sys_aio.c revision 1.50 1 /* $NetBSD: sys_aio.c,v 1.50 2024/12/07 02:38:51 riastradh Exp $ */
2
3 /*
4 * Copyright (c) 2007 Mindaugas Rasiukevicius <rmind at NetBSD org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * Implementation of POSIX asynchronous I/O.
31 * Defined in the Base Definitions volume of IEEE Std 1003.1-2001.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: sys_aio.c,v 1.50 2024/12/07 02:38:51 riastradh Exp $");
36
37 #ifdef _KERNEL_OPT
38 #include "opt_ddb.h"
39 #endif
40
41 #include <sys/param.h>
42 #include <sys/types.h>
43
44 #include <sys/atomic.h>
45 #include <sys/buf.h>
46 #include <sys/condvar.h>
47 #include <sys/file.h>
48 #include <sys/filedesc.h>
49 #include <sys/kernel.h>
50 #include <sys/kmem.h>
51 #include <sys/lwp.h>
52 #include <sys/module.h>
53 #include <sys/mutex.h>
54 #include <sys/pool.h>
55 #include <sys/proc.h>
56 #include <sys/queue.h>
57 #include <sys/sdt.h>
58 #include <sys/signal.h>
59 #include <sys/signalvar.h>
60 #include <sys/syscall.h>
61 #include <sys/syscallargs.h>
62 #include <sys/syscallvar.h>
63 #include <sys/sysctl.h>
64 #include <sys/systm.h>
65 #include <sys/types.h>
66 #include <sys/vnode.h>
67
68 #include <uvm/uvm_extern.h>
69
70 MODULE(MODULE_CLASS_MISC, aio, NULL);
71
72 /*
73 * System-wide limits and counter of AIO operations.
74 */
75 u_int aio_listio_max = AIO_LISTIO_MAX;
76 static u_int aio_max = AIO_MAX;
77 static u_int aio_jobs_count;
78
79 static struct pool aio_job_pool;
80 static struct pool aio_lio_pool;
81 static void * aio_ehook;
82
83 static void aio_worker(void *);
84 static void aio_process(struct aio_job *);
85 static void aio_sendsig(struct proc *, struct sigevent *);
86 static int aio_enqueue_job(int, void *, struct lio_req *);
87 static void aio_exit(proc_t *, void *);
88
89 static int sysctl_aio_listio_max(SYSCTLFN_PROTO);
90 static int sysctl_aio_max(SYSCTLFN_PROTO);
91
92 static const struct syscall_package aio_syscalls[] = {
93 { SYS_aio_cancel, 0, (sy_call_t *)sys_aio_cancel },
94 { SYS_aio_error, 0, (sy_call_t *)sys_aio_error },
95 { SYS_aio_fsync, 0, (sy_call_t *)sys_aio_fsync },
96 { SYS_aio_read, 0, (sy_call_t *)sys_aio_read },
97 { SYS_aio_return, 0, (sy_call_t *)sys_aio_return },
98 { SYS___aio_suspend50, 0, (sy_call_t *)sys___aio_suspend50 },
99 { SYS_aio_write, 0, (sy_call_t *)sys_aio_write },
100 { SYS_lio_listio, 0, (sy_call_t *)sys_lio_listio },
101 { 0, 0, NULL },
102 };
103
104 /*
105 * Tear down all AIO state.
106 */
107 static int
108 aio_fini(bool interface)
109 {
110 int error;
111 proc_t *p;
112
113 if (interface) {
114 /* Stop syscall activity. */
115 error = syscall_disestablish(NULL, aio_syscalls);
116 if (error != 0)
117 return error;
118 /* Abort if any processes are using AIO. */
119 mutex_enter(&proc_lock);
120 PROCLIST_FOREACH(p, &allproc) {
121 if (p->p_aio != NULL)
122 break;
123 }
124 mutex_exit(&proc_lock);
125 if (p != NULL) {
126 error = syscall_establish(NULL, aio_syscalls);
127 KASSERT(error == 0);
128 return SET_ERROR(EBUSY);
129 }
130 }
131
132 KASSERT(aio_jobs_count == 0);
133 exithook_disestablish(aio_ehook);
134 pool_destroy(&aio_job_pool);
135 pool_destroy(&aio_lio_pool);
136 return 0;
137 }
138
139 /*
140 * Initialize global AIO state.
141 */
142 static int
143 aio_init(void)
144 {
145 int error;
146
147 pool_init(&aio_job_pool, sizeof(struct aio_job), 0, 0, 0,
148 "aio_jobs_pool", &pool_allocator_nointr, IPL_NONE);
149 pool_init(&aio_lio_pool, sizeof(struct lio_req), 0, 0, 0,
150 "aio_lio_pool", &pool_allocator_nointr, IPL_NONE);
151 aio_ehook = exithook_establish(aio_exit, NULL);
152
153 error = syscall_establish(NULL, aio_syscalls);
154 if (error != 0)
155 (void)aio_fini(false);
156 return error;
157 }
158
159 /*
160 * Module interface.
