sys_aio.c revision 1.46 1 /* $NetBSD: sys_aio.c,v 1.46 2020/02/01 02:23:04 riastradh Exp $ */
2
3 /*
4 * Copyright (c) 2007 Mindaugas Rasiukevicius <rmind at NetBSD org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * Implementation of POSIX asynchronous I/O.
31 * Defined in the Base Definitions volume of IEEE Std 1003.1-2001.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: sys_aio.c,v 1.46 2020/02/01 02:23:04 riastradh Exp $");
36
37 #ifdef _KERNEL_OPT
38 #include "opt_ddb.h"
39 #endif
40
41 #include <sys/param.h>
42 #include <sys/condvar.h>
43 #include <sys/file.h>
44 #include <sys/filedesc.h>
45 #include <sys/kernel.h>
46 #include <sys/kmem.h>
47 #include <sys/lwp.h>
48 #include <sys/mutex.h>
49 #include <sys/pool.h>
50 #include <sys/proc.h>
51 #include <sys/queue.h>
52 #include <sys/signal.h>
53 #include <sys/signalvar.h>
54 #include <sys/syscall.h>
55 #include <sys/syscallargs.h>
56 #include <sys/syscallvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/systm.h>
59 #include <sys/types.h>
60 #include <sys/vnode.h>
61 #include <sys/atomic.h>
62 #include <sys/module.h>
63 #include <sys/buf.h>
64
65 #include <uvm/uvm_extern.h>
66
67 MODULE(MODULE_CLASS_MISC, aio, NULL);
68
69 /*
70 * System-wide limits and counter of AIO operations.
71 */
72 u_int aio_listio_max = AIO_LISTIO_MAX;
73 static u_int aio_max = AIO_MAX;
74 static u_int aio_jobs_count;
75
76 static struct sysctllog *aio_sysctl;
77 static struct pool aio_job_pool;
78 static struct pool aio_lio_pool;
79 static void * aio_ehook;
80
81 static void aio_worker(void *);
82 static void aio_process(struct aio_job *);
83 static void aio_sendsig(struct proc *, struct sigevent *);
84 static int aio_enqueue_job(int, void *, struct lio_req *);
85 static void aio_exit(proc_t *, void *);
86
87 static int sysctl_aio_listio_max(SYSCTLFN_PROTO);
88 static int sysctl_aio_max(SYSCTLFN_PROTO);
89 static int sysctl_aio_init(void);
90
91 static const struct syscall_package aio_syscalls[] = {
92 { SYS_aio_cancel, 0, (sy_call_t *)sys_aio_cancel },
93 { SYS_aio_error, 0, (sy_call_t *)sys_aio_error },
94 { SYS_aio_fsync, 0, (sy_call_t *)sys_aio_fsync },
95 { SYS_aio_read, 0, (sy_call_t *)sys_aio_read },
96 { SYS_aio_return, 0, (sy_call_t *)sys_aio_return },
97 { SYS___aio_suspend50, 0, (sy_call_t *)sys___aio_suspend50 },
98 { SYS_aio_write, 0, (sy_call_t *)sys_aio_write },
99 { SYS_lio_listio, 0, (sy_call_t *)sys_lio_listio },
100 { 0, 0, NULL },
101 };
102
103 /*
104 * Tear down all AIO state.
105 */
106 static int
107 aio_fini(bool interface)
108 {
109 int error;
110 proc_t *p;
111
112 if (interface) {
113 /* Stop syscall activity. */
114 error = syscall_disestablish(NULL, aio_syscalls);
115 if (error != 0)
116 return error;
117 /* Abort if any processes are using AIO. */
118 mutex_enter(proc_lock);
119 PROCLIST_FOREACH(p, &allproc) {
120 if (p->p_aio != NULL)
121 break;
122 }
123 mutex_exit(proc_lock);
124 if (p != NULL) {
125 error = syscall_establish(NULL, aio_syscalls);
126 KASSERT(error == 0);
127 return EBUSY;
128 }
129 }
130 if (aio_sysctl != NULL)
131 sysctl_teardown(&aio_sysctl);
132
133 KASSERT(aio_jobs_count == 0);
134 exithook_disestablish(aio_ehook);
135 pool_destroy(&aio_job_pool);
136 pool_destroy(&aio_lio_pool);
137 return 0;
138 }
139
140 /*
141 * Initialize global AIO state.
142 */
143 static int
144 aio_init(void)
145 {
146 int error;
147
148 pool_init(&aio_job_pool, sizeof(struct aio_job), 0, 0, 0,
149 "aio_jobs_pool", &pool_allocator_nointr, IPL_NONE);
150 pool_init(&aio_lio_pool, sizeof(struct lio_req), 0, 0, 0,
151 "aio_lio_pool", &pool_allocator_nointr, IPL_NONE);
152 aio_ehook = exithook_establish(aio_exit, NULL);
153
154 error = sysctl_aio_init();
155 if (error != 0) {
156 (void)aio_fini(false);
157 return error;
158 }
159 error = syscall_establish(NULL, aio_syscalls);
160 if (error != 0)
161 (void)aio_fini(false);
162 return error;
163 }
164
165 /*
166 * Module interface.
