sys_aio.c revision 1.49 1 /* $NetBSD: sys_aio.c,v 1.49 2024/12/07 02:38:35 riastradh Exp $ */
2
3 /*
4 * Copyright (c) 2007 Mindaugas Rasiukevicius <rmind at NetBSD org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * Implementation of POSIX asynchronous I/O.
31 * Defined in the Base Definitions volume of IEEE Std 1003.1-2001.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: sys_aio.c,v 1.49 2024/12/07 02:38:35 riastradh Exp $");
36
37 #ifdef _KERNEL_OPT
38 #include "opt_ddb.h"
39 #endif
40
41 #include <sys/param.h>
42 #include <sys/types.h>
43
44 #include <sys/atomic.h>
45 #include <sys/buf.h>
46 #include <sys/condvar.h>
47 #include <sys/file.h>
48 #include <sys/filedesc.h>
49 #include <sys/kernel.h>
50 #include <sys/kmem.h>
51 #include <sys/lwp.h>
52 #include <sys/module.h>
53 #include <sys/mutex.h>
54 #include <sys/pool.h>
55 #include <sys/proc.h>
56 #include <sys/queue.h>
57 #include <sys/signal.h>
58 #include <sys/signalvar.h>
59 #include <sys/syscall.h>
60 #include <sys/syscallargs.h>
61 #include <sys/syscallvar.h>
62 #include <sys/sysctl.h>
63 #include <sys/systm.h>
64 #include <sys/types.h>
65 #include <sys/vnode.h>
66
67 #include <uvm/uvm_extern.h>
68
69 MODULE(MODULE_CLASS_MISC, aio, NULL);
70
71 /*
72 * System-wide limits and counter of AIO operations.
73 */
74 u_int aio_listio_max = AIO_LISTIO_MAX;
75 static u_int aio_max = AIO_MAX;
76 static u_int aio_jobs_count;
77
78 static struct pool aio_job_pool;
79 static struct pool aio_lio_pool;
80 static void * aio_ehook;
81
82 static void aio_worker(void *);
83 static void aio_process(struct aio_job *);
84 static void aio_sendsig(struct proc *, struct sigevent *);
85 static int aio_enqueue_job(int, void *, struct lio_req *);
86 static void aio_exit(proc_t *, void *);
87
88 static int sysctl_aio_listio_max(SYSCTLFN_PROTO);
89 static int sysctl_aio_max(SYSCTLFN_PROTO);
90
91 static const struct syscall_package aio_syscalls[] = {
92 { SYS_aio_cancel, 0, (sy_call_t *)sys_aio_cancel },
93 { SYS_aio_error, 0, (sy_call_t *)sys_aio_error },
94 { SYS_aio_fsync, 0, (sy_call_t *)sys_aio_fsync },
95 { SYS_aio_read, 0, (sy_call_t *)sys_aio_read },
96 { SYS_aio_return, 0, (sy_call_t *)sys_aio_return },
97 { SYS___aio_suspend50, 0, (sy_call_t *)sys___aio_suspend50 },
98 { SYS_aio_write, 0, (sy_call_t *)sys_aio_write },
99 { SYS_lio_listio, 0, (sy_call_t *)sys_lio_listio },
100 { 0, 0, NULL },
101 };
102
103 /*
104 * Tear down all AIO state.
105 */
106 static int
107 aio_fini(bool interface)
108 {
109 int error;
110 proc_t *p;
111
112 if (interface) {
113 /* Stop syscall activity. */
114 error = syscall_disestablish(NULL, aio_syscalls);
115 if (error != 0)
116 return error;
117 /* Abort if any processes are using AIO. */
118 mutex_enter(&proc_lock);
119 PROCLIST_FOREACH(p, &allproc) {
120 if (p->p_aio != NULL)
121 break;
122 }
123 mutex_exit(&proc_lock);
124 if (p != NULL) {
125 error = syscall_establish(NULL, aio_syscalls);
126 KASSERT(error == 0);
127 return EBUSY;
128 }
129 }
130
131 KASSERT(aio_jobs_count == 0);
132 exithook_disestablish(aio_ehook);
133 pool_destroy(&aio_job_pool);
134 pool_destroy(&aio_lio_pool);
135 return 0;
136 }
137
138 /*
139 * Initialize global AIO state.
140 */
141 static int
142 aio_init(void)
143 {
144 int error;
145
146 pool_init(&aio_job_pool, sizeof(struct aio_job), 0, 0, 0,
147 "aio_jobs_pool", &pool_allocator_nointr, IPL_NONE);
148 pool_init(&aio_lio_pool, sizeof(struct lio_req), 0, 0, 0,
149 "aio_lio_pool", &pool_allocator_nointr, IPL_NONE);
150 aio_ehook = exithook_establish(aio_exit, NULL);
151
152 error = syscall_establish(NULL, aio_syscalls);
153 if (error != 0)
154 (void)aio_fini(false);
155 return error;
156 }
157
158 /*
159 * Module interface.