161 */
162 static int
163 aio_modcmd(modcmd_t cmd, void *arg)
164 {
165
166 switch (cmd) {
167 case MODULE_CMD_INIT:
168 return aio_init();
169 case MODULE_CMD_FINI:
170 return aio_fini(true);
171 default:
172 return SET_ERROR(ENOTTY);
173 }
174 }
175
176 /*
177 * Initialize Asynchronous I/O data structures for the process.
178 */
179 static int
180 aio_procinit(struct proc *p)
181 {
182 struct aioproc *aio;
183 struct lwp *l;
184 int error;
185 vaddr_t uaddr;
186
187 /* Allocate and initialize AIO structure */
188 aio = kmem_zalloc(sizeof(struct aioproc), KM_SLEEP);
189
190 /* Initialize queue and their synchronization structures */
191 mutex_init(&aio->aio_mtx, MUTEX_DEFAULT, IPL_NONE);
192 cv_init(&aio->aio_worker_cv, "aiowork");
193 cv_init(&aio->done_cv, "aiodone");
194 TAILQ_INIT(&aio->jobs_queue);
195
196 /*
197 * Create an AIO worker thread.
198 * XXX: Currently, AIO thread is not protected against user's actions.
199 */
200 uaddr = uvm_uarea_alloc();
201 if (uaddr == 0) {
202 aio_exit(p, aio);
203 return SET_ERROR(EAGAIN);
204 }
205 error = lwp_create(curlwp, p, uaddr, 0, NULL, 0, aio_worker,
206 NULL, &l, curlwp->l_class, &curlwp->l_sigmask, &curlwp->l_sigstk);
207 if (error != 0) {
208 uvm_uarea_free(uaddr);
209 aio_exit(p, aio);
210 return error;
211 }
212
213 /* Recheck if we are really first */
214 mutex_enter(p->p_lock);
215 if (p->p_aio) {
216 mutex_exit(p->p_lock);
217 aio_exit(p, aio);
218 lwp_exit(l);
219 return 0;
220 }
221 p->p_aio = aio;
222
223 /* Complete the initialization of thread, and run it */
224 aio->aio_worker = l;
225 lwp_lock(l);
226 lwp_changepri(l, MAXPRI_USER);
227 setrunnable(l);
228 /* LWP now unlocked */
229 mutex_exit(p->p_lock);
230
231 return 0;
232 }
233
234 /*
235 * Exit of Asynchronous I/O subsystem of process.
236 */
237 static void
238 aio_exit(struct proc *p, void *cookie)
239 {
240 struct aio_job *a_job;
241 struct aioproc *aio;
242
243 if (cookie != NULL)
244 aio = cookie;
245 else if ((aio = p->p_aio) == NULL)
246 return;
247
248 /* Free AIO queue */
249 while (!TAILQ_EMPTY(&aio->jobs_queue)) {
250 a_job = TAILQ_FIRST(&aio->jobs_queue);
251 TAILQ_REMOVE(&aio->jobs_queue, a_job, list);
252 pool_put(&aio_job_pool, a_job);
253 atomic_dec_uint(&aio_jobs_count);
254 }
255
256 /* Destroy and free the entire AIO data structure */
257 cv_destroy(&aio->aio_worker_cv);
258 cv_destroy(&aio->done_cv);
259 mutex_destroy(&aio->aio_mtx);
260 kmem_free(aio, sizeof(struct aioproc));
261 }
262
263 /*
264 * AIO worker thread and processor.
265 */
266 static void
267 aio_worker(void *arg)
268 {
269 struct proc *p = curlwp->l_proc;
270 struct aioproc *aio = p->p_aio;
271 struct aio_job *a_job;
272 struct lio_req *lio;
273 sigset_t oss, nss;
274 int error __diagused, refcnt;
275
276 /*
277 * Make an empty signal mask, so it
278 * handles only SIGKILL and SIGSTOP.
279 */
280 sigfillset(&nss);
281 mutex_enter(p->p_lock);
282 error = sigprocmask1(curlwp, SIG_SETMASK, &nss, &oss);
283 mutex_exit(p->p_lock);
284 KASSERT(error == 0);
285
286 for (;;) {
287 /*
288 * Loop for each job in the queue. If there
289 * are no jobs then sleep.
290 */
291 mutex_enter(&aio->aio_mtx);
292 while ((a_job = TAILQ_FIRST(&aio->jobs_queue)) == NULL) {
293 if (cv_wait_sig(&aio->aio_worker_cv, &aio->aio_mtx)) {
294 /*
295 * Thread was interrupted - check for
296 * pending exit or suspend.
