sys_futex.c revision 1.11.2.1 1 1.11.2.1 thorpej /* $NetBSD: sys_futex.c,v 1.11.2.1 2020/11/01 15:16:43 thorpej Exp $ */
2 1.1 thorpej
3 1.1 thorpej /*-
4 1.1 thorpej * Copyright (c) 2018, 2019, 2020 The NetBSD Foundation, Inc.
5 1.1 thorpej * All rights reserved.
6 1.1 thorpej *
7 1.1 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.1 thorpej * by Taylor R. Campbell and Jason R. Thorpe.
9 1.1 thorpej *
10 1.1 thorpej * Redistribution and use in source and binary forms, with or without
11 1.1 thorpej * modification, are permitted provided that the following conditions
12 1.1 thorpej * are met:
13 1.1 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.1 thorpej * notice, this list of conditions and the following disclaimer.
15 1.1 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.1 thorpej * documentation and/or other materials provided with the distribution.
18 1.1 thorpej *
19 1.1 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 thorpej * POSSIBILITY OF SUCH DAMAGE.
30 1.1 thorpej */
31 1.1 thorpej
32 1.1 thorpej #include <sys/cdefs.h>
33 1.11.2.1 thorpej __KERNEL_RCSID(0, "$NetBSD: sys_futex.c,v 1.11.2.1 2020/11/01 15:16:43 thorpej Exp $");
34 1.1 thorpej
35 1.1 thorpej /*
36 1.1 thorpej * Futexes
37 1.1 thorpej *
38 1.1 thorpej * The futex system call coordinates notifying threads waiting for
39 1.1 thorpej * changes on a 32-bit word of memory. The word can be managed by
40 1.1 thorpej * CPU atomic operations in userland, without system calls, as long
41 1.1 thorpej * as there is no contention.
42 1.1 thorpej *
43 1.1 thorpej * The simplest use case demonstrating the utility is:
44 1.1 thorpej *
45 1.1 thorpej * // 32-bit word of memory shared among threads or
46 1.1 thorpej * // processes in userland. lock & 1 means owned;
47 1.1 thorpej * // lock & 2 means there are waiters waiting.
48 1.1 thorpej * volatile int lock = 0;
49 1.1 thorpej *
50 1.1 thorpej * int v;
51 1.1 thorpej *
52 1.1 thorpej * // Acquire a lock.
53 1.1 thorpej * do {
54 1.1 thorpej * v = lock;
55 1.1 thorpej * if (v & 1) {
56 1.1 thorpej * // Lock is held. Set a bit to say that
57 1.1 thorpej * // there are waiters, and wait for lock
58 1.1 thorpej * // to change to anything other than v;
59 1.1 thorpej * // then retry.
60 1.1 thorpej * if (atomic_cas_uint(&lock, v, v | 2) != v)
61 1.1 thorpej * continue;
62 1.1 thorpej * futex(FUTEX_WAIT, &lock, v | 2, NULL, NULL, 0);
63 1.1 thorpej * continue;
64 1.1 thorpej * }
65 1.1 thorpej * } while (atomic_cas_uint(&lock, v, v & ~1) != v);
66 1.1 thorpej * membar_enter();
67 1.1 thorpej *
68 1.1 thorpej * ...
69 1.1 thorpej *
70 1.1 thorpej * // Release the lock. Optimistically assume there are
71 1.1 thorpej * // no waiters first until demonstrated otherwise.
72 1.1 thorpej * membar_exit();
73 1.1 thorpej * if (atomic_cas_uint(&lock, 1, 0) != 1) {
74 1.1 thorpej * // There may be waiters.
75 1.1 thorpej * v = atomic_swap_uint(&lock, 0);
76 1.1 thorpej * // If there are still waiters, wake one.
77 1.1 thorpej * if (v & 2)
78 1.1 thorpej * futex(FUTEX_WAKE, &lock, 1, NULL, NULL, 0);
79 1.1 thorpej * }
80 1.1 thorpej *
81 1.1 thorpej * The goal is to avoid the futex system call unless there is
82 1.1 thorpej * contention; then if there is contention, to guarantee no missed
83 1.1 thorpej * wakeups.
