sys_eventfd.c revision 1.9.4.1 1 /* $NetBSD: sys_eventfd.c,v 1.9.4.1 2023/11/26 12:33:19 bouyer Exp $ */
2
3 /*-
4 * Copyright (c) 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: sys_eventfd.c,v 1.9.4.1 2023/11/26 12:33:19 bouyer Exp $");
34
35 /*
36 * eventfd
37 *
38 * Eventfd objects present a simple counting object associated with a
39 * file descriptor. Writes and reads to this file descriptor increment
40 * and decrement the count, respectively. When the count is non-zero,
41 * the descriptor is considered "readable", and when less than the max
42 * value (EVENTFD_MAXVAL), is considered "writable".
43 *
44 * This implementation is API compatible with the Linux eventfd(2)
45 * interface.
46 */
47
48 #include <sys/param.h>
49 #include <sys/types.h>
50 #include <sys/condvar.h>
51 #include <sys/eventfd.h>
52 #include <sys/file.h>
53 #include <sys/filedesc.h>
54 #include <sys/kauth.h>
55 #include <sys/mutex.h>
56 #include <sys/poll.h>
57 #include <sys/proc.h>
58 #include <sys/select.h>
59 #include <sys/stat.h>
60 #include <sys/syscallargs.h>
61 #include <sys/uio.h>
62
63 struct eventfd {
64 kmutex_t efd_lock;
65 kcondvar_t efd_read_wait;
66 kcondvar_t efd_write_wait;
67 struct selinfo efd_read_sel;
68 struct selinfo efd_write_sel;
69 eventfd_t efd_val;
70 int64_t efd_nwaiters;
71 bool efd_restarting;
72 bool efd_is_semaphore;
73
74 /*
75 * Information kept for stat(2).
76 */
77 struct timespec efd_btime; /* time created */
78 struct timespec efd_mtime; /* last write */
79 struct timespec efd_atime; /* last read */
80 };
81
82 #define EVENTFD_MAXVAL (UINT64_MAX - 1)
83
84 /*
85 * eventfd_create:
86 *
87 * Create an eventfd object.
88 */
89 static struct eventfd *
90 eventfd_create(unsigned int const val, int const flags)
91 {
92 struct eventfd * const efd = kmem_zalloc(sizeof(*efd), KM_SLEEP);
93
94 mutex_init(&efd->efd_lock, MUTEX_DEFAULT, IPL_NONE);
95 cv_init(&efd->efd_read_wait, "efdread");
96 cv_init(&efd->efd_write_wait, "efdwrite");
97 selinit(&efd->efd_read_sel);
98 selinit(&efd->efd_write_sel);
99 efd->efd_val = val;
100 efd->efd_is_semaphore = !!(flags & EFD_SEMAPHORE);
101 getnanotime(&efd->efd_btime);
102
103 /* Caller deals with EFD_CLOEXEC and EFD_NONBLOCK. */
104
105 return efd;
106 }
107
108 /*
109 * eventfd_destroy:
110 *
111 * Destroy an eventfd object.
112 */
113 static void
114 eventfd_destroy(struct eventfd * const efd)
115 {
116
117 KASSERT(efd->efd_nwaiters == 0);
118
119 cv_destroy(&efd->efd_read_wait);
120 cv_destroy(&efd->efd_write_wait);
121
122 seldestroy(&efd->efd_read_sel);
123 seldestroy(&efd->efd_write_sel);
124
125 mutex_destroy(&efd->efd_lock);
126
127 kmem_free(efd, sizeof(*efd));
128 }
129
130 /*
131 * eventfd_wait:
132 *
133 * Block on an eventfd. Handles non-blocking, as well as
134 * the restart cases.
135 */
136 static int
137 eventfd_wait(struct eventfd * const efd, int const fflag, bool const is_write)
138 {
139 kcondvar_t *waitcv;
140 int error;
141
142 if (fflag & FNONBLOCK) {
143 return EAGAIN;
144 }
145
146 /*
147 * We're going to block. Check if we need to return ERESTART.
148 */
149 if (efd->efd_restarting) {
150 return ERESTART;
151 }
152
153 if (is_write) {
154 waitcv = &efd->efd_write_wait;
155 } else {
156 waitcv = &efd->efd_read_wait;
157 }
158
159 efd->efd_nwaiters++;
160 KASSERT(efd->efd_nwaiters > 0);
161 error = cv_wait_sig(waitcv, &efd->efd_lock);
162 efd->efd_nwaiters--;
163 KASSERT(efd->efd_nwaiters >= 0);
164
165 /*
166 * If a restart was triggered while we were asleep, we need
167 * to return ERESTART if no other error was returned.
