno;
734
735 return 0;
736 }
737
738 int
739 sys_aio_fsync(struct lwp *l, const struct sys_aio_fsync_args *uap,
740 register_t *retval)
741 {
742 /* {
743 syscallarg(int) op;
744 syscallarg(struct aiocb *) aiocbp;
745 } */
746 int op = SCARG(uap, op);
747
748 if ((op != O_DSYNC) && (op != O_SYNC))
749 return EINVAL;
750
751 op = O_DSYNC ? AIO_DSYNC : AIO_SYNC;
752
753 return aio_enqueue_job(op, SCARG(uap, aiocbp), NULL);
754 }
755
756 int
757 sys_aio_read(struct lwp *l, const struct sys_aio_read_args *uap,
758 register_t *retval)
759 {
760 /* {
761 syscallarg(struct aiocb *) aiocbp;
762 } */
763
764 return aio_enqueue_job(AIO_READ, SCARG(uap, aiocbp), NULL);
765 }
766
767 int
768 sys_aio_return(struct lwp *l, const struct sys_aio_return_args *uap,
769 register_t *retval)
770 {
771 /* {
772 syscallarg(struct aiocb *) aiocbp;
773 } */
774 struct proc *p = l->l_proc;
775 struct aioproc *aio = p->p_aio;
776 struct aiocb aiocbp;
777 int error;
778
779 if (aio == NULL)
780 return EINVAL;
781
782 error = copyin(SCARG(uap, aiocbp), &aiocbp, sizeof(struct aiocb));
783 if (error)
784 return error;
785
786 if (aiocbp._errno == EINPROGRESS || aiocbp._state != JOB_DONE)
787 return EINVAL;
788
789 *retval = aiocbp._retval;
790
791 /* Reset the internal variables */
792 aiocbp._errno = 0;
793 aiocbp._retval = -1;
794 aiocbp._state = JOB_NONE;
795 error = copyout(&aiocbp, SCARG(uap, aiocbp), sizeof(struct aiocb));
796
797 return error;
798 }
799
800 int
801 sys___aio_suspend50(struct lwp *l, const struct sys___aio_suspend50_args *uap,
802 register_t *retval)
803 {
804 /* {
805 syscallarg(const struct aiocb *const[]) list;
806 syscallarg(int) nent;
807 syscallarg(const struct timespec *) timeout;
808 } */
809 struct aiocb **list;
810 struct timespec ts;
811 int error, nent;
812
813 nent = SCARG(uap, nent);
814 if (nent <= 0 || nent > aio_listio_max)
815 return EAGAIN;
816
817 if (SCARG(uap, timeout)) {
818 /* Convert timespec to ticks */
819 error = copyin(SCARG(uap, timeout), &ts,
820 sizeof(struct timespec));
821 if (error)
822 return error;
823 }
824
825 list = kmem_alloc(nent * sizeof(*list), KM_SLEEP);
826 error = copyin(SCARG(uap, list), list, nent * sizeof(*list));
827 if (error)
828 goto out;
829 error = aio_suspend1(l, list, nent, SCARG(uap, timeout) ? &ts : NULL);
830 out:
831 kmem_free(list, nent * sizeof(*list));
832 return error;
833 }
834
835 int
836 aio_suspend1(struct lwp *l, struct aiocb **aiocbp_list, int nent,
837 struct timespec *ts)
838 {
839 struct proc *p = l->l_proc;
840 struct aioproc *aio;
841 struct aio_job *a_job;
842 int i, error, timo;
843
844 if (p->p_aio == NULL)
845 return EAGAIN;
846 aio = p->p_aio;
847
848 if (ts) {
849 timo = mstohz((ts->tv_sec * 1000) + (ts->tv_nsec / 1000000));
850 if (timo == 0 && ts->tv_sec == 0 && ts->tv_nsec > 0)
851 timo = 1;
852 if (timo <= 0)
853 return EAGAIN;
854 } else
855 timo = 0;
856
857 mutex_enter(&aio->aio_mtx);
858 for (;;) {
859 for (i = 0; i < nent; i++) {
860
861 /* Skip NULL entries */
862 if (aiocbp_list[i] == NULL)
863 continue;
864
865 /* Skip current job */
866 if (aio->curjob) {
867 a_job = aio->curjob;
868 if (a_job->aiocb_uptr == aiocbp_list[i])
869 continue;
870 }
871
872 /* Look for a job in the queue */
873 TAILQ_FOREACH(a_job, &aio->jobs_queue, list)
874 if (a_job->aiocb_uptr == aiocbp_list[i])
