Home | History | Annotate | Line # | Download | only in kern
sys_futex.c revision 1.11
      1  1.11  riastrad /*	$NetBSD: sys_futex.c,v 1.11 2020/05/05 15:25:18 riastradh Exp $	*/
      2   1.1   thorpej 
      3   1.1   thorpej /*-
      4   1.1   thorpej  * Copyright (c) 2018, 2019, 2020 The NetBSD Foundation, Inc.
      5   1.1   thorpej  * All rights reserved.
      6   1.1   thorpej  *
      7   1.1   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8   1.1   thorpej  * by Taylor R. Campbell and Jason R. Thorpe.
      9   1.1   thorpej  *
     10   1.1   thorpej  * Redistribution and use in source and binary forms, with or without
     11   1.1   thorpej  * modification, are permitted provided that the following conditions
     12   1.1   thorpej  * are met:
     13   1.1   thorpej  * 1. Redistributions of source code must retain the above copyright
     14   1.1   thorpej  *    notice, this list of conditions and the following disclaimer.
     15   1.1   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1   thorpej  *    notice, this list of conditions and the following disclaimer in the
     17   1.1   thorpej  *    documentation and/or other materials provided with the distribution.
     18   1.1   thorpej  *
     19   1.1   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.1   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.1   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.1   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.1   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.1   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.1   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.1   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.1   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.1   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.1   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     30   1.1   thorpej  */
     31   1.1   thorpej 
     32   1.1   thorpej #include <sys/cdefs.h>
     33  1.11  riastrad __KERNEL_RCSID(0, "$NetBSD: sys_futex.c,v 1.11 2020/05/05 15:25:18 riastradh Exp $");
     34   1.1   thorpej 
     35   1.1   thorpej /*
     36   1.1   thorpej  * Futexes
     37   1.1   thorpej  *
     38   1.1   thorpej  *	The futex system call coordinates notifying threads waiting for
     39   1.1   thorpej  *	changes on a 32-bit word of memory.  The word can be managed by
     40   1.1   thorpej  *	CPU atomic operations in userland, without system calls, as long
     41   1.1   thorpej  *	as there is no contention.
     42   1.1   thorpej  *
     43   1.1   thorpej  *	The simplest use case demonstrating the utility is:
     44   1.1   thorpej  *
     45   1.1   thorpej  *		// 32-bit word of memory shared among threads or
     46   1.1   thorpej  *		// processes in userland.  lock & 1 means owned;
     47   1.1   thorpej  *		// lock & 2 means there are waiters waiting.
     48   1.1   thorpej  *		volatile int lock = 0;
     49   1.1   thorpej  *
     50   1.1   thorpej  *		int v;
     51   1.1   thorpej  *
     52   1.1   thorpej  *		// Acquire a lock.
     53   1.1   thorpej  *		do {
     54   1.1   thorpej  *			v = lock;
     55   1.1   thorpej  *			if (v & 1) {
     56   1.1   thorpej  *				// Lock is held.  Set a bit to say that
     57   1.1   thorpej  *				// there are waiters, and wait for lock
     58   1.1   thorpej  *				// to change to anything other than v;
     59   1.1   thorpej  *				// then retry.
     60   1.1   thorpej  *				if (atomic_cas_uint(&lock, v, v | 2) != v)
     61   1.1   thorpej  *					continue;
     62   1.1   thorpej  *				futex(FUTEX_WAIT, &lock, v | 2, NULL, NULL, 0);
     63   1.1   thorpej  *				continue;
     64   1.1   thorpej  *			}
     65   1.1   thorpej  *		} while (atomic_cas_uint(&lock, v, v & ~1) != v);
     66   1.1   thorpej  *		membar_enter();
     67   1.1   thorpej  *
     68   1.1   thorpej  *		...
     69   1.1   thorpej  *
     70   1.1   thorpej  *		// Release the lock.  Optimistically assume there are
     71   1.1   thorpej  *		// no waiters first until demonstrated otherwise.
     72   1.1   thorpej  *		membar_exit();
     73   1.1   thorpej  *		if (atomic_cas_uint(&lock, 1, 0) != 1) {
     74   1.1   thorpej  *			// There may be waiters.
     75   1.1   thorpej  *			v = atomic_swap_uint(&lock, 0);
     76   1.1   thorpej  *			// If there are still waiters, wake one.
     77   1.1   thorpej  *			if (v & 2)
     78   1.1   thorpej  *				futex(FUTEX_WAKE, &lock, 1, NULL, NULL, 0);
     79   1.1   thorpej  *		}
     80   1.1   thorpej  *
     81   1.1   thorpej  *	The goal is to avoid the futex system call unless there is
     82   1.1   thorpej  *	contention; then if there is contention, to guarantee no missed
     83   1.1   thorpej  *	wakeups.
     84   1.1   thorpej  *
     85   1.1   thorpej  *	For a simple implementation, futex(FUTEX_WAIT) could queue
     86   1.1   thorpej  *	itself to be woken, double-check the lock word, and then sleep;
     87   1.1   thorpej  *	spurious wakeups are generally a fact of life, so any
     88   1.1   thorpej  *	FUTEX_WAKE could just wake every FUTEX_WAIT in the system.
     89   1.1   thorpej  *
     90   1.1   thorpej  *	If this were all there is to it, we could then increase
     91   1.1   thorpej  *	parallelism by refining the approximation: partition the
     92   1.1   thorpej  *	waiters into buckets by hashing the lock addresses to reduce
     93   1.1   thorpej  *	the incidence of spurious wakeups.  But this is not all.
     94   1.1   thorpej  *
     95   1.1   thorpej  *	The futex(FUTEX_CMP_REQUEUE, &lock, n, &lock2, m, val)
     96   1.1   thorpej  *	operation not only wakes n waiters on lock if lock == val, but
     97   1.1   thorpej  *	also _transfers_ m additional waiters to lock2.  Unless wakeups
     98   1.1   thorpej  *	on lock2 also trigger wakeups on lock, we cannot move waiters
     99   1.1   thorpej  *	to lock2 if they merely share the same hash as waiters on lock.
    100   1.1   thorpej  *	Thus, we can't approximately distribute waiters into queues by
    101   1.1   thorpej  *	a hash function; we must distinguish futex queues exactly by
    102   1.1   thorpej  *	lock address.
    103   1.1   thorpej  *
    104   1.1   thorpej  *	For now, we use a global red/black tree to index futexes.  This
    105   1.1   thorpej  *	should be replaced by a lockless radix tree with a thread to
    106   1.1   thorpej  *	free entries no longer in use once all lookups on all CPUs have
    107   1.1   thorpej  *	completed.
    108   1.1   thorpej  *
    109   1.1   thorpej  *	Specifically, we maintain two maps:
    110   1.1   thorpej  *
    111   1.1   thorpej  *	futex_tab.va[vmspace, va] for private futexes
    112   1.1   thorpej  *	futex_tab.oa[uvm_voaddr] for shared futexes
    113   1.1   thorpej  *
    114   1.1   thorpej  *	This implementation does not support priority inheritance.
    115   1.1   thorpej  */
    116   1.1   thorpej 
    117   1.1   thorpej #include <sys/types.h>
    118   1.1   thorpej #include <sys/atomic.h>
    119   1.1   thorpej #include <sys/condvar.h>
    120   1.1   thorpej #include <sys/futex.h>
    121   1.1   thorpej #include <sys/mutex.h>
    122   1.1   thorpej #include <sys/rbtree.h>
    123   1.1   thorpej #include <sys/queue.h>
    124   1.1   thorpej 
    125   1.1   thorpej #include <sys/syscall.h>
    126   1.1   thorpej #include <sys/syscallargs.h>
    127   1.1   thorpej #include <sys/syscallvar.h>
    128   1.1   thorpej 
    129   1.1   thorpej #include <uvm/uvm_extern.h>
    130   1.1   thorpej 
    131   1.1   thorpej /*
    132   1.1   thorpej  * Lock order:
    133   1.1   thorpej  *
    134   1.1   thorpej  *	futex_tab.lock
    135   1.1   thorpej  *	futex::fx_qlock			ordered by kva of struct futex
    136   1.1   thorpej  *	 -> futex_wait::fw_lock		only one at a time
    137   1.1   thorpej  *	futex_wait::fw_lock		only one at a time
    138   1.1   thorpej  *	 -> futex::fx_abortlock		only one at a time
    139   1.1   thorpej  */
    140   1.1   thorpej 
    141   1.1   thorpej /*
    142   1.1   thorpej  * union futex_key
    143   1.1   thorpej  *
    144   1.1   thorpej  *	A futex is addressed either by a vmspace+va (private) or by
    145   1.1   thorpej  *	a uvm_voaddr (shared).
    146   1.1   thorpej  */
    147   1.1   thorpej union futex_key {
    148   1.1   thorpej 	struct {
    149   1.1   thorpej 		struct vmspace			*vmspace;
    150   1.1   thorpej 		vaddr_t				va;
    151   1.1   thorpej 	}			fk_private;
    152   1.1   thorpej 	struct uvm_voaddr	fk_shared;
    153   1.1   thorpej };
    154   1.1   thorpej 
    155   1.1   thorpej /*
    156   1.1   thorpej  * struct futex
    157   1.1   thorpej  *
    158   1.1   thorpej  *	Kernel state for a futex located at a particular address in a
    159   1.1   thorpej  *	particular virtual address space.
    160   1.1   thorpej  *
    161   1.1   thorpej  *	N.B. fx_refcnt is an unsigned long because we need to be able
    162   1.1   thorpej  *	to operate on it atomically on all systems while at the same
    163   1.1   thorpej  *	time rendering practically impossible the chance of it reaching
    164   1.1   thorpej  *	its max value.  In practice, we're limited by the number of LWPs
    165   1.1   thorpej  *	that can be present on the system at any given time, and the
    166   1.1   thorpej  *	assumption is that limit will be good enough on a 32-bit platform.
    167   1.1   thorpej  *	See futex_wake() for why overflow needs to be avoided.
    168   1.1   thorpej  */
    169   1.1   thorpej struct futex {
    170   1.1   thorpej 	union futex_key		fx_key;
    171   1.1   thorpej 	unsigned long		fx_refcnt;
    172   1.1   thorpej 	bool			fx_shared;
    173   1.1   thorpej 	bool			fx_on_tree;
    174   1.1   thorpej 	struct rb_node		fx_node;
    175   1.1   thorpej 
    176   1.1   thorpej 	kmutex_t			fx_qlock;
    177   1.1   thorpej 	TAILQ_HEAD(, futex_wait)	fx_queue;
    178   1.1   thorpej 
    179   1.1   thorpej 	kmutex_t			fx_abortlock;
    180   1.1   thorpej 	LIST_HEAD(, futex_wait)		fx_abortlist;
    181   1.1   thorpej 	kcondvar_t			fx_abortcv;
    182   1.1   thorpej };
    183   1.1   thorpej 
    184   1.1   thorpej /*
    185   1.1   thorpej  * struct futex_wait
    186   1.1   thorpej  *
    187   1.1   thorpej  *	State for a thread to wait on a futex.  Threads wait on fw_cv
    188   1.1   thorpej  *	for fw_bitset to be set to zero.  The thread may transition to
    189   1.1   thorpej  *	a different futex queue at any time under the futex's lock.
    190   1.1   thorpej  */
    191   1.1   thorpej struct futex_wait {
    192   1.1   thorpej 	kmutex_t		fw_lock;
    193   1.1   thorpej 	kcondvar_t		fw_cv;
    194   1.1   thorpej 	struct futex		*fw_futex;
    195   1.1   thorpej 	TAILQ_ENTRY(futex_wait)	fw_entry;	/* queue lock */
    196   1.1   thorpej 	LIST_ENTRY(futex_wait)	fw_abort;	/* queue abortlock */
    197   1.1   thorpej 	int			fw_bitset;
    198   1.4  riastrad 	bool			fw_aborting;	/* fw_lock */
    199   1.1   thorpej };
    200   1.1   thorpej 
    201   1.1   thorpej /*
    202   1.1   thorpej  * futex_tab
    203   1.1   thorpej  *
    204   1.1   thorpej  *	Global trees of futexes by vmspace/va and VM object address.
    205   1.1   thorpej  *
    206   1.1   thorpej  *	XXX This obviously doesn't scale in parallel.  We could use a
    207   1.1   thorpej  *	pserialize-safe data structure, but there may be a high cost to
    208   1.1   thorpej  *	frequent deletion since we don't cache futexes after we're done
    209   1.1   thorpej  *	with them.  We could use hashed locks.  But for now, just make
    210   1.1   thorpej  *	sure userland can't DoS the serial performance, by using a
    211   1.1   thorpej  *	balanced binary tree for lookup.
    212   1.1   thorpej  *
    213   1.1   thorpej  *	XXX We could use a per-process tree for the table indexed by
    214   1.1   thorpej  *	virtual address to reduce contention between processes.
