sys_aio.c revision 1.40.2.2 1 /* $NetBSD: sys_aio.c,v 1.40.2.2 2017/08/28 17:53:07 skrll Exp $ */
2
3 /*
4 * Copyright (c) 2007 Mindaugas Rasiukevicius <rmind at NetBSD org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * Implementation of POSIX asynchronous I/O.
31 * Defined in the Base Definitions volume of IEEE Std 1003.1-2001.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: sys_aio.c,v 1.40.2.2 2017/08/28 17:53:07 skrll Exp $");
36
37 #ifdef _KERNEL_OPT
38 #include "opt_ddb.h"
39 #endif
40
41 #include <sys/param.h>
42 #include <sys/condvar.h>
43 #include <sys/file.h>
44 #include <sys/filedesc.h>
45 #include <sys/kernel.h>
46 #include <sys/kmem.h>
47 #include <sys/lwp.h>
48 #include <sys/mutex.h>
49 #include <sys/pool.h>
50 #include <sys/proc.h>
51 #include <sys/queue.h>
52 #include <sys/signal.h>
53 #include <sys/signalvar.h>
54 #include <sys/syscall.h>
55 #include <sys/syscallargs.h>
56 #include <sys/syscallvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/systm.h>
59 #include <sys/types.h>
60 #include <sys/vnode.h>
61 #include <sys/atomic.h>
62 #include <sys/module.h>
63 #include <sys/buf.h>
64
65 #include <uvm/uvm_extern.h>
66
67 MODULE(MODULE_CLASS_MISC, aio, NULL);
68
69 /*
70 * System-wide limits and counter of AIO operations.
71 */
72 u_int aio_listio_max = AIO_LISTIO_MAX;
73 static u_int aio_max = AIO_MAX;
74 static u_int aio_jobs_count;
75
76 static struct sysctllog *aio_sysctl;
77 static struct pool aio_job_pool;
78 static struct pool aio_lio_pool;
79 static void * aio_ehook;
80
81 static void aio_worker(void *);
82 static void aio_process(struct aio_job *);
83 static void aio_sendsig(struct proc *, struct sigevent *);
84 static int aio_enqueue_job(int, void *, struct lio_req *);
85 static void aio_exit(proc_t *, void *);
86
87 static int sysctl_aio_listio_max(SYSCTLFN_PROTO);
88 static int sysctl_aio_max(SYSCTLFN_PROTO);
89 static int sysctl_aio_init(void);
90
91 static const struct syscall_package aio_syscalls[] = {
92 { SYS_aio_cancel, 0, (sy_call_t *)sys_aio_cancel },
93 { SYS_aio_error, 0, (sy_call_t *)sys_aio_error },
94 { SYS_aio_fsync, 0, (sy_call_t *)sys_aio_fsync },
95 { SYS_aio_read, 0, (sy_call_t *)sys_aio_read },
96 { SYS_aio_return, 0, (sy_call_t *)sys_aio_return },
97 { SYS___aio_suspend50, 0, (sy_call_t *)sys___aio_suspend50 },
98 { SYS_aio_write, 0, (sy_call_t *)sys_aio_write },
99 { SYS_lio_listio, 0, (sy_call_t *)sys_lio_listio },
100 { 0, 0, NULL },
101 };
102
103 /*
104 * Tear down all AIO state.
105 */
106 static int
107 aio_fini(bool interface)
108 {
109 int error;
110 proc_t *p;
111
112 if (interface) {
113 /* Stop syscall activity. */
114 error = syscall_disestablish(NULL, aio_syscalls);
115 if (error != 0)
116 return error;
117 /* Abort if any processes are using AIO. */
118 mutex_enter(proc_lock);
119 PROCLIST_FOREACH(p, &allproc) {
120 if (p->p_aio != NULL)
121 break;
122 }
123 mutex_exit(proc_lock);
124 if (p != NULL) {
125 error = syscall_establish(NULL, aio_syscalls);
126 KASSERT(error == 0);
127 return EBUSY;
128 }
129 }
130 if (aio_sysctl != NULL)
131 sysctl_teardown(&aio_sysctl);
132
133 KASSERT(aio_jobs_count == 0);
134 exithook_disestablish(aio_ehook);
135 pool_destroy(&aio_job_pool);
136 pool_destroy(&aio_lio_pool);
137 return 0;
138 }
139
140 /*
141 * Initialize global AIO state.
142 */
143 static int
144 aio_init(void)
145 {
146 int error;
147
148 pool_init(&aio_job_pool, sizeof(struct aio_job), 0, 0, 0,
149 "aio_jobs_pool", &pool_allocator_nointr, IPL_NONE);
150 pool_init(&aio_lio_pool, sizeof(struct lio_req), 0, 0, 0,
151 "aio_lio_pool", &pool_allocator_nointr, IPL_NONE);
152 aio_ehook = exithook_establish(aio_exit, NULL);
153
154 error = sysctl_aio_init();
155 if (error != 0) {
156 (void)aio_fini(false);
157 return error;
158 }
159 error = syscall_establish(NULL, aio_syscalls);
160 if (error != 0)
161 (void)aio_fini(false);
162 return error;
163 }
164
165 /*
166 * Module interface.
