sys_aio.c revision 1.44.4.1 1 /* $NetBSD: sys_aio.c,v 1.44.4.1 2024/11/20 14:01:59 martin Exp $ */
2
3 /*
4 * Copyright (c) 2007 Mindaugas Rasiukevicius <rmind at NetBSD org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * Implementation of POSIX asynchronous I/O.
31 * Defined in the Base Definitions volume of IEEE Std 1003.1-2001.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: sys_aio.c,v 1.44.4.1 2024/11/20 14:01:59 martin Exp $");
36
37 #ifdef _KERNEL_OPT
38 #include "opt_ddb.h"
39 #endif
40
41 #include <sys/param.h>
42 #include <sys/condvar.h>
43 #include <sys/file.h>
44 #include <sys/filedesc.h>
45 #include <sys/kernel.h>
46 #include <sys/kmem.h>
47 #include <sys/lwp.h>
48 #include <sys/mutex.h>
49 #include <sys/pool.h>
50 #include <sys/proc.h>
51 #include <sys/queue.h>
52 #include <sys/signal.h>
53 #include <sys/signalvar.h>
54 #include <sys/syscall.h>
55 #include <sys/syscallargs.h>
56 #include <sys/syscallvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/systm.h>
59 #include <sys/types.h>
60 #include <sys/vnode.h>
61 #include <sys/atomic.h>
62 #include <sys/module.h>
63 #include <sys/buf.h>
64
65 #include <uvm/uvm_extern.h>
66
67 MODULE(MODULE_CLASS_MISC, aio, NULL);
68
69 /*
70 * System-wide limits and counter of AIO operations.
71 */
72 u_int aio_listio_max = AIO_LISTIO_MAX;
73 static u_int aio_max = AIO_MAX;
74 static u_int aio_jobs_count;
75
76 static struct sysctllog *aio_sysctl;
77 static struct pool aio_job_pool;
78 static struct pool aio_lio_pool;
79 static void * aio_ehook;
80
81 static void aio_worker(void *);
82 static void aio_process(struct aio_job *);
83 static void aio_sendsig(struct proc *, struct sigevent *);
84 static int aio_enqueue_job(int, void *, struct lio_req *);
85 static void aio_exit(proc_t *, void *);
86
87 static int sysctl_aio_listio_max(SYSCTLFN_PROTO);
88 static int sysctl_aio_max(SYSCTLFN_PROTO);
89 static int sysctl_aio_init(void);
90
91 static const struct syscall_package aio_syscalls[] = {
92 { SYS_aio_cancel, 0, (sy_call_t *)sys_aio_cancel },
93 { SYS_aio_error, 0, (sy_call_t *)sys_aio_error },
94 { SYS_aio_fsync, 0, (sy_call_t *)sys_aio_fsync },
95 { SYS_aio_read, 0, (sy_call_t *)sys_aio_read },
96 { SYS_aio_return, 0, (sy_call_t *)sys_aio_return },
97 { SYS___aio_suspend50, 0, (sy_call_t *)sys___aio_suspend50 },
98 { SYS_aio_write, 0, (sy_call_t *)sys_aio_write },
99 { SYS_lio_listio, 0, (sy_call_t *)sys_lio_listio },
100 { 0, 0, NULL },
101 };
102
103 /*
104 * Tear down all AIO state.
105 */
106 static int
107 aio_fini(bool interface)
108 {
109 int error;
110 proc_t *p;
111
112 if (interface) {
113 /* Stop syscall activity. */
114 error = syscall_disestablish(NULL, aio_syscalls);
115 if (error != 0)
116 return error;
117 /* Abort if any processes are using AIO. */
118 mutex_enter(proc_lock);
119 PROCLIST_FOREACH(p, &allproc) {
120 if (p->p_aio != NULL)
121 break;
122 }
123 mutex_exit(proc_lock);
124 if (p != NULL) {
125 error = syscall_establish(NULL, aio_syscalls);
126 KASSERT(error == 0);
127 return EBUSY;
128 }
129 }
130 if (aio_sysctl != NULL)
131 sysctl_teardown(&aio_sysctl);
132
133 KASSERT(aio_jobs_count == 0);
134 exithook_disestablish(aio_ehook);
135 pool_destroy(&aio_job_pool);
136 pool_destroy(&aio_lio_pool);
137 return 0;
138 }
139
140 /*
141 * Initialize global AIO state.
142 */
143 static int
144 aio_init(void)
145 {
146 int error;
147
148 pool_init(&aio_job_pool, sizeof(struct aio_job), 0, 0, 0,
149 "aio_jobs_pool", &pool_allocator_nointr, IPL_NONE);
150 pool_init(&aio_lio_pool, sizeof(struct lio_req), 0, 0, 0,
151 "aio_lio_pool", &pool_allocator_nointr, IPL_NONE);
152 aio_ehook = exithook_establish(aio_exit, NULL);
153
154 error = sysctl_aio_init();
155 if (error != 0) {
156 (void)aio_fini(false);
157 return error;
158 }
159 error = syscall_establish(NULL, aio_syscalls);
160 if (error != 0)
161 (void)aio_fini(false);
162 return error;
163 }
164
165 /*
166 * Module interface.