    215   1.1   thorpej  */
    216   1.1   thorpej static struct {
    217   1.1   thorpej 	kmutex_t	lock;
    218   1.1   thorpej 	struct rb_tree	va;
    219   1.1   thorpej 	struct rb_tree	oa;
    220   1.1   thorpej } futex_tab __cacheline_aligned;
    221   1.1   thorpej 
    222   1.1   thorpej static int
    223   1.1   thorpej compare_futex_key(void *cookie, const void *n, const void *k)
    224   1.1   thorpej {
    225   1.1   thorpej 	const struct futex *fa = n;
    226   1.1   thorpej 	const union futex_key *fka = &fa->fx_key;
    227   1.1   thorpej 	const union futex_key *fkb = k;
    228   1.1   thorpej 
    229   1.1   thorpej 	if ((uintptr_t)fka->fk_private.vmspace <
    230   1.1   thorpej 	    (uintptr_t)fkb->fk_private.vmspace)
    231   1.1   thorpej 		return -1;
    232   1.1   thorpej 	if ((uintptr_t)fka->fk_private.vmspace >
    233   1.1   thorpej 	    (uintptr_t)fkb->fk_private.vmspace)
    234   1.1   thorpej 		return +1;
    235   1.1   thorpej 	if (fka->fk_private.va < fkb->fk_private.va)
    236   1.1   thorpej 		return -1;
    237   1.1   thorpej 	if (fka->fk_private.va > fkb->fk_private.va)
    238   1.1   thorpej 		return -1;
    239   1.1   thorpej 	return 0;
    240   1.1   thorpej }
    241   1.1   thorpej 
    242   1.1   thorpej static int
    243   1.1   thorpej compare_futex(void *cookie, const void *na, const void *nb)
    244   1.1   thorpej {
    245   1.1   thorpej 	const struct futex *fa = na;
    246   1.1   thorpej 	const struct futex *fb = nb;
    247   1.1   thorpej 
    248   1.1   thorpej 	return compare_futex_key(cookie, fa, &fb->fx_key);
    249   1.1   thorpej }
    250   1.1   thorpej 
    251   1.1   thorpej static const rb_tree_ops_t futex_rb_ops = {
    252   1.1   thorpej 	.rbto_compare_nodes = compare_futex,
    253   1.1   thorpej 	.rbto_compare_key = compare_futex_key,
    254   1.1   thorpej 	.rbto_node_offset = offsetof(struct futex, fx_node),
    255   1.1   thorpej };
    256   1.1   thorpej 
    257   1.1   thorpej static int
    258   1.1   thorpej compare_futex_shared_key(void *cookie, const void *n, const void *k)
    259   1.1   thorpej {
    260   1.1   thorpej 	const struct futex *fa = n;
    261   1.1   thorpej 	const union futex_key *fka = &fa->fx_key;
    262   1.1   thorpej 	const union futex_key *fkb = k;
    263   1.1   thorpej 
    264   1.1   thorpej 	return uvm_voaddr_compare(&fka->fk_shared, &fkb->fk_shared);
    265   1.1   thorpej }
    266   1.1   thorpej 
    267   1.1   thorpej static int
    268   1.1   thorpej compare_futex_shared(void *cookie, const void *na, const void *nb)
    269   1.1   thorpej {
    270   1.1   thorpej 	const struct futex *fa = na;
    271   1.1   thorpej 	const struct futex *fb = nb;
    272   1.1   thorpej 
    273   1.1   thorpej 	return compare_futex_shared_key(cookie, fa, &fb->fx_key);
    274   1.1   thorpej }
    275   1.1   thorpej 
    276   1.1   thorpej static const rb_tree_ops_t futex_shared_rb_ops = {
    277   1.1   thorpej 	.rbto_compare_nodes = compare_futex_shared,
    278   1.1   thorpej 	.rbto_compare_key = compare_futex_shared_key,
    279   1.1   thorpej 	.rbto_node_offset = offsetof(struct futex, fx_node),
    280   1.1   thorpej };
    281   1.1   thorpej 
    282   1.1   thorpej static void	futex_wait_dequeue(struct futex_wait *, struct futex *);
    283   1.1   thorpej 
    284   1.1   thorpej /*
    285   1.1   thorpej  * futex_load(uaddr, kaddr)
    286   1.1   thorpej  *
    287   1.1   thorpej  *	Perform a single atomic load to read *uaddr, and return the
    288   1.1   thorpej  *	result in *kaddr.  Return 0 on success, EFAULT if uaddr is not
    289   1.1   thorpej  *	mapped.
    290   1.1   thorpej  */
    291   1.1   thorpej static inline int
    292   1.1   thorpej futex_load(int *uaddr, int *kaddr)
    293   1.1   thorpej {
    294   1.1   thorpej 	return ufetch_int((u_int *)uaddr, (u_int *)kaddr);
    295   1.1   thorpej }
    296   1.1   thorpej 
    297   1.1   thorpej /*
    298   1.1   thorpej  * futex_test(uaddr, expected)
    299   1.1   thorpej  *
    300   1.1   thorpej  *	True if *uaddr == expected.  False if *uaddr != expected, or if
    301   1.1   thorpej  *	uaddr is not mapped.
    302   1.1   thorpej  */
    303   1.1   thorpej static bool
    304   1.1   thorpej futex_test(int *uaddr, int expected)
    305   1.1   thorpej {
    306   1.1   thorpej 	int val;
    307   1.1   thorpej 	int error;
    308   1.1   thorpej 
    309   1.1   thorpej 	error = futex_load(uaddr, &val);
    310   1.1   thorpej 	if (error)
    311   1.1   thorpej 		return false;
    312   1.1   thorpej 	return val == expected;
    313   1.1   thorpej }
    314   1.1   thorpej 
    315   1.1   thorpej /*
    316   1.1   thorpej  * futex_sys_init()
    317   1.1   thorpej  *
    318   1.1   thorpej  *	Initialize the futex subsystem.
    319   1.1   thorpej  */
    320   1.1   thorpej void
    321   1.1   thorpej futex_sys_init(void)
    322   1.1   thorpej {
    323   1.1   thorpej 
    324   1.1   thorpej 	mutex_init(&futex_tab.lock, MUTEX_DEFAULT, IPL_NONE);
    325   1.1   thorpej 	rb_tree_init(&futex_tab.va, &futex_rb_ops);
    326   1.1   thorpej 	rb_tree_init(&futex_tab.oa, &futex_shared_rb_ops);
    327   1.1   thorpej }
    328   1.1   thorpej 
    329   1.1   thorpej /*
    330   1.1   thorpej  * futex_sys_fini()
    331   1.1   thorpej  *
    332   1.1   thorpej  *	Finalize the futex subsystem.
    333   1.1   thorpej  */
    334   1.1   thorpej void
    335   1.1   thorpej futex_sys_fini(void)
    336   1.1   thorpej {
    337   1.1   thorpej 
    338   1.1   thorpej 	KASSERT(RB_TREE_MIN(&futex_tab.oa) == NULL);
    339   1.1   thorpej 	KASSERT(RB_TREE_MIN(&futex_tab.va) == NULL);
    340   1.1   thorpej 	mutex_destroy(&futex_tab.lock);
    341   1.1   thorpej }
    342   1.1   thorpej 
    343   1.1   thorpej /*
    344   1.1   thorpej  * futex_queue_init(f)
    345   1.1   thorpej  *
    346   1.1   thorpej  *	Initialize the futex queue.  Caller must call futex_queue_fini
    347   1.1   thorpej  *	when done.
    348   1.1   thorpej  *
    349   1.1   thorpej  *	Never sleeps.
    350   1.1   thorpej  */
    351   1.1   thorpej static void
    352   1.1   thorpej futex_queue_init(struct futex *f)
    353   1.1   thorpej {
    354   1.1   thorpej 
    355   1.1   thorpej 	mutex_init(&f->fx_qlock, MUTEX_DEFAULT, IPL_NONE);
    356   1.1   thorpej 	mutex_init(&f->fx_abortlock, MUTEX_DEFAULT, IPL_NONE);
    357   1.1   thorpej 	cv_init(&f->fx_abortcv, "fqabort");
    358   1.1   thorpej 	LIST_INIT(&f->fx_abortlist);
    359   1.1   thorpej 	TAILQ_INIT(&f->fx_queue);
    360   1.1   thorpej }
    361   1.1   thorpej 
    362   1.1   thorpej /*
    363   1.1   thorpej  * futex_queue_drain(f)
    364   1.1   thorpej  *
    365   1.1   thorpej  *	Wait for any aborting waiters in f; then empty the queue of
    366   1.1   thorpej  *	any stragglers and wake them.  Caller must guarantee no new
    367   1.1   thorpej  *	references to f.
    368   1.1   thorpej  *
    369   1.1   thorpej  *	May sleep.
    370   1.1   thorpej  */
    371   1.1   thorpej static void
    372   1.1   thorpej futex_queue_drain(struct futex *f)
    373   1.1   thorpej {
    374   1.1   thorpej 	struct futex_wait *fw, *fw_next;
    375   1.1   thorpej 
    376   1.1   thorpej 	mutex_enter(&f->fx_abortlock);
    377   1.1   thorpej 	while (!LIST_EMPTY(&f->fx_abortlist))
    378   1.1   thorpej 		cv_wait(&f->fx_abortcv, &f->fx_abortlock);
    379   1.1   thorpej 	mutex_exit(&f->fx_abortlock);
    380   1.1   thorpej 
    381   1.1   thorpej 	mutex_enter(&f->fx_qlock);
    382   1.1   thorpej 	TAILQ_FOREACH_SAFE(fw, &f->fx_queue, fw_entry, fw_next) {
    383   1.1   thorpej 		mutex_enter(&fw->fw_lock);
    384   1.1   thorpej 		futex_wait_dequeue(fw, f);
    385   1.1   thorpej 		cv_broadcast(&fw->fw_cv);
    386   1.1   thorpej 		mutex_exit(&fw->fw_lock);
    387   1.1   thorpej 	}
    388   1.1   thorpej 	mutex_exit(&f->fx_qlock);
    389   1.1   thorpej }
    390   1.1   thorpej 
    391   1.1   thorpej /*
    392   1.1   thorpej  * futex_queue_fini(fq)
    393   1.1   thorpej  *
    394   1.1   thorpej  *	Finalize the futex queue initialized by futex_queue_init.  Queue
    395   1.1   thorpej  *	must be empty.  Caller must not use f again until a subsequent
    396   1.1   thorpej  *	futex_queue_init.
    397   1.1   thorpej  */
    398   1.1   thorpej static void
    399   1.1   thorpej futex_queue_fini(struct futex *f)
    400   1.1   thorpej {
    401   1.1   thorpej 
    402   1.1   thorpej 	KASSERT(TAILQ_EMPTY(&f->fx_queue));
    403   1.1   thorpej 	KASSERT(LIST_EMPTY(&f->fx_abortlist));
    404   1.1   thorpej 	mutex_destroy(&f->fx_qlock);
    405   1.1   thorpej 	mutex_destroy(&f->fx_abortlock);
    406   1.1   thorpej 	cv_destroy(&f->fx_abortcv);
    407   1.1   thorpej }
    408   1.1   thorpej 
    409   1.1   thorpej /*
    410   1.1   thorpej  * futex_key_init(key, vm, va, shared)
    411   1.1   thorpej  *
    412   1.1   thorpej  *	Initialize a futex key for lookup, etc.
    413   1.1   thorpej  */
    414   1.1   thorpej static int
    415   1.1   thorpej futex_key_init(union futex_key *fk, struct vmspace *vm, vaddr_t va, bool shared)
    416   1.1   thorpej {
    417   1.1   thorpej 	int error = 0;
    418   1.1   thorpej 
    419   1.1   thorpej 	if (__predict_false(shared)) {
    420   1.1   thorpej 		if (!uvm_voaddr_acquire(&vm->vm_map, va, &fk->fk_shared))
    421   1.1   thorpej 			error = EFAULT;
    422   1.1   thorpej 	} else {
    423   1.1   thorpej 		fk->fk_private.vmspace = vm;
    424   1.1   thorpej 		fk->fk_private.va = va;
    425   1.1   thorpej 	}
    426   1.1   thorpej 
    427   1.1   thorpej 	return error;
    428   1.1   thorpej }
    429   1.1   thorpej 
    430   1.1   thorpej /*
    431   1.1   thorpej  * futex_key_fini(key, shared)
    432   1.1   thorpej  *
    433   1.1   thorpej  *	Release a futex key.
    434   1.1   thorpej  */
    435   1.1   thorpej static void
    436   1.1   thorpej futex_key_fini(union futex_key *fk, bool shared)
    437   1.1   thorpej {
    438   1.1   thorpej 	if (__predict_false(shared))
    439   1.1   thorpej 		uvm_voaddr_release(&fk->fk_shared);
    440   1.1   thorpej 	memset(fk, 0, sizeof(*fk));
    441   1.1   thorpej }
    442   1.1   thorpej 
    443   1.1   thorpej /*
    444   1.1   thorpej  * futex_create(fk, shared)
    445   1.1   thorpej  *
    446   1.1   thorpej  *	Create a futex.  Initial reference count is 1, representing the
    447   1.1   thorpej  *	caller.  Returns NULL on failure.  Always takes ownership of the
    448   1.1   thorpej  *	key, either transferring it to the newly-created futex, or releasing
    449   1.1   thorpej  *	the key if creation fails.
    450   1.1   thorpej  *
    451   1.1   thorpej  *	Never sleeps for memory, but may sleep to acquire a lock.
    452   1.1   thorpej  */
    453   1.1   thorpej static struct futex *
    454   1.1   thorpej futex_create(union futex_key *fk, bool shared)
    455   1.1   thorpej {
    456   1.1   thorpej 	struct futex *f;
    457   1.1   thorpej 
    458   1.1   thorpej 	f = kmem_alloc(sizeof(*f), KM_NOSLEEP);
    459   1.1   thorpej 	if (f == NULL) {
    460   1.1   thorpej 		futex_key_fini(fk, shared);
    461   1.1   thorpej 		return NULL;
    462   1.1   thorpej 	}
    463   1.1   thorpej 	f->fx_key = *fk;
    464   1.1   thorpej 	f->fx_refcnt = 1;
    465   1.1   thorpej 	f->fx_shared = shared;
    466   1.1   thorpej 	f->fx_on_tree = false;
    467   1.1   thorpej 	futex_queue_init(f);
    468   1.1   thorpej 
    469   1.1   thorpej 	return f;
    470   1.1   thorpej }
    471   1.1   thorpej 
    472   1.1   thorpej /*
    473   1.1   thorpej  * futex_destroy(f)
    474   1.1   thorpej  *
    475   1.1   thorpej  *	Destroy a futex created with futex_create.  Reference count
    476   1.1   thorpej  *	must be zero.
    477   1.1   thorpej  *
    478   1.1   thorpej  *	May sleep.
    479   1.1   thorpej  */
    480   1.1   thorpej static void
    481   1.1   thorpej futex_destroy(struct futex *f)
    482   1.1   thorpej {
    483   1.1   thorpej 
    484   1.1   thorpej 	ASSERT_SLEEPABLE();
    485   1.1   thorpej 
    486   1.1   thorpej 	KASSERT(atomic_load_relaxed(&f->fx_refcnt) == 0);
    487   1.1   thorpej 	KASSERT(!f->fx_on_tree);
    488   1.1   thorpej 
    489   1.1   thorpej 	/* Drain and destroy the private queue.  */
    490   1.1   thorpej 	futex_queue_drain(f);
    491   1.1   thorpej 	futex_queue_fini(f);
    492   1.1   thorpej 
    493   1.1   thorpej 	futex_key_fini(&f->fx_key, f->fx_shared);
    494   1.1   thorpej 
    495   1.1   thorpej 	kmem_free(f, sizeof(*f));
    496   1.1   thorpej }
    497   1.1   thorpej 
    498   1.1   thorpej /*
    499   1.1   thorpej  * futex_hold(f)
    500   1.1   thorpej  *
    501   1.1   thorpej  *	Attempt to acquire a reference to f.  Return 0 on success,
    502   1.1   thorpej  *	ENFILE on too many references.
    503   1.1   thorpej  *
    504   1.1   thorpej  *	Never sleeps.
    505   1.1   thorpej  */
    506   1.1   thorpej static int
    507   1.1   thorpej futex_hold(struct futex *f)
    508   1.1   thorpej {
    509   1.1   thorpej 	unsigned long refcnt;
    510   1.1   thorpej 
    511   1.1   thorpej 	do {
    512   1.1   thorpej 		refcnt = atomic_load_relaxed(&f->fx_refcnt);
    513   1.1   thorpej 		if (refcnt == ULONG_MAX)
    514   1.1   thorpej 			return ENFILE;
    515   1.1   thorpej 	} while (atomic_cas_ulong(&f->fx_refcnt, refcnt, refcnt + 1) != refcnt);
    516   1.1   thorpej 
    517   1.1   thorpej 	return 0;
    518   1.1   thorpej }
    519   1.1   thorpej 
    520   1.1   thorpej /*
    521   1.1   thorpej  * futex_rele(f)
    522   1.1   thorpej  *
    523   1.1   thorpej  *	Release a reference to f acquired with futex_create or
    524   1.1   thorpej  *	futex_hold.