297 */
298 mutex_exit(&aio->aio_mtx);
299 lwp_userret(curlwp);
300 mutex_enter(&aio->aio_mtx);
301 }
302 }
303
304 /* Take the job from the queue */
305 aio->curjob = a_job;
306 TAILQ_REMOVE(&aio->jobs_queue, a_job, list);
307
308 atomic_dec_uint(&aio_jobs_count);
309 aio->jobs_count--;
310
311 mutex_exit(&aio->aio_mtx);
312
313 /* Process an AIO operation */
314 aio_process(a_job);
315
316 /* Copy data structure back to the user-space */
317 (void)copyout(&a_job->aiocbp, a_job->aiocb_uptr,
318 sizeof(struct aiocb));
319
320 mutex_enter(&aio->aio_mtx);
321 KASSERT(aio->curjob == a_job);
322 aio->curjob = NULL;
323
324 /* Decrease a reference counter, if there is a LIO structure */
325 lio = a_job->lio;
326 refcnt = (lio != NULL ? --lio->refcnt : -1);
327
328 /* Notify all suspenders */
329 cv_broadcast(&aio->done_cv);
330 mutex_exit(&aio->aio_mtx);
331
332 /* Send a signal, if any */
333 aio_sendsig(p, &a_job->aiocbp.aio_sigevent);
334
335 /* Destroy the LIO structure */
336 if (refcnt == 0) {
337 aio_sendsig(p, &lio->sig);
338 pool_put(&aio_lio_pool, lio);
339 }
340
341 /* Destroy the job */
342 pool_put(&aio_job_pool, a_job);
343 }
344
345 /* NOTREACHED */
346 }
347
348 static void
349 aio_process(struct aio_job *a_job)
350 {
351 struct proc *p = curlwp->l_proc;
352 struct aiocb *aiocbp = &a_job->aiocbp;
353 struct file *fp;
354 int fd = aiocbp->aio_fildes;
355 int error = 0;
356
357 KASSERT(a_job->aio_op != 0);
358
359 if ((a_job->aio_op & (AIO_READ | AIO_WRITE)) != 0) {
360 struct iovec aiov;
361 struct uio auio;
362
363 if (aiocbp->aio_nbytes > SSIZE_MAX) {
364 error = SET_ERROR(EINVAL);
365 goto done;
366 }
367
368 fp = fd_getfile(fd);
369 if (fp == NULL) {
370 error = SET_ERROR(EBADF);
371 goto done;
372 }
373
374 aiov.iov_base = (void *)(uintptr_t)aiocbp->aio_buf;
375 aiov.iov_len = aiocbp->aio_nbytes;
376 auio.uio_iov = &aiov;
377 auio.uio_iovcnt = 1;
378 auio.uio_resid = aiocbp->aio_nbytes;
379 auio.uio_vmspace = p->p_vmspace;
380
381 if (a_job->aio_op & AIO_READ) {
382 /*
383 * Perform a Read operation
384 */
385 KASSERT((a_job->aio_op & AIO_WRITE) == 0);
386
387 if ((fp->f_flag & FREAD) == 0) {
388 fd_putfile(fd);
389 error = SET_ERROR(EBADF);
390 goto done;
391 }
392 auio.uio_rw = UIO_READ;
393 error = (*fp->f_ops->fo_read)(fp, &aiocbp->aio_offset,
394 &auio, fp->f_cred, FOF_UPDATE_OFFSET);
395 } else {
396 /*
397 * Perform a Write operation
398 */
399 KASSERT(a_job->aio_op & AIO_WRITE);
400
401 if ((fp->f_flag & FWRITE) == 0) {
402 fd_putfile(fd);
403 error = SET_ERROR(EBADF);
404 goto done;
405 }
406 auio.uio_rw = UIO_WRITE;
407 error = (*fp->f_ops->fo_write)(fp, &aiocbp->aio_offset,
408 &auio, fp->f_cred, FOF_UPDATE_OFFSET);
409 }
410 fd_putfile(fd);
411
412 /* Store the result value */
413 a_job->aiocbp.aio_nbytes -= auio.uio_resid;
414 a_job->aiocbp._retval = (error == 0) ?
415 a_job->aiocbp.aio_nbytes : -1;
416
417 } else if ((a_job->aio_op & (AIO_SYNC | AIO_DSYNC)) != 0) {
418 /*
419 * Perform a file Sync operation
420 */
421 struct vnode *vp;
422
423 if ((error = fd_getvnode(fd, &fp)) != 0)
424 goto done;
425
426 if ((fp->f_flag & FWRITE) == 0) {
427 fd_putfile(fd);
428 error = SET_ERROR(EBADF);
429 goto done;
430 }
431
432 vp = fp->f_vnode;
433 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
434 if (a_job->aio_op & AIO_DSYNC) {
435 error = VOP_FSYNC(vp, fp->f_cred,
436 FSYNC_WAIT | FSYNC_DATAONLY, 0, 0);
437 } else if (a_job->aio_op & AIO_SYNC) {
438 error = VOP_FSYNC(vp, fp->f_cred,
439 FSYNC_WAIT, 0, 0);
440 }
441 VOP_UNLOCK(vp);
442 fd_putfile(fd);
443
444 /* Store the result value */
445 a_job->aiocbp._retval = (error == 0) ? 0 : -1;
446
447 } else
448 panic("aio_process: invalid operation code\n");
449
450 done:
451 /* Job is done, set the error, if any */
452 a_job->aiocbp._errno = error;
453 a_job->aiocbp._state = JOB_DONE;
454 }
455
456 /*
457 * Send AIO signal.
