Home | History | Annotate | Line # | Download | only in kern
sys_eventfd.c revision 1.9.4.1
      1 /*	$NetBSD: sys_eventfd.c,v 1.9.4.1 2023/11/26 12:33:19 bouyer Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: sys_eventfd.c,v 1.9.4.1 2023/11/26 12:33:19 bouyer Exp $");
     34 
     35 /*
     36  * eventfd
     37  *
     38  * Eventfd objects present a simple counting object associated with a
     39  * file descriptor.  Writes and reads to this file descriptor increment
     40  * and decrement the count, respectively.  When the count is non-zero,
     41  * the descriptor is considered "readable", and when less than the max
     42  * value (EVENTFD_MAXVAL), is considered "writable".
     43  *
     44  * This implementation is API compatible with the Linux eventfd(2)
     45  * interface.
     46  */
     47 
     48 #include <sys/param.h>
     49 #include <sys/types.h>
     50 #include <sys/condvar.h>
     51 #include <sys/eventfd.h>
     52 #include <sys/file.h>
     53 #include <sys/filedesc.h>
     54 #include <sys/kauth.h>
     55 #include <sys/mutex.h>
     56 #include <sys/poll.h>
     57 #include <sys/proc.h>
     58 #include <sys/select.h>
     59 #include <sys/stat.h>
     60 #include <sys/syscallargs.h>
     61 #include <sys/uio.h>
     62 
     63 struct eventfd {
     64 	kmutex_t	efd_lock;
     65 	kcondvar_t	efd_read_wait;
     66 	kcondvar_t	efd_write_wait;
     67 	struct selinfo	efd_read_sel;
     68 	struct selinfo	efd_write_sel;
     69 	eventfd_t	efd_val;
     70 	int64_t		efd_nwaiters;
     71 	bool		efd_restarting;
     72 	bool		efd_is_semaphore;
     73 
     74 	/*
     75 	 * Information kept for stat(2).
     76 	 */
     77 	struct timespec efd_btime;	/* time created */
     78 	struct timespec	efd_mtime;	/* last write */
     79 	struct timespec	efd_atime;	/* last read */
     80 };
     81 
     82 #define	EVENTFD_MAXVAL	(UINT64_MAX - 1)
     83 
     84 /*
     85  * eventfd_create:
     86  *
     87  *	Create an eventfd object.
     88  */
     89 static struct eventfd *
     90 eventfd_create(unsigned int const val, int const flags)
     91 {
     92 	struct eventfd * const efd = kmem_zalloc(sizeof(*efd), KM_SLEEP);
     93 
     94 	mutex_init(&efd->efd_lock, MUTEX_DEFAULT, IPL_NONE);
     95 	cv_init(&efd->efd_read_wait, "efdread");
     96 	cv_init(&efd->efd_write_wait, "efdwrite");
     97 	selinit(&efd->efd_read_sel);
     98 	selinit(&efd->efd_write_sel);
     99 	efd->efd_val = val;
    100 	efd->efd_is_semaphore = !!(flags & EFD_SEMAPHORE);
    101 	getnanotime(&efd->efd_btime);
    102 
    103 	/* Caller deals with EFD_CLOEXEC and EFD_NONBLOCK. */
    104 
    105 	return efd;
    106 }
    107 
    108 /*
    109  * eventfd_destroy:
    110  *
    111  *	Destroy an eventfd object.
    112  */
    113 static void
    114 eventfd_destroy(struct eventfd * const efd)
    115 {
    116 
    117 	KASSERT(efd->efd_nwaiters == 0);
    118 
    119 	cv_destroy(&efd->efd_read_wait);
    120 	cv_destroy(&efd->efd_write_wait);
    121 
    122 	seldestroy(&efd->efd_read_sel);
    123 	seldestroy(&efd->efd_write_sel);
    124 
    125 	mutex_destroy(&efd->efd_lock);
    126 
    127 	kmem_free(efd, sizeof(*efd));
    128 }
    129 
    130 /*
    131  * eventfd_wait:
    132  *
    133  *	Block on an eventfd.  Handles non-blocking, as well as
    134  *	the restart cases.