167 */
168 static int
169 aio_modcmd(modcmd_t cmd, void *arg)
170 {
171
172 switch (cmd) {
173 case MODULE_CMD_INIT:
174 return aio_init();
175 case MODULE_CMD_FINI:
176 return aio_fini(true);
177 default:
178 return ENOTTY;
179 }
180 }
181
182 /*
183 * Initialize Asynchronous I/O data structures for the process.
184 */
185 static int
186 aio_procinit(struct proc *p)
187 {
188 struct aioproc *aio;
189 struct lwp *l;
190 int error;
191 vaddr_t uaddr;
192
193 /* Allocate and initialize AIO structure */
194 aio = kmem_zalloc(sizeof(struct aioproc), KM_SLEEP);
195
196 /* Initialize queue and their synchronization structures */
197 mutex_init(&aio->aio_mtx, MUTEX_DEFAULT, IPL_NONE);
198 cv_init(&aio->aio_worker_cv, "aiowork");
199 cv_init(&aio->done_cv, "aiodone");
200 TAILQ_INIT(&aio->jobs_queue);
201
202 /*
203 * Create an AIO worker thread.
204 * XXX: Currently, AIO thread is not protected against user's actions.
205 */
206 uaddr = uvm_uarea_alloc();
207 if (uaddr == 0) {
208 aio_exit(p, aio);
209 return EAGAIN;
210 }
211 error = lwp_create(curlwp, p, uaddr, 0, NULL, 0, aio_worker,
212 NULL, &l, curlwp->l_class, &curlwp->l_sigmask, &curlwp->l_sigstk);
213 if (error != 0) {
214 uvm_uarea_free(uaddr);
215 aio_exit(p, aio);
216 return error;
217 }
218
219 /* Recheck if we are really first */
220 mutex_enter(p->p_lock);
221 if (p->p_aio) {
222 mutex_exit(p->p_lock);
223 aio_exit(p, aio);
224 lwp_exit(l);
225 return 0;
226 }
227 p->p_aio = aio;
228
229 /* Complete the initialization of thread, and run it */
230 aio->aio_worker = l;
231 lwp_lock(l);
232 l->l_stat = LSRUN;
233 l->l_priority = MAXPRI_USER;
234 sched_enqueue(l, false);
235 lwp_unlock(l);
236 mutex_exit(p->p_lock);
237
238 return 0;
239 }
240
241 /*
242 * Exit of Asynchronous I/O subsystem of process.
243 */
244 static void
245 aio_exit(struct proc *p, void *cookie)
246 {
247 struct aio_job *a_job;
248 struct aioproc *aio;
249
250 if (cookie != NULL)
251 aio = cookie;
252 else if ((aio = p->p_aio) == NULL)
253 return;
254
255 /* Free AIO queue */
256 while (!TAILQ_EMPTY(&aio->jobs_queue)) {
257 a_job = TAILQ_FIRST(&aio->jobs_queue);
258 TAILQ_REMOVE(&aio->jobs_queue, a_job, list);
259 pool_put(&aio_job_pool, a_job);
260 atomic_dec_uint(&aio_jobs_count);
261 }
262
263 /* Destroy and free the entire AIO data structure */
264 cv_destroy(&aio->aio_worker_cv);
265 cv_destroy(&aio->done_cv);
266 mutex_destroy(&aio->aio_mtx);
267 kmem_free(aio, sizeof(struct aioproc));
268 }
269
270 /*
271 * AIO worker thread and processor.
272 */
273 static void
274 aio_worker(void *arg)
275 {
276 struct proc *p = curlwp->l_proc;
277 struct aioproc *aio = p->p_aio;
278 struct aio_job *a_job;
279 struct lio_req *lio;
280 sigset_t oss, nss;
281 int error __diagused, refcnt;
282
283 /*
284 * Make an empty signal mask, so it
285 * handles only SIGKILL and SIGSTOP.
286 */
287 sigfillset(&nss);
288 mutex_enter(p->p_lock);
289 error = sigprocmask1(curlwp, SIG_SETMASK, &nss, &oss);
290 mutex_exit(p->p_lock);
291 KASSERT(error == 0);
292
293 for (;;) {
294 /*
295 * Loop for each job in the queue. If there
296 * are no jobs then sleep.
297 */
298 mutex_enter(&aio->aio_mtx);
299 while ((a_job = TAILQ_FIRST(&aio->jobs_queue)) == NULL) {
300 if (cv_wait_sig(&aio->aio_worker_cv, &aio->aio_mtx)) {
301 /*
302 * Thread was interrupted - check for
303 * pending exit or suspend.