    525   1.1   thorpej  *
    526   1.1   thorpej  *	May sleep to free f.
    527   1.1   thorpej  */
    528   1.1   thorpej static void
    529   1.1   thorpej futex_rele(struct futex *f)
    530   1.1   thorpej {
    531   1.1   thorpej 	unsigned long refcnt;
    532   1.1   thorpej 
    533   1.1   thorpej 	ASSERT_SLEEPABLE();
    534   1.1   thorpej 
    535   1.1   thorpej 	do {
    536   1.1   thorpej 		refcnt = atomic_load_relaxed(&f->fx_refcnt);
    537   1.1   thorpej 		if (refcnt == 1)
    538   1.1   thorpej 			goto trylast;
    539   1.1   thorpej 	} while (atomic_cas_ulong(&f->fx_refcnt, refcnt, refcnt - 1) != refcnt);
    540   1.1   thorpej 	return;
    541   1.1   thorpej 
    542   1.1   thorpej trylast:
    543   1.1   thorpej 	mutex_enter(&futex_tab.lock);
    544   1.1   thorpej 	if (atomic_dec_ulong_nv(&f->fx_refcnt) == 0) {
    545   1.1   thorpej 		if (f->fx_on_tree) {
    546   1.1   thorpej 			if (__predict_false(f->fx_shared))
    547   1.1   thorpej 				rb_tree_remove_node(&futex_tab.oa, f);
    548   1.1   thorpej 			else
    549   1.1   thorpej 				rb_tree_remove_node(&futex_tab.va, f);
    550   1.1   thorpej 			f->fx_on_tree = false;
    551   1.1   thorpej 		}
    552   1.1   thorpej 	} else {
    553   1.1   thorpej 		/* References remain -- don't destroy it.  */
    554   1.1   thorpej 		f = NULL;
    555   1.1   thorpej 	}
    556   1.1   thorpej 	mutex_exit(&futex_tab.lock);
    557   1.1   thorpej 	if (f != NULL)
    558   1.1   thorpej 		futex_destroy(f);
    559   1.1   thorpej }
    560   1.1   thorpej 
    561   1.1   thorpej /*
    562   1.1   thorpej  * futex_rele_not_last(f)
    563   1.1   thorpej  *
    564   1.1   thorpej  *	Release a reference to f acquired with futex_create or
    565   1.1   thorpej  *	futex_hold.
    566   1.1   thorpej  *
    567   1.1   thorpej  *	This version asserts that we are not dropping the last
    568   1.1   thorpej  *	reference to f.
    569   1.1   thorpej  */
    570   1.1   thorpej static void
    571   1.1   thorpej futex_rele_not_last(struct futex *f)
    572   1.1   thorpej {
    573   1.1   thorpej 	unsigned long refcnt;
    574   1.1   thorpej 
    575   1.1   thorpej 	do {
    576   1.1   thorpej 		refcnt = atomic_load_relaxed(&f->fx_refcnt);
    577   1.1   thorpej 		KASSERT(refcnt > 1);
    578   1.1   thorpej 	} while (atomic_cas_ulong(&f->fx_refcnt, refcnt, refcnt - 1) != refcnt);
    579   1.1   thorpej }
    580   1.1   thorpej 
    581   1.1   thorpej /*
    582   1.1   thorpej  * futex_lookup_by_key(key, shared, &f)
    583   1.1   thorpej  *
    584   1.1   thorpej  *	Try to find an existing futex va reference in the specified key
    585   1.1   thorpej  *	On success, return 0, set f to found futex or to NULL if not found,
    586   1.1   thorpej  *	and increment f's reference count if found.
    587   1.1   thorpej  *
    588   1.1   thorpej  *	Return ENFILE if reference count too high.
    589   1.1   thorpej  *
    590   1.1   thorpej  *	Internal lookup routine shared by futex_lookup() and
    591   1.5  riastrad  *	futex_lookup_create().
    592   1.1   thorpej  */
    593   1.1   thorpej static int
    594   1.1   thorpej futex_lookup_by_key(union futex_key *fk, bool shared, struct futex **fp)
    595   1.1   thorpej {
    596   1.1   thorpej 	struct futex *f;
    597   1.1   thorpej 	int error = 0;
    598   1.1   thorpej 
    599   1.1   thorpej 	mutex_enter(&futex_tab.lock);
    600   1.1   thorpej 	if (__predict_false(shared)) {
    601   1.1   thorpej 		f = rb_tree_find_node(&futex_tab.oa, fk);
    602   1.1   thorpej 	} else {
    603   1.1   thorpej 		f = rb_tree_find_node(&futex_tab.va, fk);
    604   1.1   thorpej 	}
    605   1.1   thorpej 	if (f) {
    606   1.1   thorpej 		error = futex_hold(f);
    607   1.1   thorpej 		if (error)
    608   1.1   thorpej 			f = NULL;
    609   1.1   thorpej 	}
    610   1.1   thorpej  	*fp = f;
    611   1.1   thorpej 	mutex_exit(&futex_tab.lock);
    612   1.1   thorpej 
    613   1.1   thorpej 	return error;
    614   1.1   thorpej }
    615   1.1   thorpej 
    616   1.1   thorpej /*
    617   1.1   thorpej  * futex_insert(f, fp)
    618   1.1   thorpej  *
    619   1.1   thorpej  *	Try to insert the futex f into the tree by va.  If there
    620   1.1   thorpej  *	already is a futex for its va, acquire a reference to it, and
    621   1.1   thorpej  *	store it in *fp; otherwise store f in *fp.
    622   1.1   thorpej  *
    623   1.1   thorpej  *	Return 0 on success, ENFILE if there already is a futex but its
    624   1.1   thorpej  *	reference count is too high.
    625   1.1   thorpej  */
    626   1.1   thorpej static int
    627   1.1   thorpej futex_insert(struct futex *f, struct futex **fp)
    628   1.1   thorpej {
    629   1.1   thorpej 	struct futex *f0;
    630   1.1   thorpej 	int error;
    631   1.1   thorpej 
    632   1.1   thorpej 	KASSERT(atomic_load_relaxed(&f->fx_refcnt) != 0);
    633   1.1   thorpej 	KASSERT(!f->fx_on_tree);
    634   1.1   thorpej 
    635   1.1   thorpej 	mutex_enter(&futex_tab.lock);
    636   1.1   thorpej 	if (__predict_false(f->fx_shared))
    637   1.1   thorpej 		f0 = rb_tree_insert_node(&futex_tab.oa, f);
    638   1.1   thorpej 	else
    639   1.1   thorpej 		f0 = rb_tree_insert_node(&futex_tab.va, f);
    640   1.1   thorpej 	if (f0 == f) {
    641   1.1   thorpej 		f->fx_on_tree = true;
    642   1.1   thorpej 		error = 0;
    643   1.1   thorpej 	} else {
    644   1.1   thorpej 		KASSERT(atomic_load_relaxed(&f0->fx_refcnt) != 0);
    645   1.1   thorpej 		KASSERT(f0->fx_on_tree);
    646   1.1   thorpej 		error = futex_hold(f0);
    647   1.1   thorpej 		if (error)
    648   1.1   thorpej 			goto out;
    649   1.1   thorpej 	}
    650   1.1   thorpej 	*fp = f0;
    651   1.1   thorpej out:	mutex_exit(&futex_tab.lock);
    652   1.1   thorpej 
    653   1.1   thorpej 	return error;
    654   1.1   thorpej }
    655   1.1   thorpej 
    656   1.1   thorpej /*
    657   1.1   thorpej  * futex_lookup(uaddr, shared, &f)
    658   1.1   thorpej  *
    659   1.1   thorpej  *	Find a futex at the userland pointer uaddr in the current
    660   1.1   thorpej  *	process's VM space.  On success, return the futex in f and
    661   1.1   thorpej  *	increment its reference count.
    662   1.1   thorpej  *
    663   1.5  riastrad  *	Caller must call futex_rele when done.
    664   1.1   thorpej  */
    665   1.1   thorpej static int
    666   1.1   thorpej futex_lookup(int *uaddr, bool shared, struct futex **fp)
    667   1.1   thorpej {
    668   1.1   thorpej 	union futex_key fk;
    669   1.1   thorpej 	struct vmspace *vm = curproc->p_vmspace;
    670   1.1   thorpej 	vaddr_t va = (vaddr_t)uaddr;
    671   1.1   thorpej 	int error;
    672   1.1   thorpej 
    673   1.1   thorpej 	/*
    674   1.1   thorpej 	 * Reject unaligned user pointers so we don't cross page
    675   1.1   thorpej 	 * boundaries and so atomics will work.
    676   1.1   thorpej 	 */
    677   1.1   thorpej 	if ((va & 3) != 0)
    678   1.1   thorpej 		return EINVAL;
    679   1.1   thorpej 
    680   1.1   thorpej 	/* Look it up. */
    681   1.1   thorpej 	error = futex_key_init(&fk, vm, va, shared);
    682   1.1   thorpej 	if (error)
    683   1.1   thorpej 		return error;
    684   1.1   thorpej 
    685   1.1   thorpej 	error = futex_lookup_by_key(&fk, shared, fp);
    686   1.1   thorpej 	futex_key_fini(&fk, shared);
    687   1.1   thorpej 	if (error)
    688   1.1   thorpej 		return error;
    689   1.1   thorpej 
    690   1.1   thorpej 	KASSERT(*fp == NULL || (*fp)->fx_shared == shared);
    691   1.1   thorpej 	KASSERT(*fp == NULL || atomic_load_relaxed(&(*fp)->fx_refcnt) != 0);
    692   1.1   thorpej 
    693   1.1   thorpej 	/*
    694   1.1   thorpej 	 * Success!  (Caller must still check whether we found
    695   1.1   thorpej 	 * anything, but nothing went _wrong_ like trying to use
    696   1.1   thorpej 	 * unmapped memory.)
    697   1.1   thorpej 	 */
    698   1.1   thorpej 	KASSERT(error == 0);
    699   1.1   thorpej 
    700   1.1   thorpej 	return error;
    701   1.1   thorpej }
    702   1.1   thorpej 
    703   1.1   thorpej /*
    704   1.5  riastrad  * futex_lookup_create(uaddr, shared, &f)
    705   1.1   thorpej  *
    706   1.1   thorpej  *	Find or create a futex at the userland pointer uaddr in the
    707   1.1   thorpej  *	current process's VM space.  On success, return the futex in f
    708   1.1   thorpej  *	and increment its reference count.
    709   1.1   thorpej  *
    710   1.5  riastrad  *	Caller must call futex_rele when done.
    711   1.1   thorpej  */
    712   1.1   thorpej static int
    713   1.5  riastrad futex_lookup_create(int *uaddr, bool shared, struct futex **fp)
    714   1.1   thorpej {
    715   1.1   thorpej 	union futex_key fk;
    716   1.1   thorpej 	struct vmspace *vm = curproc->p_vmspace;
    717   1.1   thorpej 	struct futex *f = NULL;
    718   1.1   thorpej 	vaddr_t va = (vaddr_t)uaddr;
    719   1.1   thorpej 	int error;
    720   1.1   thorpej 
    721   1.1   thorpej 	/*
    722   1.1   thorpej 	 * Reject unaligned user pointers so we don't cross page
    723   1.1   thorpej 	 * boundaries and so atomics will work.
    724   1.1   thorpej 	 */
    725   1.1   thorpej 	if ((va & 3) != 0)
    726   1.1   thorpej 		return EINVAL;
    727   1.1   thorpej 
    728   1.1   thorpej 	error = futex_key_init(&fk, vm, va, shared);
    729   1.1   thorpej 	if (error)
    730   1.1   thorpej 		return error;
    731   1.1   thorpej 
    732   1.1   thorpej 	/*
    733   1.1   thorpej 	 * Optimistically assume there already is one, and try to find
    734   1.1   thorpej 	 * it.
    735   1.1   thorpej 	 */
    736   1.1   thorpej 	error = futex_lookup_by_key(&fk, shared, fp);
    737   1.1   thorpej 	if (error || *fp != NULL) {
    738   1.1   thorpej 		/*
    739   1.1   thorpej 		 * We either found one, or there was an error.
    740   1.1   thorpej 		 * In either case, we are done with the key.
    741   1.1   thorpej 		 */
    742   1.1   thorpej 		futex_key_fini(&fk, shared);
    743   1.1   thorpej 		goto out;
    744   1.1   thorpej 	}
    745   1.1   thorpej 
    746   1.1   thorpej 	/*
    747   1.1   thorpej 	 * Create a futex recoard.  This tranfers ownership of the key
    748   1.1   thorpej 	 * in all cases.
    749   1.1   thorpej 	 */
    750   1.1   thorpej 	f = futex_create(&fk, shared);
    751   1.1   thorpej 	if (f == NULL) {
    752   1.1   thorpej 		error = ENOMEM;
    753   1.1   thorpej 		goto out;
    754   1.1   thorpej 	}
    755   1.1   thorpej 
    756   1.1   thorpej 	/*
    757   1.1   thorpej 	 * Insert our new futex, or use existing if someone else beat
    758   1.1   thorpej 	 * us to it.
    759   1.1   thorpej 	 */
    760   1.1   thorpej 	error = futex_insert(f, fp);
    761   1.1   thorpej 	if (error)
    762   1.1   thorpej 		goto out;
    763   1.1   thorpej 	if (*fp == f)
    764   1.1   thorpej 		f = NULL;	/* don't release on exit */
    765   1.1   thorpej 
    766   1.1   thorpej 	/* Success!  */
    767   1.1   thorpej 	KASSERT(error == 0);
    768   1.1   thorpej 
    769   1.1   thorpej out:	if (f != NULL)
    770   1.1   thorpej 		futex_rele(f);
    771   1.1   thorpej 	KASSERT(error || *fp != NULL);
    772   1.1   thorpej 	KASSERT(error || atomic_load_relaxed(&(*fp)->fx_refcnt) != 0);
    773   1.1   thorpej 	return error;
    774   1.1   thorpej }
    775   1.1   thorpej 
    776   1.1   thorpej /*
    777   1.1   thorpej  * futex_wait_init(fw, bitset)
    778   1.1   thorpej  *
    779   1.1   thorpej  *	Initialize a record for a thread to wait on a futex matching
    780   1.1   thorpej  *	the specified bit set.  Should be passed to futex_wait_enqueue
    781   1.1   thorpej  *	before futex_wait, and should be passed to futex_wait_fini when
    782   1.1   thorpej  *	done.