168 */
169 if (efd->efd_restarting) {
170 if (error == 0) {
171 error = ERESTART;
172 }
173 }
174
175 return error;
176 }
177
178 /*
179 * eventfd_wake:
180 *
181 * Wake LWPs block on an eventfd.
182 */
183 static void
184 eventfd_wake(struct eventfd * const efd, bool const is_write)
185 {
186 kcondvar_t *waitcv = NULL;
187 struct selinfo *sel;
188 int pollev;
189
190 if (is_write) {
191 waitcv = &efd->efd_read_wait;
192 sel = &efd->efd_read_sel;
193 pollev = POLLIN | POLLRDNORM;
194 } else {
195 waitcv = &efd->efd_write_wait;
196 sel = &efd->efd_write_sel;
197 pollev = POLLOUT | POLLWRNORM;
198 }
199 if (waitcv != NULL) {
200 cv_broadcast(waitcv);
201 }
202 selnotify(sel, pollev, NOTE_SUBMIT);
203 }
204
205 /*
206 * eventfd file operations
207 */
208
209 static int
210 eventfd_fop_read(file_t * const fp, off_t * const offset,
211 struct uio * const uio, kauth_cred_t const cred, int const flags)
212 {
213 struct eventfd * const efd = fp->f_eventfd;
214 int const fflag = fp->f_flag;
215 eventfd_t return_value;
216 int error;
217
218 if (uio->uio_resid < sizeof(eventfd_t)) {
219 return EINVAL;
220 }
221
222 mutex_enter(&efd->efd_lock);
223
224 while (efd->efd_val == 0) {
225 if ((error = eventfd_wait(efd, fflag, false)) != 0) {
226 mutex_exit(&efd->efd_lock);
227 return error;
228 }
229 }
230
231 if (efd->efd_is_semaphore) {
232 return_value = 1;
233 efd->efd_val--;
234 } else {
235 return_value = efd->efd_val;
236 efd->efd_val = 0;
237 }
238
239 getnanotime(&efd->efd_atime);
240 eventfd_wake(efd, false);
241
242 mutex_exit(&efd->efd_lock);
243
244 error = uiomove(&return_value, sizeof(return_value), uio);
245
246 return error;
247 }
248
249 static int
250 eventfd_fop_write(file_t * const fp, off_t * const offset,
251 struct uio * const uio, kauth_cred_t const cred, int const flags)
252 {
253 struct eventfd * const efd = fp->f_eventfd;
254 int const fflag = fp->f_flag;
255 eventfd_t write_value;
256 int error;
257
258 if (uio->uio_resid < sizeof(eventfd_t)) {
259 return EINVAL;
260 }
261
262 if ((error = uiomove(&write_value, sizeof(write_value), uio)) != 0) {
263 return error;
264 }
265
266 if (write_value > EVENTFD_MAXVAL) {
267 error = EINVAL;
268 goto out;
269 }
270
271 mutex_enter(&efd->efd_lock);
272
273 KASSERT(efd->efd_val <= EVENTFD_MAXVAL);
274 while ((EVENTFD_MAXVAL - efd->efd_val) < write_value) {
275 if ((error = eventfd_wait(efd, fflag, true)) != 0) {
276 mutex_exit(&efd->efd_lock);
277 goto out;
278 }
279 }
280
281 efd->efd_val += write_value;
282 KASSERT(efd->efd_val <= EVENTFD_MAXVAL);
283
284 getnanotime(&efd->efd_mtime);
285 eventfd_wake(efd, true);
286
287 mutex_exit(&efd->efd_lock);
288
289 out:
290 if (error) {
291 /*
292 * Undo the effect of uiomove() so that the error
293 * gets reported correctly; see dofilewrite().
294 */
295 uio->uio_resid += sizeof(write_value);
296 }
297 return error;
298 }
299
300 static int
301 eventfd_ioctl(file_t * const fp, u_long const cmd, void * const data)
302 {
303 struct eventfd * const efd = fp->f_eventfd;
304
305 switch (cmd) {
306 case FIONBIO:
307 return 0;
308
309 case FIONREAD:
310 mutex_enter(&efd->efd_lock);
311 *(int *)data = efd->efd_val != 0 ? sizeof(eventfd_t) : 0;
312 mutex_exit(&efd->efd_lock);
313 return 0;
314
315 case FIONWRITE:
316 *(int *)data = 0;
317 return 0;
318
319 case FIONSPACE:
320 /*
321 * FIONSPACE doesn't really work for eventfd, because the
322 * writability depends on the contents (value) being written.