167 */
168 static int
169 aio_modcmd(modcmd_t cmd, void *arg)
170 {
171
172 switch (cmd) {
173 case MODULE_CMD_INIT:
174 return aio_init();
175 case MODULE_CMD_FINI:
176 return aio_fini(true);
177 default:
178 return ENOTTY;
179 }
180 }
181
182 /*
183 * Initialize Asynchronous I/O data structures for the process.
184 */
185 static int
186 aio_procinit(struct proc *p)
187 {
188 struct aioproc *aio;
189 struct lwp *l;
190 int error;
191 vaddr_t uaddr;
192
193 /* Allocate and initialize AIO structure */
194 aio = kmem_zalloc(sizeof(struct aioproc), KM_SLEEP);
195
196 /* Initialize queue and their synchronization structures */
197 mutex_init(&aio->aio_mtx, MUTEX_DEFAULT, IPL_NONE);
198 cv_init(&aio->aio_worker_cv, "aiowork");
199 cv_init(&aio->done_cv, "aiodone");
200 TAILQ_INIT(&aio->jobs_queue);
201
202 /*
203 * Create an AIO worker thread.
204 * XXX: Currently, AIO thread is not protected against user's actions.
205 */
206 uaddr = uvm_uarea_alloc();
207 if (uaddr == 0) {
208 aio_exit(p, aio);
209 return EAGAIN;
210 }
211 error = lwp_create(curlwp, p, uaddr, 0, NULL, 0, aio_worker,
212 NULL, &l, curlwp->l_class, &curlwp->l_sigmask, &curlwp->l_sigstk);
213 if (error != 0) {
214 uvm_uarea_free(uaddr);
215 aio_exit(p, aio);
216 return error;
217 }
218
219 /* Recheck if we are really first */
220 mutex_enter(p->p_lock);
221 if (p->p_aio) {
222 mutex_exit(p->p_lock);
223 aio_exit(p, aio);
224 lwp_exit(l);
225 return 0;
226 }
227 p->p_aio = aio;
228
229 /* Complete the initialization of thread, and run it */
230 aio->aio_worker = l;
231 lwp_lock(l);
232 l->l_stat = LSRUN;
233 l->l_priority = MAXPRI_USER;
234 sched_enqueue(l, false);
235 lwp_unlock(l);
236 mutex_exit(p->p_lock);
237
238 return 0;
239 }
240
241 /*
242 * Exit of Asynchronous I/O subsystem of process.
243 */
244 static void
245 aio_exit(struct proc *p, void *cookie)
246 {
247 struct aio_job *a_job;
248 struct aioproc *aio;
249
250 if (cookie != NULL)
251 aio = cookie;
252 else if ((aio = p->p_aio) == NULL)
253 return;
254
255 /* Free AIO queue */
256 while (!TAILQ_EMPTY(&aio->jobs_queue)) {
257 a_job = TAILQ_FIRST(&aio->jobs_queue);
258 TAILQ_REMOVE(&aio->jobs_queue, a_job, list);
259 pool_put(&aio_job_pool, a_job);
260 atomic_dec_uint(&aio_jobs_count);
261 }
262
263 /* Destroy and free the entire AIO data structure */
264 cv_destroy(&aio->aio_worker_cv);
265 cv_destroy(&aio->done_cv);
266 mutex_destroy(&aio->aio_mtx);
267 kmem_free(aio, sizeof(struct aioproc));
268 }
269
270 /*
271 * AIO worker thread and processor.
272 */
273 static void
274 aio_worker(void *arg)
275 {
276 struct proc *p = curlwp->l_proc;
277 struct aioproc *aio = p->p_aio;
278 struct aio_job *a_job;
279 struct lio_req *lio;
280 sigset_t oss, nss;
281 int error __diagused, refcnt;
282
283 /*
284 * Make an empty signal mask, so it
285 * handles only SIGKILL and SIGSTOP.
286 */
287 sigfillset(&nss);
288 mutex_enter(p->p_lock);
289 error = sigprocmask1(curlwp, SIG_SETMASK, &nss, &oss);
290 mutex_exit(p->p_lock);
291 KASSERT(error == 0);
292
293 for (;;) {
294 /*
295 * Loop for each job in the queue. If there
296 * are no jobs then sleep.
297 */
298 mutex_enter(&aio->aio_mtx);
299 while ((a_job = TAILQ_FIRST(&aio->jobs_queue)) == NULL) {
300 if (cv_wait_sig(&aio->aio_worker_cv, &aio->aio_mtx)) {
301 /*
302 * Thread was interrupted - check for
303 * pending exit or suspend.