    135  */
    136 static int
    137 eventfd_wait(struct eventfd * const efd, int const fflag, bool const is_write)
    138 {
    139 	kcondvar_t *waitcv;
    140 	int error;
    141 
    142 	if (fflag & FNONBLOCK) {
    143 		return EAGAIN;
    144 	}
    145 
    146 	/*
    147 	 * We're going to block.  Check if we need to return ERESTART.
    148 	 */
    149 	if (efd->efd_restarting) {
    150 		return ERESTART;
    151 	}
    152 
    153 	if (is_write) {
    154 		waitcv = &efd->efd_write_wait;
    155 	} else {
    156 		waitcv = &efd->efd_read_wait;
    157 	}
    158 
    159 	efd->efd_nwaiters++;
    160 	KASSERT(efd->efd_nwaiters > 0);
    161 	error = cv_wait_sig(waitcv, &efd->efd_lock);
    162 	efd->efd_nwaiters--;
    163 	KASSERT(efd->efd_nwaiters >= 0);
    164 
    165 	/*
    166 	 * If a restart was triggered while we were asleep, we need
    167 	 * to return ERESTART if no other error was returned.
    168 	 */
    169 	if (efd->efd_restarting) {
    170 		if (error == 0) {
    171 			error = ERESTART;
    172 		}
    173 	}
    174 
    175 	return error;
    176 }
    177 
    178 /*
    179  * eventfd_wake:
    180  *
    181  *	Wake LWPs block on an eventfd.
    182  */
    183 static void
    184 eventfd_wake(struct eventfd * const efd, bool const is_write)
    185 {
    186 	kcondvar_t *waitcv = NULL;
    187 	struct selinfo *sel;
    188 	int pollev;
    189 
    190 	if (is_write) {
    191 		waitcv = &efd->efd_read_wait;
    192 		sel = &efd->efd_read_sel;
    193 		pollev = POLLIN | POLLRDNORM;
    194 	} else {
    195 		waitcv = &efd->efd_write_wait;
    196 		sel = &efd->efd_write_sel;
    197 		pollev = POLLOUT | POLLWRNORM;
    198 	}
    199 	if (waitcv != NULL) {
    200 		cv_broadcast(waitcv);
    201 	}
    202 	selnotify(sel, pollev, NOTE_SUBMIT);
    203 }
    204 
    205 /*
    206  * eventfd file operations
    207  */
    208 
    209 static int
    210 eventfd_fop_read(file_t * const fp, off_t * const offset,
    211     struct uio * const uio, kauth_cred_t const cred, int const flags)
    212 {
    213 	struct eventfd * const efd = fp->f_eventfd;
    214 	int const fflag = fp->f_flag;
    215 	eventfd_t return_value;
    216 	int error;
    217 
    218 	if (uio->uio_resid < sizeof(eventfd_t)) {
    219 		return EINVAL;
    220 	}
    221 
    222 	mutex_enter(&efd->efd_lock);
    223 
    224 	while (efd->efd_val == 0) {
    225 		if ((error = eventfd_wait(efd, fflag, false)) != 0) {
    226 			mutex_exit(&efd->efd_lock);
    227 			return error;
    228 		}
    229 	}
    230 
    231 	if (efd->efd_is_semaphore) {
    232 		return_value = 1;
    233 		efd->efd_val--;
    234 	} else {
    235 		return_value = efd->efd_val;
    236 		efd->efd_val = 0;
    237 	}
    238 
    239 	getnanotime(&efd->efd_atime);
    240 	eventfd_wake(efd, false);
    241 
    242 	mutex_exit(&efd->efd_lock);
    243 
    244 	error = uiomove(&return_value, sizeof(return_value), uio);
    245 
    246 	return error;