160 */
161 static int
162 aio_modcmd(modcmd_t cmd, void *arg)
163 {
164
165 switch (cmd) {
166 case MODULE_CMD_INIT:
167 return aio_init();
168 case MODULE_CMD_FINI:
169 return aio_fini(true);
170 default:
171 return ENOTTY;
172 }
173 }
174
175 /*
176 * Initialize Asynchronous I/O data structures for the process.
177 */
178 static int
179 aio_procinit(struct proc *p)
180 {
181 struct aioproc *aio;
182 struct lwp *l;
183 int error;
184 vaddr_t uaddr;
185
186 /* Allocate and initialize AIO structure */
187 aio = kmem_zalloc(sizeof(struct aioproc), KM_SLEEP);
188
189 /* Initialize queue and their synchronization structures */
190 mutex_init(&aio->aio_mtx, MUTEX_DEFAULT, IPL_NONE);
191 cv_init(&aio->aio_worker_cv, "aiowork");
192 cv_init(&aio->done_cv, "aiodone");
193 TAILQ_INIT(&aio->jobs_queue);
194
195 /*
196 * Create an AIO worker thread.
197 * XXX: Currently, AIO thread is not protected against user's actions.
198 */
199 uaddr = uvm_uarea_alloc();
200 if (uaddr == 0) {
201 aio_exit(p, aio);
202 return EAGAIN;
203 }
204 error = lwp_create(curlwp, p, uaddr, 0, NULL, 0, aio_worker,
205 NULL, &l, curlwp->l_class, &curlwp->l_sigmask, &curlwp->l_sigstk);
206 if (error != 0) {
207 uvm_uarea_free(uaddr);
208 aio_exit(p, aio);
209 return error;
210 }
211
212 /* Recheck if we are really first */
213 mutex_enter(p->p_lock);
214 if (p->p_aio) {
215 mutex_exit(p->p_lock);
216 aio_exit(p, aio);
217 lwp_exit(l);
218 return 0;
219 }
220 p->p_aio = aio;
221
222 /* Complete the initialization of thread, and run it */
223 aio->aio_worker = l;
224 lwp_lock(l);
225 lwp_changepri(l, MAXPRI_USER);
226 setrunnable(l);
227 /* LWP now unlocked */
228 mutex_exit(p->p_lock);
229
230 return 0;
231 }
232
233 /*
234 * Exit of Asynchronous I/O subsystem of process.
235 */
236 static void
237 aio_exit(struct proc *p, void *cookie)
238 {
239 struct aio_job *a_job;
240 struct aioproc *aio;
241
242 if (cookie != NULL)
243 aio = cookie;
244 else if ((aio = p->p_aio) == NULL)
245 return;
246
247 /* Free AIO queue */
248 while (!TAILQ_EMPTY(&aio->jobs_queue)) {
249 a_job = TAILQ_FIRST(&aio->jobs_queue);
250 TAILQ_REMOVE(&aio->jobs_queue, a_job, list);
251 pool_put(&aio_job_pool, a_job);
252 atomic_dec_uint(&aio_jobs_count);
253 }
254
255 /* Destroy and free the entire AIO data structure */
256 cv_destroy(&aio->aio_worker_cv);
257 cv_destroy(&aio->done_cv);
258 mutex_destroy(&aio->aio_mtx);
259 kmem_free(aio, sizeof(struct aioproc));
260 }
261
262 /*
263 * AIO worker thread and processor.
264 */
265 static void
266 aio_worker(void *arg)
267 {
268 struct proc *p = curlwp->l_proc;
269 struct aioproc *aio = p->p_aio;
270 struct aio_job *a_job;
271 struct lio_req *lio;
272 sigset_t oss, nss;
273 int error __diagused, refcnt;
274
275 /*
276 * Make an empty signal mask, so it
277 * handles only SIGKILL and SIGSTOP.
278 */
279 sigfillset(&nss);
280 mutex_enter(p->p_lock);
281 error = sigprocmask1(curlwp, SIG_SETMASK, &nss, &oss);
282 mutex_exit(p->p_lock);
283 KASSERT(error == 0);
284
285 for (;;) {
286 /*
287 * Loop for each job in the queue. If there
288 * are no jobs then sleep.
289 */
290 mutex_enter(&aio->aio_mtx);
291 while ((a_job = TAILQ_FIRST(&aio->jobs_queue)) == NULL) {
292 if (cv_wait_sig(&aio->aio_worker_cv, &aio->aio_mtx)) {
293 /*
294 * Thread was interrupted - check for
295 * pending exit or suspend.