167 */
168 static int
169 aio_modcmd(modcmd_t cmd, void *arg)
170 {
171
172 switch (cmd) {
173 case MODULE_CMD_INIT:
174 return aio_init();
175 case MODULE_CMD_FINI:
176 return aio_fini(true);
177 default:
178 return ENOTTY;
179 }
180 }
181
182 /*
183 * Initialize Asynchronous I/O data structures for the process.
184 */
185 static int
186 aio_procinit(struct proc *p)
187 {
188 struct aioproc *aio;
189 struct lwp *l;
190 int error;
191 vaddr_t uaddr;
192
193 /* Allocate and initialize AIO structure */
194 aio = kmem_zalloc(sizeof(struct aioproc), KM_SLEEP);
195
196 /* Initialize queue and their synchronization structures */
197 mutex_init(&aio->aio_mtx, MUTEX_DEFAULT, IPL_NONE);
198 cv_init(&aio->aio_worker_cv, "aiowork");
199 cv_init(&aio->done_cv, "aiodone");
200 TAILQ_INIT(&aio->jobs_queue);
201
202 /*
203 * Create an AIO worker thread.
204 * XXX: Currently, AIO thread is not protected against user's actions.
205 */
206 uaddr = uvm_uarea_alloc();
207 if (uaddr == 0) {
208 aio_exit(p, aio);
209 return EAGAIN;
210 }
211 error = lwp_create(curlwp, p, uaddr, 0, NULL, 0, aio_worker,
212 NULL, &l, curlwp->l_class, &curlwp->l_sigmask, &curlwp->l_sigstk);
213 if (error != 0) {
214 uvm_uarea_free(uaddr);
215 aio_exit(p, aio);
216 return error;
217 }
218
219 /* Recheck if we are really first */
220 mutex_enter(p->p_lock);
221 if (p->p_aio) {
222 mutex_exit(p->p_lock);
223 aio_exit(p, aio);
224 lwp_exit(l);
225 return 0;
226 }
227 p->p_aio = aio;
228
229 /* Complete the initialization of thread, and run it */
230 aio->aio_worker = l;
231 lwp_lock(l);
232 lwp_changepri(l, MAXPRI_USER);
233 setrunnable(l);
234 /* LWP now unlocked */
235 mutex_exit(p->p_lock);
236
237 return 0;
238 }
239
240 /*
241 * Exit of Asynchronous I/O subsystem of process.
242 */
243 static void
244 aio_exit(struct proc *p, void *cookie)
245 {
246 struct aio_job *a_job;
247 struct aioproc *aio;
248
249 if (cookie != NULL)
250 aio = cookie;
251 else if ((aio = p->p_aio) == NULL)
252 return;
253
254 /* Free AIO queue */
255 while (!TAILQ_EMPTY(&aio->jobs_queue)) {
256 a_job = TAILQ_FIRST(&aio->jobs_queue);
257 TAILQ_REMOVE(&aio->jobs_queue, a_job, list);
258 pool_put(&aio_job_pool, a_job);
259 atomic_dec_uint(&aio_jobs_count);
260 }
261
262 /* Destroy and free the entire AIO data structure */
263 cv_destroy(&aio->aio_worker_cv);
264 cv_destroy(&aio->done_cv);
265 mutex_destroy(&aio->aio_mtx);
266 kmem_free(aio, sizeof(struct aioproc));
267 }
268
269 /*
270 * AIO worker thread and processor.
271 */
272 static void
273 aio_worker(void *arg)
274 {
275 struct proc *p = curlwp->l_proc;
276 struct aioproc *aio = p->p_aio;
277 struct aio_job *a_job;
278 struct lio_req *lio;
279 sigset_t oss, nss;
280 int error __diagused, refcnt;
281
282 /*
283 * Make an empty signal mask, so it
284 * handles only SIGKILL and SIGSTOP.
285 */
286 sigfillset(&nss);
287 mutex_enter(p->p_lock);
288 error = sigprocmask1(curlwp, SIG_SETMASK, &nss, &oss);
289 mutex_exit(p->p_lock);
290 KASSERT(error == 0);
291
292 for (;;) {
293 /*
294 * Loop for each job in the queue. If there
295 * are no jobs then sleep.
296 */
297 mutex_enter(&aio->aio_mtx);
298 while ((a_job = TAILQ_FIRST(&aio->jobs_queue)) == NULL) {
299 if (cv_wait_sig(&aio->aio_worker_cv, &aio->aio_mtx)) {
300 /*
301 * Thread was interrupted - check for
302 * pending exit or suspend.