304 */
305 mutex_exit(&aio->aio_mtx);
306 lwp_userret(curlwp);
307 mutex_enter(&aio->aio_mtx);
308 }
309 }
310
311 /* Take the job from the queue */
312 aio->curjob = a_job;
313 TAILQ_REMOVE(&aio->jobs_queue, a_job, list);
314
315 atomic_dec_uint(&aio_jobs_count);
316 aio->jobs_count--;
317
318 mutex_exit(&aio->aio_mtx);
319
320 /* Process an AIO operation */
321 aio_process(a_job);
322
323 /* Copy data structure back to the user-space */
324 (void)copyout(&a_job->aiocbp, a_job->aiocb_uptr,
325 sizeof(struct aiocb));
326
327 mutex_enter(&aio->aio_mtx);
328 KASSERT(aio->curjob == a_job);
329 aio->curjob = NULL;
330
331 /* Decrease a reference counter, if there is a LIO structure */
332 lio = a_job->lio;
333 refcnt = (lio != NULL ? --lio->refcnt : -1);
334
335 /* Notify all suspenders */
336 cv_broadcast(&aio->done_cv);
337 mutex_exit(&aio->aio_mtx);
338
339 /* Send a signal, if any */
340 aio_sendsig(p, &a_job->aiocbp.aio_sigevent);
341
342 /* Destroy the LIO structure */
343 if (refcnt == 0) {
344 aio_sendsig(p, &lio->sig);
345 pool_put(&aio_lio_pool, lio);
346 }
347
348 /* Destroy the job */
349 pool_put(&aio_job_pool, a_job);
350 }
351
352 /* NOTREACHED */
353 }
354
355 static void
356 aio_process(struct aio_job *a_job)
357 {
358 struct proc *p = curlwp->l_proc;
359 struct aiocb *aiocbp = &a_job->aiocbp;
360 struct file *fp;
361 int fd = aiocbp->aio_fildes;
362 int error = 0;
363
364 KASSERT(a_job->aio_op != 0);
365
366 if ((a_job->aio_op & (AIO_READ | AIO_WRITE)) != 0) {
367 struct iovec aiov;
368 struct uio auio;
369
370 if (aiocbp->aio_nbytes > SSIZE_MAX) {
371 error = EINVAL;
372 goto done;
373 }
374
375 fp = fd_getfile(fd);
376 if (fp == NULL) {
377 error = EBADF;
378 goto done;
379 }
380
381 aiov.iov_base = (void *)(uintptr_t)aiocbp->aio_buf;
382 aiov.iov_len = aiocbp->aio_nbytes;
383 auio.uio_iov = &aiov;
384 auio.uio_iovcnt = 1;
385 auio.uio_resid = aiocbp->aio_nbytes;
386 auio.uio_vmspace = p->p_vmspace;
387
388 if (a_job->aio_op & AIO_READ) {
389 /*
390 * Perform a Read operation
391 */
392 KASSERT((a_job->aio_op & AIO_WRITE) == 0);
393
394 if ((fp->f_flag & FREAD) == 0) {
395 fd_putfile(fd);
396 error = EBADF;
397 goto done;
398 }
399 auio.uio_rw = UIO_READ;
400 error = (*fp->f_ops->fo_read)(fp, &aiocbp->aio_offset,
401 &auio, fp->f_cred, FOF_UPDATE_OFFSET);
402 } else {
403 /*
404 * Perform a Write operation
405 */
406 KASSERT(a_job->aio_op & AIO_WRITE);
407
408 if ((fp->f_flag & FWRITE) == 0) {
409 fd_putfile(fd);
410 error = EBADF;
411 goto done;
412 }
413 auio.uio_rw = UIO_WRITE;
414 error = (*fp->f_ops->fo_write)(fp, &aiocbp->aio_offset,
415 &auio, fp->f_cred, FOF_UPDATE_OFFSET);
416 }
417 fd_putfile(fd);
418
419 /* Store the result value */
420 a_job->aiocbp.aio_nbytes -= auio.uio_resid;
421 a_job->aiocbp._retval = (error == 0) ?
422 a_job->aiocbp.aio_nbytes : -1;
423
424 } else if ((a_job->aio_op & (AIO_SYNC | AIO_DSYNC)) != 0) {
425 /*
426 * Perform a file Sync operation
427 */
428 struct vnode *vp;
429
430 if ((error = fd_getvnode(fd, &fp)) != 0)
431 goto done;
432
433 if ((fp->f_flag & FWRITE) == 0) {
434 fd_putfile(fd);
435 error = EBADF;
436 goto done;
437 }
438
439 vp = fp->f_vnode;
440 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
441 if (a_job->aio_op & AIO_DSYNC) {
442 error = VOP_FSYNC(vp, fp->f_cred,
443 FSYNC_WAIT | FSYNC_DATAONLY, 0, 0);
444 } else if (a_job->aio_op & AIO_SYNC) {
445 error = VOP_FSYNC(vp, fp->f_cred,
446 FSYNC_WAIT, 0, 0);
447 }
448 VOP_UNLOCK(vp);
449 fd_putfile(fd);
450
451 /* Store the result value */
452 a_job->aiocbp._retval = (error == 0) ? 0 : -1;
453
454 } else
455 panic("aio_process: invalid operation code\n");
456
457 done:
458 /* Job is done, set the error, if any */
459 a_job->aiocbp._errno = error;
460 a_job->aiocbp._state = JOB_DONE;
461 }
462
463 /*
464 * Send AIO signal.