296 */
297 mutex_exit(&aio->aio_mtx);
298 lwp_userret(curlwp);
299 mutex_enter(&aio->aio_mtx);
300 }
301 }
302
303 /* Take the job from the queue */
304 aio->curjob = a_job;
305 TAILQ_REMOVE(&aio->jobs_queue, a_job, list);
306
307 atomic_dec_uint(&aio_jobs_count);
308 aio->jobs_count--;
309
310 mutex_exit(&aio->aio_mtx);
311
312 /* Process an AIO operation */
313 aio_process(a_job);
314
315 /* Copy data structure back to the user-space */
316 (void)copyout(&a_job->aiocbp, a_job->aiocb_uptr,
317 sizeof(struct aiocb));
318
319 mutex_enter(&aio->aio_mtx);
320 KASSERT(aio->curjob == a_job);
321 aio->curjob = NULL;
322
323 /* Decrease a reference counter, if there is a LIO structure */
324 lio = a_job->lio;
325 refcnt = (lio != NULL ? --lio->refcnt : -1);
326
327 /* Notify all suspenders */
328 cv_broadcast(&aio->done_cv);
329 mutex_exit(&aio->aio_mtx);
330
331 /* Send a signal, if any */
332 aio_sendsig(p, &a_job->aiocbp.aio_sigevent);
333
334 /* Destroy the LIO structure */
335 if (refcnt == 0) {
336 aio_sendsig(p, &lio->sig);
337 pool_put(&aio_lio_pool, lio);
338 }
339
340 /* Destroy the job */
341 pool_put(&aio_job_pool, a_job);
342 }
343
344 /* NOTREACHED */
345 }
346
347 static void
348 aio_process(struct aio_job *a_job)
349 {
350 struct proc *p = curlwp->l_proc;
351 struct aiocb *aiocbp = &a_job->aiocbp;
352 struct file *fp;
353 int fd = aiocbp->aio_fildes;
354 int error = 0;
355
356 KASSERT(a_job->aio_op != 0);
357
358 if ((a_job->aio_op & (AIO_READ | AIO_WRITE)) != 0) {
359 struct iovec aiov;
360 struct uio auio;
361
362 if (aiocbp->aio_nbytes > SSIZE_MAX) {
363 error = EINVAL;
364 goto done;
365 }
366
367 fp = fd_getfile(fd);
368 if (fp == NULL) {
369 error = EBADF;
370 goto done;
371 }
372
373 aiov.iov_base = (void *)(uintptr_t)aiocbp->aio_buf;
374 aiov.iov_len = aiocbp->aio_nbytes;
375 auio.uio_iov = &aiov;
376 auio.uio_iovcnt = 1;
377 auio.uio_resid = aiocbp->aio_nbytes;
378 auio.uio_vmspace = p->p_vmspace;
379
380 if (a_job->aio_op & AIO_READ) {
381 /*
382 * Perform a Read operation
383 */
384 KASSERT((a_job->aio_op & AIO_WRITE) == 0);
385
386 if ((fp->f_flag & FREAD) == 0) {
387 fd_putfile(fd);
388 error = EBADF;
389 goto done;
390 }
391 auio.uio_rw = UIO_READ;
392 error = (*fp->f_ops->fo_read)(fp, &aiocbp->aio_offset,
393 &auio, fp->f_cred, FOF_UPDATE_OFFSET);
394 } else {
395 /*
396 * Perform a Write operation
397 */
398 KASSERT(a_job->aio_op & AIO_WRITE);
399
400 if ((fp->f_flag & FWRITE) == 0) {
401 fd_putfile(fd);
402 error = EBADF;
403 goto done;
404 }
405 auio.uio_rw = UIO_WRITE;
406 error = (*fp->f_ops->fo_write)(fp, &aiocbp->aio_offset,
407 &auio, fp->f_cred, FOF_UPDATE_OFFSET);
408 }
409 fd_putfile(fd);
410
411 /* Store the result value */
412 a_job->aiocbp.aio_nbytes -= auio.uio_resid;
413 a_job->aiocbp._retval = (error == 0) ?
414 a_job->aiocbp.aio_nbytes : -1;
415
416 } else if ((a_job->aio_op & (AIO_SYNC | AIO_DSYNC)) != 0) {
417 /*
418 * Perform a file Sync operation
419 */
420 struct vnode *vp;
421
422 if ((error = fd_getvnode(fd, &fp)) != 0)
423 goto done;
424
425 if ((fp->f_flag & FWRITE) == 0) {
426 fd_putfile(fd);
427 error = EBADF;
428 goto done;
429 }
430
431 vp = fp->f_vnode;
432 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
433 if (a_job->aio_op & AIO_DSYNC) {
434 error = VOP_FSYNC(vp, fp->f_cred,
435 FSYNC_WAIT | FSYNC_DATAONLY, 0, 0);
436 } else if (a_job->aio_op & AIO_SYNC) {
437 error = VOP_FSYNC(vp, fp->f_cred,
438 FSYNC_WAIT, 0, 0);
439 }
440 VOP_UNLOCK(vp);
441 fd_putfile(fd);
442
443 /* Store the result value */
444 a_job->aiocbp._retval = (error == 0) ? 0 : -1;
445
446 } else
447 panic("aio_process: invalid operation code\n");
448
449 done:
450 /* Job is done, set the error, if any */
451 a_job->aiocbp._errno = error;
452 a_job->aiocbp._state = JOB_DONE;
453 }
454
455 /*
456 * Send AIO signal.