303 */
304 mutex_exit(&aio->aio_mtx);
305 lwp_userret(curlwp);
306 mutex_enter(&aio->aio_mtx);
307 }
308 }
309
310 /* Take the job from the queue */
311 aio->curjob = a_job;
312 TAILQ_REMOVE(&aio->jobs_queue, a_job, list);
313
314 atomic_dec_uint(&aio_jobs_count);
315 aio->jobs_count--;
316
317 mutex_exit(&aio->aio_mtx);
318
319 /* Process an AIO operation */
320 aio_process(a_job);
321
322 /* Copy data structure back to the user-space */
323 (void)copyout(&a_job->aiocbp, a_job->aiocb_uptr,
324 sizeof(struct aiocb));
325
326 mutex_enter(&aio->aio_mtx);
327 KASSERT(aio->curjob == a_job);
328 aio->curjob = NULL;
329
330 /* Decrease a reference counter, if there is a LIO structure */
331 lio = a_job->lio;
332 refcnt = (lio != NULL ? --lio->refcnt : -1);
333
334 /* Notify all suspenders */
335 cv_broadcast(&aio->done_cv);
336 mutex_exit(&aio->aio_mtx);
337
338 /* Send a signal, if any */
339 aio_sendsig(p, &a_job->aiocbp.aio_sigevent);
340
341 /* Destroy the LIO structure */
342 if (refcnt == 0) {
343 aio_sendsig(p, &lio->sig);
344 pool_put(&aio_lio_pool, lio);
345 }
346
347 /* Destroy the job */
348 pool_put(&aio_job_pool, a_job);
349 }
350
351 /* NOTREACHED */
352 }
353
354 static void
355 aio_process(struct aio_job *a_job)
356 {
357 struct proc *p = curlwp->l_proc;
358 struct aiocb *aiocbp = &a_job->aiocbp;
359 struct file *fp;
360 int fd = aiocbp->aio_fildes;
361 int error = 0;
362
363 KASSERT(a_job->aio_op != 0);
364
365 if ((a_job->aio_op & (AIO_READ | AIO_WRITE)) != 0) {
366 struct iovec aiov;
367 struct uio auio;
368
369 if (aiocbp->aio_nbytes > SSIZE_MAX) {
370 error = EINVAL;
371 goto done;
372 }
373
374 fp = fd_getfile(fd);
375 if (fp == NULL) {
376 error = EBADF;
377 goto done;
378 }
379
380 aiov.iov_base = (void *)(uintptr_t)aiocbp->aio_buf;
381 aiov.iov_len = aiocbp->aio_nbytes;
382 auio.uio_iov = &aiov;
383 auio.uio_iovcnt = 1;
384 auio.uio_resid = aiocbp->aio_nbytes;
385 auio.uio_vmspace = p->p_vmspace;
386
387 if (a_job->aio_op & AIO_READ) {
388 /*
389 * Perform a Read operation
390 */
391 KASSERT((a_job->aio_op & AIO_WRITE) == 0);
392
393 if ((fp->f_flag & FREAD) == 0) {
394 fd_putfile(fd);
395 error = EBADF;
396 goto done;
397 }
398 auio.uio_rw = UIO_READ;
399 error = (*fp->f_ops->fo_read)(fp, &aiocbp->aio_offset,
400 &auio, fp->f_cred, FOF_UPDATE_OFFSET);
401 } else {
402 /*
403 * Perform a Write operation
404 */
405 KASSERT(a_job->aio_op & AIO_WRITE);
406
407 if ((fp->f_flag & FWRITE) == 0) {
408 fd_putfile(fd);
409 error = EBADF;
410 goto done;
411 }
412 auio.uio_rw = UIO_WRITE;
413 error = (*fp->f_ops->fo_write)(fp, &aiocbp->aio_offset,
414 &auio, fp->f_cred, FOF_UPDATE_OFFSET);
415 }
416 fd_putfile(fd);
417
418 /* Store the result value */
419 a_job->aiocbp.aio_nbytes -= auio.uio_resid;
420 a_job->aiocbp._retval = (error == 0) ?
421 a_job->aiocbp.aio_nbytes : -1;
422
423 } else if ((a_job->aio_op & (AIO_SYNC | AIO_DSYNC)) != 0) {
424 /*
425 * Perform a file Sync operation
426 */
427 struct vnode *vp;
428
429 if ((error = fd_getvnode(fd, &fp)) != 0)
430 goto done;
431
432 if ((fp->f_flag & FWRITE) == 0) {
433 fd_putfile(fd);
434 error = EBADF;
435 goto done;
436 }
437
438 vp = fp->f_vnode;
439 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
440 if (a_job->aio_op & AIO_DSYNC) {
441 error = VOP_FSYNC(vp, fp->f_cred,
442 FSYNC_WAIT | FSYNC_DATAONLY, 0, 0);
443 } else if (a_job->aio_op & AIO_SYNC) {
444 error = VOP_FSYNC(vp, fp->f_cred,
445 FSYNC_WAIT, 0, 0);
446 }
447 VOP_UNLOCK(vp);
448 fd_putfile(fd);
449
450 /* Store the result value */
451 a_job->aiocbp._retval = (error == 0) ? 0 : -1;
452
453 } else
454 panic("aio_process: invalid operation code\n");
455
456 done:
457 /* Job is done, set the error, if any */
458 a_job->aiocbp._errno = error;
459 a_job->aiocbp._state = JOB_DONE;
460 }
461
462 /*
463 * Send AIO signal.