465 */
466 static void
467 aio_sendsig(struct proc *p, struct sigevent *sig)
468 {
469 ksiginfo_t ksi;
470
471 if (sig->sigev_signo == 0 || sig->sigev_notify == SIGEV_NONE)
472 return;
473
474 KSI_INIT(&ksi);
475 ksi.ksi_signo = sig->sigev_signo;
476 ksi.ksi_code = SI_ASYNCIO;
477 ksi.ksi_value = sig->sigev_value;
478 mutex_enter(proc_lock);
479 kpsignal(p, &ksi, NULL);
480 mutex_exit(proc_lock);
481 }
482
483 /*
484 * Enqueue the job.
485 */
486 static int
487 aio_enqueue_job(int op, void *aiocb_uptr, struct lio_req *lio)
488 {
489 struct proc *p = curlwp->l_proc;
490 struct aioproc *aio;
491 struct aio_job *a_job;
492 struct aiocb aiocbp;
493 struct sigevent *sig;
494 int error;
495
496 /* Non-accurate check for the limit */
497 if (aio_jobs_count + 1 > aio_max)
498 return EAGAIN;
499
500 /* Get the data structure from user-space */
501 error = copyin(aiocb_uptr, &aiocbp, sizeof(struct aiocb));
502 if (error)
503 return error;
504
505 /* Check if signal is set, and validate it */
506 sig = &aiocbp.aio_sigevent;
507 if (sig->sigev_signo < 0 || sig->sigev_signo >= NSIG ||
508 sig->sigev_notify < SIGEV_NONE || sig->sigev_notify > SIGEV_SA)
509 return EINVAL;
510
511 /* Buffer and byte count */
512 if (((AIO_SYNC | AIO_DSYNC) & op) == 0)
513 if (aiocbp.aio_buf == NULL || aiocbp.aio_nbytes > SSIZE_MAX)
514 return EINVAL;
515
516 /* Check the opcode, if LIO_NOP - simply ignore */
517 if (op == AIO_LIO) {
518 KASSERT(lio != NULL);
519 if (aiocbp.aio_lio_opcode == LIO_WRITE)
520 op = AIO_WRITE;
521 else if (aiocbp.aio_lio_opcode == LIO_READ)
522 op = AIO_READ;
523 else
524 return (aiocbp.aio_lio_opcode == LIO_NOP) ? 0 : EINVAL;
525 } else {
526 KASSERT(lio == NULL);
527 }
528
529 /*
530 * Look for already existing job. If found - the job is in-progress.
531 * According to POSIX this is invalid, so return the error.
532 */
533 aio = p->p_aio;
534 if (aio) {
535 mutex_enter(&aio->aio_mtx);
536 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) {
537 if (a_job->aiocb_uptr != aiocb_uptr)
538 continue;
539 mutex_exit(&aio->aio_mtx);
540 return EINVAL;
541 }
542 mutex_exit(&aio->aio_mtx);
543 }
544
545 /*
546 * Check if AIO structure is initialized, if not - initialize it.
547 * In LIO case, we did that already. We will recheck this with
548 * the lock in aio_procinit().
549 */
550 if (lio == NULL && p->p_aio == NULL)
551 if (aio_procinit(p))
552 return EAGAIN;
553 aio = p->p_aio;
554
555 /*
556 * Set the state with errno, and copy data
557 * structure back to the user-space.
558 */
559 aiocbp._state = JOB_WIP;
560 aiocbp._errno = EINPROGRESS;
561 aiocbp._retval = -1;
562 error = copyout(&aiocbp, aiocb_uptr, sizeof(struct aiocb));
563 if (error)
564 return error;
565
566 /* Allocate and initialize a new AIO job */
567 a_job = pool_get(&aio_job_pool, PR_WAITOK);
568 memset(a_job, 0, sizeof(struct aio_job));
569
570 /*
571 * Set the data.
572 * Store the user-space pointer for searching. Since we
573 * are storing only per proc pointers - it is safe.
574 */
575 memcpy(&a_job->aiocbp, &aiocbp, sizeof(struct aiocb));
576 a_job->aiocb_uptr = aiocb_uptr;
577 a_job->aio_op |= op;
578 a_job->lio = lio;
579
580 /*
581 * Add the job to the queue, update the counters, and
582 * notify the AIO worker thread to handle the job.
583 */
584 mutex_enter(&aio->aio_mtx);
585
586 /* Fail, if the limit was reached */
587 if (atomic_inc_uint_nv(&aio_jobs_count) > aio_max ||
588 aio->jobs_count >= aio_listio_max) {
589 atomic_dec_uint(&aio_jobs_count);
590 mutex_exit(&aio->aio_mtx);
591 pool_put(&aio_job_pool, a_job);
592 return EAGAIN;
593 }
594
595 TAILQ_INSERT_TAIL(&aio->jobs_queue, a_job, list);
596 aio->jobs_count++;
597 if (lio)
598 lio->refcnt++;
599 cv_signal(&aio->aio_worker_cv);
600
601 mutex_exit(&aio->aio_mtx);
602
603 /*
604 * One would handle the errors only with aio_error() function.