    783   1.1   thorpej  */
    784   1.1   thorpej static void
    785   1.1   thorpej futex_wait_init(struct futex_wait *fw, int bitset)
    786   1.1   thorpej {
    787   1.1   thorpej 
    788   1.6  riastrad 	KASSERT(bitset);
    789   1.6  riastrad 
    790   1.1   thorpej 	mutex_init(&fw->fw_lock, MUTEX_DEFAULT, IPL_NONE);
    791   1.1   thorpej 	cv_init(&fw->fw_cv, "futex");
    792   1.1   thorpej 	fw->fw_futex = NULL;
    793   1.1   thorpej 	fw->fw_bitset = bitset;
    794   1.4  riastrad 	fw->fw_aborting = false;
    795   1.1   thorpej }
    796   1.1   thorpej 
    797   1.1   thorpej /*
    798   1.1   thorpej  * futex_wait_fini(fw)
    799   1.1   thorpej  *
    800   1.1   thorpej  *	Finalize a record for a futex waiter.  Must not be on any
    801   1.1   thorpej  *	futex's queue.
    802   1.1   thorpej  */
    803   1.1   thorpej static void
    804   1.1   thorpej futex_wait_fini(struct futex_wait *fw)
    805   1.1   thorpej {
    806   1.1   thorpej 
    807   1.6  riastrad 	KASSERT(fw->fw_futex == NULL);
    808   1.6  riastrad 
    809   1.1   thorpej 	cv_destroy(&fw->fw_cv);
    810   1.1   thorpej 	mutex_destroy(&fw->fw_lock);
    811   1.1   thorpej }
    812   1.1   thorpej 
    813   1.1   thorpej /*
    814   1.1   thorpej  * futex_wait_enqueue(fw, f)
    815   1.1   thorpej  *
    816   1.1   thorpej  *	Put fw on the futex queue.  Must be done before futex_wait.
    817   1.1   thorpej  *	Caller must hold fw's lock and f's lock, and fw must not be on
    818   1.1   thorpej  *	any existing futex's waiter list.
    819   1.1   thorpej  */
    820   1.1   thorpej static void
    821   1.1   thorpej futex_wait_enqueue(struct futex_wait *fw, struct futex *f)
    822   1.1   thorpej {
    823   1.1   thorpej 
    824   1.1   thorpej 	KASSERT(mutex_owned(&f->fx_qlock));
    825   1.1   thorpej 	KASSERT(mutex_owned(&fw->fw_lock));
    826   1.1   thorpej 	KASSERT(fw->fw_futex == NULL);
    827   1.4  riastrad 	KASSERT(!fw->fw_aborting);
    828   1.1   thorpej 
    829   1.1   thorpej 	fw->fw_futex = f;
    830   1.1   thorpej 	TAILQ_INSERT_TAIL(&f->fx_queue, fw, fw_entry);
    831   1.1   thorpej }
    832   1.1   thorpej 
    833   1.1   thorpej /*
    834   1.1   thorpej  * futex_wait_dequeue(fw, f)
    835   1.1   thorpej  *
    836   1.1   thorpej  *	Remove fw from the futex queue.  Precludes subsequent
    837   1.1   thorpej  *	futex_wait until a futex_wait_enqueue.  Caller must hold fw's
    838   1.1   thorpej  *	lock and f's lock, and fw must be on f.
    839   1.1   thorpej  */
    840   1.1   thorpej static void
    841   1.1   thorpej futex_wait_dequeue(struct futex_wait *fw, struct futex *f)
    842   1.1   thorpej {
    843   1.1   thorpej 
    844   1.1   thorpej 	KASSERT(mutex_owned(&f->fx_qlock));
    845   1.1   thorpej 	KASSERT(mutex_owned(&fw->fw_lock));
    846   1.1   thorpej 	KASSERT(fw->fw_futex == f);
    847   1.1   thorpej 
    848   1.1   thorpej 	TAILQ_REMOVE(&f->fx_queue, fw, fw_entry);
    849   1.1   thorpej 	fw->fw_futex = NULL;
    850   1.1   thorpej }
    851   1.1   thorpej 
    852   1.1   thorpej /*
    853   1.1   thorpej  * futex_wait_abort(fw)
    854   1.1   thorpej  *
    855   1.1   thorpej  *	Caller is no longer waiting for fw.  Remove it from any queue
    856   1.4  riastrad  *	if it was on one.  Caller must hold fw->fw_lock.
    857   1.1   thorpej  */
    858   1.1   thorpej static void
    859   1.1   thorpej futex_wait_abort(struct futex_wait *fw)
    860   1.1   thorpej {
    861   1.1   thorpej 	struct futex *f;
    862   1.1   thorpej 
    863   1.4  riastrad 	KASSERT(mutex_owned(&fw->fw_lock));
    864   1.1   thorpej 
    865   1.1   thorpej 	/*
    866   1.1   thorpej 	 * Grab the futex queue.  It can't go away as long as we hold
    867   1.1   thorpej 	 * fw_lock.  However, we can't take the queue lock because
    868   1.1   thorpej 	 * that's a lock order reversal.
    869   1.1   thorpej 	 */
    870   1.1   thorpej 	f = fw->fw_futex;
    871   1.1   thorpej 
    872   1.1   thorpej 	/* Put us on the abort list so that fq won't go away.  */
    873   1.1   thorpej 	mutex_enter(&f->fx_abortlock);
    874   1.1   thorpej 	LIST_INSERT_HEAD(&f->fx_abortlist, fw, fw_abort);
    875   1.1   thorpej 	mutex_exit(&f->fx_abortlock);
    876   1.1   thorpej 
    877   1.4  riastrad 	/*
    878   1.4  riastrad 	 * Mark fw as aborting so it won't lose wakeups and won't be
    879   1.4  riastrad 	 * transferred to any other queue.
    880   1.4  riastrad 	 */
    881   1.4  riastrad 	fw->fw_aborting = true;
    882   1.4  riastrad 
    883   1.1   thorpej 	/* f is now stable, so we can release fw_lock.  */
    884   1.1   thorpej 	mutex_exit(&fw->fw_lock);
    885   1.1   thorpej 
    886   1.1   thorpej 	/* Now we can remove fw under the queue lock.  */
    887   1.1   thorpej 	mutex_enter(&f->fx_qlock);
    888   1.4  riastrad 	mutex_enter(&fw->fw_lock);
    889   1.4  riastrad 	futex_wait_dequeue(fw, f);
    890   1.4  riastrad 	mutex_exit(&fw->fw_lock);
    891   1.1   thorpej 	mutex_exit(&f->fx_qlock);
    892   1.1   thorpej 
    893   1.1   thorpej 	/*
    894   1.1   thorpej 	 * Finally, remove us from the abort list and notify anyone
    895   1.1   thorpej 	 * waiting for the abort to complete if we were the last to go.
    896   1.1   thorpej 	 */
    897   1.1   thorpej 	mutex_enter(&f->fx_abortlock);
    898   1.1   thorpej 	LIST_REMOVE(fw, fw_abort);
    899   1.1   thorpej 	if (LIST_EMPTY(&f->fx_abortlist))
    900   1.1   thorpej 		cv_broadcast(&f->fx_abortcv);
    901   1.1   thorpej 	mutex_exit(&f->fx_abortlock);
    902   1.4  riastrad 
    903   1.4  riastrad 	/*
    904   1.4  riastrad 	 * Release our reference to the futex now that we are not
    905   1.4  riastrad 	 * waiting for it.
    906   1.4  riastrad 	 */
    907   1.4  riastrad 	futex_rele(f);
    908   1.4  riastrad 
    909   1.4  riastrad 	/*
    910   1.4  riastrad 	 * Reacquire the fw lock as caller expects.  Verify that we're
    911   1.4  riastrad 	 * aborting and no longer associated with a futex.
    912   1.4  riastrad 	 */
    913   1.4  riastrad 	mutex_enter(&fw->fw_lock);
    914   1.4  riastrad 	KASSERT(fw->fw_aborting);
    915   1.4  riastrad 	KASSERT(fw->fw_futex == NULL);
    916   1.1   thorpej }
    917   1.1   thorpej 
    918   1.1   thorpej /*
    919  1.11  riastrad  * futex_wait(fw, deadline, clkid)
    920   1.1   thorpej  *
    921  1.11  riastrad  *	fw must be a waiter on a futex's queue.  Wait until deadline on
    922  1.11  riastrad  *	the clock clkid, or forever if deadline is NULL, for a futex
    923  1.11  riastrad  *	wakeup.  Return 0 on explicit wakeup or destruction of futex,
    924  1.11  riastrad  *	ETIMEDOUT on timeout, EINTR/ERESTART on signal.  Either way, fw
    925  1.11  riastrad  *	will no longer be on a futex queue on return.
    926   1.1   thorpej  */
    927   1.1   thorpej static int
    928  1.11  riastrad futex_wait(struct futex_wait *fw, const struct timespec *deadline,
    929  1.11  riastrad     clockid_t clkid)
    930   1.1   thorpej {
    931   1.1   thorpej 	int error = 0;
    932   1.1   thorpej 
    933   1.1   thorpej 	/* Test and wait under the wait lock.  */
    934   1.1   thorpej 	mutex_enter(&fw->fw_lock);
    935   1.4  riastrad 
    936   1.4  riastrad 	for (;;) {
    937  1.11  riastrad 		/* If we're done yet, stop and report success.  */
    938   1.4  riastrad 		if (fw->fw_bitset == 0 || fw->fw_futex == NULL) {
    939   1.4  riastrad 			error = 0;
    940   1.4  riastrad 			break;
    941   1.4  riastrad 		}
    942   1.4  riastrad 
    943   1.4  riastrad 		/* If anything went wrong in the last iteration, stop.  */
    944   1.4  riastrad 		if (error)
    945   1.4  riastrad 			break;
    946   1.4  riastrad 
    947   1.1   thorpej 		/* Not done yet.  Wait.  */
    948  1.11  riastrad 		if (deadline) {
    949  1.11  riastrad 			struct timespec ts;
    950  1.11  riastrad 
    951  1.11  riastrad 			/* Check our watch.  */
    952  1.11  riastrad 			error = clock_gettime1(clkid, &ts);
    953  1.11  riastrad 			if (error)
    954  1.11  riastrad 				break;
    955  1.11  riastrad 
    956  1.11  riastrad 			/* If we're past the deadline, ETIMEDOUT.  */
    957  1.11  riastrad 			if (timespeccmp(deadline, &ts, <=)) {
    958  1.11  riastrad 				error = ETIMEDOUT;
    959  1.11  riastrad 				break;
    960  1.11  riastrad 			}
    961  1.11  riastrad 
    962  1.11  riastrad 			/* Count how much time is left.  */
    963  1.11  riastrad 			timespecsub(deadline, &ts, &ts);
    964  1.11  riastrad 
    965  1.11  riastrad 			/* Wait for that much time, allowing signals.  */
    966  1.11  riastrad 			error = cv_timedwait_sig(&fw->fw_cv, &fw->fw_lock,
    967  1.11  riastrad 			    tstohz(&ts));
    968  1.11  riastrad 		} else {
    969  1.11  riastrad 			/* Wait indefinitely, allowing signals. */
    970  1.11  riastrad 			error = cv_wait_sig(&fw->fw_cv, &fw->fw_lock);
    971  1.11  riastrad 		}
    972   1.1   thorpej 	}
    973   1.4  riastrad 
    974   1.4  riastrad 	/*
    975   1.4  riastrad 	 * If we were woken up, the waker will have removed fw from the
    976   1.4  riastrad 	 * queue.  But if anything went wrong, we must remove fw from
    977   1.4  riastrad 	 * the queue ourselves.  While here, convert EWOULDBLOCK to
    978  1.10  riastrad 	 * ETIMEDOUT.
    979   1.4  riastrad 	 */
    980   1.4  riastrad 	if (error) {
    981   1.4  riastrad 		futex_wait_abort(fw);
    982   1.4  riastrad 		if (error == EWOULDBLOCK)
    983   1.4  riastrad 			error = ETIMEDOUT;
    984   1.4  riastrad 	}
    985   1.4  riastrad 
    986   1.1   thorpej 	mutex_exit(&fw->fw_lock);
    987   1.1   thorpej 
    988   1.1   thorpej 	return error;
    989   1.1   thorpej }
    990   1.1   thorpej 
    991   1.1   thorpej /*
    992   1.1   thorpej  * futex_wake(f, nwake, f2, nrequeue, bitset)
    993   1.1   thorpej  *
    994   1.1   thorpej  *	Wake up to nwake waiters on f matching bitset; then, if f2 is
    995   1.1   thorpej  *	provided, move up to nrequeue remaining waiters on f matching
    996   1.1   thorpej  *	bitset to f2.  Return the number of waiters actually woken.
    997   1.1   thorpej  *	Caller must hold the locks of f and f2, if provided.
    998   1.1   thorpej  */
    999   1.1   thorpej static unsigned
   1000   1.1   thorpej futex_wake(struct futex *f, unsigned nwake, struct futex *f2,
   1001   1.1   thorpej     unsigned nrequeue, int bitset)
   1002   1.1   thorpej {
   1003   1.1   thorpej 	struct futex_wait *fw, *fw_next;
   1004   1.1   thorpej 	unsigned nwoken = 0;
   1005   1.2   mlelstv 	int hold_error __diagused;
   1006   1.1   thorpej 
   1007   1.1   thorpej 	KASSERT(mutex_owned(&f->fx_qlock));
   1008   1.1   thorpej 	KASSERT(f2 == NULL || mutex_owned(&f2->fx_qlock));
   1009   1.1   thorpej 
   1010   1.1   thorpej 	/* Wake up to nwake waiters, and count the number woken.  */
   1011   1.1   thorpej 	TAILQ_FOREACH_SAFE(fw, &f->fx_queue, fw_entry, fw_next) {
   1012   1.1   thorpej 		if ((fw->fw_bitset & bitset) == 0)
   1013   1.1   thorpej 			continue;
   1014   1.4  riastrad 		if (nwake > 0) {
   1015   1.1   thorpej 			mutex_enter(&fw->fw_lock);
   1016   1.4  riastrad 			if (__predict_false(fw->fw_aborting)) {
   1017   1.4  riastrad 				mutex_exit(&fw->fw_lock);
   1018   1.4  riastrad 				continue;
   1019   1.4  riastrad 			}
   1020   1.1   thorpej 			futex_wait_dequeue(fw, f);
   1021   1.1   thorpej 			fw->fw_bitset = 0;
   1022   1.1   thorpej 			cv_broadcast(&fw->fw_cv);
   1023   1.1   thorpej 			mutex_exit(&fw->fw_lock);
   1024   1.4  riastrad 			nwake--;
   1025   1.1   thorpej 			nwoken++;
   1026   1.1   thorpej 			/*
   1027   1.1   thorpej 			 * Drop the futex reference on behalf of the
   1028   1.1   thorpej 			 * waiter.  We assert this is not the last
   1029   1.1   thorpej 			 * reference on the futex (our caller should
   1030   1.1   thorpej 			 * also have one).