464 */
465 static void
466 aio_sendsig(struct proc *p, struct sigevent *sig)
467 {
468 ksiginfo_t ksi;
469
470 if (sig->sigev_signo == 0 || sig->sigev_notify == SIGEV_NONE)
471 return;
472
473 KSI_INIT(&ksi);
474 ksi.ksi_signo = sig->sigev_signo;
475 ksi.ksi_code = SI_ASYNCIO;
476 ksi.ksi_value = sig->sigev_value;
477 mutex_enter(proc_lock);
478 kpsignal(p, &ksi, NULL);
479 mutex_exit(proc_lock);
480 }
481
482 /*
483 * Enqueue the job.
484 */
485 static int
486 aio_enqueue_job(int op, void *aiocb_uptr, struct lio_req *lio)
487 {
488 struct proc *p = curlwp->l_proc;
489 struct aioproc *aio;
490 struct aio_job *a_job;
491 struct aiocb aiocbp;
492 struct sigevent *sig;
493 int error;
494
495 /* Non-accurate check for the limit */
496 if (aio_jobs_count + 1 > aio_max)
497 return EAGAIN;
498
499 /* Get the data structure from user-space */
500 error = copyin(aiocb_uptr, &aiocbp, sizeof(struct aiocb));
501 if (error)
502 return error;
503
504 /* Check if signal is set, and validate it */
505 sig = &aiocbp.aio_sigevent;
506 if (sig->sigev_signo < 0 || sig->sigev_signo >= NSIG ||
507 sig->sigev_notify < SIGEV_NONE || sig->sigev_notify > SIGEV_SA)
508 return EINVAL;
509
510 /* Buffer and byte count */
511 if (((AIO_SYNC | AIO_DSYNC) & op) == 0)
512 if (aiocbp.aio_buf == NULL || aiocbp.aio_nbytes > SSIZE_MAX)
513 return EINVAL;
514
515 /* Check the opcode, if LIO_NOP - simply ignore */
516 if (op == AIO_LIO) {
517 KASSERT(lio != NULL);
518 if (aiocbp.aio_lio_opcode == LIO_WRITE)
519 op = AIO_WRITE;
520 else if (aiocbp.aio_lio_opcode == LIO_READ)
521 op = AIO_READ;
522 else
523 return (aiocbp.aio_lio_opcode == LIO_NOP) ? 0 : EINVAL;
524 } else {
525 KASSERT(lio == NULL);
526 }
527
528 /*
529 * Look for already existing job. If found - the job is in-progress.
530 * According to POSIX this is invalid, so return the error.
531 */
532 aio = p->p_aio;
533 if (aio) {
534 mutex_enter(&aio->aio_mtx);
535 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) {
536 if (a_job->aiocb_uptr != aiocb_uptr)
537 continue;
538 mutex_exit(&aio->aio_mtx);
539 return EINVAL;
540 }
541 mutex_exit(&aio->aio_mtx);
542 }
543
544 /*
545 * Check if AIO structure is initialized, if not - initialize it.
546 * In LIO case, we did that already. We will recheck this with
547 * the lock in aio_procinit().
548 */
549 if (lio == NULL && p->p_aio == NULL)
550 if (aio_procinit(p))
551 return EAGAIN;
552 aio = p->p_aio;
553
554 /*
555 * Set the state with errno, and copy data
556 * structure back to the user-space.
557 */
558 aiocbp._state = JOB_WIP;
559 aiocbp._errno = EINPROGRESS;
560 aiocbp._retval = -1;
561 error = copyout(&aiocbp, aiocb_uptr, sizeof(struct aiocb));
562 if (error)
563 return error;
564
565 /* Allocate and initialize a new AIO job */
566 a_job = pool_get(&aio_job_pool, PR_WAITOK | PR_ZERO);
567
568 /*
569 * Set the data.
570 * Store the user-space pointer for searching. Since we
571 * are storing only per proc pointers - it is safe.
572 */
573 memcpy(&a_job->aiocbp, &aiocbp, sizeof(struct aiocb));
574 a_job->aiocb_uptr = aiocb_uptr;
575 a_job->aio_op |= op;
576 a_job->lio = lio;
577
578 /*
579 * Add the job to the queue, update the counters, and
580 * notify the AIO worker thread to handle the job.
581 */
582 mutex_enter(&aio->aio_mtx);
583
584 /* Fail, if the limit was reached */
585 if (atomic_inc_uint_nv(&aio_jobs_count) > aio_max ||
586 aio->jobs_count >= aio_listio_max) {
587 atomic_dec_uint(&aio_jobs_count);
588 mutex_exit(&aio->aio_mtx);
589 pool_put(&aio_job_pool, a_job);
590 return EAGAIN;
591 }
592
593 TAILQ_INSERT_TAIL(&aio->jobs_queue, a_job, list);
594 aio->jobs_count++;
595 if (lio)
596 lio->refcnt++;
597 cv_signal(&aio->aio_worker_cv);
598
599 mutex_exit(&aio->aio_mtx);
600
601 /*
602 * One would handle the errors only with aio_error() function.