457 */
458 static void
459 aio_sendsig(struct proc *p, struct sigevent *sig)
460 {
461 ksiginfo_t ksi;
462
463 if (sig->sigev_signo == 0 || sig->sigev_notify == SIGEV_NONE)
464 return;
465
466 KSI_INIT(&ksi);
467 ksi.ksi_signo = sig->sigev_signo;
468 ksi.ksi_code = SI_ASYNCIO;
469 ksi.ksi_value = sig->sigev_value;
470 mutex_enter(&proc_lock);
471 kpsignal(p, &ksi, NULL);
472 mutex_exit(&proc_lock);
473 }
474
475 /*
476 * Enqueue the job.
477 */
478 static int
479 aio_enqueue_job(int op, void *aiocb_uptr, struct lio_req *lio)
480 {
481 struct proc *p = curlwp->l_proc;
482 struct aioproc *aio;
483 struct aio_job *a_job;
484 struct aiocb aiocbp;
485 struct sigevent *sig;
486 int error;
487
488 /* Non-accurate check for the limit */
489 if (aio_jobs_count + 1 > aio_max)
490 return EAGAIN;
491
492 /* Get the data structure from user-space */
493 error = copyin(aiocb_uptr, &aiocbp, sizeof(struct aiocb));
494 if (error)
495 return error;
496
497 /* Check if signal is set, and validate it */
498 sig = &aiocbp.aio_sigevent;
499 if (sig->sigev_signo < 0 || sig->sigev_signo >= NSIG ||
500 sig->sigev_notify < SIGEV_NONE || sig->sigev_notify > SIGEV_SA)
501 return EINVAL;
502
503 /* Buffer and byte count */
504 if (((AIO_SYNC | AIO_DSYNC) & op) == 0)
505 if (aiocbp.aio_buf == NULL || aiocbp.aio_nbytes > SSIZE_MAX)
506 return EINVAL;
507
508 /* Check the opcode, if LIO_NOP - simply ignore */
509 if (op == AIO_LIO) {
510 KASSERT(lio != NULL);
511 if (aiocbp.aio_lio_opcode == LIO_WRITE)
512 op = AIO_WRITE;
513 else if (aiocbp.aio_lio_opcode == LIO_READ)
514 op = AIO_READ;
515 else
516 return (aiocbp.aio_lio_opcode == LIO_NOP) ? 0 : EINVAL;
517 } else {
518 KASSERT(lio == NULL);
519 }
520
521 /*
522 * Look for already existing job. If found - the job is in-progress.
523 * According to POSIX this is invalid, so return the error.
524 */
525 aio = p->p_aio;
526 if (aio) {
527 mutex_enter(&aio->aio_mtx);
528 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) {
529 if (a_job->aiocb_uptr != aiocb_uptr)
530 continue;
531 mutex_exit(&aio->aio_mtx);
532 return EINVAL;
533 }
534 mutex_exit(&aio->aio_mtx);
535 }
536
537 /*
538 * Check if AIO structure is initialized, if not - initialize it.
539 * In LIO case, we did that already. We will recheck this with
540 * the lock in aio_procinit().
541 */
542 if (lio == NULL && p->p_aio == NULL)
543 if (aio_procinit(p))
544 return EAGAIN;
545 aio = p->p_aio;
546
547 /*
548 * Set the state with errno, and copy data
549 * structure back to the user-space.
550 */
551 aiocbp._state = JOB_WIP;
552 aiocbp._errno = EINPROGRESS;
553 aiocbp._retval = -1;
554 error = copyout(&aiocbp, aiocb_uptr, sizeof(struct aiocb));
555 if (error)
556 return error;
557
558 /* Allocate and initialize a new AIO job */
559 a_job = pool_get(&aio_job_pool, PR_WAITOK | PR_ZERO);
560
561 /*
562 * Set the data.
563 * Store the user-space pointer for searching. Since we
564 * are storing only per proc pointers - it is safe.
565 */
566 memcpy(&a_job->aiocbp, &aiocbp, sizeof(struct aiocb));
567 a_job->aiocb_uptr = aiocb_uptr;
568 a_job->aio_op |= op;
569 a_job->lio = lio;
570
571 /*
572 * Add the job to the queue, update the counters, and
573 * notify the AIO worker thread to handle the job.
574 */
575 mutex_enter(&aio->aio_mtx);
576
577 /* Fail, if the limit was reached */
578 if (atomic_inc_uint_nv(&aio_jobs_count) > aio_max ||
579 aio->jobs_count >= aio_listio_max) {
580 atomic_dec_uint(&aio_jobs_count);
581 mutex_exit(&aio->aio_mtx);
582 pool_put(&aio_job_pool, a_job);
583 return EAGAIN;
584 }
585
586 TAILQ_INSERT_TAIL(&aio->jobs_queue, a_job, list);
587 aio->jobs_count++;
588 if (lio)
589 lio->refcnt++;
590 cv_signal(&aio->aio_worker_cv);
591
592 mutex_exit(&aio->aio_mtx);
593
594 /*
595 * One would handle the errors only with aio_error() function.