   1031   1.1   thorpej 			 */
   1032   1.1   thorpej 			futex_rele_not_last(f);
   1033   1.1   thorpej 		} else {
   1034   1.1   thorpej 			break;
   1035   1.1   thorpej 		}
   1036   1.1   thorpej 	}
   1037   1.1   thorpej 
   1038   1.1   thorpej 	if (f2) {
   1039   1.1   thorpej 		/* Move up to nrequeue waiters from f's queue to f2's queue. */
   1040   1.1   thorpej 		TAILQ_FOREACH_SAFE(fw, &f->fx_queue, fw_entry, fw_next) {
   1041   1.1   thorpej 			if ((fw->fw_bitset & bitset) == 0)
   1042   1.1   thorpej 				continue;
   1043   1.4  riastrad 			if (nrequeue > 0) {
   1044   1.1   thorpej 				mutex_enter(&fw->fw_lock);
   1045   1.4  riastrad 				if (__predict_false(fw->fw_aborting)) {
   1046   1.4  riastrad 					mutex_exit(&fw->fw_lock);
   1047   1.4  riastrad 					continue;
   1048   1.4  riastrad 				}
   1049   1.1   thorpej 				futex_wait_dequeue(fw, f);
   1050   1.1   thorpej 				futex_wait_enqueue(fw, f2);
   1051   1.1   thorpej 				mutex_exit(&fw->fw_lock);
   1052   1.4  riastrad 				nrequeue--;
   1053   1.1   thorpej 				/*
   1054   1.1   thorpej 				 * Transfer the reference from f to f2.
   1055   1.1   thorpej 				 * As above, we assert that we are not
   1056   1.1   thorpej 				 * dropping the last reference to f here.
   1057   1.1   thorpej 				 *
   1058   1.1   thorpej 				 * XXX futex_hold() could theoretically
   1059   1.1   thorpej 				 * XXX fail here.
   1060   1.1   thorpej 				 */
   1061   1.1   thorpej 				futex_rele_not_last(f);
   1062   1.1   thorpej 				hold_error = futex_hold(f2);
   1063   1.1   thorpej 				KASSERT(hold_error == 0);
   1064   1.1   thorpej 			} else {
   1065   1.1   thorpej 				break;
   1066   1.1   thorpej 			}
   1067   1.1   thorpej 		}
   1068   1.1   thorpej 	} else {
   1069   1.1   thorpej 		KASSERT(nrequeue == 0);
   1070   1.1   thorpej 	}
   1071   1.1   thorpej 
   1072   1.1   thorpej 	/* Return the number of waiters woken.  */
   1073   1.1   thorpej 	return nwoken;
   1074   1.1   thorpej }
   1075   1.1   thorpej 
   1076   1.1   thorpej /*
   1077   1.1   thorpej  * futex_queue_lock(f)
   1078   1.1   thorpej  *
   1079   1.1   thorpej  *	Acquire the queue lock of f.  Pair with futex_queue_unlock.  Do
   1080   1.1   thorpej  *	not use if caller needs to acquire two locks; use
   1081   1.1   thorpej  *	futex_queue_lock2 instead.
   1082   1.1   thorpej  */
   1083   1.1   thorpej static void
   1084   1.1   thorpej futex_queue_lock(struct futex *f)
   1085   1.1   thorpej {
   1086   1.1   thorpej 	mutex_enter(&f->fx_qlock);
   1087   1.1   thorpej }
   1088   1.1   thorpej 
   1089   1.1   thorpej /*
   1090   1.1   thorpej  * futex_queue_unlock(f)
   1091   1.1   thorpej  *
   1092   1.1   thorpej  *	Release the queue lock of f.
   1093   1.1   thorpej  */
   1094   1.1   thorpej static void
   1095   1.1   thorpej futex_queue_unlock(struct futex *f)
   1096   1.1   thorpej {
   1097   1.1   thorpej 	mutex_exit(&f->fx_qlock);
   1098   1.1   thorpej }
   1099   1.1   thorpej 
   1100   1.1   thorpej /*
   1101   1.1   thorpej  * futex_queue_lock2(f, f2)
   1102   1.1   thorpej  *
   1103   1.1   thorpej  *	Acquire the queue locks of both f and f2, which may be null, or
   1104   1.1   thorpej  *	which may have the same underlying queue.  If they are
   1105   1.1   thorpej  *	distinct, an arbitrary total order is chosen on the locks.
   1106   1.1   thorpej  *
   1107   1.1   thorpej  *	Callers should only ever acquire multiple queue locks
   1108   1.1   thorpej  *	simultaneously using futex_queue_lock2.
   1109   1.1   thorpej  */
   1110   1.1   thorpej static void
   1111   1.1   thorpej futex_queue_lock2(struct futex *f, struct futex *f2)
   1112   1.1   thorpej {
   1113   1.1   thorpej 
   1114   1.1   thorpej 	/*
   1115   1.1   thorpej 	 * If both are null, do nothing; if one is null and the other
   1116   1.1   thorpej 	 * is not, lock the other and be done with it.
   1117   1.1   thorpej 	 */
   1118   1.1   thorpej 	if (f == NULL && f2 == NULL) {
   1119   1.1   thorpej 		return;
   1120   1.1   thorpej 	} else if (f == NULL) {
   1121   1.1   thorpej 		mutex_enter(&f2->fx_qlock);
   1122   1.1   thorpej 		return;
   1123   1.1   thorpej 	} else if (f2 == NULL) {
   1124   1.1   thorpej 		mutex_enter(&f->fx_qlock);
   1125   1.1   thorpej 		return;
   1126   1.1   thorpej 	}
   1127   1.1   thorpej 
   1128   1.1   thorpej 	/* If both futexes are the same, acquire only one. */
   1129   1.1   thorpej 	if (f == f2) {
   1130   1.1   thorpej 		mutex_enter(&f->fx_qlock);
   1131   1.1   thorpej 		return;
   1132   1.1   thorpej 	}
   1133   1.1   thorpej 
   1134   1.1   thorpej 	/* Otherwise, use the ordering on the kva of the futex pointer.  */
   1135   1.1   thorpej 	if ((uintptr_t)f < (uintptr_t)f2) {
   1136   1.1   thorpej 		mutex_enter(&f->fx_qlock);
   1137   1.1   thorpej 		mutex_enter(&f2->fx_qlock);
   1138   1.1   thorpej 	} else {
   1139   1.1   thorpej 		mutex_enter(&f2->fx_qlock);
   1140   1.1   thorpej 		mutex_enter(&f->fx_qlock);
   1141   1.1   thorpej 	}
   1142   1.1   thorpej }
   1143   1.1   thorpej 
   1144   1.1   thorpej /*
   1145   1.1   thorpej  * futex_queue_unlock2(f, f2)
   1146   1.1   thorpej  *
   1147   1.1   thorpej  *	Release the queue locks of both f and f2, which may be null, or
   1148   1.1   thorpej  *	which may have the same underlying queue.
   1149   1.1   thorpej  */
   1150   1.1   thorpej static void
   1151   1.1   thorpej futex_queue_unlock2(struct futex *f, struct futex *f2)
   1152   1.1   thorpej {
   1153   1.1   thorpej 
   1154   1.1   thorpej 	/*
   1155   1.1   thorpej 	 * If both are null, do nothing; if one is null and the other
   1156   1.1   thorpej 	 * is not, unlock the other and be done with it.
   1157   1.1   thorpej 	 */
   1158   1.1   thorpej 	if (f == NULL && f2 == NULL) {
   1159   1.1   thorpej 		return;
   1160   1.1   thorpej 	} else if (f == NULL) {
   1161   1.1   thorpej 		mutex_exit(&f2->fx_qlock);
   1162   1.1   thorpej 		return;
   1163   1.1   thorpej 	} else if (f2 == NULL) {
   1164   1.1   thorpej 		mutex_exit(&f->fx_qlock);
   1165   1.1   thorpej 		return;
   1166   1.1   thorpej 	}
   1167   1.1   thorpej 
   1168   1.1   thorpej 	/* If both futexes are the same, release only one. */
   1169   1.1   thorpej 	if (f == f2) {
   1170   1.1   thorpej 		mutex_exit(&f->fx_qlock);
   1171   1.1   thorpej 		return;
   1172   1.1   thorpej 	}
   1173   1.1   thorpej 
   1174   1.1   thorpej 	/* Otherwise, use the ordering on the kva of the futex pointer.  */
   1175   1.1   thorpej 	if ((uintptr_t)f < (uintptr_t)f2) {
   1176   1.1   thorpej 		mutex_exit(&f2->fx_qlock);
   1177   1.1   thorpej 		mutex_exit(&f->fx_qlock);
   1178   1.1   thorpej 	} else {
   1179   1.1   thorpej 		mutex_exit(&f->fx_qlock);
   1180   1.1   thorpej 		mutex_exit(&f2->fx_qlock);
   1181   1.1   thorpej 	}
   1182   1.1   thorpej }
   1183   1.1   thorpej 
   1184   1.1   thorpej /*
   1185   1.1   thorpej  * futex_func_wait(uaddr, val, val3, timeout, clkid, clkflags, retval)
   1186   1.1   thorpej  *
   1187   1.1   thorpej  *	Implement futex(FUTEX_WAIT).
   1188   1.1   thorpej  */
   1189   1.1   thorpej static int
   1190   1.1   thorpej futex_func_wait(bool shared, int *uaddr, int val, int val3,
   1191  1.11  riastrad     const struct timespec *timeout, clockid_t clkid, int clkflags,
   1192   1.1   thorpej     register_t *retval)
   1193   1.1   thorpej {
   1194   1.1   thorpej 	struct futex *f;
   1195   1.1   thorpej 	struct futex_wait wait, *fw = &wait;
   1196  1.11  riastrad 	struct timespec ts;
   1197  1.11  riastrad 	const struct timespec *deadline;
   1198   1.1   thorpej 	int error;
   1199   1.1   thorpej 
   1200   1.6  riastrad 	/*
   1201   1.6  riastrad 	 * If there's nothing to wait for, and nobody will ever wake
   1202   1.6  riastrad 	 * us, then don't set anything up to wait -- just stop here.
   1203   1.6  riastrad 	 */
   1204   1.6  riastrad 	if (val3 == 0)
   1205   1.7  riastrad 		return EINVAL;
   1206   1.6  riastrad 
   1207   1.1   thorpej 	/* Optimistically test before anything else.  */
   1208   1.1   thorpej 	if (!futex_test(uaddr, val))
   1209   1.1   thorpej 		return EAGAIN;
   1210   1.1   thorpej 
   1211  1.11  riastrad 	/* Determine a deadline on the specified clock.  */
   1212  1.11  riastrad 	if (timeout == NULL || (clkflags & TIMER_ABSTIME) == TIMER_ABSTIME) {
   1213  1.11  riastrad 		deadline = timeout;
   1214  1.11  riastrad 	} else {
   1215  1.11  riastrad 		error = clock_gettime1(clkid, &ts);
   1216  1.11  riastrad 		if (error)
   1217  1.11  riastrad 			return error;
   1218  1.11  riastrad 		timespecadd(&ts, timeout, &ts);
   1219  1.11  riastrad 		deadline = &ts;
   1220  1.11  riastrad 	}
   1221  1.11  riastrad 
   1222   1.1   thorpej 	/* Get the futex, creating it if necessary.  */
   1223   1.5  riastrad 	error = futex_lookup_create(uaddr, shared, &f);
   1224   1.1   thorpej 	if (error)
   1225   1.1   thorpej 		return error;
   1226   1.1   thorpej 	KASSERT(f);
   1227   1.1   thorpej 
   1228   1.1   thorpej 	/* Get ready to wait.  */
   1229   1.1   thorpej 	futex_wait_init(fw, val3);
   1230   1.1   thorpej 
   1231   1.1   thorpej 	/*
   1232   1.1   thorpej 	 * Under the queue lock, check the value again: if it has
   1233   1.1   thorpej 	 * already changed, EAGAIN; otherwise enqueue the waiter.
   1234   1.1   thorpej 	 * Since FUTEX_WAKE will use the same lock and be done after
   1235   1.1   thorpej 	 * modifying the value, the order in which we check and enqueue
   1236   1.1   thorpej 	 * is immaterial.
   1237   1.1   thorpej 	 */
   1238   1.1   thorpej 	futex_queue_lock(f);
   1239   1.1   thorpej 	if (!futex_test(uaddr, val)) {
   1240   1.1   thorpej 		futex_queue_unlock(f);
   1241   1.1   thorpej 		error = EAGAIN;
   1242   1.1   thorpej 		goto out;
   1243   1.1   thorpej 	}
   1244   1.1   thorpej 	mutex_enter(&fw->fw_lock);
   1245   1.1   thorpej 	futex_wait_enqueue(fw, f);
   1246   1.1   thorpej 	mutex_exit(&fw->fw_lock);
   1247   1.1   thorpej 	futex_queue_unlock(f);
   1248   1.1   thorpej 
   1249   1.1   thorpej 	/*
   1250   1.1   thorpej 	 * We cannot drop our reference to the futex here, because
   1251   1.1   thorpej 	 * we might be enqueued on a different one when we are awakened.
   1252   1.1   thorpej 	 * The references will be managed on our behalf in the requeue
   1253   1.1   thorpej 	 * and wake cases.
   1254   1.1   thorpej 	 */
   1255   1.1   thorpej 	f = NULL;
   1256   1.1   thorpej 
   1257   1.1   thorpej 	/* Wait. */
   1258  1.11  riastrad 	error = futex_wait(fw, deadline, clkid);
   1259   1.4  riastrad 	if (error)
   1260   1.1   thorpej 		goto out;
   1261   1.1   thorpej 
   1262   1.1   thorpej 	/* Return 0 on success, error on failure. */
   1263   1.1   thorpej 	*retval = 0;
   1264   1.1   thorpej 
   1265   1.1   thorpej out:	if (f != NULL)
   1266   1.5  riastrad 		futex_rele(f);
   1267   1.1   thorpej 	futex_wait_fini(fw);
   1268   1.1   thorpej 	return error;
   1269   1.1   thorpej }
   1270   1.1   thorpej 
   1271   1.1   thorpej /*
   1272   1.1   thorpej  * futex_func_wake(uaddr, val, val3, retval)
   1273   1.1   thorpej  *
   1274   1.1   thorpej  *	Implement futex(FUTEX_WAKE) and futex(FUTEX_WAKE_BITSET).
   1275   1.1   thorpej  */
   1276   1.1   thorpej static int
   1277   1.1   thorpej futex_func_wake(bool shared, int *uaddr, int val, int val3, register_t *retval)
   1278   1.1   thorpej {
   1279   1.1   thorpej 	struct futex *f;
   1280   1.1   thorpej 	unsigned int nwoken = 0;
   1281   1.1   thorpej 	int error = 0;
   1282   1.1   thorpej 
   1283   1.1   thorpej 	/* Reject negative number of wakeups.  */
   1284   1.1   thorpej 	if (val < 0) {
   1285   1.1   thorpej 		error = EINVAL;
   1286   1.1   thorpej 		goto out;
   1287   1.1   thorpej 	}
   1288   1.1   thorpej 
   1289   1.1   thorpej 	/* Look up the futex, if any.  */
   1290   1.1   thorpej 	error = futex_lookup(uaddr, shared, &f);
   1291   1.1   thorpej 	if (error)
   1292   1.1   thorpej 		goto out;
   1293   1.1   thorpej 
   1294   1.1   thorpej 	/* If there's no futex, there are no waiters to wake.  */
   1295   1.1   thorpej 	if (f == NULL)
   1296   1.1   thorpej 		goto out;
   1297   1.1   thorpej 
   1298   1.1   thorpej 	/*
   1299   1.1   thorpej 	 * Under f's queue lock, wake the waiters and remember the
   1300   1.1   thorpej 	 * number woken.