605 * This way is appropriate according to POSIX.
606 */
607 return 0;
608 }
609
610 /*
611 * Syscall functions.
612 */
613
614 int
615 sys_aio_cancel(struct lwp *l, const struct sys_aio_cancel_args *uap,
616 register_t *retval)
617 {
618 /* {
619 syscallarg(int) fildes;
620 syscallarg(struct aiocb *) aiocbp;
621 } */
622 struct proc *p = l->l_proc;
623 struct aioproc *aio;
624 struct aio_job *a_job;
625 struct aiocb *aiocbp_ptr;
626 struct lio_req *lio;
627 struct filedesc *fdp = p->p_fd;
628 unsigned int cn, errcnt, fildes;
629 fdtab_t *dt;
630
631 TAILQ_HEAD(, aio_job) tmp_jobs_list;
632
633 /* Check for invalid file descriptor */
634 fildes = (unsigned int)SCARG(uap, fildes);
635 dt = fdp->fd_dt;
636 if (fildes >= dt->dt_nfiles)
637 return EBADF;
638 if (dt->dt_ff[fildes] == NULL || dt->dt_ff[fildes]->ff_file == NULL)
639 return EBADF;
640
641 /* Check if AIO structure is initialized */
642 if (p->p_aio == NULL) {
643 *retval = AIO_NOTCANCELED;
644 return 0;
645 }
646
647 aio = p->p_aio;
648 aiocbp_ptr = (struct aiocb *)SCARG(uap, aiocbp);
649
650 mutex_enter(&aio->aio_mtx);
651
652 /* Cancel the jobs, and remove them from the queue */
653 cn = 0;
654 TAILQ_INIT(&tmp_jobs_list);
655 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) {
656 if (aiocbp_ptr) {
657 if (aiocbp_ptr != a_job->aiocb_uptr)
658 continue;
659 if (fildes != a_job->aiocbp.aio_fildes) {
660 mutex_exit(&aio->aio_mtx);
661 return EBADF;
662 }
663 } else if (a_job->aiocbp.aio_fildes != fildes)
664 continue;
665
666 TAILQ_REMOVE(&aio->jobs_queue, a_job, list);
667 TAILQ_INSERT_TAIL(&tmp_jobs_list, a_job, list);
668
669 /* Decrease the counters */
670 atomic_dec_uint(&aio_jobs_count);
671 aio->jobs_count--;
672 lio = a_job->lio;
673 if (lio != NULL && --lio->refcnt != 0)
674 a_job->lio = NULL;
675
676 cn++;
677 if (aiocbp_ptr)
678 break;
679 }
680
681 /* There are canceled jobs */
682 if (cn)
683 *retval = AIO_CANCELED;
684
685 /* We cannot cancel current job */
686 a_job = aio->curjob;
687 if (a_job && ((a_job->aiocbp.aio_fildes == fildes) ||
688 (a_job->aiocb_uptr == aiocbp_ptr)))
689 *retval = AIO_NOTCANCELED;
690
691 mutex_exit(&aio->aio_mtx);
692
693 /* Free the jobs after the lock */
694 errcnt = 0;
695 while (!TAILQ_EMPTY(&tmp_jobs_list)) {
696 a_job = TAILQ_FIRST(&tmp_jobs_list);
697 TAILQ_REMOVE(&tmp_jobs_list, a_job, list);
698 /* Set the errno and copy structures back to the user-space */
699 a_job->aiocbp._errno = ECANCELED;
700 a_job->aiocbp._state = JOB_DONE;
701 if (copyout(&a_job->aiocbp, a_job->aiocb_uptr,
702 sizeof(struct aiocb)))
703 errcnt++;
704 /* Send a signal if any */
705 aio_sendsig(p, &a_job->aiocbp.aio_sigevent);
706 if (a_job->lio) {
707 lio = a_job->lio;
708 aio_sendsig(p, &lio->sig);
709 pool_put(&aio_lio_pool, lio);
710 }
711 pool_put(&aio_job_pool, a_job);
712 }
713
714 if (errcnt)
715 return EFAULT;
716
717 /* Set a correct return value */
718 if (*retval == 0)
719 *retval = AIO_ALLDONE;
720
721 return 0;
722 }
723
724 int
725 sys_aio_error(struct lwp *l, const struct sys_aio_error_args *uap,
726 register_t *retval)
727 {
728 /* {
729 syscallarg(const struct aiocb *) aiocbp;
730 } */
731 struct proc *p = l->l_proc;
732 struct aioproc *aio = p->p_aio;
733 struct aiocb aiocbp;
734 int error;
735
736 if (aio == NULL)
737 return EINVAL;
738
739 error = copyin(SCARG(uap, aiocbp), &aiocbp, sizeof(struct aiocb));
740 if (error)