458 */
459 static void
460 aio_sendsig(struct proc *p, struct sigevent *sig)
461 {
462 ksiginfo_t ksi;
463
464 if (sig->sigev_signo == 0 || sig->sigev_notify == SIGEV_NONE)
465 return;
466
467 KSI_INIT(&ksi);
468 ksi.ksi_signo = sig->sigev_signo;
469 ksi.ksi_code = SI_ASYNCIO;
470 ksi.ksi_value = sig->sigev_value;
471 mutex_enter(&proc_lock);
472 kpsignal(p, &ksi, NULL);
473 mutex_exit(&proc_lock);
474 }
475
476 /*
477 * Enqueue the job.
478 */
479 static int
480 aio_enqueue_job(int op, void *aiocb_uptr, struct lio_req *lio)
481 {
482 struct proc *p = curlwp->l_proc;
483 struct aioproc *aio;
484 struct aio_job *a_job;
485 struct aiocb aiocbp;
486 struct sigevent *sig;
487 int error;
488
489 /* Non-accurate check for the limit */
490 if (aio_jobs_count + 1 > aio_max)
491 return SET_ERROR(EAGAIN);
492
493 /* Get the data structure from user-space */
494 error = copyin(aiocb_uptr, &aiocbp, sizeof(struct aiocb));
495 if (error)
496 return error;
497
498 /* Check if signal is set, and validate it */
499 sig = &aiocbp.aio_sigevent;
500 if (sig->sigev_signo < 0 || sig->sigev_signo >= NSIG ||
501 sig->sigev_notify < SIGEV_NONE || sig->sigev_notify > SIGEV_SA)
502 return SET_ERROR(EINVAL);
503
504 /* Buffer and byte count */
505 if (((AIO_SYNC | AIO_DSYNC) & op) == 0)
506 if (aiocbp.aio_buf == NULL || aiocbp.aio_nbytes > SSIZE_MAX)
507 return SET_ERROR(EINVAL);
508
509 /* Check the opcode, if LIO_NOP - simply ignore */
510 if (op == AIO_LIO) {
511 KASSERT(lio != NULL);
512 if (aiocbp.aio_lio_opcode == LIO_WRITE)
513 op = AIO_WRITE;
514 else if (aiocbp.aio_lio_opcode == LIO_READ)
515 op = AIO_READ;
516 else
517 return (aiocbp.aio_lio_opcode == LIO_NOP) ? 0 :
518 SET_ERROR(EINVAL);
519 } else {
520 KASSERT(lio == NULL);
521 }
522
523 /*
524 * Look for already existing job. If found - the job is in-progress.
525 * According to POSIX this is invalid, so return the error.
526 */
527 aio = p->p_aio;
528 if (aio) {
529 mutex_enter(&aio->aio_mtx);
530 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) {
531 if (a_job->aiocb_uptr != aiocb_uptr)
532 continue;
533 mutex_exit(&aio->aio_mtx);
534 return SET_ERROR(EINVAL);
535 }
536 mutex_exit(&aio->aio_mtx);
537 }
538
539 /*
540 * Check if AIO structure is initialized, if not - initialize it.
541 * In LIO case, we did that already. We will recheck this with
542 * the lock in aio_procinit().
543 */
544 if (lio == NULL && p->p_aio == NULL)
545 if (aio_procinit(p))
546 return SET_ERROR(EAGAIN);
547 aio = p->p_aio;
548
549 /*
550 * Set the state with errno, and copy data
551 * structure back to the user-space.
552 */
553 aiocbp._state = JOB_WIP;
554 aiocbp._errno = SET_ERROR(EINPROGRESS);
555 aiocbp._retval = -1;
556 error = copyout(&aiocbp, aiocb_uptr, sizeof(struct aiocb));
557 if (error)
558 return error;
559
560 /* Allocate and initialize a new AIO job */
561 a_job = pool_get(&aio_job_pool, PR_WAITOK | PR_ZERO);
562
563 /*
564 * Set the data.
565 * Store the user-space pointer for searching. Since we
566 * are storing only per proc pointers - it is safe.
567 */
568 memcpy(&a_job->aiocbp, &aiocbp, sizeof(struct aiocb));
569 a_job->aiocb_uptr = aiocb_uptr;
570 a_job->aio_op |= op;
571 a_job->lio = lio;
572
573 /*
574 * Add the job to the queue, update the counters, and
575 * notify the AIO worker thread to handle the job.
576 */
577 mutex_enter(&aio->aio_mtx);
578
579 /* Fail, if the limit was reached */
580 if (atomic_inc_uint_nv(&aio_jobs_count) > aio_max ||
581 aio->jobs_count >= aio_listio_max) {
582 atomic_dec_uint(&aio_jobs_count);
583 mutex_exit(&aio->aio_mtx);
584 pool_put(&aio_job_pool, a_job);
585 return SET_ERROR(EAGAIN);
586 }
587
588 TAILQ_INSERT_TAIL(&aio->jobs_queue, a_job, list);
589 aio->jobs_count++;
590 if (lio)
591 lio->refcnt++;
592 cv_signal(&aio->aio_worker_cv);
593
594 mutex_exit(&aio->aio_mtx);
595
596 /*
597 * One would handle the errors only with aio_error() function.