   1301   1.1   thorpej 	 */
   1302   1.1   thorpej 	futex_queue_lock(f);
   1303   1.1   thorpej 	nwoken = futex_wake(f, val, NULL, 0, val3);
   1304   1.1   thorpej 	futex_queue_unlock(f);
   1305   1.1   thorpej 
   1306   1.1   thorpej 	/* Release the futex.  */
   1307   1.5  riastrad 	futex_rele(f);
   1308   1.1   thorpej 
   1309   1.1   thorpej out:
   1310   1.1   thorpej 	/* Return the number of waiters woken.  */
   1311   1.1   thorpej 	*retval = nwoken;
   1312   1.1   thorpej 
   1313   1.1   thorpej 	/* Success!  */
   1314   1.1   thorpej 	return error;
   1315   1.1   thorpej }
   1316   1.1   thorpej 
   1317   1.1   thorpej /*
   1318   1.1   thorpej  * futex_func_requeue(op, uaddr, val, uaddr2, val2, val3, retval)
   1319   1.1   thorpej  *
   1320   1.1   thorpej  *	Implement futex(FUTEX_REQUEUE) and futex(FUTEX_CMP_REQUEUE).
   1321   1.1   thorpej  */
   1322   1.1   thorpej static int
   1323   1.1   thorpej futex_func_requeue(bool shared, int op, int *uaddr, int val, int *uaddr2,
   1324   1.1   thorpej     int val2, int val3, register_t *retval)
   1325   1.1   thorpej {
   1326   1.1   thorpej 	struct futex *f = NULL, *f2 = NULL;
   1327   1.1   thorpej 	unsigned nwoken = 0;	/* default to zero woken on early return */
   1328   1.1   thorpej 	int error;
   1329   1.1   thorpej 
   1330   1.1   thorpej 	/* Reject negative number of wakeups or requeues. */
   1331   1.1   thorpej 	if (val < 0 || val2 < 0) {
   1332   1.1   thorpej 		error = EINVAL;
   1333   1.1   thorpej 		goto out;
   1334   1.1   thorpej 	}
   1335   1.1   thorpej 
   1336   1.1   thorpej 	/* Look up the source futex, if any. */
   1337   1.1   thorpej 	error = futex_lookup(uaddr, shared, &f);
   1338   1.1   thorpej 	if (error)
   1339   1.1   thorpej 		goto out;
   1340   1.1   thorpej 
   1341   1.1   thorpej 	/* If there is none, nothing to do. */
   1342   1.1   thorpej 	if (f == NULL)
   1343   1.1   thorpej 		goto out;
   1344   1.1   thorpej 
   1345   1.1   thorpej 	/*
   1346   1.1   thorpej 	 * We may need to create the destination futex because it's
   1347   1.1   thorpej 	 * entirely possible it does not currently have any waiters.
   1348   1.1   thorpej 	 */
   1349   1.5  riastrad 	error = futex_lookup_create(uaddr2, shared, &f2);
   1350   1.1   thorpej 	if (error)
   1351   1.1   thorpej 		goto out;
   1352   1.1   thorpej 
   1353   1.1   thorpej 	/*
   1354   1.1   thorpej 	 * Under the futexes' queue locks, check the value; if
   1355   1.1   thorpej 	 * unchanged from val3, wake the waiters.
   1356   1.1   thorpej 	 */
   1357   1.1   thorpej 	futex_queue_lock2(f, f2);
   1358   1.1   thorpej 	if (op == FUTEX_CMP_REQUEUE && !futex_test(uaddr, val3)) {
   1359   1.1   thorpej 		error = EAGAIN;
   1360   1.1   thorpej 	} else {
   1361   1.1   thorpej 		error = 0;
   1362   1.1   thorpej 		nwoken = futex_wake(f, val, f2, val2, FUTEX_BITSET_MATCH_ANY);
   1363   1.1   thorpej 	}
   1364   1.1   thorpej 	futex_queue_unlock2(f, f2);
   1365   1.1   thorpej 
   1366   1.1   thorpej out:
   1367   1.1   thorpej 	/* Return the number of waiters woken.  */
   1368   1.1   thorpej 	*retval = nwoken;
   1369   1.1   thorpej 
   1370   1.1   thorpej 	/* Release the futexes if we got them.  */
   1371   1.1   thorpej 	if (f2)
   1372   1.5  riastrad 		futex_rele(f2);
   1373   1.1   thorpej 	if (f)
   1374   1.5  riastrad 		futex_rele(f);
   1375   1.1   thorpej 	return error;
   1376   1.1   thorpej }
   1377   1.1   thorpej 
   1378   1.1   thorpej /*
   1379   1.1   thorpej  * futex_validate_op_cmp(val3)
   1380   1.1   thorpej  *
   1381   1.1   thorpej  *	Validate an op/cmp argument for FUTEX_WAKE_OP.
   1382   1.1   thorpej  */
   1383   1.1   thorpej static int
   1384   1.1   thorpej futex_validate_op_cmp(int val3)
   1385   1.1   thorpej {
   1386   1.1   thorpej 	int op = __SHIFTOUT(val3, FUTEX_OP_OP_MASK);
   1387   1.1   thorpej 	int cmp = __SHIFTOUT(val3, FUTEX_OP_CMP_MASK);
   1388   1.1   thorpej 
   1389   1.1   thorpej 	if (op & FUTEX_OP_OPARG_SHIFT) {
   1390   1.1   thorpej 		int oparg = __SHIFTOUT(val3, FUTEX_OP_OPARG_MASK);
   1391   1.1   thorpej 		if (oparg < 0)
   1392   1.1   thorpej 			return EINVAL;
   1393   1.1   thorpej 		if (oparg >= 32)
   1394   1.1   thorpej 			return EINVAL;
   1395   1.1   thorpej 		op &= ~FUTEX_OP_OPARG_SHIFT;
   1396   1.1   thorpej 	}
   1397   1.1   thorpej 
   1398   1.1   thorpej 	switch (op) {
   1399   1.1   thorpej 	case FUTEX_OP_SET:
   1400   1.1   thorpej 	case FUTEX_OP_ADD:
   1401   1.1   thorpej 	case FUTEX_OP_OR:
   1402   1.1   thorpej 	case FUTEX_OP_ANDN:
   1403   1.1   thorpej 	case FUTEX_OP_XOR:
   1404   1.1   thorpej 		break;
   1405   1.1   thorpej 	default:
   1406   1.1   thorpej 		return EINVAL;
   1407   1.1   thorpej 	}
   1408   1.1   thorpej 
   1409   1.1   thorpej 	switch (cmp) {
   1410   1.1   thorpej 	case FUTEX_OP_CMP_EQ:
   1411   1.1   thorpej 	case FUTEX_OP_CMP_NE:
   1412   1.1   thorpej 	case FUTEX_OP_CMP_LT:
   1413   1.1   thorpej 	case FUTEX_OP_CMP_LE:
   1414   1.1   thorpej 	case FUTEX_OP_CMP_GT:
   1415   1.1   thorpej 	case FUTEX_OP_CMP_GE:
   1416   1.1   thorpej 		break;
   1417   1.1   thorpej 	default:
   1418   1.1   thorpej 		return EINVAL;
   1419   1.1   thorpej 	}
   1420   1.1   thorpej 
   1421   1.1   thorpej 	return 0;
   1422   1.1   thorpej }
   1423   1.1   thorpej 
   1424   1.1   thorpej /*
   1425   1.1   thorpej  * futex_compute_op(oldval, val3)
   1426   1.1   thorpej  *
   1427   1.1   thorpej  *	Apply a FUTEX_WAIT_OP operation to oldval.
   1428   1.1   thorpej  */
   1429   1.1   thorpej static int
   1430   1.1   thorpej futex_compute_op(int oldval, int val3)
   1431   1.1   thorpej {
   1432   1.1   thorpej 	int op = __SHIFTOUT(val3, FUTEX_OP_OP_MASK);
   1433   1.1   thorpej 	int oparg = __SHIFTOUT(val3, FUTEX_OP_OPARG_MASK);
   1434   1.1   thorpej 
   1435   1.1   thorpej 	if (op & FUTEX_OP_OPARG_SHIFT) {
   1436   1.1   thorpej 		KASSERT(oparg >= 0);
   1437   1.1   thorpej 		KASSERT(oparg < 32);
   1438   1.1   thorpej 		oparg = 1u << oparg;
   1439   1.1   thorpej 		op &= ~FUTEX_OP_OPARG_SHIFT;
   1440   1.1   thorpej 	}
   1441   1.1   thorpej 
   1442   1.1   thorpej 	switch (op) {
   1443   1.1   thorpej 	case FUTEX_OP_SET:
   1444   1.1   thorpej 		return oparg;
   1445   1.1   thorpej 
   1446   1.1   thorpej 	case FUTEX_OP_ADD:
   1447   1.1   thorpej 		/*
   1448   1.1   thorpej 		 * Avoid signed arithmetic overflow by doing
   1449   1.1   thorpej 		 * arithmetic unsigned and converting back to signed
   1450   1.1   thorpej 		 * at the end.
   1451   1.1   thorpej 		 */
   1452   1.1   thorpej 		return (int)((unsigned)oldval + (unsigned)oparg);
   1453   1.1   thorpej 
   1454   1.1   thorpej 	case FUTEX_OP_OR:
   1455   1.1   thorpej 		return oldval | oparg;
   1456   1.1   thorpej 
   1457   1.1   thorpej 	case FUTEX_OP_ANDN:
   1458   1.1   thorpej 		return oldval & ~oparg;
   1459   1.1   thorpej 
   1460   1.1   thorpej 	case FUTEX_OP_XOR:
   1461   1.1   thorpej 		return oldval ^ oparg;
   1462   1.1   thorpej 
   1463   1.1   thorpej 	default:
   1464   1.1   thorpej 		panic("invalid futex op");
   1465   1.1   thorpej 	}
   1466   1.1   thorpej }
   1467   1.1   thorpej 
   1468   1.1   thorpej /*
   1469   1.1   thorpej  * futex_compute_cmp(oldval, val3)
   1470   1.1   thorpej  *
   1471   1.1   thorpej  *	Apply a FUTEX_WAIT_OP comparison to oldval.
   1472   1.1   thorpej  */
   1473   1.1   thorpej static bool
   1474   1.1   thorpej futex_compute_cmp(int oldval, int val3)
   1475   1.1   thorpej {
   1476   1.1   thorpej 	int cmp = __SHIFTOUT(val3, FUTEX_OP_CMP_MASK);
   1477   1.1   thorpej 	int cmparg = __SHIFTOUT(val3, FUTEX_OP_CMPARG_MASK);
   1478   1.1   thorpej 
   1479   1.1   thorpej 	switch (cmp) {
   1480   1.1   thorpej 	case FUTEX_OP_CMP_EQ:
   1481   1.1   thorpej 		return (oldval == cmparg);
   1482   1.1   thorpej 
   1483   1.1   thorpej 	case FUTEX_OP_CMP_NE:
   1484   1.1   thorpej 		return (oldval != cmparg);
   1485   1.1   thorpej 
   1486   1.1   thorpej 	case FUTEX_OP_CMP_LT:
   1487   1.1   thorpej 		return (oldval < cmparg);
   1488   1.1   thorpej 
   1489   1.1   thorpej 	case FUTEX_OP_CMP_LE:
   1490   1.1   thorpej 		return (oldval <= cmparg);
   1491   1.1   thorpej 
   1492   1.1   thorpej 	case FUTEX_OP_CMP_GT:
   1493   1.1   thorpej 		return (oldval > cmparg);
   1494   1.1   thorpej 
   1495   1.1   thorpej 	case FUTEX_OP_CMP_GE:
   1496   1.1   thorpej 		return (oldval >= cmparg);
   1497   1.1   thorpej 
   1498   1.1   thorpej 	default:
   1499   1.1   thorpej 		panic("invalid futex cmp operation");
   1500   1.1   thorpej 	}
   1501   1.1   thorpej }
   1502   1.1   thorpej 
   1503   1.1   thorpej /*
   1504   1.1   thorpej  * futex_func_wake_op(uaddr, val, uaddr2, val2, val3, retval)
   1505   1.1   thorpej  *
   1506   1.1   thorpej  *	Implement futex(FUTEX_WAKE_OP).
   1507   1.1   thorpej  */
   1508   1.1   thorpej static int
   1509   1.1   thorpej futex_func_wake_op(bool shared, int *uaddr, int val, int *uaddr2, int val2,
   1510   1.1   thorpej     int val3, register_t *retval)
   1511   1.1   thorpej {
   1512   1.1   thorpej 	struct futex *f = NULL, *f2 = NULL;
   1513   1.1   thorpej 	int oldval, newval, actual;
   1514   1.1   thorpej 	unsigned nwoken = 0;
   1515   1.1   thorpej 	int error;
   1516   1.1   thorpej 
   1517   1.1   thorpej 	/* Reject negative number of wakeups.  */
   1518   1.1   thorpej 	if (val < 0 || val2 < 0) {
   1519   1.1   thorpej 		error = EINVAL;
   1520   1.1   thorpej 		goto out;
   1521   1.1   thorpej 	}
   1522   1.1   thorpej 
   1523   1.1   thorpej 	/* Reject invalid operations before we start doing things.  */
   1524   1.1   thorpej 	if ((error = futex_validate_op_cmp(val3)) != 0)
   1525   1.1   thorpej 		goto out;
   1526   1.1   thorpej 
   1527   1.1   thorpej 	/* Look up the first futex, if any.  */
   1528   1.1   thorpej 	error = futex_lookup(uaddr, shared, &f);
   1529   1.1   thorpej 	if (error)
   1530   1.1   thorpej 		goto out;
   1531   1.1   thorpej 
   1532   1.1   thorpej 	/* Look up the second futex, if any.  */
   1533   1.1   thorpej 	error = futex_lookup(uaddr2, shared, &f2);
   1534   1.1   thorpej 	if (error)
   1535   1.1   thorpej 		goto out;
   1536   1.1   thorpej 
   1537   1.1   thorpej 	/*
   1538   1.1   thorpej 	 * Under the queue locks:
   1539   1.1   thorpej 	 *
   1540   1.1   thorpej 	 * 1. Read/modify/write: *uaddr2 op= oparg.
   1541   1.1   thorpej 	 * 2. Unconditionally wake uaddr.