304 */
305 mutex_exit(&aio->aio_mtx);
306 lwp_userret(curlwp);
307 mutex_enter(&aio->aio_mtx);
308 }
309 }
310
311 /* Take the job from the queue */
312 aio->curjob = a_job;
313 TAILQ_REMOVE(&aio->jobs_queue, a_job, list);
314
315 atomic_dec_uint(&aio_jobs_count);
316 aio->jobs_count--;
317
318 mutex_exit(&aio->aio_mtx);
319
320 /* Process an AIO operation */
321 aio_process(a_job);
322
323 /* Copy data structure back to the user-space */
324 (void)copyout(&a_job->aiocbp, a_job->aiocb_uptr,
325 sizeof(struct aiocb));
326
327 mutex_enter(&aio->aio_mtx);
328 KASSERT(aio->curjob == a_job);
329 aio->curjob = NULL;
330
331 /* Decrease a reference counter, if there is a LIO structure */
332 lio = a_job->lio;
333 refcnt = (lio != NULL ? --lio->refcnt : -1);
334
335 /* Notify all suspenders */
336 cv_broadcast(&aio->done_cv);
337 mutex_exit(&aio->aio_mtx);
338
339 /* Send a signal, if any */
340 aio_sendsig(p, &a_job->aiocbp.aio_sigevent);
341
342 /* Destroy the LIO structure */
343 if (refcnt == 0) {
344 aio_sendsig(p, &lio->sig);
345 pool_put(&aio_lio_pool, lio);
346 }
347
348 /* Destroy the job */
349 pool_put(&aio_job_pool, a_job);
350 }
351
352 /* NOTREACHED */
353 }
354
355 static void
356 aio_process(struct aio_job *a_job)
357 {
358 struct proc *p = curlwp->l_proc;
359 struct aiocb *aiocbp = &a_job->aiocbp;
360 struct file *fp;
361 int fd = aiocbp->aio_fildes;
362 int error = 0;
363
364 KASSERT(a_job->aio_op != 0);
365
366 if ((a_job->aio_op & (AIO_READ | AIO_WRITE)) != 0) {
367 struct iovec aiov;
368 struct uio auio;
369
370 if (aiocbp->aio_nbytes > SSIZE_MAX) {
371 error = EINVAL;
372 goto done;
373 }
374
375 fp = fd_getfile(fd);
376 if (fp == NULL) {
377 error = EBADF;
378 goto done;
379 }
380
381 aiov.iov_base = (void *)(uintptr_t)aiocbp->aio_buf;
382 aiov.iov_len = aiocbp->aio_nbytes;
383 auio.uio_iov = &aiov;
384 auio.uio_iovcnt = 1;
385 auio.uio_resid = aiocbp->aio_nbytes;
386 auio.uio_vmspace = p->p_vmspace;
387
388 if (a_job->aio_op & AIO_READ) {
389 /*
390 * Perform a Read operation
391 */
392 KASSERT((a_job->aio_op & AIO_WRITE) == 0);
393
394 if ((fp->f_flag & FREAD) == 0) {
395 fd_putfile(fd);
396 error = EBADF;
397 goto done;
398 }
399 auio.uio_rw = UIO_READ;
400 error = (*fp->f_ops->fo_read)(fp, &aiocbp->aio_offset,
401 &auio, fp->f_cred, FOF_UPDATE_OFFSET);
402 } else {
403 /*
404 * Perform a Write operation
405 */
406 KASSERT(a_job->aio_op & AIO_WRITE);
407
408 if ((fp->f_flag & FWRITE) == 0) {
409 fd_putfile(fd);
410 error = EBADF;
411 goto done;
412 }
413 auio.uio_rw = UIO_WRITE;
414 error = (*fp->f_ops->fo_write)(fp, &aiocbp->aio_offset,
415 &auio, fp->f_cred, FOF_UPDATE_OFFSET);
416 }
417 fd_putfile(fd);
418
419 /* Store the result value */
420 a_job->aiocbp.aio_nbytes -= auio.uio_resid;
421 a_job->aiocbp._retval = (error == 0) ?
422 a_job->aiocbp.aio_nbytes : -1;
423
424 } else if ((a_job->aio_op & (AIO_SYNC | AIO_DSYNC)) != 0) {
425 /*
426 * Perform a file Sync operation
427 */
428 struct vnode *vp;
429
430 if ((error = fd_getvnode(fd, &fp)) != 0)
431 goto done;
432
433 if ((fp->f_flag & FWRITE) == 0) {
434 fd_putfile(fd);
435 error = EBADF;
436 goto done;
437 }
438
439 vp = fp->f_vnode;
440 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
441 if (a_job->aio_op & AIO_DSYNC) {
442 error = VOP_FSYNC(vp, fp->f_cred,
443 FSYNC_WAIT | FSYNC_DATAONLY, 0, 0);
444 } else if (a_job->aio_op & AIO_SYNC) {
445 error = VOP_FSYNC(vp, fp->f_cred,
446 FSYNC_WAIT, 0, 0);
447 }
448 VOP_UNLOCK(vp);
449 fd_putfile(fd);
450
451 /* Store the result value */
452 a_job->aiocbp._retval = (error == 0) ? 0 : -1;
453
454 } else
455 panic("aio_process: invalid operation code\n");
456
457 done:
458 /* Job is done, set the error, if any */
459 a_job->aiocbp._errno = error;
460 a_job->aiocbp._state = JOB_DONE;
461 }
462
463 /*
464 * Send AIO signal.