598 * This way is appropriate according to POSIX.
599 */
600 return 0;
601 }
602
603 /*
604 * Syscall functions.
605 */
606
607 int
608 sys_aio_cancel(struct lwp *l, const struct sys_aio_cancel_args *uap,
609 register_t *retval)
610 {
611 /* {
612 syscallarg(int) fildes;
613 syscallarg(struct aiocb *) aiocbp;
614 } */
615 struct proc *p = l->l_proc;
616 struct aioproc *aio;
617 struct aio_job *a_job;
618 struct aiocb *aiocbp_ptr;
619 struct lio_req *lio;
620 struct filedesc *fdp = p->p_fd;
621 unsigned int cn, errcnt, fildes;
622 fdtab_t *dt;
623
624 TAILQ_HEAD(, aio_job) tmp_jobs_list;
625
626 /* Check for invalid file descriptor */
627 fildes = (unsigned int)SCARG(uap, fildes);
628 dt = atomic_load_consume(&fdp->fd_dt);
629 if (fildes >= dt->dt_nfiles)
630 return SET_ERROR(EBADF);
631 if (dt->dt_ff[fildes] == NULL || dt->dt_ff[fildes]->ff_file == NULL)
632 return SET_ERROR(EBADF);
633
634 /* Check if AIO structure is initialized */
635 if (p->p_aio == NULL) {
636 *retval = AIO_NOTCANCELED;
637 return 0;
638 }
639
640 aio = p->p_aio;
641 aiocbp_ptr = (struct aiocb *)SCARG(uap, aiocbp);
642
643 mutex_enter(&aio->aio_mtx);
644
645 /* Cancel the jobs, and remove them from the queue */
646 cn = 0;
647 TAILQ_INIT(&tmp_jobs_list);
648 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) {
649 if (aiocbp_ptr) {
650 if (aiocbp_ptr != a_job->aiocb_uptr)
651 continue;
652 if (fildes != a_job->aiocbp.aio_fildes) {
653 mutex_exit(&aio->aio_mtx);
654 return SET_ERROR(EBADF);
655 }
656 } else if (a_job->aiocbp.aio_fildes != fildes)
657 continue;
658
659 TAILQ_REMOVE(&aio->jobs_queue, a_job, list);
660 TAILQ_INSERT_TAIL(&tmp_jobs_list, a_job, list);
661
662 /* Decrease the counters */
663 atomic_dec_uint(&aio_jobs_count);
664 aio->jobs_count--;
665 lio = a_job->lio;
666 if (lio != NULL && --lio->refcnt != 0)
667 a_job->lio = NULL;
668
669 cn++;
670 if (aiocbp_ptr)
671 break;
672 }
673
674 /* There are canceled jobs */
675 if (cn)
676 *retval = AIO_CANCELED;
677
678 /* We cannot cancel current job */
679 a_job = aio->curjob;
680 if (a_job && ((a_job->aiocbp.aio_fildes == fildes) ||
681 (a_job->aiocb_uptr == aiocbp_ptr)))
682 *retval = AIO_NOTCANCELED;
683
684 mutex_exit(&aio->aio_mtx);
685
686 /* Free the jobs after the lock */
687 errcnt = 0;
688 while (!TAILQ_EMPTY(&tmp_jobs_list)) {
689 a_job = TAILQ_FIRST(&tmp_jobs_list);
690 TAILQ_REMOVE(&tmp_jobs_list, a_job, list);
691 /* Set the errno and copy structures back to the user-space */
692 a_job->aiocbp._errno = SET_ERROR(ECANCELED);
693 a_job->aiocbp._state = JOB_DONE;
694 if (copyout(&a_job->aiocbp, a_job->aiocb_uptr,
695 sizeof(struct aiocb)))
696 errcnt++;
697 /* Send a signal if any */
698 aio_sendsig(p, &a_job->aiocbp.aio_sigevent);
699 if (a_job->lio) {
700 lio = a_job->lio;
701 aio_sendsig(p, &lio->sig);
702 pool_put(&aio_lio_pool, lio);
703 }
704 pool_put(&aio_job_pool, a_job);
705 }
706
707 if (errcnt)
708 return SET_ERROR(EFAULT);
709
710 /* Set a correct return value */
711 if (*retval == 0)
712 *retval = AIO_ALLDONE;
713
714 return 0;
715 }
716
717 int
718 sys_aio_error(struct lwp *l, const struct sys_aio_error_args *uap,
719 register_t *retval)
720 {
721 /* {
722 syscallarg(const struct aiocb *) aiocbp;
723 } */
724 struct proc *p = l->l_proc;
725 struct aioproc *aio = p->p_aio;
726 struct aiocb aiocbp;
727 int error;
728
729 if (aio == NULL)
730 return SET_ERROR(EINVAL);
731
732 error = copyin(SCARG(uap, aiocbp), &aiocbp, sizeof(struct aiocb));