    247 }
    248 
    249 static int
    250 eventfd_fop_write(file_t * const fp, off_t * const offset,
    251     struct uio * const uio, kauth_cred_t const cred, int const flags)
    252 {
    253 	struct eventfd * const efd = fp->f_eventfd;
    254 	int const fflag = fp->f_flag;
    255 	eventfd_t write_value;
    256 	int error;
    257 
    258 	if (uio->uio_resid < sizeof(eventfd_t)) {
    259 		return EINVAL;
    260 	}
    261 
    262 	if ((error = uiomove(&write_value, sizeof(write_value), uio)) != 0) {
    263 		return error;
    264 	}
    265 
    266 	if (write_value > EVENTFD_MAXVAL) {
    267 		error = EINVAL;
    268 		goto out;
    269 	}
    270 
    271 	mutex_enter(&efd->efd_lock);
    272 
    273 	KASSERT(efd->efd_val <= EVENTFD_MAXVAL);
    274 	while ((EVENTFD_MAXVAL - efd->efd_val) < write_value) {
    275 		if ((error = eventfd_wait(efd, fflag, true)) != 0) {
    276 			mutex_exit(&efd->efd_lock);
    277 			goto out;
    278 		}
    279 	}
    280 
    281 	efd->efd_val += write_value;
    282 	KASSERT(efd->efd_val <= EVENTFD_MAXVAL);
    283 
    284 	getnanotime(&efd->efd_mtime);
    285 	eventfd_wake(efd, true);
    286 
    287 	mutex_exit(&efd->efd_lock);
    288 
    289  out:
    290 	if (error) {
    291 		/*
    292 		 * Undo the effect of uiomove() so that the error
    293 		 * gets reported correctly; see dofilewrite().
    294 		 */
    295 		uio->uio_resid += sizeof(write_value);
    296 	}
    297 	return error;
    298 }
    299 
    300 static int
    301 eventfd_ioctl(file_t * const fp, u_long const cmd, void * const data)
    302 {
    303 	struct eventfd * const efd = fp->f_eventfd;
    304 
    305 	switch (cmd) {
    306 	case FIONBIO:
    307 		return 0;
    308 
    309 	case FIONREAD:
    310 		mutex_enter(&efd->efd_lock);
    311 		*(int *)data = efd->efd_val != 0 ? sizeof(eventfd_t) : 0;
    312 		mutex_exit(&efd->efd_lock);
    313 		return 0;
    314 
    315 	case FIONWRITE:
    316 		*(int *)data = 0;
    317 		return 0;
    318 
    319 	case FIONSPACE:
    320 		/*
    321 		 * FIONSPACE doesn't really work for eventfd, because the
    322 		 * writability depends on the contents (value) being written.
    323 		 */
    324 		break;
    325 
    326 	default:
    327 		break;
    328 	}
    329 
    330 	return EPASSTHROUGH;
    331 }
    332 
    333 static int
    334 eventfd_fop_poll(file_t * const fp, int const events)
    335 {
    336 	struct eventfd * const efd = fp->f_eventfd;
    337 	int revents = 0;
    338 
    339 	/*
    340 	 * Note that Linux will return POLLERR if the eventfd count
    341 	 * overflows, but that is not possible in the normal read/write
    342 	 * API, only with Linux kernel-internal interfaces.  So, this
    343 	 * implementation never returns POLLERR.
    344 	 *
    345 	 * Also note that the Linux eventfd(2) man page does not
    346 	 * specifically discuss returning POLLRDNORM, but we check
    347 	 * for that event in addition to POLLIN.