84 1.1 thorpej *
85 1.1 thorpej * For a simple implementation, futex(FUTEX_WAIT) could queue
86 1.1 thorpej * itself to be woken, double-check the lock word, and then sleep;
87 1.1 thorpej * spurious wakeups are generally a fact of life, so any
88 1.1 thorpej * FUTEX_WAKE could just wake every FUTEX_WAIT in the system.
89 1.1 thorpej *
90 1.1 thorpej * If this were all there is to it, we could then increase
91 1.1 thorpej * parallelism by refining the approximation: partition the
92 1.1 thorpej * waiters into buckets by hashing the lock addresses to reduce
93 1.1 thorpej * the incidence of spurious wakeups. But this is not all.
94 1.1 thorpej *
95 1.1 thorpej * The futex(FUTEX_CMP_REQUEUE, &lock, n, &lock2, m, val)
96 1.1 thorpej * operation not only wakes n waiters on lock if lock == val, but
97 1.1 thorpej * also _transfers_ m additional waiters to lock2. Unless wakeups
98 1.1 thorpej * on lock2 also trigger wakeups on lock, we cannot move waiters
99 1.1 thorpej * to lock2 if they merely share the same hash as waiters on lock.
100 1.1 thorpej * Thus, we can't approximately distribute waiters into queues by
101 1.1 thorpej * a hash function; we must distinguish futex queues exactly by
102 1.1 thorpej * lock address.
103 1.1 thorpej *
104 1.1 thorpej * For now, we use a global red/black tree to index futexes. This
105 1.1 thorpej * should be replaced by a lockless radix tree with a thread to
106 1.1 thorpej * free entries no longer in use once all lookups on all CPUs have
107 1.1 thorpej * completed.
108 1.1 thorpej *
109 1.1 thorpej * Specifically, we maintain two maps:
110 1.1 thorpej *
111 1.1 thorpej * futex_tab.va[vmspace, va] for private futexes
112 1.1 thorpej * futex_tab.oa[uvm_voaddr] for shared futexes
113 1.1 thorpej *
114 1.1 thorpej * This implementation does not support priority inheritance.
115 1.1 thorpej */
116 1.1 thorpej
117 1.1 thorpej #include <sys/types.h>
118 1.1 thorpej #include <sys/atomic.h>
119 1.1 thorpej #include <sys/condvar.h>
120 1.1 thorpej #include <sys/futex.h>
121 1.1 thorpej #include <sys/mutex.h>
122 1.1 thorpej #include <sys/rbtree.h>
123 1.11.2.1 thorpej #include <sys/sleepq.h>
124 1.1 thorpej #include <sys/queue.h>
125 1.11.2.1 thorpej #include <sys/sdt.h>
126 1.1 thorpej
127 1.1 thorpej #include <sys/syscall.h>
128 1.1 thorpej #include <sys/syscallargs.h>
129 1.1 thorpej #include <sys/syscallvar.h>
130 1.1 thorpej
131 1.1 thorpej #include <uvm/uvm_extern.h>
132 1.1 thorpej
133 1.1 thorpej /*
134 1.11.2.1 thorpej * DTrace probes.