733 if (error)
734 return error;
735
736 if (aiocbp._state == JOB_NONE)
737 return SET_ERROR(EINVAL);
738
739 *retval = aiocbp._errno;
740
741 return 0;
742 }
743
744 int
745 sys_aio_fsync(struct lwp *l, const struct sys_aio_fsync_args *uap,
746 register_t *retval)
747 {
748 /* {
749 syscallarg(int) op;
750 syscallarg(struct aiocb *) aiocbp;
751 } */
752 int op = SCARG(uap, op);
753
754 if ((op != O_DSYNC) && (op != O_SYNC))
755 return SET_ERROR(EINVAL);
756
757 op = O_DSYNC ? AIO_DSYNC : AIO_SYNC;
758
759 return aio_enqueue_job(op, SCARG(uap, aiocbp), NULL);
760 }
761
762 int
763 sys_aio_read(struct lwp *l, const struct sys_aio_read_args *uap,
764 register_t *retval)
765 {
766 /* {
767 syscallarg(struct aiocb *) aiocbp;
768 } */
769
770 return aio_enqueue_job(AIO_READ, SCARG(uap, aiocbp), NULL);
771 }
772
773 int
774 sys_aio_return(struct lwp *l, const struct sys_aio_return_args *uap,
775 register_t *retval)
776 {
777 /* {
778 syscallarg(struct aiocb *) aiocbp;
779 } */
780 struct proc *p = l->l_proc;
781 struct aioproc *aio = p->p_aio;
782 struct aiocb aiocbp;
783 int error;
784
785 if (aio == NULL)
786 return SET_ERROR(EINVAL);
787
788 error = copyin(SCARG(uap, aiocbp), &aiocbp, sizeof(struct aiocb));
789 if (error)
790 return error;
791
792 if (aiocbp._errno == EINPROGRESS || aiocbp._state != JOB_DONE)
793 return SET_ERROR(EINVAL);
794
795 *retval = aiocbp._retval;
796
797 /* Reset the internal variables */
798 aiocbp._errno = 0;
799 aiocbp._retval = -1;
800 aiocbp._state = JOB_NONE;
801 error = copyout(&aiocbp, SCARG(uap, aiocbp), sizeof(struct aiocb));
802
803 return error;
804 }
805
806 int
807 sys___aio_suspend50(struct lwp *l, const struct sys___aio_suspend50_args *uap,
808 register_t *retval)
809 {
810 /* {
811 syscallarg(const struct aiocb *const[]) list;
812 syscallarg(int) nent;
813 syscallarg(const struct timespec *) timeout;
814 } */
815 struct aiocb **list;
816 struct timespec ts;
817 int error, nent;
818
819 nent = SCARG(uap, nent);
820 if (nent <= 0 || nent > aio_listio_max)
821 return SET_ERROR(EAGAIN);
822
823 if (SCARG(uap, timeout)) {
824 /* Convert timespec to ticks */
825 error = copyin(SCARG(uap, timeout), &ts,
826 sizeof(struct timespec));
827 if (error)
828 return error;
829 }
830
831 list = kmem_alloc(nent * sizeof(*list), KM_SLEEP);
832 error = copyin(SCARG(uap, list), list, nent * sizeof(*list));
833 if (error)
834 goto out;
835 error = aio_suspend1(l, list, nent, SCARG(uap, timeout) ? &ts : NULL);
836 out:
837 kmem_free(list, nent * sizeof(*list));
838 return error;
839 }
840
841 int
842 aio_suspend1(struct lwp *l, struct aiocb **aiocbp_list, int nent,
843 struct timespec *ts)
844 {
845 struct proc *p = l->l_proc;
846 struct aioproc *aio;
847 struct aio_job *a_job;
848 int i, error, timo;
849
850 if (p->p_aio == NULL)
851 return SET_ERROR(EAGAIN);
852 aio = p->p_aio;
853
854 if (ts) {
855 timo = mstohz((ts->tv_sec * 1000) + (ts->tv_nsec / 1000000));
856 if (timo == 0 && ts->tv_sec == 0 && ts->tv_nsec > 0)
857 timo = 1;
858 if (timo <= 0)
859 return SET_ERROR(EAGAIN);
860 } else
861 timo = 0;
862
863 mutex_enter(&aio->aio_mtx);
864 for (;;) {
865 for (i = 0; i < nent; i++) {
866
867 /* Skip NULL entries */
868 if (aiocbp_list[i] == NULL)
869 continue;
870
871 /* Skip current job */
872 if (aio->curjob) {
873 a_job = aio->curjob;
874 if (a_job->aiocb_uptr == aiocbp_list[i])
875 continue;
876 }
877
878 /* Look for a job in the queue */
879 TAILQ_FOREACH(a_job, &aio->jobs_queue, list)