323 */
324 break;
325
326 default:
327 break;
328 }
329
330 return EPASSTHROUGH;
331 }
332
333 static int
334 eventfd_fop_poll(file_t * const fp, int const events)
335 {
336 struct eventfd * const efd = fp->f_eventfd;
337 int revents = 0;
338
339 /*
340 * Note that Linux will return POLLERR if the eventfd count
341 * overflows, but that is not possible in the normal read/write
342 * API, only with Linux kernel-internal interfaces. So, this
343 * implementation never returns POLLERR.
344 *
345 * Also note that the Linux eventfd(2) man page does not
346 * specifically discuss returning POLLRDNORM, but we check
347 * for that event in addition to POLLIN.
348 */
349
350 mutex_enter(&efd->efd_lock);
351
352 if (events & (POLLIN | POLLRDNORM)) {
353 if (efd->efd_val != 0) {
354 revents |= events & (POLLIN | POLLRDNORM);
355 } else {
356 selrecord(curlwp, &efd->efd_read_sel);
357 }
358 }
359
360 if (events & (POLLOUT | POLLWRNORM)) {
361 if (efd->efd_val < EVENTFD_MAXVAL) {
362 revents |= events & (POLLOUT | POLLWRNORM);
363 } else {
364 selrecord(curlwp, &efd->efd_write_sel);
365 }
366 }
367
368 mutex_exit(&efd->efd_lock);
369
370 return revents;
371 }
372
373 static int
374 eventfd_fop_stat(file_t * const fp, struct stat * const st)
375 {
376 struct eventfd * const efd = fp->f_eventfd;
377
378 memset(st, 0, sizeof(*st));
379
380 mutex_enter(&efd->efd_lock);
381 st->st_size = (off_t)efd->efd_val;
382 st->st_blksize = sizeof(eventfd_t);
383 st->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
384 st->st_blocks = 1;
385 st->st_birthtimespec = st->st_ctimespec = efd->efd_btime;
386 st->st_atimespec = efd->efd_atime;
387 st->st_mtimespec = efd->efd_mtime;
388 st->st_uid = kauth_cred_geteuid(fp->f_cred);
389 st->st_gid = kauth_cred_getegid(fp->f_cred);
390 mutex_exit(&efd->efd_lock);
391
392 return 0;
393 }
394
395 static int
396 eventfd_fop_close(file_t * const fp)
397 {
398 struct eventfd * const efd = fp->f_eventfd;
399
400 fp->f_eventfd = NULL;
401 eventfd_destroy(efd);
402
403 return 0;
404 }
405
406 static void
407 eventfd_filt_read_detach(struct knote * const kn)
408 {
409 struct eventfd * const efd = ((file_t *)kn->kn_obj)->f_eventfd;
410
411 mutex_enter(&efd->efd_lock);
412 KASSERT(kn->kn_hook == efd);
413 selremove_knote(&efd->efd_read_sel, kn);
414 mutex_exit(&efd->efd_lock);
415 }
416
417 static int
418 eventfd_filt_read(struct knote * const kn, long const hint)
419 {
420 struct eventfd * const efd = ((file_t *)kn->kn_obj)->f_eventfd;
421 int rv;
422
423 if (hint & NOTE_SUBMIT) {
424 KASSERT(mutex_owned(&efd->efd_lock));
425 } else {
426 mutex_enter(&efd->efd_lock);
427 }
428
429 kn->kn_data = (int64_t)efd->efd_val;
430 rv = (eventfd_t)kn->kn_data > 0;
431
432 if ((hint & NOTE_SUBMIT) == 0) {
433 mutex_exit(&efd->efd_lock);
434 }
435
436 return rv;
437 }
438
439 static const struct filterops eventfd_read_filterops = {
440 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
441 .f_detach = eventfd_filt_read_detach,
442 .f_event = eventfd_filt_read,
443 };
444
445 static void
446 eventfd_filt_write_detach(struct knote * const kn)
447 {
448 struct eventfd * const efd = ((file_t *)kn->kn_obj)->f_eventfd;
449
450 mutex_enter(&efd->efd_lock);
451 KASSERT(kn->kn_hook == efd);
452 selremove_knote(&efd->efd_write_sel, kn);