741 return error;
742
743 if (aiocbp._state == JOB_NONE)
744 return EINVAL;
745
746 *retval = aiocbp._errno;
747
748 return 0;
749 }
750
751 int
752 sys_aio_fsync(struct lwp *l, const struct sys_aio_fsync_args *uap,
753 register_t *retval)
754 {
755 /* {
756 syscallarg(int) op;
757 syscallarg(struct aiocb *) aiocbp;
758 } */
759 int op = SCARG(uap, op);
760
761 if ((op != O_DSYNC) && (op != O_SYNC))
762 return EINVAL;
763
764 op = O_DSYNC ? AIO_DSYNC : AIO_SYNC;
765
766 return aio_enqueue_job(op, SCARG(uap, aiocbp), NULL);
767 }
768
769 int
770 sys_aio_read(struct lwp *l, const struct sys_aio_read_args *uap,
771 register_t *retval)
772 {
773 /* {
774 syscallarg(struct aiocb *) aiocbp;
775 } */
776
777 return aio_enqueue_job(AIO_READ, SCARG(uap, aiocbp), NULL);
778 }
779
780 int
781 sys_aio_return(struct lwp *l, const struct sys_aio_return_args *uap,
782 register_t *retval)
783 {
784 /* {
785 syscallarg(struct aiocb *) aiocbp;
786 } */
787 struct proc *p = l->l_proc;
788 struct aioproc *aio = p->p_aio;
789 struct aiocb aiocbp;
790 int error;
791
792 if (aio == NULL)
793 return EINVAL;
794
795 error = copyin(SCARG(uap, aiocbp), &aiocbp, sizeof(struct aiocb));
796 if (error)
797 return error;
798
799 if (aiocbp._errno == EINPROGRESS || aiocbp._state != JOB_DONE)
800 return EINVAL;
801
802 *retval = aiocbp._retval;
803
804 /* Reset the internal variables */
805 aiocbp._errno = 0;
806 aiocbp._retval = -1;
807 aiocbp._state = JOB_NONE;
808 error = copyout(&aiocbp, SCARG(uap, aiocbp), sizeof(struct aiocb));
809
810 return error;
811 }
812
813 int
814 sys___aio_suspend50(struct lwp *l, const struct sys___aio_suspend50_args *uap,
815 register_t *retval)
816 {
817 /* {
818 syscallarg(const struct aiocb *const[]) list;
819 syscallarg(int) nent;
820 syscallarg(const struct timespec *) timeout;
821 } */
822 struct aiocb **list;
823 struct timespec ts;
824 int error, nent;
825
826 nent = SCARG(uap, nent);
827 if (nent <= 0 || nent > aio_listio_max)
828 return EAGAIN;
829
830 if (SCARG(uap, timeout)) {
831 /* Convert timespec to ticks */
832 error = copyin(SCARG(uap, timeout), &ts,
833 sizeof(struct timespec));
834 if (error)
835 return error;
836 }
837
838 list = kmem_alloc(nent * sizeof(*list), KM_SLEEP);
839 error = copyin(SCARG(uap, list), list, nent * sizeof(*list));
840 if (error)
841 goto out;
842 error = aio_suspend1(l, list, nent, SCARG(uap, timeout) ? &ts : NULL);
843 out:
844 kmem_free(list, nent * sizeof(*list));
845 return error;
846 }
847
848 int
849 aio_suspend1(struct lwp *l, struct aiocb **aiocbp_list, int nent,
850 struct timespec *ts)
851 {
852 struct proc *p = l->l_proc;
853 struct aioproc *aio;
854 struct aio_job *a_job;
855 int i, error, timo;
856
857 if (p->p_aio == NULL)
858 return EAGAIN;
859 aio = p->p_aio;
860
861 if (ts) {
862 timo = mstohz((ts->tv_sec * 1000) + (ts->tv_nsec / 1000000));
863 if (timo == 0 && ts->tv_sec == 0 && ts->tv_nsec > 0)
864 timo = 1;
865 if (timo <= 0)
866 return EAGAIN;
867 } else
868 timo = 0;
869
870 mutex_enter(&aio->aio_mtx);
871 for (;;) {
872 for (i = 0; i < nent; i++) {
873
874 /* Skip NULL entries */
875 if (aiocbp_list[i] == NULL)
876 continue;
877
878 /* Skip current job */
879 if (aio->curjob) {
880 a_job = aio->curjob;
881 if (a_job->aiocb_uptr == aiocbp_list[i])
882 continue;
883 }
884
885 /* Look for a job in the queue */
886 TAILQ_FOREACH(a_job, &aio->jobs_queue, list)