880 if (a_job->aiocb_uptr == aiocbp_list[i])
881 break;
882
883 if (a_job == NULL) {
884 struct aiocb aiocbp;
885
886 mutex_exit(&aio->aio_mtx);
887
888 /* Check if the job is done. */
889 error = copyin(aiocbp_list[i], &aiocbp,
890 sizeof(struct aiocb));
891 if (error == 0 && aiocbp._state != JOB_DONE) {
892 mutex_enter(&aio->aio_mtx);
893 continue;
894 }
895 return error;
896 }
897 }
898
899 /* Wait for a signal or when timeout occurs */
900 error = cv_timedwait_sig(&aio->done_cv, &aio->aio_mtx, timo);
901 if (error) {
902 if (error == EWOULDBLOCK)
903 error = SET_ERROR(EAGAIN);
904 break;
905 }
906 }
907 mutex_exit(&aio->aio_mtx);
908 return error;
909 }
910
911 int
912 sys_aio_write(struct lwp *l, const struct sys_aio_write_args *uap,
913 register_t *retval)
914 {
915 /* {
916 syscallarg(struct aiocb *) aiocbp;
917 } */
918
919 return aio_enqueue_job(AIO_WRITE, SCARG(uap, aiocbp), NULL);
920 }
921
922 int
923 sys_lio_listio(struct lwp *l, const struct sys_lio_listio_args *uap,
924 register_t *retval)
925 {
926 /* {
927 syscallarg(int) mode;
928 syscallarg(struct aiocb *const[]) list;
929 syscallarg(int) nent;
930 syscallarg(struct sigevent *) sig;
931 } */
932 struct proc *p = l->l_proc;
933 struct aioproc *aio;
934 struct aiocb **aiocbp_list;
935 struct lio_req *lio;
936 int i, error, errcnt, mode, nent;
937
938 mode = SCARG(uap, mode);
939 nent = SCARG(uap, nent);
940
941 /* Non-accurate checks for the limit and invalid values */
942 if (nent < 1 || nent > aio_listio_max)
943 return SET_ERROR(EINVAL);
944 if (aio_jobs_count + nent > aio_max)
945 return SET_ERROR(EAGAIN);
946
947 /* Check if AIO structure is initialized, if not - initialize it */
948 if (p->p_aio == NULL)
949 if (aio_procinit(p))
950 return SET_ERROR(EAGAIN);
951 aio = p->p_aio;
952
953 /* Create a LIO structure */
954 lio = pool_get(&aio_lio_pool, PR_WAITOK);
955 lio->refcnt = 1;
956 error = 0;
957
958 switch (mode) {
959 case LIO_WAIT:
960 memset(&lio->sig, 0, sizeof(struct sigevent));
961 break;
962 case LIO_NOWAIT:
963 /* Check for signal, validate it */
964 if (SCARG(uap, sig)) {
965 struct sigevent *sig = &lio->sig;
966
967 error = copyin(SCARG(uap, sig), &lio->sig,
968 sizeof(struct sigevent));
969 if (error == 0 &&
970 (sig->sigev_signo < 0 ||
971 sig->sigev_signo >= NSIG ||
972 sig->sigev_notify < SIGEV_NONE ||
973 sig->sigev_notify > SIGEV_SA))
974 error = SET_ERROR(EINVAL);
975 } else
976 memset(&lio->sig, 0, sizeof(struct sigevent));
977 break;
978 default:
979 error = SET_ERROR(EINVAL);
980 break;
981 }
982
983 if (error != 0) {
984 pool_put(&aio_lio_pool, lio);
985 return error;
986 }
987
988 /* Get the list from user-space */
989 aiocbp_list = kmem_alloc(nent * sizeof(*aiocbp_list), KM_SLEEP);
990 error = copyin(SCARG(uap, list), aiocbp_list,
991 nent * sizeof(*aiocbp_list));
992 if (error) {
993 mutex_enter(&aio->aio_mtx);
994 goto err;
995 }
996
997 /* Enqueue all jobs */
998 errcnt = 0;
999 for (i = 0; i < nent; i++) {
1000 error = aio_enqueue_job(AIO_LIO, aiocbp_list[i], lio);
1001 /*
1002 * According to POSIX, in such error case it may
1003 * fail with other I/O operations initiated.
1004 */
1005 if (error)
1006 errcnt++;
1007 }
1008
1009 mutex_enter(&aio->aio_mtx);
1010
1011 /* Return an error, if any */
1012 if (errcnt) {
1013 error = SET_ERROR(EIO);
1014 goto err;
1015 }
1016
1017 if (mode == LIO_WAIT) {
1018 /*
1019 * Wait for AIO completion. In such case,
1020 * the LIO structure will be freed here.