135 1.11.2.1 thorpej */
136 1.11.2.1 thorpej SDT_PROVIDER_DEFINE(futex);
137 1.11.2.1 thorpej
138 1.11.2.1 thorpej /* entry: uaddr, val, bitset, timeout, clkflags, fflags */
139 1.11.2.1 thorpej /* exit: error */
140 1.11.2.1 thorpej SDT_PROBE_DEFINE6(futex, func, wait, entry, "int *", "int", "int",
141 1.11.2.1 thorpej "struct timespec *", "int", "int");
142 1.11.2.1 thorpej SDT_PROBE_DEFINE1(futex, func, wait, exit, "int");
143 1.11.2.1 thorpej
144 1.11.2.1 thorpej /* entry: uaddr, nwake, bitset, fflags */
145 1.11.2.1 thorpej /* exit: error, nwoken */
146 1.11.2.1 thorpej SDT_PROBE_DEFINE4(futex, func, wake, entry, "int *", "int", "int", "int");
147 1.11.2.1 thorpej SDT_PROBE_DEFINE2(futex, func, wake, exit, "int", "int");
148 1.11.2.1 thorpej
149 1.11.2.1 thorpej /* entry: uaddr, nwake, uaddr2, nrequeue, fflags */
150 1.11.2.1 thorpej /* exit: error, nwoken */
151 1.11.2.1 thorpej SDT_PROBE_DEFINE5(futex, func, requeue, entry, "int *", "int", "int *", "int",
152 1.11.2.1 thorpej "int");
153 1.11.2.1 thorpej SDT_PROBE_DEFINE2(futex, func, requeue, exit, "int", "int");
154 1.11.2.1 thorpej
155 1.11.2.1 thorpej /* entry: uaddr, nwake, uaddr2, nrequeue, val3, fflags */
156 1.11.2.1 thorpej /* exit: error, nwoken */
157 1.11.2.1 thorpej SDT_PROBE_DEFINE6(futex, func, cmp_requeue, entry, "int *", "int", "int *",
158 1.11.2.1 thorpej "int", "int", "int");
159 1.11.2.1 thorpej SDT_PROBE_DEFINE2(futex, func, cmp_requeue, exit, "int", "int");
160 1.11.2.1 thorpej
161 1.11.2.1 thorpej /* entry: uaddr, nwake, uaddr2, nwake2, wakeop, fflags */
162 1.11.2.1 thorpej /* exit: error, nwoken */
163 1.11.2.1 thorpej SDT_PROBE_DEFINE6(futex, func, wake_op, entry, "int *", "int", "int *", "int",
164 1.11.2.1 thorpej "int", "int");
165 1.11.2.1 thorpej SDT_PROBE_DEFINE2(futex, func, wake_op, exit, "int", "int");
166 1.11.2.1 thorpej
167 1.11.2.1 thorpej /* entry: uaddr, val, r/w, abstime, fflags */
168 1.11.2.1 thorpej /* exit: error */
169 1.11.2.1 thorpej SDT_PROBE_DEFINE5(futex, func, rw_wait, entry, "int *", "int", "int",
170 1.11.2.1 thorpej "struct timespec *", "int");
171 1.11.2.1 thorpej SDT_PROBE_DEFINE1(futex, func, rw_wait, exit, "int");
172 1.11.2.1 thorpej
173 1.11.2.1 thorpej /* entry: uaddr, val, fflags */
174 1.11.2.1 thorpej /* exit: error, nwoken */
175 1.11.2.1 thorpej SDT_PROBE_DEFINE3(futex, func, rw_handoff, entry, "int *", "int", "int");
176 1.11.2.1 thorpej SDT_PROBE_DEFINE2(futex, func, rw_handoff, exit, "int", "int");
177 1.11.2.1 thorpej
178 1.11.2.1 thorpej SDT_PROBE_DEFINE0(futex, wait, finish, normally);
179 1.11.2.1 thorpej SDT_PROBE_DEFINE0(futex, wait, finish, wakerace);
180 1.11.2.1 thorpej SDT_PROBE_DEFINE0(futex, wait, finish, aborted);
181 1.11.2.1 thorpej
182 1.11.2.1 thorpej /* entry: timo */
183 1.11.2.1 thorpej /* exit: error */
184 1.11.2.1 thorpej SDT_PROBE_DEFINE1(futex, wait, sleepq_block, entry, "int");
185 1.11.2.1 thorpej SDT_PROBE_DEFINE1(futex, wait, sleepq_block, exit, "int");
186 1.11.2.1 thorpej
187 1.11.2.1 thorpej /*
188 1.1 thorpej * Lock order:
189 1.1 thorpej *
190 1.1 thorpej * futex_tab.lock
191 1.11.2.1 thorpej * futex::fx_op_lock ordered by kva of struct futex
192 1.11.2.1 thorpej * -> futex::fx_sq_lock ordered by kva of sleepq lock
193 1.11.2.1 thorpej *
194 1.11.2.1 thorpej * N.B. multiple futexes can share a single sleepq lock.
195 1.1 thorpej */
196 1.1 thorpej
197 1.1 thorpej /*
198 1.1 thorpej * union futex_key
199 1.1 thorpej *
200 1.1 thorpej * A futex is addressed either by a vmspace+va (private) or by
201 1.1 thorpej * a uvm_voaddr (shared).