465 */
466 static void
467 aio_sendsig(struct proc *p, struct sigevent *sig)
468 {
469 ksiginfo_t ksi;
470
471 if (sig->sigev_signo == 0 || sig->sigev_notify == SIGEV_NONE)
472 return;
473
474 KSI_INIT(&ksi);
475 ksi.ksi_signo = sig->sigev_signo;
476 ksi.ksi_code = SI_ASYNCIO;
477 ksi.ksi_value = sig->sigev_value;
478 mutex_enter(proc_lock);
479 kpsignal(p, &ksi, NULL);
480 mutex_exit(proc_lock);
481 }
482
483 /*
484 * Enqueue the job.
485 */
486 static int
487 aio_enqueue_job(int op, void *aiocb_uptr, struct lio_req *lio)
488 {
489 struct proc *p = curlwp->l_proc;
490 struct aioproc *aio;
491 struct aio_job *a_job;
492 struct aiocb aiocbp;
493 struct sigevent *sig;
494 int error;
495
496 /* Non-accurate check for the limit */
497 if (aio_jobs_count + 1 > aio_max)
498 return EAGAIN;
499
500 /* Get the data structure from user-space */
501 error = copyin(aiocb_uptr, &aiocbp, sizeof(struct aiocb));
502 if (error)
503 return error;
504
505 /* Check if signal is set, and validate it */
506 sig = &aiocbp.aio_sigevent;
507 if (sig->sigev_signo < 0 || sig->sigev_signo >= NSIG ||
508 sig->sigev_notify < SIGEV_NONE || sig->sigev_notify > SIGEV_SA)
509 return EINVAL;
510
511 /* Buffer and byte count */
512 if (((AIO_SYNC | AIO_DSYNC) & op) == 0)
513 if (aiocbp.aio_buf == NULL || aiocbp.aio_nbytes > SSIZE_MAX)
514 return EINVAL;
515
516 /* Check the opcode, if LIO_NOP - simply ignore */
517 if (op == AIO_LIO) {
518 KASSERT(lio != NULL);
519 if (aiocbp.aio_lio_opcode == LIO_WRITE)
520 op = AIO_WRITE;
521 else if (aiocbp.aio_lio_opcode == LIO_READ)
522 op = AIO_READ;
523 else
524 return (aiocbp.aio_lio_opcode == LIO_NOP) ? 0 : EINVAL;
525 } else {
526 KASSERT(lio == NULL);
527 }
528
529 /*
530 * Look for already existing job. If found - the job is in-progress.
531 * According to POSIX this is invalid, so return the error.
532 */
533 aio = p->p_aio;
534 if (aio) {
535 mutex_enter(&aio->aio_mtx);
536 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) {
537 if (a_job->aiocb_uptr != aiocb_uptr)
538 continue;
539 mutex_exit(&aio->aio_mtx);
540 return EINVAL;
541 }
542 mutex_exit(&aio->aio_mtx);
543 }
544
545 /*
546 * Check if AIO structure is initialized, if not - initialize it.
547 * In LIO case, we did that already. We will recheck this with
548 * the lock in aio_procinit().
549 */
550 if (lio == NULL && p->p_aio == NULL)
551 if (aio_procinit(p))
552 return EAGAIN;
553 aio = p->p_aio;
554
555 /*
556 * Set the state with errno, and copy data
557 * structure back to the user-space.
558 */
559 aiocbp._state = JOB_WIP;
560 aiocbp._errno = EINPROGRESS;
561 aiocbp._retval = -1;
562 error = copyout(&aiocbp, aiocb_uptr, sizeof(struct aiocb));
563 if (error)
564 return error;
565
566 /* Allocate and initialize a new AIO job */
567 a_job = pool_get(&aio_job_pool, PR_WAITOK | PR_ZERO);
568
569 /*
570 * Set the data.
571 * Store the user-space pointer for searching. Since we
572 * are storing only per proc pointers - it is safe.
573 */
574 memcpy(&a_job->aiocbp, &aiocbp, sizeof(struct aiocb));
575 a_job->aiocb_uptr = aiocb_uptr;
576 a_job->aio_op |= op;
577 a_job->lio = lio;
578
579 /*
580 * Add the job to the queue, update the counters, and
581 * notify the AIO worker thread to handle the job.
582 */
583 mutex_enter(&aio->aio_mtx);
584
585 /* Fail, if the limit was reached */
586 if (atomic_inc_uint_nv(&aio_jobs_count) > aio_max ||
587 aio->jobs_count >= aio_listio_max) {
588 atomic_dec_uint(&aio_jobs_count);
589 mutex_exit(&aio->aio_mtx);
590 pool_put(&aio_job_pool, a_job);
591 return EAGAIN;
592 }
593
594 TAILQ_INSERT_TAIL(&aio->jobs_queue, a_job, list);
595 aio->jobs_count++;
596 if (lio)
597 lio->refcnt++;
598 cv_signal(&aio->aio_worker_cv);
599
600 mutex_exit(&aio->aio_mtx);
601
602 /*
603 * One would handle the errors only with aio_error() function.