1021 */
1022 while (lio->refcnt > 1 && error == 0)
1023 error = cv_wait_sig(&aio->done_cv, &aio->aio_mtx);
1024 if (error)
1025 error = SET_ERROR(EINTR);
1026 }
1027
1028 err:
1029 if (--lio->refcnt != 0)
1030 lio = NULL;
1031 mutex_exit(&aio->aio_mtx);
1032 if (lio != NULL) {
1033 aio_sendsig(p, &lio->sig);
1034 pool_put(&aio_lio_pool, lio);
1035 }
1036 kmem_free(aiocbp_list, nent * sizeof(*aiocbp_list));
1037 return error;
1038 }
1039
1040 /*
1041 * SysCtl
1042 */
1043
1044 static int
1045 sysctl_aio_listio_max(SYSCTLFN_ARGS)
1046 {
1047 struct sysctlnode node;
1048 int error, newsize;
1049
1050 node = *rnode;
1051 node.sysctl_data = &newsize;
1052
1053 newsize = aio_listio_max;
1054 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1055 if (error || newp == NULL)
1056 return error;
1057
1058 if (newsize < 1 || newsize > aio_max)
1059 return SET_ERROR(EINVAL);
1060 aio_listio_max = newsize;
1061
1062 return 0;
1063 }
1064
1065 static int
1066 sysctl_aio_max(SYSCTLFN_ARGS)
1067 {
1068 struct sysctlnode node;
1069 int error, newsize;
1070
1071 node = *rnode;
1072 node.sysctl_data = &newsize;
1073
1074 newsize = aio_max;
1075 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1076 if (error || newp == NULL)
1077 return error;
1078
1079 if (newsize < 1 || newsize < aio_listio_max)
1080 return SET_ERROR(EINVAL);
1081 aio_max = newsize;
1082
1083 return 0;
1084 }
1085
1086 SYSCTL_SETUP(sysctl_aio_init, "aio sysctl")
1087 {
1088 int rv;
1089
1090 rv = sysctl_createv(clog, 0, NULL, NULL,
1091 CTLFLAG_PERMANENT | CTLFLAG_IMMEDIATE,
1092 CTLTYPE_INT, "posix_aio",
1093 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
1094 "Asynchronous I/O option to which the "
1095 "system attempts to conform"),
1096 NULL, _POSIX_ASYNCHRONOUS_IO, NULL, 0,
1097 CTL_KERN, CTL_CREATE, CTL_EOL);
1098
1099 if (rv != 0)
1100 return;
1101
1102 rv = sysctl_createv(clog, 0, NULL, NULL,
1103 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1104 CTLTYPE_INT, "aio_listio_max",
1105 SYSCTL_DESCR("Maximum number of asynchronous I/O "
1106 "operations in a single list I/O call"),
1107 sysctl_aio_listio_max, 0, &aio_listio_max, 0,
1108 CTL_KERN, CTL_CREATE, CTL_EOL);
1109
1110 if (rv != 0)
1111 return;
1112
1113 rv = sysctl_createv(clog, 0, NULL, NULL,
1114 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1115 CTLTYPE_INT, "aio_max",
1116 SYSCTL_DESCR("Maximum number of asynchronous I/O "
1117 "operations"),
1118 sysctl_aio_max, 0, &aio_max, 0,
1119 CTL_KERN, CTL_CREATE, CTL_EOL);
1120
1121 return;
1122 }
1123
1124 /*
1125 * Debugging
1126 */
1127 #if defined(DDB)
1128 void
1129 aio_print_jobs(void (*pr)(const char *, ...))
1130 {
1131 struct proc *p = curlwp->l_proc;
1132 struct aioproc *aio;
1133 struct aio_job *a_job;
1134 struct aiocb *aiocbp;
1135
1136 if (p == NULL) {
1137 (*pr)("AIO: We are not in the processes right now.\n");
1138 return;
1139 }
1140
1141 aio = p->p_aio;
1142 if (aio == NULL) {
1143 (*pr)("AIO data is not initialized (PID = %d).\n", p->p_pid);
1144 return;
1145 }
1146
1147 (*pr)("AIO: PID = %d\n", p->p_pid);
1148 (*pr)("AIO: Global count of the jobs = %u\n", aio_jobs_count);
1149 (*pr)("AIO: Count of the jobs = %u\n", aio->jobs_count);
1150
1151 if (aio->curjob) {
1152 a_job = aio->curjob;
1153 (*pr)("\nAIO current job:\n");
1154 (*pr)(" opcode = %d, errno = %d, state = %d, aiocb_ptr = %p\n",
1155 a_job->aio_op, a_job->aiocbp._errno,
1156 a_job->aiocbp._state, a_job->aiocb_uptr);
1157 aiocbp = &a_job->aiocbp;
1158 (*pr)(" fd = %d, offset = %u, buf = %p, nbytes = %u\n",
1159 aiocbp->aio_fildes, aiocbp->aio_offset,
1160 aiocbp->aio_buf, aiocbp->aio_nbytes);
1161 }
1162
1163 (*pr)("\nAIO queue:\n");
1164 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) {
1165 (*pr)(" opcode = %d, errno = %d, state = %d, aiocb_ptr = %p\n",
1166 a_job->aio_op, a_job->aiocbp._errno,
1167 a_job->aiocbp._state, a_job->aiocb_uptr);
1168 aiocbp = &a_job->aiocbp;
1169 (*pr)(" fd = %d, offset = %u, buf = %p, nbytes = %u\n",
1170 aiocbp->aio_fildes, aiocbp->aio_offset,
1171 aiocbp->aio_buf, aiocbp->aio_nbytes);
1172 }
1173 }
1174 #endif /* defined(DDB) */
1175