    348 	 */
    349 
    350 	mutex_enter(&efd->efd_lock);
    351 
    352 	if (events & (POLLIN | POLLRDNORM)) {
    353 		if (efd->efd_val != 0) {
    354 			revents |= events & (POLLIN | POLLRDNORM);
    355 		} else {
    356 			selrecord(curlwp, &efd->efd_read_sel);
    357 		}
    358 	}
    359 
    360 	if (events & (POLLOUT | POLLWRNORM)) {
    361 		if (efd->efd_val < EVENTFD_MAXVAL) {
    362 			revents |= events & (POLLOUT | POLLWRNORM);
    363 		} else {
    364 			selrecord(curlwp, &efd->efd_write_sel);
    365 		}
    366 	}
    367 
    368 	mutex_exit(&efd->efd_lock);
    369 
    370 	return revents;
    371 }
    372 
    373 static int
    374 eventfd_fop_stat(file_t * const fp, struct stat * const st)
    375 {
    376 	struct eventfd * const efd = fp->f_eventfd;
    377 
    378 	memset(st, 0, sizeof(*st));
    379 
    380 	mutex_enter(&efd->efd_lock);
    381 	st->st_size = (off_t)efd->efd_val;
    382 	st->st_blksize = sizeof(eventfd_t);
    383 	st->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
    384 	st->st_blocks = 1;
    385 	st->st_birthtimespec = st->st_ctimespec = efd->efd_btime;
    386 	st->st_atimespec = efd->efd_atime;
    387 	st->st_mtimespec = efd->efd_mtime;
    388 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
    389 	st->st_gid = kauth_cred_getegid(fp->f_cred);
    390 	mutex_exit(&efd->efd_lock);
    391 
    392 	return 0;
    393 }
    394 
    395 static int
    396 eventfd_fop_close(file_t * const fp)
    397 {
    398 	struct eventfd * const efd = fp->f_eventfd;
    399 
    400 	fp->f_eventfd = NULL;
    401 	eventfd_destroy(efd);
    402 
    403 	return 0;
    404 }
    405 
    406 static void
    407 eventfd_filt_read_detach(struct knote * const kn)
    408 {
    409 	struct eventfd * const efd = ((file_t *)kn->kn_obj)->f_eventfd;
    410 
    411 	mutex_enter(&efd->efd_lock);
    412 	KASSERT(kn->kn_hook == efd);
    413 	selremove_knote(&efd->efd_read_sel, kn);
    414 	mutex_exit(&efd->efd_lock);
    415 }
    416 
    417 static int
    418 eventfd_filt_read(struct knote * const kn, long const hint)
    419 {
    420 	struct eventfd * const efd = ((file_t *)kn->kn_obj)->f_eventfd;
    421 	int rv;
    422 
    423 	if (hint & NOTE_SUBMIT) {
    424 		KASSERT(mutex_owned(&efd->efd_lock));
    425 	} else {
    426 		mutex_enter(&efd->efd_lock);
    427 	}
    428 
    429 	kn->kn_data = (int64_t)efd->efd_val;
    430 	rv = (eventfd_t)kn->kn_data > 0;
    431 
    432 	if ((hint & NOTE_SUBMIT) == 0) {
    433 		mutex_exit(&efd->efd_lock);
    434 	}
    435 
    436 	return rv;
    437 }
    438 
    439 static const struct filterops eventfd_read_filterops = {
    440 	.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
    441 	.f_detach = eventfd_filt_read_detach,
    442 	.f_event = eventfd_filt_read,
    443 };
    444 
    445 static void
    446 eventfd_filt_write_detach(struct knote * const kn)
    447 {
    448 	struct eventfd * const efd = ((file_t *)kn->kn_obj)->f_eventfd;
    449 
    450 	mutex_enter(&efd->efd_lock);
    451 	KASSERT(kn->kn_hook == efd);
    452 	selremove_knote(&efd->efd_write_sel, kn);
    453 	mutex_exit(&efd->efd_lock);
    454 }
    455 
    456 static int
    457 eventfd_filt_write(struct knote * const kn, long const hint)
    458 {
    459 	struct eventfd * const efd = ((file_t *)kn->kn_obj)->f_eventfd;
    460 	int rv;
    461 
    462 	if (hint & NOTE_SUBMIT) {
    463 		KASSERT(mutex_owned(&efd->efd_lock));
    464 	} else {
    465 		mutex_enter(&efd->efd_lock);
    466 	}