603 * This way is appropriate according to POSIX.
604 */
605 return 0;
606 }
607
608 /*
609 * Syscall functions.
610 */
611
612 int
613 sys_aio_cancel(struct lwp *l, const struct sys_aio_cancel_args *uap,
614 register_t *retval)
615 {
616 /* {
617 syscallarg(int) fildes;
618 syscallarg(struct aiocb *) aiocbp;
619 } */
620 struct proc *p = l->l_proc;
621 struct aioproc *aio;
622 struct aio_job *a_job;
623 struct aiocb *aiocbp_ptr;
624 struct lio_req *lio;
625 struct filedesc *fdp = p->p_fd;
626 unsigned int cn, errcnt, fildes;
627 fdtab_t *dt;
628
629 TAILQ_HEAD(, aio_job) tmp_jobs_list;
630
631 /* Check for invalid file descriptor */
632 fildes = (unsigned int)SCARG(uap, fildes);
633 dt = atomic_load_consume(&fdp->fd_dt);
634 if (fildes >= dt->dt_nfiles)
635 return EBADF;
636 if (dt->dt_ff[fildes] == NULL || dt->dt_ff[fildes]->ff_file == NULL)
637 return EBADF;
638
639 /* Check if AIO structure is initialized */
640 if (p->p_aio == NULL) {
641 *retval = AIO_NOTCANCELED;
642 return 0;
643 }
644
645 aio = p->p_aio;
646 aiocbp_ptr = (struct aiocb *)SCARG(uap, aiocbp);
647
648 mutex_enter(&aio->aio_mtx);
649
650 /* Cancel the jobs, and remove them from the queue */
651 cn = 0;
652 TAILQ_INIT(&tmp_jobs_list);
653 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) {
654 if (aiocbp_ptr) {
655 if (aiocbp_ptr != a_job->aiocb_uptr)
656 continue;
657 if (fildes != a_job->aiocbp.aio_fildes) {
658 mutex_exit(&aio->aio_mtx);
659 return EBADF;
660 }
661 } else if (a_job->aiocbp.aio_fildes != fildes)
662 continue;
663
664 TAILQ_REMOVE(&aio->jobs_queue, a_job, list);
665 TAILQ_INSERT_TAIL(&tmp_jobs_list, a_job, list);
666
667 /* Decrease the counters */
668 atomic_dec_uint(&aio_jobs_count);
669 aio->jobs_count--;
670 lio = a_job->lio;
671 if (lio != NULL && --lio->refcnt != 0)
672 a_job->lio = NULL;
673
674 cn++;
675 if (aiocbp_ptr)
676 break;
677 }
678
679 /* There are canceled jobs */
680 if (cn)
681 *retval = AIO_CANCELED;
682
683 /* We cannot cancel current job */
684 a_job = aio->curjob;
685 if (a_job && ((a_job->aiocbp.aio_fildes == fildes) ||
686 (a_job->aiocb_uptr == aiocbp_ptr)))
687 *retval = AIO_NOTCANCELED;
688
689 mutex_exit(&aio->aio_mtx);
690
691 /* Free the jobs after the lock */
692 errcnt = 0;
693 while (!TAILQ_EMPTY(&tmp_jobs_list)) {
694 a_job = TAILQ_FIRST(&tmp_jobs_list);
695 TAILQ_REMOVE(&tmp_jobs_list, a_job, list);
696 /* Set the errno and copy structures back to the user-space */
697 a_job->aiocbp._errno = ECANCELED;
698 a_job->aiocbp._state = JOB_DONE;
699 if (copyout(&a_job->aiocbp, a_job->aiocb_uptr,
700 sizeof(struct aiocb)))
701 errcnt++;
702 /* Send a signal if any */
703 aio_sendsig(p, &a_job->aiocbp.aio_sigevent);
704 if (a_job->lio) {
705 lio = a_job->lio;
706 aio_sendsig(p, &lio->sig);
707 pool_put(&aio_lio_pool, lio);
708 }
709 pool_put(&aio_job_pool, a_job);
710 }
711
712 if (errcnt)
713 return EFAULT;
714
715 /* Set a correct return value */
716 if (*retval == 0)
717 *retval = AIO_ALLDONE;
718
719 return 0;
720 }
721
722 int
723 sys_aio_error(struct lwp *l, const struct sys_aio_error_args *uap,
724 register_t *retval)
725 {
726 /* {
727 syscallarg(const struct aiocb *) aiocbp;
728 } */
729 struct proc *p = l->l_proc;
730 struct aioproc *aio = p->p_aio;
731 struct aiocb aiocbp;
732 int error;
733
734 if (aio == NULL)
735 return EINVAL;
736
737 error = copyin(SCARG(uap, aiocbp), &aiocbp, sizeof(struct aiocb));