596 * This way is appropriate according to POSIX.
597 */
598 return 0;
599 }
600
601 /*
602 * Syscall functions.
603 */
604
605 int
606 sys_aio_cancel(struct lwp *l, const struct sys_aio_cancel_args *uap,
607 register_t *retval)
608 {
609 /* {
610 syscallarg(int) fildes;
611 syscallarg(struct aiocb *) aiocbp;
612 } */
613 struct proc *p = l->l_proc;
614 struct aioproc *aio;
615 struct aio_job *a_job;
616 struct aiocb *aiocbp_ptr;
617 struct lio_req *lio;
618 struct filedesc *fdp = p->p_fd;
619 unsigned int cn, errcnt, fildes;
620 fdtab_t *dt;
621
622 TAILQ_HEAD(, aio_job) tmp_jobs_list;
623
624 /* Check for invalid file descriptor */
625 fildes = (unsigned int)SCARG(uap, fildes);
626 dt = atomic_load_consume(&fdp->fd_dt);
627 if (fildes >= dt->dt_nfiles)
628 return EBADF;
629 if (dt->dt_ff[fildes] == NULL || dt->dt_ff[fildes]->ff_file == NULL)
630 return EBADF;
631
632 /* Check if AIO structure is initialized */
633 if (p->p_aio == NULL) {
634 *retval = AIO_NOTCANCELED;
635 return 0;
636 }
637
638 aio = p->p_aio;
639 aiocbp_ptr = (struct aiocb *)SCARG(uap, aiocbp);
640
641 mutex_enter(&aio->aio_mtx);
642
643 /* Cancel the jobs, and remove them from the queue */
644 cn = 0;
645 TAILQ_INIT(&tmp_jobs_list);
646 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) {
647 if (aiocbp_ptr) {
648 if (aiocbp_ptr != a_job->aiocb_uptr)
649 continue;
650 if (fildes != a_job->aiocbp.aio_fildes) {
651 mutex_exit(&aio->aio_mtx);
652 return EBADF;
653 }
654 } else if (a_job->aiocbp.aio_fildes != fildes)
655 continue;
656
657 TAILQ_REMOVE(&aio->jobs_queue, a_job, list);
658 TAILQ_INSERT_TAIL(&tmp_jobs_list, a_job, list);
659
660 /* Decrease the counters */
661 atomic_dec_uint(&aio_jobs_count);
662 aio->jobs_count--;
663 lio = a_job->lio;
664 if (lio != NULL && --lio->refcnt != 0)
665 a_job->lio = NULL;
666
667 cn++;
668 if (aiocbp_ptr)
669 break;
670 }
671
672 /* There are canceled jobs */
673 if (cn)
674 *retval = AIO_CANCELED;
675
676 /* We cannot cancel current job */
677 a_job = aio->curjob;
678 if (a_job && ((a_job->aiocbp.aio_fildes == fildes) ||
679 (a_job->aiocb_uptr == aiocbp_ptr)))
680 *retval = AIO_NOTCANCELED;
681
682 mutex_exit(&aio->aio_mtx);
683
684 /* Free the jobs after the lock */
685 errcnt = 0;
686 while (!TAILQ_EMPTY(&tmp_jobs_list)) {
687 a_job = TAILQ_FIRST(&tmp_jobs_list);
688 TAILQ_REMOVE(&tmp_jobs_list, a_job, list);
689 /* Set the errno and copy structures back to the user-space */
690 a_job->aiocbp._errno = ECANCELED;
691 a_job->aiocbp._state = JOB_DONE;
692 if (copyout(&a_job->aiocbp, a_job->aiocb_uptr,
693 sizeof(struct aiocb)))
694 errcnt++;
695 /* Send a signal if any */
696 aio_sendsig(p, &a_job->aiocbp.aio_sigevent);
697 if (a_job->lio) {
698 lio = a_job->lio;
699 aio_sendsig(p, &lio->sig);
700 pool_put(&aio_lio_pool, lio);
701 }
702 pool_put(&aio_job_pool, a_job);
703 }
704
705 if (errcnt)
706 return EFAULT;
707
708 /* Set a correct return value */
709 if (*retval == 0)
710 *retval = AIO_ALLDONE;
711
712 return 0;
713 }
714
715 int
716 sys_aio_error(struct lwp *l, const struct sys_aio_error_args *uap,
717 register_t *retval)
718 {
719 /* {
720 syscallarg(const struct aiocb *) aiocbp;
721 } */
722 struct proc *p = l->l_proc;
723 struct aioproc *aio = p->p_aio;
724 struct aiocb aiocbp;
725 int error;
726
727 if (aio == NULL)
728 return EINVAL;
729
730 error = copyin(SCARG(uap, aiocbp), &aiocbp, sizeof(struct aiocb));