   1542   1.1   thorpej 	 * 3. Conditionally wake uaddr2, if it previously matched val2.
   1543   1.1   thorpej 	 */
   1544   1.1   thorpej 	futex_queue_lock2(f, f2);
   1545   1.1   thorpej 	do {
   1546   1.1   thorpej 		error = futex_load(uaddr2, &oldval);
   1547   1.1   thorpej 		if (error)
   1548   1.1   thorpej 			goto out_unlock;
   1549   1.1   thorpej 		newval = futex_compute_op(oldval, val3);
   1550   1.1   thorpej 		error = ucas_int(uaddr2, oldval, newval, &actual);
   1551   1.1   thorpej 		if (error)
   1552   1.1   thorpej 			goto out_unlock;
   1553   1.1   thorpej 	} while (actual != oldval);
   1554   1.1   thorpej 	nwoken = (f ? futex_wake(f, val, NULL, 0, FUTEX_BITSET_MATCH_ANY) : 0);
   1555   1.1   thorpej 	if (f2 && futex_compute_cmp(oldval, val3))
   1556   1.1   thorpej 		nwoken += futex_wake(f2, val2, NULL, 0,
   1557   1.1   thorpej 		    FUTEX_BITSET_MATCH_ANY);
   1558   1.1   thorpej 
   1559   1.1   thorpej 	/* Success! */
   1560   1.1   thorpej 	error = 0;
   1561   1.1   thorpej out_unlock:
   1562   1.1   thorpej 	futex_queue_unlock2(f, f2);
   1563   1.1   thorpej 
   1564   1.1   thorpej out:
   1565   1.1   thorpej 	/* Return the number of waiters woken. */
   1566   1.1   thorpej 	*retval = nwoken;
   1567   1.1   thorpej 
   1568   1.1   thorpej 	/* Release the futexes, if we got them. */
   1569   1.1   thorpej 	if (f2)
   1570   1.5  riastrad 		futex_rele(f2);
   1571   1.1   thorpej 	if (f)
   1572   1.5  riastrad 		futex_rele(f);
   1573   1.1   thorpej 	return error;
   1574   1.1   thorpej }
   1575   1.1   thorpej 
   1576   1.1   thorpej /*
   1577   1.1   thorpej  * do_futex(uaddr, op, val, timeout, uaddr2, val2, val3)
   1578   1.1   thorpej  *
   1579   1.1   thorpej  *	Implement the futex system call with all the parameters
   1580   1.1   thorpej  *	parsed out.
   1581   1.1   thorpej  */
   1582   1.1   thorpej int
   1583  1.11  riastrad do_futex(int *uaddr, int op, int val, const struct timespec *timeout,
   1584  1.11  riastrad     int *uaddr2, int val2, int val3, register_t *retval)
   1585   1.1   thorpej {
   1586   1.1   thorpej 	const bool shared = (op & FUTEX_PRIVATE_FLAG) ? false : true;
   1587   1.1   thorpej 	const clockid_t clkid = (op & FUTEX_CLOCK_REALTIME) ? CLOCK_REALTIME
   1588   1.1   thorpej 							    : CLOCK_MONOTONIC;
   1589   1.1   thorpej 
   1590   1.1   thorpej 	op &= FUTEX_CMD_MASK;
   1591   1.1   thorpej 
   1592   1.1   thorpej 	switch (op) {
   1593   1.1   thorpej 	case FUTEX_WAIT:
   1594   1.1   thorpej 		return futex_func_wait(shared, uaddr, val,
   1595   1.1   thorpej 		    FUTEX_BITSET_MATCH_ANY, timeout, clkid, TIMER_RELTIME,
   1596   1.1   thorpej 		    retval);
   1597   1.1   thorpej 
   1598   1.1   thorpej 	case FUTEX_WAKE:
   1599   1.1   thorpej 		val3 = FUTEX_BITSET_MATCH_ANY;
   1600   1.1   thorpej 		/* FALLTHROUGH */
   1601   1.1   thorpej 	case FUTEX_WAKE_BITSET:
   1602   1.1   thorpej 		return futex_func_wake(shared, uaddr, val, val3, retval);
   1603   1.1   thorpej 
   1604   1.1   thorpej 	case FUTEX_REQUEUE:
   1605   1.1   thorpej 	case FUTEX_CMP_REQUEUE:
   1606   1.1   thorpej 		return futex_func_requeue(shared, op, uaddr, val, uaddr2,
   1607   1.1   thorpej 		    val2, val3, retval);
   1608   1.1   thorpej 
   1609   1.1   thorpej 	case FUTEX_WAIT_BITSET:
   1610   1.1   thorpej 		return futex_func_wait(shared, uaddr, val, val3, timeout,
   1611   1.1   thorpej 		    clkid, TIMER_ABSTIME, retval);
   1612   1.1   thorpej 
   1613   1.1   thorpej 	case FUTEX_WAKE_OP:
   1614   1.1   thorpej 		return futex_func_wake_op(shared, uaddr, val, uaddr2, val2,
   1615   1.1   thorpej 		    val3, retval);
   1616   1.1   thorpej 
   1617   1.1   thorpej 	case FUTEX_FD:
   1618   1.1   thorpej 	default:
   1619   1.1   thorpej 		return ENOSYS;
   1620   1.1   thorpej 	}
   1621   1.1   thorpej }
   1622   1.1   thorpej 
   1623   1.1   thorpej /*
   1624   1.1   thorpej  * sys___futex(l, uap, retval)
   1625   1.1   thorpej  *
   1626   1.1   thorpej  *	__futex(2) system call: generic futex operations.
   1627   1.1   thorpej  */
   1628   1.1   thorpej int
   1629   1.1   thorpej sys___futex(struct lwp *l, const struct sys___futex_args *uap,
   1630   1.1   thorpej     register_t *retval)
   1631   1.1   thorpej {
   1632   1.1   thorpej 	/* {
   1633   1.1   thorpej 		syscallarg(int *) uaddr;
   1634   1.1   thorpej 		syscallarg(int) op;
   1635   1.1   thorpej 		syscallarg(int) val;
   1636   1.1   thorpej 		syscallarg(const struct timespec *) timeout;
   1637   1.1   thorpej 		syscallarg(int *) uaddr2;
   1638   1.1   thorpej 		syscallarg(int) val2;
   1639   1.1   thorpej 		syscallarg(int) val3;
   1640   1.1   thorpej 	} */
   1641   1.1   thorpej 	struct timespec ts, *tsp;
   1642   1.1   thorpej 	int error;
   1643   1.1   thorpej 
   1644   1.1   thorpej 	/*
   1645   1.1   thorpej 	 * Copy in the timeout argument, if specified.
   1646   1.1   thorpej 	 */
   1647   1.1   thorpej 	if (SCARG(uap, timeout)) {
   1648   1.1   thorpej 		error = copyin(SCARG(uap, timeout), &ts, sizeof(ts));
   1649   1.1   thorpej 		if (error)
   1650   1.1   thorpej 			return error;
   1651   1.1   thorpej 		tsp = &ts;
   1652   1.1   thorpej 	} else {
   1653   1.1   thorpej 		tsp = NULL;
   1654   1.1   thorpej 	}
   1655   1.1   thorpej 
   1656   1.1   thorpej 	return do_futex(SCARG(uap, uaddr), SCARG(uap, op), SCARG(uap, val),
   1657   1.1   thorpej 	    tsp, SCARG(uap, uaddr2), SCARG(uap, val2), SCARG(uap, val3),
   1658   1.1   thorpej 	    retval);
   1659   1.1   thorpej }
   1660   1.1   thorpej 
   1661   1.1   thorpej /*
   1662   1.1   thorpej  * sys___futex_set_robust_list(l, uap, retval)
   1663   1.1   thorpej  *
   1664   1.1   thorpej  *	__futex_set_robust_list(2) system call for robust futexes.
   1665   1.1   thorpej  */
   1666   1.1   thorpej int
   1667   1.1   thorpej sys___futex_set_robust_list(struct lwp *l,
   1668   1.1   thorpej     const struct sys___futex_set_robust_list_args *uap, register_t *retval)
   1669   1.1   thorpej {
   1670   1.1   thorpej 	/* {
   1671   1.1   thorpej 		syscallarg(void *) head;
   1672   1.1   thorpej 		syscallarg(size_t) len;
   1673   1.1   thorpej 	} */
   1674   1.1   thorpej 	void *head = SCARG(uap, head);
   1675   1.1   thorpej 
   1676   1.1   thorpej 	if (SCARG(uap, len) != _FUTEX_ROBUST_HEAD_SIZE)
   1677   1.1   thorpej 		return EINVAL;
   1678   1.1   thorpej 	if ((uintptr_t)head % sizeof(u_long))
   1679   1.1   thorpej 		return EINVAL;
   1680   1.1   thorpej 
   1681   1.1   thorpej 	l->l_robust_head = (uintptr_t)head;
   1682   1.1   thorpej 
   1683   1.1   thorpej 	return 0;
   1684   1.1   thorpej }
   1685   1.1   thorpej 
   1686   1.1   thorpej /*
   1687   1.1   thorpej  * sys___futex_get_robust_list(l, uap, retval)
   1688   1.1   thorpej  *
   1689   1.1   thorpej  *	__futex_get_robust_list(2) system call for robust futexes.
   1690   1.1   thorpej  */
   1691   1.1   thorpej int
   1692   1.1   thorpej sys___futex_get_robust_list(struct lwp *l,
   1693   1.1   thorpej     const struct sys___futex_get_robust_list_args *uap, register_t *retval)
   1694   1.1   thorpej {
   1695   1.1   thorpej 	/* {
   1696   1.1   thorpej 		syscallarg(lwpid_t) lwpid;
   1697   1.1   thorpej 		syscallarg(void **) headp;
   1698   1.1   thorpej 		syscallarg(size_t *) lenp;
   1699   1.1   thorpej 	} */
   1700   1.1   thorpej 	void *head;
   1701   1.1   thorpej 	const size_t len = _FUTEX_ROBUST_HEAD_SIZE;
   1702   1.1   thorpej 	int error;
   1703   1.1   thorpej 
   1704   1.1   thorpej 	error = futex_robust_head_lookup(l, SCARG(uap, lwpid), &head);
   1705   1.1   thorpej 	if (error)
   1706   1.1   thorpej 		return error;
   1707   1.1   thorpej 
   1708   1.1   thorpej 	/* Copy out the head pointer and the head structure length. */
   1709   1.1   thorpej 	error = copyout(&head, SCARG(uap, headp), sizeof(head));
   1710   1.1   thorpej 	if (__predict_true(error == 0)) {
   1711   1.1   thorpej 		error = copyout(&len, SCARG(uap, lenp), sizeof(len));
   1712   1.1   thorpej 	}
   1713   1.1   thorpej 
   1714   1.1   thorpej 	return error;
   1715   1.1   thorpej }
   1716   1.1   thorpej 
   1717   1.1   thorpej /*
   1718   1.1   thorpej  * release_futex(uva, tid)
   1719   1.1   thorpej  *
   1720   1.1   thorpej  *	Try to release the robust futex at uva in the current process
   1721   1.1   thorpej  *	on lwp exit.  If anything goes wrong, silently fail.  It is the
   1722   1.1   thorpej  *	userland program's obligation to arrange correct behaviour.
   1723   1.1   thorpej  */
   1724   1.1   thorpej static void
   1725   1.1   thorpej release_futex(uintptr_t const uptr, lwpid_t const tid, bool const is_pi,
   1726   1.1   thorpej     bool const is_pending)
   1727   1.1   thorpej {
   1728   1.1   thorpej 	int *uaddr;
   1729   1.1   thorpej 	struct futex *f;
   1730   1.1   thorpej 	int oldval, newval, actual;
   1731   1.1   thorpej 	int error;
   1732   1.1   thorpej 
   1733   1.1   thorpej 	/* If it's misaligned, tough.  */
   1734   1.1   thorpej 	if (__predict_false(uptr & 3))
   1735   1.1   thorpej 		return;
   1736   1.1   thorpej 	uaddr = (int *)uptr;
   1737   1.1   thorpej 
   1738   1.1   thorpej 	error = futex_load(uaddr, &oldval);
   1739   1.1   thorpej 	if (__predict_false(error))
   1740   1.1   thorpej 		return;
   1741   1.1   thorpej 
   1742   1.1   thorpej 	/*
   1743   1.1   thorpej 	 * There are two race conditions we need to handle here:
   1744   1.1   thorpej 	 *
   1745   1.1   thorpej 	 * 1. User space cleared the futex word but died before
   1746   1.1   thorpej 	 *    being able to issue the wakeup.  No wakeups will
   1747   1.1   thorpej 	 *    ever be issued, oops!
   1748   1.1   thorpej 	 *
   1749   1.1   thorpej 	 * 2. Awakened waiter died before being able to acquire
   1750   1.1   thorpej 	 *    the futex in user space.  Any other waiters are
   1751   1.1   thorpej 	 *    now stuck, oops!
   1752   1.1   thorpej 	 *
   1753   1.1   thorpej 	 * In both of these cases, the futex word will be 0 (because
   1754   1.1   thorpej 	 * it's updated before the wake is issued).  The best we can
   1755   1.1   thorpej 	 * do is detect this situation if it's the pending futex and
   1756   1.1   thorpej 	 * issue a wake without modifying the futex word.
   1757   1.1   thorpej 	 *
   1758   1.1   thorpej 	 * XXX eventual PI handling?
   1759   1.1   thorpej 	 */
   1760   1.1   thorpej 	if (__predict_false(is_pending && (oldval & ~FUTEX_WAITERS) == 0)) {
   1761   1.1   thorpej 		register_t retval;
   1762   1.1   thorpej 		(void) futex_func_wake(/*shared*/true, uaddr, 1,
   1763   1.1   thorpej 		    FUTEX_BITSET_MATCH_ANY, &retval);
   1764   1.1   thorpej 		return;
   1765   1.1   thorpej 	}
   1766   1.1   thorpej 
   1767   1.1   thorpej 	/* Optimistically test whether we need to do anything at all.  */
   1768   1.1   thorpej 	if ((oldval & FUTEX_TID_MASK) != tid)
   1769   1.1   thorpej 		return;
   1770   1.1   thorpej 
   1771   1.1   thorpej 	/*
   1772   1.1   thorpej 	 * We need to handle the case where this thread owned the futex,
   1773   1.1   thorpej 	 * but it was uncontended.  In this case, there won't be any
   1774   1.1   thorpej 	 * kernel state to look up.  All we can do is mark the futex
   1775   1.1   thorpej 	 * as a zombie to be mopped up the next time another thread
   1776   1.1   thorpej 	 * attempts to acquire it.
   1777   1.1   thorpej 	 *
   1778   1.1   thorpej 	 * N.B. It's important to ensure to set FUTEX_OWNER_DIED in
   1779   1.1   thorpej 	 * this loop, even if waiters appear while we're are doing
   1780   1.1   thorpej 	 * so.  This is beause FUTEX_WAITERS is set by user space
   1781   1.1   thorpej 	 * before calling __futex() to wait, and the futex needs
   1782   1.1   thorpej 	 * to be marked as a zombie when the new waiter gets into
   1783   1.1   thorpej 	 * the kernel.