453 mutex_exit(&efd->efd_lock);
454 }
455
456 static int
457 eventfd_filt_write(struct knote * const kn, long const hint)
458 {
459 struct eventfd * const efd = ((file_t *)kn->kn_obj)->f_eventfd;
460 int rv;
461
462 if (hint & NOTE_SUBMIT) {
463 KASSERT(mutex_owned(&efd->efd_lock));
464 } else {
465 mutex_enter(&efd->efd_lock);
466 }
467
468 kn->kn_data = (int64_t)efd->efd_val;
469 rv = (eventfd_t)kn->kn_data < EVENTFD_MAXVAL;
470
471 if ((hint & NOTE_SUBMIT) == 0) {
472 mutex_exit(&efd->efd_lock);
473 }
474
475 return rv;
476 }
477
478 static const struct filterops eventfd_write_filterops = {
479 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
480 .f_detach = eventfd_filt_write_detach,
481 .f_event = eventfd_filt_write,
482 };
483
484 static int
485 eventfd_fop_kqfilter(file_t * const fp, struct knote * const kn)
486 {
487 struct eventfd * const efd = ((file_t *)kn->kn_obj)->f_eventfd;
488 struct selinfo *sel;
489
490 switch (kn->kn_filter) {
491 case EVFILT_READ:
492 sel = &efd->efd_read_sel;
493 kn->kn_fop = &eventfd_read_filterops;
494 break;
495
496 case EVFILT_WRITE:
497 sel = &efd->efd_write_sel;
498 kn->kn_fop = &eventfd_write_filterops;
499 break;
500
501 default:
502 return EINVAL;
503 }
504
505 kn->kn_hook = efd;
506
507 mutex_enter(&efd->efd_lock);
508 selrecord_knote(sel, kn);
509 mutex_exit(&efd->efd_lock);
510
511 return 0;
512 }
513
514 static void
515 eventfd_fop_restart(file_t * const fp)
516 {
517 struct eventfd * const efd = fp->f_eventfd;
518
519 /*
520 * Unblock blocked reads/writes in order to allow close() to complete.
521 * System calls return ERESTART so that the fd is revalidated.
522 */
523
524 mutex_enter(&efd->efd_lock);
525
526 if (efd->efd_nwaiters != 0) {
527 efd->efd_restarting = true;
528 cv_broadcast(&efd->efd_read_wait);
529 cv_broadcast(&efd->efd_write_wait);
530 }
531
532 mutex_exit(&efd->efd_lock);
533 }
534
535 static const struct fileops eventfd_fileops = {
536 .fo_name = "eventfd",
537 .fo_read = eventfd_fop_read,
538 .fo_write = eventfd_fop_write,
539 .fo_ioctl = eventfd_ioctl,
540 .fo_fcntl = fnullop_fcntl,
541 .fo_poll = eventfd_fop_poll,
542 .fo_stat = eventfd_fop_stat,
543 .fo_close = eventfd_fop_close,
544 .fo_kqfilter = eventfd_fop_kqfilter,
545 .fo_restart = eventfd_fop_restart,
546 };
547
548 /*
549 * eventfd(2) system call
550 */
551 int
552 do_eventfd(struct lwp * const l, unsigned int const val, int const flags,
553 register_t *retval)
554 {
555 file_t *fp;
556 int fd, error;
557
558 if (flags & ~(EFD_CLOEXEC | EFD_NONBLOCK | EFD_SEMAPHORE)) {
559 return EINVAL;
560 }
561
562 if ((error = fd_allocfile(&fp, &fd)) != 0) {
563 return error;
564 }
565
566 fp->f_flag = FREAD | FWRITE;
567 if (flags & EFD_NONBLOCK) {
568 fp->f_flag |= FNONBLOCK;
569 }
570 fp->f_type = DTYPE_EVENTFD;
571 fp->f_ops = &eventfd_fileops;
572 fp->f_eventfd = eventfd_create(val, flags);
573 fd_set_exclose(l, fd, !!(flags & EFD_CLOEXEC));
574 fd_affix(curproc, fp, fd);
575
576 *retval = fd;
577 return 0;
578 }
579
580 int
581 sys_eventfd(struct lwp *l, const struct sys_eventfd_args *uap,
582 register_t *retval)
583 {
584 /* {
585 syscallarg(unsigned int) val;
586 syscallarg(int) flags;
587 } */
588
589 return do_eventfd(l, SCARG(uap, val), SCARG(uap, flags), retval);
590 }
591