604 * This way is appropriate according to POSIX.
605 */
606 return 0;
607 }
608
609 /*
610 * Syscall functions.
611 */
612
613 int
614 sys_aio_cancel(struct lwp *l, const struct sys_aio_cancel_args *uap,
615 register_t *retval)
616 {
617 /* {
618 syscallarg(int) fildes;
619 syscallarg(struct aiocb *) aiocbp;
620 } */
621 struct proc *p = l->l_proc;
622 struct aioproc *aio;
623 struct aio_job *a_job;
624 struct aiocb *aiocbp_ptr;
625 struct lio_req *lio;
626 struct filedesc *fdp = p->p_fd;
627 unsigned int cn, errcnt, fildes;
628 fdtab_t *dt;
629
630 TAILQ_HEAD(, aio_job) tmp_jobs_list;
631
632 /* Check for invalid file descriptor */
633 fildes = (unsigned int)SCARG(uap, fildes);
634 dt = atomic_load_consume(&fdp->fd_dt);
635 if (fildes >= dt->dt_nfiles)
636 return EBADF;
637 if (dt->dt_ff[fildes] == NULL || dt->dt_ff[fildes]->ff_file == NULL)
638 return EBADF;
639
640 /* Check if AIO structure is initialized */
641 if (p->p_aio == NULL) {
642 *retval = AIO_NOTCANCELED;
643 return 0;
644 }
645
646 aio = p->p_aio;
647 aiocbp_ptr = (struct aiocb *)SCARG(uap, aiocbp);
648
649 mutex_enter(&aio->aio_mtx);
650
651 /* Cancel the jobs, and remove them from the queue */
652 cn = 0;
653 TAILQ_INIT(&tmp_jobs_list);
654 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) {
655 if (aiocbp_ptr) {
656 if (aiocbp_ptr != a_job->aiocb_uptr)
657 continue;
658 if (fildes != a_job->aiocbp.aio_fildes) {
659 mutex_exit(&aio->aio_mtx);
660 return EBADF;
661 }
662 } else if (a_job->aiocbp.aio_fildes != fildes)
663 continue;
664
665 TAILQ_REMOVE(&aio->jobs_queue, a_job, list);
666 TAILQ_INSERT_TAIL(&tmp_jobs_list, a_job, list);
667
668 /* Decrease the counters */
669 atomic_dec_uint(&aio_jobs_count);
670 aio->jobs_count--;
671 lio = a_job->lio;
672 if (lio != NULL && --lio->refcnt != 0)
673 a_job->lio = NULL;
674
675 cn++;
676 if (aiocbp_ptr)
677 break;
678 }
679
680 /* There are canceled jobs */
681 if (cn)
682 *retval = AIO_CANCELED;
683
684 /* We cannot cancel current job */
685 a_job = aio->curjob;
686 if (a_job && ((a_job->aiocbp.aio_fildes == fildes) ||
687 (a_job->aiocb_uptr == aiocbp_ptr)))
688 *retval = AIO_NOTCANCELED;
689
690 mutex_exit(&aio->aio_mtx);
691
692 /* Free the jobs after the lock */
693 errcnt = 0;
694 while (!TAILQ_EMPTY(&tmp_jobs_list)) {
695 a_job = TAILQ_FIRST(&tmp_jobs_list);
696 TAILQ_REMOVE(&tmp_jobs_list, a_job, list);
697 /* Set the errno and copy structures back to the user-space */
698 a_job->aiocbp._errno = ECANCELED;
699 a_job->aiocbp._state = JOB_DONE;
700 if (copyout(&a_job->aiocbp, a_job->aiocb_uptr,
701 sizeof(struct aiocb)))
702 errcnt++;
703 /* Send a signal if any */
704 aio_sendsig(p, &a_job->aiocbp.aio_sigevent);
705 if (a_job->lio) {
706 lio = a_job->lio;
707 aio_sendsig(p, &lio->sig);
708 pool_put(&aio_lio_pool, lio);
709 }
710 pool_put(&aio_job_pool, a_job);
711 }
712
713 if (errcnt)
714 return EFAULT;
715
716 /* Set a correct return value */
717 if (*retval == 0)
718 *retval = AIO_ALLDONE;
719
720 return 0;
721 }
722
723 int
724 sys_aio_error(struct lwp *l, const struct sys_aio_error_args *uap,
725 register_t *retval)
726 {
727 /* {
728 syscallarg(const struct aiocb *) aiocbp;
729 } */
730 struct proc *p = l->l_proc;
731 struct aioproc *aio = p->p_aio;
732 struct aiocb aiocbp;
733 int error;
734
735 if (aio == NULL)
736 return EINVAL;
737
738 error = copyin(SCARG(uap, aiocbp), &aiocbp, sizeof(struct aiocb));