738 if (error)
739 return error;
740
741 if (aiocbp._state == JOB_NONE)
742 return EINVAL;
743
744 *retval = aiocbp._errno;
745
746 return 0;
747 }
748
749 int
750 sys_aio_fsync(struct lwp *l, const struct sys_aio_fsync_args *uap,
751 register_t *retval)
752 {
753 /* {
754 syscallarg(int) op;
755 syscallarg(struct aiocb *) aiocbp;
756 } */
757 int op = SCARG(uap, op);
758
759 if ((op != O_DSYNC) && (op != O_SYNC))
760 return EINVAL;
761
762 op = O_DSYNC ? AIO_DSYNC : AIO_SYNC;
763
764 return aio_enqueue_job(op, SCARG(uap, aiocbp), NULL);
765 }
766
767 int
768 sys_aio_read(struct lwp *l, const struct sys_aio_read_args *uap,
769 register_t *retval)
770 {
771 /* {
772 syscallarg(struct aiocb *) aiocbp;
773 } */
774
775 return aio_enqueue_job(AIO_READ, SCARG(uap, aiocbp), NULL);
776 }
777
778 int
779 sys_aio_return(struct lwp *l, const struct sys_aio_return_args *uap,
780 register_t *retval)
781 {
782 /* {
783 syscallarg(struct aiocb *) aiocbp;
784 } */
785 struct proc *p = l->l_proc;
786 struct aioproc *aio = p->p_aio;
787 struct aiocb aiocbp;
788 int error;
789
790 if (aio == NULL)
791 return EINVAL;
792
793 error = copyin(SCARG(uap, aiocbp), &aiocbp, sizeof(struct aiocb));
794 if (error)
795 return error;
796
797 if (aiocbp._errno == EINPROGRESS || aiocbp._state != JOB_DONE)
798 return EINVAL;
799
800 *retval = aiocbp._retval;
801
802 /* Reset the internal variables */
803 aiocbp._errno = 0;
804 aiocbp._retval = -1;
805 aiocbp._state = JOB_NONE;
806 error = copyout(&aiocbp, SCARG(uap, aiocbp), sizeof(struct aiocb));
807
808 return error;
809 }
810
811 int
812 sys___aio_suspend50(struct lwp *l, const struct sys___aio_suspend50_args *uap,
813 register_t *retval)
814 {
815 /* {
816 syscallarg(const struct aiocb *const[]) list;
817 syscallarg(int) nent;
818 syscallarg(const struct timespec *) timeout;
819 } */
820 struct aiocb **list;
821 struct timespec ts;
822 int error, nent;
823
824 nent = SCARG(uap, nent);
825 if (nent <= 0 || nent > aio_listio_max)
826 return EAGAIN;
827
828 if (SCARG(uap, timeout)) {
829 /* Convert timespec to ticks */
830 error = copyin(SCARG(uap, timeout), &ts,
831 sizeof(struct timespec));
832 if (error)
833 return error;
834 }
835
836 list = kmem_alloc(nent * sizeof(*list), KM_SLEEP);
837 error = copyin(SCARG(uap, list), list, nent * sizeof(*list));
838 if (error)
839 goto out;
840 error = aio_suspend1(l, list, nent, SCARG(uap, timeout) ? &ts : NULL);
841 out:
842 kmem_free(list, nent * sizeof(*list));
843 return error;
844 }
845
846 int
847 aio_suspend1(struct lwp *l, struct aiocb **aiocbp_list, int nent,
848 struct timespec *ts)
849 {
850 struct proc *p = l->l_proc;
851 struct aioproc *aio;
852 struct aio_job *a_job;
853 int i, error, timo;
854
855 if (p->p_aio == NULL)
856 return EAGAIN;
857 aio = p->p_aio;
858
859 if (ts) {
860 timo = mstohz((ts->tv_sec * 1000) + (ts->tv_nsec / 1000000));
861 if (timo == 0 && ts->tv_sec == 0 && ts->tv_nsec > 0)
862 timo = 1;
863 if (timo <= 0)
864 return EAGAIN;
865 } else
866 timo = 0;
867
868 mutex_enter(&aio->aio_mtx);
869 for (;;) {
870 for (i = 0; i < nent; i++) {
871
872 /* Skip NULL entries */
873 if (aiocbp_list[i] == NULL)
874 continue;
875
876 /* Skip current job */
877 if (aio->curjob) {
878 a_job = aio->curjob;
879 if (a_job->aiocb_uptr == aiocbp_list[i])
880 continue;
881 }
882
883 /* Look for a job in the queue */
884 TAILQ_FOREACH(a_job, &aio->jobs_queue, list)