887 if (a_job->aiocb_uptr == aiocbp_list[i])
888 break;
889
890 if (a_job == NULL) {
891 struct aiocb aiocbp;
892
893 mutex_exit(&aio->aio_mtx);
894
895 /* Check if the job is done. */
896 error = copyin(aiocbp_list[i], &aiocbp,
897 sizeof(struct aiocb));
898 if (error == 0 && aiocbp._state != JOB_DONE) {
899 mutex_enter(&aio->aio_mtx);
900 continue;
901 }
902 return error;
903 }
904 }
905
906 /* Wait for a signal or when timeout occurs */
907 error = cv_timedwait_sig(&aio->done_cv, &aio->aio_mtx, timo);
908 if (error) {
909 if (error == EWOULDBLOCK)
910 error = EAGAIN;
911 break;
912 }
913 }
914 mutex_exit(&aio->aio_mtx);
915 return error;
916 }
917
918 int
919 sys_aio_write(struct lwp *l, const struct sys_aio_write_args *uap,
920 register_t *retval)
921 {
922 /* {
923 syscallarg(struct aiocb *) aiocbp;
924 } */
925
926 return aio_enqueue_job(AIO_WRITE, SCARG(uap, aiocbp), NULL);
927 }
928
929 int
930 sys_lio_listio(struct lwp *l, const struct sys_lio_listio_args *uap,
931 register_t *retval)
932 {
933 /* {
934 syscallarg(int) mode;
935 syscallarg(struct aiocb *const[]) list;
936 syscallarg(int) nent;
937 syscallarg(struct sigevent *) sig;
938 } */
939 struct proc *p = l->l_proc;
940 struct aioproc *aio;
941 struct aiocb **aiocbp_list;
942 struct lio_req *lio;
943 int i, error, errcnt, mode, nent;
944
945 mode = SCARG(uap, mode);
946 nent = SCARG(uap, nent);
947
948 /* Non-accurate checks for the limit and invalid values */
949 if (nent < 1 || nent > aio_listio_max)
950 return EINVAL;
951 if (aio_jobs_count + nent > aio_max)
952 return EAGAIN;
953
954 /* Check if AIO structure is initialized, if not - initialize it */
955 if (p->p_aio == NULL)
956 if (aio_procinit(p))
957 return EAGAIN;
958 aio = p->p_aio;
959
960 /* Create a LIO structure */
961 lio = pool_get(&aio_lio_pool, PR_WAITOK);
962 lio->refcnt = 1;
963 error = 0;
964
965 switch (mode) {
966 case LIO_WAIT:
967 memset(&lio->sig, 0, sizeof(struct sigevent));
968 break;
969 case LIO_NOWAIT:
970 /* Check for signal, validate it */
971 if (SCARG(uap, sig)) {
972 struct sigevent *sig = &lio->sig;
973
974 error = copyin(SCARG(uap, sig), &lio->sig,
975 sizeof(struct sigevent));
976 if (error == 0 &&
977 (sig->sigev_signo < 0 ||
978 sig->sigev_signo >= NSIG ||
979 sig->sigev_notify < SIGEV_NONE ||
980 sig->sigev_notify > SIGEV_SA))
981 error = EINVAL;
982 } else
983 memset(&lio->sig, 0, sizeof(struct sigevent));
984 break;
985 default:
986 error = EINVAL;
987 break;
988 }
989
990 if (error != 0) {
991 pool_put(&aio_lio_pool, lio);
992 return error;
993 }
994
995 /* Get the list from user-space */
996 aiocbp_list = kmem_alloc(nent * sizeof(*aiocbp_list), KM_SLEEP);
997 error = copyin(SCARG(uap, list), aiocbp_list,
998 nent * sizeof(*aiocbp_list));
999 if (error) {
1000 mutex_enter(&aio->aio_mtx);
1001 goto err;
1002 }
1003
1004 /* Enqueue all jobs */
1005 errcnt = 0;
1006 for (i = 0; i < nent; i++) {
1007 error = aio_enqueue_job(AIO_LIO, aiocbp_list[i], lio);
1008 /*
1009 * According to POSIX, in such error case it may
1010 * fail with other I/O operations initiated.
1011 */
1012 if (error)
1013 errcnt++;
1014 }
1015
1016 mutex_enter(&aio->aio_mtx);
1017
1018 /* Return an error, if any */
1019 if (errcnt) {
1020 error = EIO;
1021 goto err;
1022 }
1023
1024 if (mode == LIO_WAIT) {
1025 /*
1026 * Wait for AIO completion. In such case,
1027 * the LIO structure will be freed here.