731 if (error)
732 return error;
733
734 if (aiocbp._state == JOB_NONE)
735 return EINVAL;
736
737 *retval = aiocbp._errno;
738
739 return 0;
740 }
741
742 int
743 sys_aio_fsync(struct lwp *l, const struct sys_aio_fsync_args *uap,
744 register_t *retval)
745 {
746 /* {
747 syscallarg(int) op;
748 syscallarg(struct aiocb *) aiocbp;
749 } */
750 int op = SCARG(uap, op);
751
752 if ((op != O_DSYNC) && (op != O_SYNC))
753 return EINVAL;
754
755 op = O_DSYNC ? AIO_DSYNC : AIO_SYNC;
756
757 return aio_enqueue_job(op, SCARG(uap, aiocbp), NULL);
758 }
759
760 int
761 sys_aio_read(struct lwp *l, const struct sys_aio_read_args *uap,
762 register_t *retval)
763 {
764 /* {
765 syscallarg(struct aiocb *) aiocbp;
766 } */
767
768 return aio_enqueue_job(AIO_READ, SCARG(uap, aiocbp), NULL);
769 }
770
771 int
772 sys_aio_return(struct lwp *l, const struct sys_aio_return_args *uap,
773 register_t *retval)
774 {
775 /* {
776 syscallarg(struct aiocb *) aiocbp;
777 } */
778 struct proc *p = l->l_proc;
779 struct aioproc *aio = p->p_aio;
780 struct aiocb aiocbp;
781 int error;
782
783 if (aio == NULL)
784 return EINVAL;
785
786 error = copyin(SCARG(uap, aiocbp), &aiocbp, sizeof(struct aiocb));
787 if (error)
788 return error;
789
790 if (aiocbp._errno == EINPROGRESS || aiocbp._state != JOB_DONE)
791 return EINVAL;
792
793 *retval = aiocbp._retval;
794
795 /* Reset the internal variables */
796 aiocbp._errno = 0;
797 aiocbp._retval = -1;
798 aiocbp._state = JOB_NONE;
799 error = copyout(&aiocbp, SCARG(uap, aiocbp), sizeof(struct aiocb));
800
801 return error;
802 }
803
804 int
805 sys___aio_suspend50(struct lwp *l, const struct sys___aio_suspend50_args *uap,
806 register_t *retval)
807 {
808 /* {
809 syscallarg(const struct aiocb *const[]) list;
810 syscallarg(int) nent;
811 syscallarg(const struct timespec *) timeout;
812 } */
813 struct aiocb **list;
814 struct timespec ts;
815 int error, nent;
816
817 nent = SCARG(uap, nent);
818 if (nent <= 0 || nent > aio_listio_max)
819 return EAGAIN;
820
821 if (SCARG(uap, timeout)) {
822 /* Convert timespec to ticks */
823 error = copyin(SCARG(uap, timeout), &ts,
824 sizeof(struct timespec));
825 if (error)
826 return error;
827 }
828
829 list = kmem_alloc(nent * sizeof(*list), KM_SLEEP);
830 error = copyin(SCARG(uap, list), list, nent * sizeof(*list));
831 if (error)
832 goto out;
833 error = aio_suspend1(l, list, nent, SCARG(uap, timeout) ? &ts : NULL);
834 out:
835 kmem_free(list, nent * sizeof(*list));
836 return error;
837 }
838
839 int
840 aio_suspend1(struct lwp *l, struct aiocb **aiocbp_list, int nent,
841 struct timespec *ts)
842 {
843 struct proc *p = l->l_proc;
844 struct aioproc *aio;
845 struct aio_job *a_job;
846 int i, error, timo;
847
848 if (p->p_aio == NULL)
849 return EAGAIN;
850 aio = p->p_aio;
851
852 if (ts) {
853 timo = mstohz((ts->tv_sec * 1000) + (ts->tv_nsec / 1000000));
854 if (timo == 0 && ts->tv_sec == 0 && ts->tv_nsec > 0)
855 timo = 1;
856 if (timo <= 0)
857 return EAGAIN;
858 } else
859 timo = 0;
860
861 mutex_enter(&aio->aio_mtx);
862 for (;;) {
863 for (i = 0; i < nent; i++) {
864
865 /* Skip NULL entries */
866 if (aiocbp_list[i] == NULL)
867 continue;
868
869 /* Skip current job */
870 if (aio->curjob) {
871 a_job = aio->curjob;
872 if (a_job->aiocb_uptr == aiocbp_list[i])
873 continue;
874 }
875
876 /* Look for a job in the queue */
877 TAILQ_FOREACH(a_job, &aio->jobs_queue, list)