875 break;
876
877 if (a_job == NULL) {
878 struct aiocb aiocbp;
879
880 mutex_exit(&aio->aio_mtx);
881
882 /* Check if the job is done. */
883 error = copyin(aiocbp_list[i], &aiocbp,
884 sizeof(struct aiocb));
885 if (error == 0 && aiocbp._state != JOB_DONE) {
886 mutex_enter(&aio->aio_mtx);
887 continue;
888 }
889 return error;
890 }
891 }
892
893 /* Wait for a signal or when timeout occurs */
894 error = cv_timedwait_sig(&aio->done_cv, &aio->aio_mtx, timo);
895 if (error) {
896 if (error == EWOULDBLOCK)
897 error = EAGAIN;
898 break;
899 }
900 }
901 mutex_exit(&aio->aio_mtx);
902 return error;
903 }
904
905 int
906 sys_aio_write(struct lwp *l, const struct sys_aio_write_args *uap,
907 register_t *retval)
908 {
909 /* {
910 syscallarg(struct aiocb *) aiocbp;
911 } */
912
913 return aio_enqueue_job(AIO_WRITE, SCARG(uap, aiocbp), NULL);
914 }
915
916 int
917 sys_lio_listio(struct lwp *l, const struct sys_lio_listio_args *uap,
918 register_t *retval)
919 {
920 /* {
921 syscallarg(int) mode;
922 syscallarg(struct aiocb *const[]) list;
923 syscallarg(int) nent;
924 syscallarg(struct sigevent *) sig;
925 } */
926 struct proc *p = l->l_proc;
927 struct aioproc *aio;
928 struct aiocb **aiocbp_list;
929 struct lio_req *lio;
930 int i, error, errcnt, mode, nent;
931
932 mode = SCARG(uap, mode);
933 nent = SCARG(uap, nent);
934
935 /* Non-accurate checks for the limit and invalid values */
936 if (nent < 1 || nent > aio_listio_max)
937 return EINVAL;
938 if (aio_jobs_count + nent > aio_max)
939 return EAGAIN;
940
941 /* Check if AIO structure is initialized, if not - initialize it */
942 if (p->p_aio == NULL)
943 if (aio_procinit(p))
944 return EAGAIN;
945 aio = p->p_aio;
946
947 /* Create a LIO structure */
948 lio = pool_get(&aio_lio_pool, PR_WAITOK);
949 lio->refcnt = 1;
950 error = 0;
951
952 switch (mode) {
953 case LIO_WAIT:
954 memset(&lio->sig, 0, sizeof(struct sigevent));
955 break;
956 case LIO_NOWAIT:
957 /* Check for signal, validate it */
958 if (SCARG(uap, sig)) {
959 struct sigevent *sig = &lio->sig;
960
961 error = copyin(SCARG(uap, sig), &lio->sig,
962 sizeof(struct sigevent));
963 if (error == 0 &&
964 (sig->sigev_signo < 0 ||
965 sig->sigev_signo >= NSIG ||
966 sig->sigev_notify < SIGEV_NONE ||
967 sig->sigev_notify > SIGEV_SA))
968 error = EINVAL;
969 } else
970 memset(&lio->sig, 0, sizeof(struct sigevent));
971 break;
972 default:
973 error = EINVAL;
974 break;
975 }
976
977 if (error != 0) {
978 pool_put(&aio_lio_pool, lio);
979 return error;
980 }
981
982 /* Get the list from user-space */
983 aiocbp_list = kmem_alloc(nent * sizeof(*aiocbp_list), KM_SLEEP);
984 error = copyin(SCARG(uap, list), aiocbp_list,
985 nent * sizeof(*aiocbp_list));
986 if (error) {
987 mutex_enter(&aio->aio_mtx);
988 goto err;
989 }
990
991 /* Enqueue all jobs */
992 errcnt = 0;
993 for (i = 0; i < nent; i++) {
994 error = aio_enqueue_job(AIO_LIO, aiocbp_list[i], lio);
995 /*
996 * According to POSIX, in such error case it may
997 * fail with other I/O operations initiated.
998 */
999 if (error)
1000 errcnt++;
1001 }
1002
1003 mutex_enter(&aio->aio_mtx);
1004
1005 /* Return an error, if any */
1006 if (errcnt) {
1007 error = EIO;
1008 goto err;
1009 }
1010
1011 if (mode == LIO_WAIT) {
1012 /*
1013 * Wait for AIO completion. In such case,
1014 * the LIO structure will be freed here.