    467 
    468 	kn->kn_data = (int64_t)efd->efd_val;
    469 	rv = (eventfd_t)kn->kn_data < EVENTFD_MAXVAL;
    470 
    471 	if ((hint & NOTE_SUBMIT) == 0) {
    472 		mutex_exit(&efd->efd_lock);
    473 	}
    474 
    475 	return rv;
    476 }
    477 
    478 static const struct filterops eventfd_write_filterops = {
    479 	.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
    480 	.f_detach = eventfd_filt_write_detach,
    481 	.f_event = eventfd_filt_write,
    482 };
    483 
    484 static int
    485 eventfd_fop_kqfilter(file_t * const fp, struct knote * const kn)
    486 {
    487 	struct eventfd * const efd = ((file_t *)kn->kn_obj)->f_eventfd;
    488 	struct selinfo *sel;
    489 
    490 	switch (kn->kn_filter) {
    491 	case EVFILT_READ:
    492 		sel = &efd->efd_read_sel;
    493 		kn->kn_fop = &eventfd_read_filterops;
    494 		break;
    495 
    496 	case EVFILT_WRITE:
    497 		sel = &efd->efd_write_sel;
    498 		kn->kn_fop = &eventfd_write_filterops;
    499 		break;
    500 
    501 	default:
    502 		return EINVAL;
    503 	}
    504 
    505 	kn->kn_hook = efd;
    506 
    507 	mutex_enter(&efd->efd_lock);
    508 	selrecord_knote(sel, kn);
    509 	mutex_exit(&efd->efd_lock);
    510 
    511 	return 0;
    512 }
    513 
    514 static void
    515 eventfd_fop_restart(file_t * const fp)
    516 {
    517 	struct eventfd * const efd = fp->f_eventfd;
    518 
    519 	/*
    520 	 * Unblock blocked reads/writes in order to allow close() to complete.
    521 	 * System calls return ERESTART so that the fd is revalidated.
    522 	 */
    523 
    524 	mutex_enter(&efd->efd_lock);
    525 
    526 	if (efd->efd_nwaiters != 0) {
    527 		efd->efd_restarting = true;
    528 		cv_broadcast(&efd->efd_read_wait);
    529 		cv_broadcast(&efd->efd_write_wait);
    530 	}
    531 
    532 	mutex_exit(&efd->efd_lock);
    533 }
    534 
    535 static const struct fileops eventfd_fileops = {
    536 	.fo_name = "eventfd",
    537 	.fo_read = eventfd_fop_read,
    538 	.fo_write = eventfd_fop_write,
    539 	.fo_ioctl = eventfd_ioctl,
    540 	.fo_fcntl = fnullop_fcntl,
    541 	.fo_poll = eventfd_fop_poll,
    542 	.fo_stat = eventfd_fop_stat,
    543 	.fo_close = eventfd_fop_close,
    544 	.fo_kqfilter = eventfd_fop_kqfilter,
    545 	.fo_restart = eventfd_fop_restart,
    546 };
    547 
    548 /*
    549  * eventfd(2) system call
    550  */
    551 int
    552 do_eventfd(struct lwp * const l, unsigned int const val, int const flags,
    553     register_t *retval)
    554 {
    555 	file_t *fp;
    556 	int fd, error;
    557 
    558 	if (flags & ~(EFD_CLOEXEC | EFD_NONBLOCK | EFD_SEMAPHORE)) {
    559 		return EINVAL;
    560 	}
    561 
    562 	if ((error = fd_allocfile(&fp, &fd)) != 0) {
    563 		return error;
    564 	}
    565 
    566 	fp->f_flag = FREAD | FWRITE;
    567 	if (flags & EFD_NONBLOCK) {
    568 		fp->f_flag |= FNONBLOCK;
    569 	}
    570 	fp->f_type = DTYPE_EVENTFD;
    571 	fp->f_ops = &eventfd_fileops;
    572 	fp->f_eventfd = eventfd_create(val, flags);
    573 	fd_set_exclose(l, fd, !!(flags & EFD_CLOEXEC));
    574 	fd_affix(curproc, fp, fd);
    575 
    576 	*retval = fd;
    577 	return 0;
    578 }
    579 
    580 int
    581 sys_eventfd(struct lwp *l, const struct sys_eventfd_args *uap,
    582     register_t *retval)
    583 {
    584 	/* {
    585 		syscallarg(unsigned int) val;
    586 		syscallarg(int) flags;
    587 	} */
    588 
    589 	return do_eventfd(l, SCARG(uap, val), SCARG(uap, flags), retval);
    590 }
    591