202 1.1 thorpej */
203 1.1 thorpej union futex_key {
204 1.1 thorpej struct {
205 1.1 thorpej struct vmspace *vmspace;
206 1.1 thorpej vaddr_t va;
207 1.1 thorpej } fk_private;
208 1.1 thorpej struct uvm_voaddr fk_shared;
209 1.1 thorpej };
210 1.1 thorpej
211 1.1 thorpej /*
212 1.1 thorpej * struct futex
213 1.1 thorpej *
214 1.1 thorpej * Kernel state for a futex located at a particular address in a
215 1.1 thorpej * particular virtual address space.
216 1.1 thorpej *
217 1.1 thorpej * N.B. fx_refcnt is an unsigned long because we need to be able
218 1.1 thorpej * to operate on it atomically on all systems while at the same
219 1.1 thorpej * time rendering practically impossible the chance of it reaching
220 1.1 thorpej * its max value. In practice, we're limited by the number of LWPs
221 1.1 thorpej * that can be present on the system at any given time, and the
222 1.1 thorpej * assumption is that limit will be good enough on a 32-bit platform.
223 1.1 thorpej * See futex_wake() for why overflow needs to be avoided.
224 1.11.2.1 thorpej *
225 1.11.2.1 thorpej * XXX Since futex addresses must be 4-byte aligned, we could
226 1.11.2.1 thorpej * XXX squirrel away fx_shared and fx_on_tree bits in the "va"
227 1.11.2.1 thorpej * XXX field of the key. Worth it?
228 1.1 thorpej */
229 1.1 thorpej struct futex {
230 1.1 thorpej union futex_key fx_key;
231 1.11.2.1 thorpej struct rb_node fx_node;
232 1.1 thorpej unsigned long fx_refcnt;
233 1.1 thorpej bool fx_shared;
234 1.1 thorpej bool fx_on_tree;
235 1.11.2.1 thorpej uint8_t fx_class;
236 1.1 thorpej
237 1.11.2.1 thorpej kmutex_t fx_op_lock; /* adaptive */
238 1.11.2.1 thorpej kmutex_t * fx_sq_lock; /* &sleepq_locks[...] */
239 1.11.2.1 thorpej sleepq_t fx_sqs[2]; /* 0=reader, 1=writer */
240 1.11.2.1 thorpej unsigned int fx_nwaiters[2];
241 1.1 thorpej };
242 1.1 thorpej
243 1.1 thorpej /*
244 1.11.2.1 thorpej * futex classes: Some futex operations can only be carried out on
245 1.11.2.1 thorpej * futexes that are known to be abiding by a certain protocol. These
246 1.11.2.1 thorpej * classes are assigned to a futex when created due to a wait event,
247 1.11.2.1 thorpej * and when subsequent wake or requeue operations are issued, the
248 1.11.2.1 thorpej * class is checked at futex lookup time. If the class does not match,
249 1.11.2.1 thorpej * EINVAL is the result.
250 1.11.2.1 thorpej */
251 1.11.2.1 thorpej #define FUTEX_CLASS_ANY 0 /* match any class in lookup */
252 1.11.2.1 thorpej #define FUTEX_CLASS_NORMAL 1 /* normal futex */
253 1.11.2.1 thorpej #define FUTEX_CLASS_RWLOCK 2 /* rwlock futex */
254 1.11.2.1 thorpej #define FUTEX_CLASS_PI 3 /* for FUTEX_*_PI ops */
255 1.11.2.1 thorpej
256 1.11.2.1 thorpej /* sleepq definitions */
257 1.11.2.1 thorpej #define FUTEX_READERQ 0
258 1.11.2.1 thorpej #define FUTEX_WRITERQ 1
259 1.11.2.1 thorpej
260 1.11.2.1 thorpej CTASSERT(FUTEX_READERQ == FUTEX_RW_READER);
261 1.11.2.1 thorpej CTASSERT(FUTEX_WRITERQ == FUTEX_RW_WRITER);
262 1.11.2.1 thorpej
263 1.11.2.1 thorpej static const char futex_wmesg[] = "futex";
264 1.11.2.1 thorpej
265 1.11.2.1 thorpej static void futex_unsleep(lwp_t *, bool);
266 1.11.2.1 thorpej
267 1.11.2.1 thorpej static syncobj_t futex_syncobj = {
268 1.11.2.1 thorpej .sobj_flag = SOBJ_SLEEPQ_SORTED,
269 1.11.2.1 thorpej .sobj_unsleep = futex_unsleep,
270 1.11.2.1 thorpej .sobj_changepri = sleepq_changepri,
271 1.11.2.1 thorpej .sobj_lendpri = sleepq_lendpri,
272 1.11.2.1 thorpej .sobj_owner = syncobj_noowner,
273 1.1 thorpej };
274 1.1 thorpej
275 1.1 thorpej /*
276 1.1 thorpej * futex_tab
277 1.1 thorpej *
278 1.1 thorpej * Global trees of futexes by vmspace/va and VM object address.