739 if (error)
740 return error;
741
742 if (aiocbp._state == JOB_NONE)
743 return EINVAL;
744
745 *retval = aiocbp._errno;
746
747 return 0;
748 }
749
750 int
751 sys_aio_fsync(struct lwp *l, const struct sys_aio_fsync_args *uap,
752 register_t *retval)
753 {
754 /* {
755 syscallarg(int) op;
756 syscallarg(struct aiocb *) aiocbp;
757 } */
758 int op = SCARG(uap, op);
759
760 if ((op != O_DSYNC) && (op != O_SYNC))
761 return EINVAL;
762
763 op = O_DSYNC ? AIO_DSYNC : AIO_SYNC;
764
765 return aio_enqueue_job(op, SCARG(uap, aiocbp), NULL);
766 }
767
768 int
769 sys_aio_read(struct lwp *l, const struct sys_aio_read_args *uap,
770 register_t *retval)
771 {
772 /* {
773 syscallarg(struct aiocb *) aiocbp;
774 } */
775
776 return aio_enqueue_job(AIO_READ, SCARG(uap, aiocbp), NULL);
777 }
778
779 int
780 sys_aio_return(struct lwp *l, const struct sys_aio_return_args *uap,
781 register_t *retval)
782 {
783 /* {
784 syscallarg(struct aiocb *) aiocbp;
785 } */
786 struct proc *p = l->l_proc;
787 struct aioproc *aio = p->p_aio;
788 struct aiocb aiocbp;
789 int error;
790
791 if (aio == NULL)
792 return EINVAL;
793
794 error = copyin(SCARG(uap, aiocbp), &aiocbp, sizeof(struct aiocb));
795 if (error)
796 return error;
797
798 if (aiocbp._errno == EINPROGRESS || aiocbp._state != JOB_DONE)
799 return EINVAL;
800
801 *retval = aiocbp._retval;
802
803 /* Reset the internal variables */
804 aiocbp._errno = 0;
805 aiocbp._retval = -1;
806 aiocbp._state = JOB_NONE;
807 error = copyout(&aiocbp, SCARG(uap, aiocbp), sizeof(struct aiocb));
808
809 return error;
810 }
811
812 int
813 sys___aio_suspend50(struct lwp *l, const struct sys___aio_suspend50_args *uap,
814 register_t *retval)
815 {
816 /* {
817 syscallarg(const struct aiocb *const[]) list;
818 syscallarg(int) nent;
819 syscallarg(const struct timespec *) timeout;
820 } */
821 struct aiocb **list;
822 struct timespec ts;
823 int error, nent;
824
825 nent = SCARG(uap, nent);
826 if (nent <= 0 || nent > aio_listio_max)
827 return EAGAIN;
828
829 if (SCARG(uap, timeout)) {
830 /* Convert timespec to ticks */
831 error = copyin(SCARG(uap, timeout), &ts,
832 sizeof(struct timespec));
833 if (error)
834 return error;
835 }
836
837 list = kmem_alloc(nent * sizeof(*list), KM_SLEEP);
838 error = copyin(SCARG(uap, list), list, nent * sizeof(*list));
839 if (error)
840 goto out;
841 error = aio_suspend1(l, list, nent, SCARG(uap, timeout) ? &ts : NULL);
842 out:
843 kmem_free(list, nent * sizeof(*list));
844 return error;
845 }
846
847 int
848 aio_suspend1(struct lwp *l, struct aiocb **aiocbp_list, int nent,
849 struct timespec *ts)
850 {
851 struct proc *p = l->l_proc;
852 struct aioproc *aio;
853 struct aio_job *a_job;
854 int i, error, timo;
855
856 if (p->p_aio == NULL)
857 return EAGAIN;
858 aio = p->p_aio;
859
860 if (ts) {
861 timo = mstohz((ts->tv_sec * 1000) + (ts->tv_nsec / 1000000));
862 if (timo == 0 && ts->tv_sec == 0 && ts->tv_nsec > 0)
863 timo = 1;
864 if (timo <= 0)
865 return EAGAIN;
866 } else
867 timo = 0;
868
869 mutex_enter(&aio->aio_mtx);
870 for (;;) {
871 for (i = 0; i < nent; i++) {
872
873 /* Skip NULL entries */
874 if (aiocbp_list[i] == NULL)
875 continue;
876
877 /* Skip current job */
878 if (aio->curjob) {
879 a_job = aio->curjob;
880 if (a_job->aiocb_uptr == aiocbp_list[i])
881 continue;
882 }
883
884 /* Look for a job in the queue */
885 TAILQ_FOREACH(a_job, &aio->jobs_queue, list)