1015 */
1016 while (lio->refcnt > 1 && error == 0)
1017 error = cv_wait_sig(&aio->done_cv, &aio->aio_mtx);
1018 if (error)
1019 error = EINTR;
1020 }
1021
1022 err:
1023 if (--lio->refcnt != 0)
1024 lio = NULL;
1025 mutex_exit(&aio->aio_mtx);
1026 if (lio != NULL) {
1027 aio_sendsig(p, &lio->sig);
1028 pool_put(&aio_lio_pool, lio);
1029 }
1030 kmem_free(aiocbp_list, nent * sizeof(*aiocbp_list));
1031 return error;
1032 }
1033
1034 /*
1035 * SysCtl
1036 */
1037
1038 static int
1039 sysctl_aio_listio_max(SYSCTLFN_ARGS)
1040 {
1041 struct sysctlnode node;
1042 int error, newsize;
1043
1044 node = *rnode;
1045 node.sysctl_data = &newsize;
1046
1047 newsize = aio_listio_max;
1048 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1049 if (error || newp == NULL)
1050 return error;
1051
1052 if (newsize < 1 || newsize > aio_max)
1053 return EINVAL;
1054 aio_listio_max = newsize;
1055
1056 return 0;
1057 }
1058
1059 static int
1060 sysctl_aio_max(SYSCTLFN_ARGS)
1061 {
1062 struct sysctlnode node;
1063 int error, newsize;
1064
1065 node = *rnode;
1066 node.sysctl_data = &newsize;
1067
1068 newsize = aio_max;
1069 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1070 if (error || newp == NULL)
1071 return error;
1072
1073 if (newsize < 1 || newsize < aio_listio_max)
1074 return EINVAL;
1075 aio_max = newsize;
1076
1077 return 0;
1078 }
1079
1080 SYSCTL_SETUP(sysctl_aio_setup, "sysctl aio setup")
1081 {
1082
1083 sysctl_createv(clog, 0, NULL, NULL,
1084 CTLFLAG_PERMANENT,
1085 CTLTYPE_NODE, "kern", NULL,
1086 NULL, 0, NULL, 0,
1087 CTL_KERN, CTL_EOL);
1088 sysctl_createv(clog, 0, NULL, NULL,
1089 CTLFLAG_PERMANENT | CTLFLAG_IMMEDIATE,
1090 CTLTYPE_INT, "posix_aio",
1091 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
1092 "Asynchronous I/O option to which the "
1093 "system attempts to conform"),
1094 NULL, _POSIX_ASYNCHRONOUS_IO, NULL, 0,
1095 CTL_KERN, CTL_CREATE, CTL_EOL);
1096 sysctl_createv(clog, 0, NULL, NULL,
1097 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1098 CTLTYPE_INT, "aio_listio_max",
1099 SYSCTL_DESCR("Maximum number of asynchronous I/O "
1100 "operations in a single list I/O call"),
1101 sysctl_aio_listio_max, 0, &aio_listio_max, 0,
1102 CTL_KERN, CTL_CREATE, CTL_EOL);
1103 sysctl_createv(clog, 0, NULL, NULL,
1104 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1105 CTLTYPE_INT, "aio_max",
1106 SYSCTL_DESCR("Maximum number of asynchronous I/O "
1107 "operations"),
1108 sysctl_aio_max, 0, &aio_max, 0,
1109 CTL_KERN, CTL_CREATE, CTL_EOL);
1110 }
1111
1112 /*
1113 * Debugging
1114 */
1115 #if defined(DDB)
1116 void
1117 aio_print_jobs(void (*pr)(const char *, ...))
1118 {
1119 struct proc *p = (curlwp == NULL ? NULL : curlwp->l_proc);
1120 struct aioproc *aio;
1121 struct aio_job *a_job;
1122 struct aiocb *aiocbp;
1123
1124 if (p == NULL) {
1125 (*pr)("AIO: We are not in the processes right now.\n");
1126 return;
1127 }
1128
1129 aio = p->p_aio;
1130 if (aio == NULL) {
1131 (*pr)("AIO data is not initialized (PID = %d).\n", p->p_pid);
1132 return;
1133 }
1134
1135 (*pr)("AIO: PID = %d\n", p->p_pid);
1136 (*pr)("AIO: Global count of the jobs = %u\n", aio_jobs_count);
1137 (*pr)("AIO: Count of the jobs = %u\n", aio->jobs_count);
1138
1139 if (aio->curjob) {
1140 a_job = aio->curjob;
1141 (*pr)("\nAIO current job:\n");
1142 (*pr)(" opcode = %d, errno = %d, state = %d, aiocb_ptr = %p\n",
1143 a_job->aio_op, a_job->aiocbp._errno,
1144 a_job->aiocbp._state, a_job->aiocb_uptr);
1145 aiocbp = &a_job->aiocbp;
1146 (*pr)(" fd = %d, offset = %u, buf = %p, nbytes = %u\n",
1147 aiocbp->aio_fildes, aiocbp->aio_offset,
1148 aiocbp->aio_buf, aiocbp->aio_nbytes);
1149 }
1150
1151 (*pr)("\nAIO queue:\n");
1152 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) {
1153 (*pr)(" opcode = %d, errno = %d, state = %d, aiocb_ptr = %p\n",
1154 a_job->aio_op, a_job->aiocbp._errno,
1155 a_job->aiocbp._state, a_job->aiocb_uptr);
1156 aiocbp = &a_job->aiocbp;
1157 (*pr)(" fd = %d, offset = %u, buf = %p, nbytes = %u\n",
1158 aiocbp->aio_fildes, aiocbp->aio_offset,
1159 aiocbp->aio_buf, aiocbp->aio_nbytes);
1160 }
1161 }
1162 #endif /* defined(DDB) */
1163