878 if (a_job->aiocb_uptr == aiocbp_list[i])
879 break;
880
881 if (a_job == NULL) {
882 struct aiocb aiocbp;
883
884 mutex_exit(&aio->aio_mtx);
885
886 /* Check if the job is done. */
887 error = copyin(aiocbp_list[i], &aiocbp,
888 sizeof(struct aiocb));
889 if (error == 0 && aiocbp._state != JOB_DONE) {
890 mutex_enter(&aio->aio_mtx);
891 continue;
892 }
893 return error;
894 }
895 }
896
897 /* Wait for a signal or when timeout occurs */
898 error = cv_timedwait_sig(&aio->done_cv, &aio->aio_mtx, timo);
899 if (error) {
900 if (error == EWOULDBLOCK)
901 error = EAGAIN;
902 break;
903 }
904 }
905 mutex_exit(&aio->aio_mtx);
906 return error;
907 }
908
909 int
910 sys_aio_write(struct lwp *l, const struct sys_aio_write_args *uap,
911 register_t *retval)
912 {
913 /* {
914 syscallarg(struct aiocb *) aiocbp;
915 } */
916
917 return aio_enqueue_job(AIO_WRITE, SCARG(uap, aiocbp), NULL);
918 }
919
920 int
921 sys_lio_listio(struct lwp *l, const struct sys_lio_listio_args *uap,
922 register_t *retval)
923 {
924 /* {
925 syscallarg(int) mode;
926 syscallarg(struct aiocb *const[]) list;
927 syscallarg(int) nent;
928 syscallarg(struct sigevent *) sig;
929 } */
930 struct proc *p = l->l_proc;
931 struct aioproc *aio;
932 struct aiocb **aiocbp_list;
933 struct lio_req *lio;
934 int i, error, errcnt, mode, nent;
935
936 mode = SCARG(uap, mode);
937 nent = SCARG(uap, nent);
938
939 /* Non-accurate checks for the limit and invalid values */
940 if (nent < 1 || nent > aio_listio_max)
941 return EINVAL;
942 if (aio_jobs_count + nent > aio_max)
943 return EAGAIN;
944
945 /* Check if AIO structure is initialized, if not - initialize it */
946 if (p->p_aio == NULL)
947 if (aio_procinit(p))
948 return EAGAIN;
949 aio = p->p_aio;
950
951 /* Create a LIO structure */
952 lio = pool_get(&aio_lio_pool, PR_WAITOK);
953 lio->refcnt = 1;
954 error = 0;
955
956 switch (mode) {
957 case LIO_WAIT:
958 memset(&lio->sig, 0, sizeof(struct sigevent));
959 break;
960 case LIO_NOWAIT:
961 /* Check for signal, validate it */
962 if (SCARG(uap, sig)) {
963 struct sigevent *sig = &lio->sig;
964
965 error = copyin(SCARG(uap, sig), &lio->sig,
966 sizeof(struct sigevent));
967 if (error == 0 &&
968 (sig->sigev_signo < 0 ||
969 sig->sigev_signo >= NSIG ||
970 sig->sigev_notify < SIGEV_NONE ||
971 sig->sigev_notify > SIGEV_SA))
972 error = EINVAL;
973 } else
974 memset(&lio->sig, 0, sizeof(struct sigevent));
975 break;
976 default:
977 error = EINVAL;
978 break;
979 }
980
981 if (error != 0) {
982 pool_put(&aio_lio_pool, lio);
983 return error;
984 }
985
986 /* Get the list from user-space */
987 aiocbp_list = kmem_alloc(nent * sizeof(*aiocbp_list), KM_SLEEP);
988 error = copyin(SCARG(uap, list), aiocbp_list,
989 nent * sizeof(*aiocbp_list));
990 if (error) {
991 mutex_enter(&aio->aio_mtx);
992 goto err;
993 }
994
995 /* Enqueue all jobs */
996 errcnt = 0;
997 for (i = 0; i < nent; i++) {
998 error = aio_enqueue_job(AIO_LIO, aiocbp_list[i], lio);
999 /*
1000 * According to POSIX, in such error case it may
1001 * fail with other I/O operations initiated.
1002 */
1003 if (error)
1004 errcnt++;
1005 }
1006
1007 mutex_enter(&aio->aio_mtx);
1008
1009 /* Return an error, if any */
1010 if (errcnt) {
1011 error = EIO;
1012 goto err;
1013 }
1014
1015 if (mode == LIO_WAIT) {
1016 /*
1017 * Wait for AIO completion. In such case,
1018 * the LIO structure will be freed here.