1028 */
1029 while (lio->refcnt > 1 && error == 0)
1030 error = cv_wait_sig(&aio->done_cv, &aio->aio_mtx);
1031 if (error)
1032 error = EINTR;
1033 }
1034
1035 err:
1036 if (--lio->refcnt != 0)
1037 lio = NULL;
1038 mutex_exit(&aio->aio_mtx);
1039 if (lio != NULL) {
1040 aio_sendsig(p, &lio->sig);
1041 pool_put(&aio_lio_pool, lio);
1042 }
1043 kmem_free(aiocbp_list, nent * sizeof(*aiocbp_list));
1044 return error;
1045 }
1046
1047 /*
1048 * SysCtl
1049 */
1050
1051 static int
1052 sysctl_aio_listio_max(SYSCTLFN_ARGS)
1053 {
1054 struct sysctlnode node;
1055 int error, newsize;
1056
1057 node = *rnode;
1058 node.sysctl_data = &newsize;
1059
1060 newsize = aio_listio_max;
1061 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1062 if (error || newp == NULL)
1063 return error;
1064
1065 if (newsize < 1 || newsize > aio_max)
1066 return EINVAL;
1067 aio_listio_max = newsize;
1068
1069 return 0;
1070 }
1071
1072 static int
1073 sysctl_aio_max(SYSCTLFN_ARGS)
1074 {
1075 struct sysctlnode node;
1076 int error, newsize;
1077
1078 node = *rnode;
1079 node.sysctl_data = &newsize;
1080
1081 newsize = aio_max;
1082 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1083 if (error || newp == NULL)
1084 return error;
1085
1086 if (newsize < 1 || newsize < aio_listio_max)
1087 return EINVAL;
1088 aio_max = newsize;
1089
1090 return 0;
1091 }
1092
1093 static int
1094 sysctl_aio_init(void)
1095 {
1096 int rv;
1097
1098 aio_sysctl = NULL;
1099
1100 rv = sysctl_createv(&aio_sysctl, 0, NULL, NULL,
1101 CTLFLAG_PERMANENT | CTLFLAG_IMMEDIATE,
1102 CTLTYPE_INT, "posix_aio",
1103 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
1104 "Asynchronous I/O option to which the "
1105 "system attempts to conform"),
1106 NULL, _POSIX_ASYNCHRONOUS_IO, NULL, 0,
1107 CTL_KERN, CTL_CREATE, CTL_EOL);
1108
1109 if (rv != 0)
1110 return rv;
1111
1112 rv = sysctl_createv(&aio_sysctl, 0, NULL, NULL,
1113 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1114 CTLTYPE_INT, "aio_listio_max",
1115 SYSCTL_DESCR("Maximum number of asynchronous I/O "
1116 "operations in a single list I/O call"),
1117 sysctl_aio_listio_max, 0, &aio_listio_max, 0,
1118 CTL_KERN, CTL_CREATE, CTL_EOL);
1119
1120 if (rv != 0)
1121 return rv;
1122
1123 rv = sysctl_createv(&aio_sysctl, 0, NULL, NULL,
1124 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1125 CTLTYPE_INT, "aio_max",
1126 SYSCTL_DESCR("Maximum number of asynchronous I/O "
1127 "operations"),
1128 sysctl_aio_max, 0, &aio_max, 0,
1129 CTL_KERN, CTL_CREATE, CTL_EOL);
1130
1131 return rv;
1132 }
1133
1134 /*
1135 * Debugging
1136 */
1137 #if defined(DDB)
1138 void
1139 aio_print_jobs(void (*pr)(const char *, ...))
1140 {
1141 struct proc *p = curlwp->l_proc;
1142 struct aioproc *aio;
1143 struct aio_job *a_job;
1144 struct aiocb *aiocbp;
1145
1146 if (p == NULL) {
1147 (*pr)("AIO: We are not in the processes right now.\n");
1148 return;
1149 }
1150
1151 aio = p->p_aio;
1152 if (aio == NULL) {
1153 (*pr)("AIO data is not initialized (PID = %d).\n", p->p_pid);
1154 return;
1155 }
1156
1157 (*pr)("AIO: PID = %d\n", p->p_pid);
1158 (*pr)("AIO: Global count of the jobs = %u\n", aio_jobs_count);
1159 (*pr)("AIO: Count of the jobs = %u\n", aio->jobs_count);
1160
1161 if (aio->curjob) {
1162 a_job = aio->curjob;
1163 (*pr)("\nAIO current job:\n");
1164 (*pr)(" opcode = %d, errno = %d, state = %d, aiocb_ptr = %p\n",
1165 a_job->aio_op, a_job->aiocbp._errno,
1166 a_job->aiocbp._state, a_job->aiocb_uptr);
1167 aiocbp = &a_job->aiocbp;
1168 (*pr)(" fd = %d, offset = %u, buf = %p, nbytes = %u\n",
1169 aiocbp->aio_fildes, aiocbp->aio_offset,
1170 aiocbp->aio_buf, aiocbp->aio_nbytes);
1171 }
1172
1173 (*pr)("\nAIO queue:\n");
1174 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) {
1175 (*pr)(" opcode = %d, errno = %d, state = %d, aiocb_ptr = %p\n",
1176 a_job->aio_op, a_job->aiocbp._errno,
1177 a_job->aiocbp._state, a_job->aiocb_uptr);
1178 aiocbp = &a_job->aiocbp;
1179 (*pr)(" fd = %d, offset = %u, buf = %p, nbytes = %u\n",
1180 aiocbp->aio_fildes, aiocbp->aio_offset,
1181 aiocbp->aio_buf, aiocbp->aio_nbytes);
1182 }
1183 }
1184 #endif /* defined(DDB) */
1185