885 if (a_job->aiocb_uptr == aiocbp_list[i])
886 break;
887
888 if (a_job == NULL) {
889 struct aiocb aiocbp;
890
891 mutex_exit(&aio->aio_mtx);
892
893 /* Check if the job is done. */
894 error = copyin(aiocbp_list[i], &aiocbp,
895 sizeof(struct aiocb));
896 if (error == 0 && aiocbp._state != JOB_DONE) {
897 mutex_enter(&aio->aio_mtx);
898 continue;
899 }
900 return error;
901 }
902 }
903
904 /* Wait for a signal or when timeout occurs */
905 error = cv_timedwait_sig(&aio->done_cv, &aio->aio_mtx, timo);
906 if (error) {
907 if (error == EWOULDBLOCK)
908 error = EAGAIN;
909 break;
910 }
911 }
912 mutex_exit(&aio->aio_mtx);
913 return error;
914 }
915
916 int
917 sys_aio_write(struct lwp *l, const struct sys_aio_write_args *uap,
918 register_t *retval)
919 {
920 /* {
921 syscallarg(struct aiocb *) aiocbp;
922 } */
923
924 return aio_enqueue_job(AIO_WRITE, SCARG(uap, aiocbp), NULL);
925 }
926
927 int
928 sys_lio_listio(struct lwp *l, const struct sys_lio_listio_args *uap,
929 register_t *retval)
930 {
931 /* {
932 syscallarg(int) mode;
933 syscallarg(struct aiocb *const[]) list;
934 syscallarg(int) nent;
935 syscallarg(struct sigevent *) sig;
936 } */
937 struct proc *p = l->l_proc;
938 struct aioproc *aio;
939 struct aiocb **aiocbp_list;
940 struct lio_req *lio;
941 int i, error, errcnt, mode, nent;
942
943 mode = SCARG(uap, mode);
944 nent = SCARG(uap, nent);
945
946 /* Non-accurate checks for the limit and invalid values */
947 if (nent < 1 || nent > aio_listio_max)
948 return EINVAL;
949 if (aio_jobs_count + nent > aio_max)
950 return EAGAIN;
951
952 /* Check if AIO structure is initialized, if not - initialize it */
953 if (p->p_aio == NULL)
954 if (aio_procinit(p))
955 return EAGAIN;
956 aio = p->p_aio;
957
958 /* Create a LIO structure */
959 lio = pool_get(&aio_lio_pool, PR_WAITOK);
960 lio->refcnt = 1;
961 error = 0;
962
963 switch (mode) {
964 case LIO_WAIT:
965 memset(&lio->sig, 0, sizeof(struct sigevent));
966 break;
967 case LIO_NOWAIT:
968 /* Check for signal, validate it */
969 if (SCARG(uap, sig)) {
970 struct sigevent *sig = &lio->sig;
971
972 error = copyin(SCARG(uap, sig), &lio->sig,
973 sizeof(struct sigevent));
974 if (error == 0 &&
975 (sig->sigev_signo < 0 ||
976 sig->sigev_signo >= NSIG ||
977 sig->sigev_notify < SIGEV_NONE ||
978 sig->sigev_notify > SIGEV_SA))
979 error = EINVAL;
980 } else
981 memset(&lio->sig, 0, sizeof(struct sigevent));
982 break;
983 default:
984 error = EINVAL;
985 break;
986 }
987
988 if (error != 0) {
989 pool_put(&aio_lio_pool, lio);
990 return error;
991 }
992
993 /* Get the list from user-space */
994 aiocbp_list = kmem_alloc(nent * sizeof(*aiocbp_list), KM_SLEEP);
995 error = copyin(SCARG(uap, list), aiocbp_list,
996 nent * sizeof(*aiocbp_list));
997 if (error) {
998 mutex_enter(&aio->aio_mtx);
999 goto err;
1000 }
1001
1002 /* Enqueue all jobs */
1003 errcnt = 0;
1004 for (i = 0; i < nent; i++) {
1005 error = aio_enqueue_job(AIO_LIO, aiocbp_list[i], lio);
1006 /*
1007 * According to POSIX, in such error case it may
1008 * fail with other I/O operations initiated.
1009 */
1010 if (error)
1011 errcnt++;
1012 }
1013
1014 mutex_enter(&aio->aio_mtx);
1015
1016 /* Return an error, if any */
1017 if (errcnt) {
1018 error = EIO;
1019 goto err;
1020 }
1021
1022 if (mode == LIO_WAIT) {
1023 /*
1024 * Wait for AIO completion. In such case,
1025 * the LIO structure will be freed here.