886 if (a_job->aiocb_uptr == aiocbp_list[i])
887 break;
888
889 if (a_job == NULL) {
890 struct aiocb aiocbp;
891
892 mutex_exit(&aio->aio_mtx);
893
894 /* Check if the job is done. */
895 error = copyin(aiocbp_list[i], &aiocbp,
896 sizeof(struct aiocb));
897 if (error == 0 && aiocbp._state != JOB_DONE) {
898 mutex_enter(&aio->aio_mtx);
899 continue;
900 }
901 return error;
902 }
903 }
904
905 /* Wait for a signal or when timeout occurs */
906 error = cv_timedwait_sig(&aio->done_cv, &aio->aio_mtx, timo);
907 if (error) {
908 if (error == EWOULDBLOCK)
909 error = EAGAIN;
910 break;
911 }
912 }
913 mutex_exit(&aio->aio_mtx);
914 return error;
915 }
916
917 int
918 sys_aio_write(struct lwp *l, const struct sys_aio_write_args *uap,
919 register_t *retval)
920 {
921 /* {
922 syscallarg(struct aiocb *) aiocbp;
923 } */
924
925 return aio_enqueue_job(AIO_WRITE, SCARG(uap, aiocbp), NULL);
926 }
927
928 int
929 sys_lio_listio(struct lwp *l, const struct sys_lio_listio_args *uap,
930 register_t *retval)
931 {
932 /* {
933 syscallarg(int) mode;
934 syscallarg(struct aiocb *const[]) list;
935 syscallarg(int) nent;
936 syscallarg(struct sigevent *) sig;
937 } */
938 struct proc *p = l->l_proc;
939 struct aioproc *aio;
940 struct aiocb **aiocbp_list;
941 struct lio_req *lio;
942 int i, error, errcnt, mode, nent;
943
944 mode = SCARG(uap, mode);
945 nent = SCARG(uap, nent);
946
947 /* Non-accurate checks for the limit and invalid values */
948 if (nent < 1 || nent > aio_listio_max)
949 return EINVAL;
950 if (aio_jobs_count + nent > aio_max)
951 return EAGAIN;
952
953 /* Check if AIO structure is initialized, if not - initialize it */
954 if (p->p_aio == NULL)
955 if (aio_procinit(p))
956 return EAGAIN;
957 aio = p->p_aio;
958
959 /* Create a LIO structure */
960 lio = pool_get(&aio_lio_pool, PR_WAITOK);
961 lio->refcnt = 1;
962 error = 0;
963
964 switch (mode) {
965 case LIO_WAIT:
966 memset(&lio->sig, 0, sizeof(struct sigevent));
967 break;
968 case LIO_NOWAIT:
969 /* Check for signal, validate it */
970 if (SCARG(uap, sig)) {
971 struct sigevent *sig = &lio->sig;
972
973 error = copyin(SCARG(uap, sig), &lio->sig,
974 sizeof(struct sigevent));
975 if (error == 0 &&
976 (sig->sigev_signo < 0 ||
977 sig->sigev_signo >= NSIG ||
978 sig->sigev_notify < SIGEV_NONE ||
979 sig->sigev_notify > SIGEV_SA))
980 error = EINVAL;
981 } else
982 memset(&lio->sig, 0, sizeof(struct sigevent));
983 break;
984 default:
985 error = EINVAL;
986 break;
987 }
988
989 if (error != 0) {
990 pool_put(&aio_lio_pool, lio);
991 return error;
992 }
993
994 /* Get the list from user-space */
995 aiocbp_list = kmem_alloc(nent * sizeof(*aiocbp_list), KM_SLEEP);
996 error = copyin(SCARG(uap, list), aiocbp_list,
997 nent * sizeof(*aiocbp_list));
998 if (error) {
999 mutex_enter(&aio->aio_mtx);
1000 goto err;
1001 }
1002
1003 /* Enqueue all jobs */
1004 errcnt = 0;
1005 for (i = 0; i < nent; i++) {
1006 error = aio_enqueue_job(AIO_LIO, aiocbp_list[i], lio);
1007 /*
1008 * According to POSIX, in such error case it may
1009 * fail with other I/O operations initiated.
1010 */
1011 if (error)
1012 errcnt++;
1013 }
1014
1015 mutex_enter(&aio->aio_mtx);
1016
1017 /* Return an error, if any */
1018 if (errcnt) {
1019 error = EIO;
1020 goto err;
1021 }
1022
1023 if (mode == LIO_WAIT) {
1024 /*
1025 * Wait for AIO completion. In such case,
1026 * the LIO structure will be freed here.