   1784   1.1   thorpej 	 */
   1785   1.1   thorpej 	if ((oldval & FUTEX_WAITERS) == 0) {
   1786   1.1   thorpej 		do {
   1787   1.1   thorpej 			error = futex_load(uaddr, &oldval);
   1788   1.1   thorpej 			if (error)
   1789   1.1   thorpej 				return;
   1790   1.1   thorpej 			if ((oldval & FUTEX_TID_MASK) != tid)
   1791   1.1   thorpej 				return;
   1792   1.1   thorpej 			newval = oldval | FUTEX_OWNER_DIED;
   1793   1.1   thorpej 			error = ucas_int(uaddr, oldval, newval, &actual);
   1794   1.1   thorpej 			if (error)
   1795   1.1   thorpej 				return;
   1796   1.1   thorpej 		} while (actual != oldval);
   1797   1.1   thorpej 
   1798   1.1   thorpej 		/*
   1799   1.1   thorpej 		 * If where is still no indication of waiters, then there is
   1800   1.1   thorpej 		 * no more work for us to do.
   1801   1.1   thorpej 		 */
   1802   1.1   thorpej 		if ((oldval & FUTEX_WAITERS) == 0)
   1803   1.1   thorpej 			return;
   1804   1.1   thorpej 	}
   1805   1.1   thorpej 
   1806   1.1   thorpej 	/*
   1807   1.1   thorpej 	 * Look for a shared futex since we have no positive indication
   1808   1.1   thorpej 	 * it is private.  If we can't, tough.
   1809   1.1   thorpej 	 */
   1810   1.1   thorpej 	error = futex_lookup(uaddr, /*shared*/true, &f);
   1811   1.1   thorpej 	if (error)
   1812   1.1   thorpej 		return;
   1813   1.1   thorpej 
   1814   1.1   thorpej 	/*
   1815   1.1   thorpej 	 * If there's no kernel state for this futex, there's nothing to
   1816   1.1   thorpej 	 * release.
   1817   1.1   thorpej 	 */
   1818   1.1   thorpej 	if (f == NULL)
   1819   1.1   thorpej 		return;
   1820   1.1   thorpej 
   1821   1.1   thorpej 	/* Work under the futex queue lock.  */
   1822   1.1   thorpej 	futex_queue_lock(f);
   1823   1.1   thorpej 
   1824   1.1   thorpej 	/*
   1825   1.1   thorpej 	 * Fetch the word: if the tid doesn't match ours, skip;
   1826   1.1   thorpej 	 * otherwise, set the owner-died bit, atomically.
   1827   1.1   thorpej 	 */
   1828   1.1   thorpej 	do {
   1829   1.1   thorpej 		error = futex_load(uaddr, &oldval);
   1830   1.1   thorpej 		if (error)
   1831   1.1   thorpej 			goto out;
   1832   1.1   thorpej 		if ((oldval & FUTEX_TID_MASK) != tid)
   1833   1.1   thorpej 			goto out;
   1834   1.1   thorpej 		newval = oldval | FUTEX_OWNER_DIED;
   1835   1.1   thorpej 		error = ucas_int(uaddr, oldval, newval, &actual);
   1836   1.1   thorpej 		if (error)
   1837   1.1   thorpej 			goto out;
   1838   1.1   thorpej 	} while (actual != oldval);
   1839   1.1   thorpej 
   1840   1.1   thorpej 	/*
   1841   1.1   thorpej 	 * If there may be waiters, try to wake one.  If anything goes
   1842   1.1   thorpej 	 * wrong, tough.
   1843   1.1   thorpej 	 *
   1844   1.1   thorpej 	 * XXX eventual PI handling?
   1845   1.1   thorpej 	 */
   1846   1.1   thorpej 	if (oldval & FUTEX_WAITERS)
   1847   1.1   thorpej 		(void)futex_wake(f, 1, NULL, 0, FUTEX_BITSET_MATCH_ANY);
   1848   1.1   thorpej 
   1849   1.1   thorpej 	/* Unlock the queue and release the futex.  */
   1850   1.1   thorpej out:	futex_queue_unlock(f);
   1851   1.5  riastrad 	futex_rele(f);
   1852   1.1   thorpej }
   1853   1.1   thorpej 
   1854   1.1   thorpej /*
   1855   1.1   thorpej  * futex_robust_head_lookup(l, lwpid)
   1856   1.1   thorpej  *
   1857   1.1   thorpej  *	Helper function to look up a robust head by LWP ID.
   1858   1.1   thorpej  */
   1859   1.1   thorpej int
   1860   1.1   thorpej futex_robust_head_lookup(struct lwp *l, lwpid_t lwpid, void **headp)
   1861   1.1   thorpej {
   1862   1.1   thorpej 	struct proc *p = l->l_proc;
   1863   1.1   thorpej 
   1864   1.1   thorpej 	/* Find the other lwp, if requested; otherwise use our robust head.  */
   1865   1.1   thorpej 	if (lwpid) {
   1866   1.1   thorpej 		mutex_enter(p->p_lock);
   1867   1.1   thorpej 		l = lwp_find(p, lwpid);
   1868   1.1   thorpej 		if (l == NULL) {
   1869   1.1   thorpej 			mutex_exit(p->p_lock);
   1870   1.1   thorpej 			return ESRCH;
   1871   1.1   thorpej 		}
   1872   1.1   thorpej 		*headp = (void *)l->l_robust_head;
   1873   1.1   thorpej 		mutex_exit(p->p_lock);
   1874   1.1   thorpej 	} else {
   1875   1.1   thorpej 		*headp = (void *)l->l_robust_head;
   1876   1.1   thorpej 	}
   1877   1.1   thorpej 	return 0;
   1878   1.1   thorpej }
   1879   1.1   thorpej 
   1880   1.1   thorpej /*
   1881   1.1   thorpej  * futex_fetch_robust_head(uaddr)
   1882   1.1   thorpej  *
   1883   1.1   thorpej  *	Helper routine to fetch the futex robust list head that
   1884   1.1   thorpej  *	handles 32-bit binaries running on 64-bit kernels.
   1885   1.1   thorpej  */
   1886   1.1   thorpej static int
   1887   1.1   thorpej futex_fetch_robust_head(uintptr_t uaddr, u_long *rhead)
   1888   1.1   thorpej {
   1889   1.1   thorpej #ifdef _LP64
   1890   1.1   thorpej 	if (curproc->p_flag & PK_32) {
   1891   1.1   thorpej 		uint32_t rhead32[_FUTEX_ROBUST_HEAD_NWORDS];
   1892   1.1   thorpej 		int error;
   1893   1.1   thorpej 
   1894   1.1   thorpej 		error = copyin((void *)uaddr, rhead32, sizeof(rhead32));
   1895   1.1   thorpej 		if (__predict_true(error == 0)) {
   1896   1.1   thorpej 			for (int i = 0; i < _FUTEX_ROBUST_HEAD_NWORDS; i++) {
   1897   1.1   thorpej 				if (i == _FUTEX_ROBUST_HEAD_OFFSET) {
   1898   1.1   thorpej 					/*
   1899   1.1   thorpej 					 * Make sure the offset is sign-
   1900   1.1   thorpej 					 * extended.
   1901   1.1   thorpej 					 */
   1902   1.1   thorpej 					rhead[i] = (int32_t)rhead32[i];
   1903   1.1   thorpej 				} else {
   1904   1.1   thorpej 					rhead[i] = rhead32[i];
   1905   1.1   thorpej 				}
   1906   1.1   thorpej 			}
   1907   1.1   thorpej 		}
   1908   1.1   thorpej 		return error;
   1909   1.1   thorpej 	}
   1910   1.1   thorpej #endif /* _L64 */
   1911   1.1   thorpej 
   1912   1.1   thorpej 	return copyin((void *)uaddr, rhead,
   1913   1.1   thorpej 	    sizeof(*rhead) * _FUTEX_ROBUST_HEAD_NWORDS);
   1914   1.1   thorpej }
   1915   1.1   thorpej 
   1916   1.1   thorpej /*
   1917   1.1   thorpej  * futex_decode_robust_word(word)
   1918   1.1   thorpej  *
   1919   1.1   thorpej  *	Decode a robust futex list word into the entry and entry
   1920   1.1   thorpej  *	properties.
   1921   1.1   thorpej  */
   1922   1.1   thorpej static inline void
   1923   1.1   thorpej futex_decode_robust_word(uintptr_t const word, uintptr_t * const entry,
   1924   1.1   thorpej     bool * const is_pi)
   1925   1.1   thorpej {
   1926   1.1   thorpej 	*is_pi = (word & _FUTEX_ROBUST_ENTRY_PI) ? true : false;
   1927   1.1   thorpej 	*entry = word & ~_FUTEX_ROBUST_ENTRY_PI;
   1928   1.1   thorpej }
   1929   1.1   thorpej 
   1930   1.1   thorpej /*
   1931   1.1   thorpej  * futex_fetch_robust_entry(uaddr)
   1932   1.1   thorpej  *
   1933   1.1   thorpej  *	Helper routine to fetch and decode a robust futex entry
   1934   1.1   thorpej  *	that handles 32-bit binaries running on 64-bit kernels.
   1935   1.1   thorpej  */
   1936   1.1   thorpej static int
   1937   1.1   thorpej futex_fetch_robust_entry(uintptr_t const uaddr, uintptr_t * const valp,
   1938   1.1   thorpej     bool * const is_pi)
   1939   1.1   thorpej {
   1940   1.1   thorpej 	uintptr_t val = 0;
   1941   1.1   thorpej 	int error = 0;
   1942   1.1   thorpej 
   1943   1.1   thorpej #ifdef _LP64
   1944   1.1   thorpej 	if (curproc->p_flag & PK_32) {
   1945   1.1   thorpej 		uint32_t val32;
   1946   1.1   thorpej 
   1947   1.1   thorpej 		error = ufetch_32((uint32_t *)uaddr, &val32);
   1948   1.1   thorpej 		if (__predict_true(error == 0))
   1949   1.1   thorpej 			val = val32;
   1950   1.1   thorpej 	} else
   1951   1.1   thorpej #endif /* _LP64 */
   1952   1.1   thorpej 		error = ufetch_long((u_long *)uaddr, (u_long *)&val);
   1953   1.1   thorpej 	if (__predict_false(error))
   1954   1.1   thorpej 		return error;
   1955   1.1   thorpej 
   1956   1.1   thorpej 	futex_decode_robust_word(val, valp, is_pi);
   1957   1.1   thorpej 	return 0;
   1958   1.1   thorpej }
   1959   1.1   thorpej 
   1960   1.1   thorpej /*
   1961   1.1   thorpej  * futex_release_all_lwp(l, tid)
   1962   1.1   thorpej  *
   1963   1.1   thorpej  *	Release all l's robust futexes.  If anything looks funny in
   1964   1.1   thorpej  *	the process, give up -- it's userland's responsibility to dot
   1965   1.1   thorpej  *	the i's and cross the t's.
   1966   1.1   thorpej  */
   1967   1.1   thorpej void
   1968   1.1   thorpej futex_release_all_lwp(struct lwp * const l, lwpid_t const tid)
   1969   1.1   thorpej {
   1970   1.1   thorpej 	u_long rhead[_FUTEX_ROBUST_HEAD_NWORDS];
   1971   1.1   thorpej 	int limit = 1000000;
   1972   1.1   thorpej 	int error;
   1973   1.1   thorpej 
   1974   1.1   thorpej 	/* If there's no robust list there's nothing to do. */
   1975   1.1   thorpej 	if (l->l_robust_head == 0)
   1976   1.1   thorpej 		return;
   1977   1.1   thorpej 
   1978   1.1   thorpej 	/* Read the final snapshot of the robust list head. */
   1979   1.1   thorpej 	error = futex_fetch_robust_head(l->l_robust_head, rhead);
   1980   1.1   thorpej 	if (error) {
   1981   1.1   thorpej 		printf("WARNING: pid %jd (%s) lwp %jd tid %jd:"
   1982   1.1   thorpej 		    " unmapped robust futex list head\n",
   1983   1.1   thorpej 		    (uintmax_t)l->l_proc->p_pid, l->l_proc->p_comm,
   1984   1.1   thorpej 		    (uintmax_t)l->l_lid, (uintmax_t)tid);
   1985   1.1   thorpej 		return;
   1986   1.1   thorpej 	}
   1987   1.1   thorpej 
   1988   1.1   thorpej 	const long offset = (long)rhead[_FUTEX_ROBUST_HEAD_OFFSET];
   1989   1.1   thorpej 
   1990   1.1   thorpej 	uintptr_t next, pending;
   1991   1.1   thorpej 	bool is_pi, pending_is_pi;
   1992   1.1   thorpej 
   1993   1.1   thorpej 	futex_decode_robust_word(rhead[_FUTEX_ROBUST_HEAD_LIST],
   1994   1.1   thorpej 	    &next, &is_pi);
   1995   1.1   thorpej 	futex_decode_robust_word(rhead[_FUTEX_ROBUST_HEAD_PENDING],
   1996   1.1   thorpej 	    &pending, &pending_is_pi);
   1997   1.1   thorpej 
   1998   1.1   thorpej 	/*
   1999   1.1   thorpej 	 * Walk down the list of locked futexes and release them, up
   2000   1.1   thorpej 	 * to one million of them before we give up.
   2001   1.1   thorpej 	 */
   2002   1.1   thorpej 
   2003   1.1   thorpej 	while (next != l->l_robust_head && limit-- > 0) {
   2004   1.1   thorpej 		/* pending handled below. */
   2005   1.1   thorpej 		if (next != pending)
   2006   1.1   thorpej 			release_futex(next + offset, tid, is_pi, false);
   2007   1.1   thorpej 		error = futex_fetch_robust_entry(next, &next, &is_pi);
   2008   1.1   thorpej 		if (error)
   2009   1.1   thorpej 			break;
   2010   1.1   thorpej 		preempt_point();
   2011   1.1   thorpej 	}
   2012   1.1   thorpej 	if (limit <= 0) {
   2013   1.1   thorpej 		printf("WARNING: pid %jd (%s) lwp %jd tid %jd:"
   2014   1.1   thorpej 		    " exhausted robust futex limit\n",
   2015   1.1   thorpej 		    (uintmax_t)l->l_proc->p_pid, l->l_proc->p_comm,
   2016   1.1   thorpej 		    (uintmax_t)l->l_lid, (uintmax_t)tid);
   2017   1.1   thorpej 	}
   2018   1.1   thorpej 
   2019   1.1   thorpej 	/* If there's a pending futex, it may need to be released too. */
   2020   1.1   thorpej 	if (pending != 0) {
   2021   1.1   thorpej 		release_futex(pending + offset, tid, pending_is_pi, true);
   2022   1.1   thorpej 	}
   2023   1.1   thorpej }
   2024