1026 */
1027 while (lio->refcnt > 1 && error == 0)
1028 error = cv_wait_sig(&aio->done_cv, &aio->aio_mtx);
1029 if (error)
1030 error = EINTR;
1031 }
1032
1033 err:
1034 if (--lio->refcnt != 0)
1035 lio = NULL;
1036 mutex_exit(&aio->aio_mtx);
1037 if (lio != NULL) {
1038 aio_sendsig(p, &lio->sig);
1039 pool_put(&aio_lio_pool, lio);
1040 }
1041 kmem_free(aiocbp_list, nent * sizeof(*aiocbp_list));
1042 return error;
1043 }
1044
1045 /*
1046 * SysCtl
1047 */
1048
1049 static int
1050 sysctl_aio_listio_max(SYSCTLFN_ARGS)
1051 {
1052 struct sysctlnode node;
1053 int error, newsize;
1054
1055 node = *rnode;
1056 node.sysctl_data = &newsize;
1057
1058 newsize = aio_listio_max;
1059 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1060 if (error || newp == NULL)
1061 return error;
1062
1063 if (newsize < 1 || newsize > aio_max)
1064 return EINVAL;
1065 aio_listio_max = newsize;
1066
1067 return 0;
1068 }
1069
1070 static int
1071 sysctl_aio_max(SYSCTLFN_ARGS)
1072 {
1073 struct sysctlnode node;
1074 int error, newsize;
1075
1076 node = *rnode;
1077 node.sysctl_data = &newsize;
1078
1079 newsize = aio_max;
1080 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1081 if (error || newp == NULL)
1082 return error;
1083
1084 if (newsize < 1 || newsize < aio_listio_max)
1085 return EINVAL;
1086 aio_max = newsize;
1087
1088 return 0;
1089 }
1090
1091 static int
1092 sysctl_aio_init(void)
1093 {
1094 int rv;
1095
1096 aio_sysctl = NULL;
1097
1098 rv = sysctl_createv(&aio_sysctl, 0, NULL, NULL,
1099 CTLFLAG_PERMANENT | CTLFLAG_IMMEDIATE,
1100 CTLTYPE_INT, "posix_aio",
1101 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
1102 "Asynchronous I/O option to which the "
1103 "system attempts to conform"),
1104 NULL, _POSIX_ASYNCHRONOUS_IO, NULL, 0,
1105 CTL_KERN, CTL_CREATE, CTL_EOL);
1106
1107 if (rv != 0)
1108 return rv;
1109
1110 rv = sysctl_createv(&aio_sysctl, 0, NULL, NULL,
1111 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1112 CTLTYPE_INT, "aio_listio_max",
1113 SYSCTL_DESCR("Maximum number of asynchronous I/O "
1114 "operations in a single list I/O call"),
1115 sysctl_aio_listio_max, 0, &aio_listio_max, 0,
1116 CTL_KERN, CTL_CREATE, CTL_EOL);
1117
1118 if (rv != 0)
1119 return rv;
1120
1121 rv = sysctl_createv(&aio_sysctl, 0, NULL, NULL,
1122 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1123 CTLTYPE_INT, "aio_max",
1124 SYSCTL_DESCR("Maximum number of asynchronous I/O "
1125 "operations"),
1126 sysctl_aio_max, 0, &aio_max, 0,
1127 CTL_KERN, CTL_CREATE, CTL_EOL);
1128
1129 return rv;
1130 }
1131
1132 /*
1133 * Debugging
1134 */
1135 #if defined(DDB)
1136 void
1137 aio_print_jobs(void (*pr)(const char *, ...))
1138 {
1139 struct proc *p = curlwp->l_proc;
1140 struct aioproc *aio;
1141 struct aio_job *a_job;
1142 struct aiocb *aiocbp;
1143
1144 if (p == NULL) {
1145 (*pr)("AIO: We are not in the processes right now.\n");
1146 return;
1147 }
1148
1149 aio = p->p_aio;
1150 if (aio == NULL) {
1151 (*pr)("AIO data is not initialized (PID = %d).\n", p->p_pid);
1152 return;
1153 }
1154
1155 (*pr)("AIO: PID = %d\n", p->p_pid);
1156 (*pr)("AIO: Global count of the jobs = %u\n", aio_jobs_count);
1157 (*pr)("AIO: Count of the jobs = %u\n", aio->jobs_count);
1158
1159 if (aio->curjob) {
1160 a_job = aio->curjob;
1161 (*pr)("\nAIO current job:\n");
1162 (*pr)(" opcode = %d, errno = %d, state = %d, aiocb_ptr = %p\n",
1163 a_job->aio_op, a_job->aiocbp._errno,
1164 a_job->aiocbp._state, a_job->aiocb_uptr);
1165 aiocbp = &a_job->aiocbp;
1166 (*pr)(" fd = %d, offset = %u, buf = %p, nbytes = %u\n",
1167 aiocbp->aio_fildes, aiocbp->aio_offset,
1168 aiocbp->aio_buf, aiocbp->aio_nbytes);
1169 }
1170
1171 (*pr)("\nAIO queue:\n");
1172 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) {
1173 (*pr)(" opcode = %d, errno = %d, state = %d, aiocb_ptr = %p\n",
1174 a_job->aio_op, a_job->aiocbp._errno,
1175 a_job->aiocbp._state, a_job->aiocb_uptr);
1176 aiocbp = &a_job->aiocbp;
1177 (*pr)(" fd = %d, offset = %u, buf = %p, nbytes = %u\n",
1178 aiocbp->aio_fildes, aiocbp->aio_offset,
1179 aiocbp->aio_buf, aiocbp->aio_nbytes);
1180 }
1181 }
1182 #endif /* defined(DDB) */
1183