1027 */
1028 while (lio->refcnt > 1 && error == 0)
1029 error = cv_wait_sig(&aio->done_cv, &aio->aio_mtx);
1030 if (error)
1031 error = EINTR;
1032 }
1033
1034 err:
1035 if (--lio->refcnt != 0)
1036 lio = NULL;
1037 mutex_exit(&aio->aio_mtx);
1038 if (lio != NULL) {
1039 aio_sendsig(p, &lio->sig);
1040 pool_put(&aio_lio_pool, lio);
1041 }
1042 kmem_free(aiocbp_list, nent * sizeof(*aiocbp_list));
1043 return error;
1044 }
1045
1046 /*
1047 * SysCtl
1048 */
1049
1050 static int
1051 sysctl_aio_listio_max(SYSCTLFN_ARGS)
1052 {
1053 struct sysctlnode node;
1054 int error, newsize;
1055
1056 node = *rnode;
1057 node.sysctl_data = &newsize;
1058
1059 newsize = aio_listio_max;
1060 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1061 if (error || newp == NULL)
1062 return error;
1063
1064 if (newsize < 1 || newsize > aio_max)
1065 return EINVAL;
1066 aio_listio_max = newsize;
1067
1068 return 0;
1069 }
1070
1071 static int
1072 sysctl_aio_max(SYSCTLFN_ARGS)
1073 {
1074 struct sysctlnode node;
1075 int error, newsize;
1076
1077 node = *rnode;
1078 node.sysctl_data = &newsize;
1079
1080 newsize = aio_max;
1081 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1082 if (error || newp == NULL)
1083 return error;
1084
1085 if (newsize < 1 || newsize < aio_listio_max)
1086 return EINVAL;
1087 aio_max = newsize;
1088
1089 return 0;
1090 }
1091
1092 static int
1093 sysctl_aio_init(void)
1094 {
1095 int rv;
1096
1097 aio_sysctl = NULL;
1098
1099 rv = sysctl_createv(&aio_sysctl, 0, NULL, NULL,
1100 CTLFLAG_PERMANENT | CTLFLAG_IMMEDIATE,
1101 CTLTYPE_INT, "posix_aio",
1102 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
1103 "Asynchronous I/O option to which the "
1104 "system attempts to conform"),
1105 NULL, _POSIX_ASYNCHRONOUS_IO, NULL, 0,
1106 CTL_KERN, CTL_CREATE, CTL_EOL);
1107
1108 if (rv != 0)
1109 return rv;
1110
1111 rv = sysctl_createv(&aio_sysctl, 0, NULL, NULL,
1112 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1113 CTLTYPE_INT, "aio_listio_max",
1114 SYSCTL_DESCR("Maximum number of asynchronous I/O "
1115 "operations in a single list I/O call"),
1116 sysctl_aio_listio_max, 0, &aio_listio_max, 0,
1117 CTL_KERN, CTL_CREATE, CTL_EOL);
1118
1119 if (rv != 0)
1120 return rv;
1121
1122 rv = sysctl_createv(&aio_sysctl, 0, NULL, NULL,
1123 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1124 CTLTYPE_INT, "aio_max",
1125 SYSCTL_DESCR("Maximum number of asynchronous I/O "
1126 "operations"),
1127 sysctl_aio_max, 0, &aio_max, 0,
1128 CTL_KERN, CTL_CREATE, CTL_EOL);
1129
1130 return rv;
1131 }
1132
1133 /*
1134 * Debugging
1135 */
1136 #if defined(DDB)
1137 void
1138 aio_print_jobs(void (*pr)(const char *, ...))
1139 {
1140 struct proc *p = curlwp->l_proc;
1141 struct aioproc *aio;
1142 struct aio_job *a_job;
1143 struct aiocb *aiocbp;
1144
1145 if (p == NULL) {
1146 (*pr)("AIO: We are not in the processes right now.\n");
1147 return;
1148 }
1149
1150 aio = p->p_aio;
1151 if (aio == NULL) {
1152 (*pr)("AIO data is not initialized (PID = %d).\n", p->p_pid);
1153 return;
1154 }
1155
1156 (*pr)("AIO: PID = %d\n", p->p_pid);
1157 (*pr)("AIO: Global count of the jobs = %u\n", aio_jobs_count);
1158 (*pr)("AIO: Count of the jobs = %u\n", aio->jobs_count);
1159
1160 if (aio->curjob) {
1161 a_job = aio->curjob;
1162 (*pr)("\nAIO current job:\n");
1163 (*pr)(" opcode = %d, errno = %d, state = %d, aiocb_ptr = %p\n",
1164 a_job->aio_op, a_job->aiocbp._errno,
1165 a_job->aiocbp._state, a_job->aiocb_uptr);
1166 aiocbp = &a_job->aiocbp;
1167 (*pr)(" fd = %d, offset = %u, buf = %p, nbytes = %u\n",
1168 aiocbp->aio_fildes, aiocbp->aio_offset,
1169 aiocbp->aio_buf, aiocbp->aio_nbytes);
1170 }
1171
1172 (*pr)("\nAIO queue:\n");
1173 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) {
1174 (*pr)(" opcode = %d, errno = %d, state = %d, aiocb_ptr = %p\n",
1175 a_job->aio_op, a_job->aiocbp._errno,
1176 a_job->aiocbp._state, a_job->aiocb_uptr);
1177 aiocbp = &a_job->aiocbp;
1178 (*pr)(" fd = %d, offset = %u, buf = %p, nbytes = %u\n",
1179 aiocbp->aio_fildes, aiocbp->aio_offset,
1180 aiocbp->aio_buf, aiocbp->aio_nbytes);
1181 }
1182 }
1183 #endif /* defined(DDB) */
1184