1019 */
1020 while (lio->refcnt > 1 && error == 0)
1021 error = cv_wait_sig(&aio->done_cv, &aio->aio_mtx);
1022 if (error)
1023 error = EINTR;
1024 }
1025
1026 err:
1027 if (--lio->refcnt != 0)
1028 lio = NULL;
1029 mutex_exit(&aio->aio_mtx);
1030 if (lio != NULL) {
1031 aio_sendsig(p, &lio->sig);
1032 pool_put(&aio_lio_pool, lio);
1033 }
1034 kmem_free(aiocbp_list, nent * sizeof(*aiocbp_list));
1035 return error;
1036 }
1037
1038 /*
1039 * SysCtl
1040 */
1041
1042 static int
1043 sysctl_aio_listio_max(SYSCTLFN_ARGS)
1044 {
1045 struct sysctlnode node;
1046 int error, newsize;
1047
1048 node = *rnode;
1049 node.sysctl_data = &newsize;
1050
1051 newsize = aio_listio_max;
1052 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1053 if (error || newp == NULL)
1054 return error;
1055
1056 if (newsize < 1 || newsize > aio_max)
1057 return EINVAL;
1058 aio_listio_max = newsize;
1059
1060 return 0;
1061 }
1062
1063 static int
1064 sysctl_aio_max(SYSCTLFN_ARGS)
1065 {
1066 struct sysctlnode node;
1067 int error, newsize;
1068
1069 node = *rnode;
1070 node.sysctl_data = &newsize;
1071
1072 newsize = aio_max;
1073 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1074 if (error || newp == NULL)
1075 return error;
1076
1077 if (newsize < 1 || newsize < aio_listio_max)
1078 return EINVAL;
1079 aio_max = newsize;
1080
1081 return 0;
1082 }
1083
1084 SYSCTL_SETUP(sysctl_aio_init, "aio sysctl")
1085 {
1086 int rv;
1087
1088 rv = sysctl_createv(clog, 0, NULL, NULL,
1089 CTLFLAG_PERMANENT | CTLFLAG_IMMEDIATE,
1090 CTLTYPE_INT, "posix_aio",
1091 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
1092 "Asynchronous I/O option to which the "
1093 "system attempts to conform"),
1094 NULL, _POSIX_ASYNCHRONOUS_IO, NULL, 0,
1095 CTL_KERN, CTL_CREATE, CTL_EOL);
1096
1097 if (rv != 0)
1098 return;
1099
1100 rv = sysctl_createv(clog, 0, NULL, NULL,
1101 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1102 CTLTYPE_INT, "aio_listio_max",
1103 SYSCTL_DESCR("Maximum number of asynchronous I/O "
1104 "operations in a single list I/O call"),
1105 sysctl_aio_listio_max, 0, &aio_listio_max, 0,
1106 CTL_KERN, CTL_CREATE, CTL_EOL);
1107
1108 if (rv != 0)
1109 return;
1110
1111 rv = sysctl_createv(clog, 0, NULL, NULL,
1112 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1113 CTLTYPE_INT, "aio_max",
1114 SYSCTL_DESCR("Maximum number of asynchronous I/O "
1115 "operations"),
1116 sysctl_aio_max, 0, &aio_max, 0,
1117 CTL_KERN, CTL_CREATE, CTL_EOL);
1118
1119 return;
1120 }
1121
1122 /*
1123 * Debugging
1124 */
1125 #if defined(DDB)
1126 void
1127 aio_print_jobs(void (*pr)(const char *, ...))
1128 {
1129 struct proc *p = curlwp->l_proc;
1130 struct aioproc *aio;
1131 struct aio_job *a_job;
1132 struct aiocb *aiocbp;
1133
1134 if (p == NULL) {
1135 (*pr)("AIO: We are not in the processes right now.\n");
1136 return;
1137 }
1138
1139 aio = p->p_aio;
1140 if (aio == NULL) {
1141 (*pr)("AIO data is not initialized (PID = %d).\n", p->p_pid);
1142 return;
1143 }
1144
1145 (*pr)("AIO: PID = %d\n", p->p_pid);
1146 (*pr)("AIO: Global count of the jobs = %u\n", aio_jobs_count);
1147 (*pr)("AIO: Count of the jobs = %u\n", aio->jobs_count);
1148
1149 if (aio->curjob) {
1150 a_job = aio->curjob;
1151 (*pr)("\nAIO current job:\n");
1152 (*pr)(" opcode = %d, errno = %d, state = %d, aiocb_ptr = %p\n",
1153 a_job->aio_op, a_job->aiocbp._errno,
1154 a_job->aiocbp._state, a_job->aiocb_uptr);
1155 aiocbp = &a_job->aiocbp;
1156 (*pr)(" fd = %d, offset = %u, buf = %p, nbytes = %u\n",
1157 aiocbp->aio_fildes, aiocbp->aio_offset,
1158 aiocbp->aio_buf, aiocbp->aio_nbytes);
1159 }
1160
1161 (*pr)("\nAIO queue:\n");
1162 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) {
1163 (*pr)(" opcode = %d, errno = %d, state = %d, aiocb_ptr = %p\n",
1164 a_job->aio_op, a_job->aiocbp._errno,
1165 a_job->aiocbp._state, a_job->aiocb_uptr);
1166 aiocbp = &a_job->aiocbp;
1167 (*pr)(" fd = %d, offset = %u, buf = %p, nbytes = %u\n",
1168 aiocbp->aio_fildes, aiocbp->aio_offset,
1169 aiocbp->aio_buf, aiocbp->aio_nbytes);
1170 }
1171 }
1172 #endif /* defined(DDB) */
1173