279 1.1 thorpej *
280 1.1 thorpej * XXX This obviously doesn't scale in parallel. We could use a
281 1.1 thorpej * pserialize-safe data structure, but there may be a high cost to
282 1.1 thorpej * frequent deletion since we don't cache futexes after we're done
283 1.1 thorpej * with them. We could use hashed locks. But for now, just make
284 1.1 thorpej * sure userland can't DoS the serial performance, by using a
285 1.1 thorpej * balanced binary tree for lookup.
286 1.1 thorpej *
287 1.1 thorpej * XXX We could use a per-process tree for the table indexed by
288 1.1 thorpej * virtual address to reduce contention between processes.
289 1.1 thorpej */
290 1.1 thorpej static struct {
291 1.1 thorpej kmutex_t lock;
292 1.1 thorpej struct rb_tree va;
293 1.1 thorpej struct rb_tree oa;
294 1.1 thorpej } futex_tab __cacheline_aligned;
295 1.1 thorpej
296 1.1 thorpej static int
297 1.1 thorpej compare_futex_key(void *cookie, const void *n, const void *k)
298 1.1 thorpej {
299 1.1 thorpej const struct futex *fa = n;
300 1.1 thorpej const union futex_key *fka = &fa->fx_key;
301 1.1 thorpej const union futex_key *fkb = k;
302 1.1 thorpej
303 1.1 thorpej if ((uintptr_t)fka->fk_private.vmspace <
304 1.1 thorpej (uintptr_t)fkb->fk_private.vmspace)
305 1.1 thorpej return -1;
306 1.1 thorpej if ((uintptr_t)fka->fk_private.vmspace >
307 1.1 thorpej (uintptr_t)fkb->fk_private.vmspace)
308 1.1 thorpej return +1;
309 1.1 thorpej if (fka->fk_private.va < fkb->fk_private.va)
310 1.1 thorpej return -1;
311 1.1 thorpej if (fka->fk_private.va > fkb->fk_private.va)
312 1.1 thorpej return -1;
313 1.1 thorpej return 0;
314 1.1 thorpej }
315 1.1 thorpej
316 1.1 thorpej static int
317 1.1 thorpej compare_futex(void *cookie, const void *na, const void *nb)
318 1.1 thorpej {
319 1.1 thorpej const struct futex *fa = na;
320 1.1 thorpej const struct futex *fb = nb;
321 1.1 thorpej
322 1.1 thorpej return compare_futex_key(cookie, fa, &fb->fx_key);
323 1.1 thorpej }
324 1.1 thorpej
325 1.1 thorpej static const rb_tree_ops_t futex_rb_ops = {
326 1.1 thorpej .rbto_compare_nodes = compare_futex,
327 1.1 thorpej .rbto_compare_key = compare_futex_key,
328 1.1 thorpej .rbto_node_offset = offsetof(struct futex, fx_node),
329 1.1 thorpej };
330 1.1 thorpej
331 1.1 thorpej static int
332 1.1 thorpej compare_futex_shared_key(void *cookie, const void *n, const void *k)
333 1.1 thorpej {
334 1.1 thorpej const struct futex *fa = n;
335 1.1 thorpej const union futex_key *fka = &fa->fx_key;
336 1.1 thorpej const union futex_key *fkb = k;
337 1.1 thorpej
338 1.1 thorpej return uvm_voaddr_compare(&fka->fk_shared, &fkb->fk_shared);
339 1.1 thorpej }
340 1.1 thorpej
341 1.1 thorpej static int
342 1.1 thorpej compare_futex_shared(void *cookie, const void *na, const void *nb)
343 1.1 thorpej {
344 1.1 thorpej const struct futex *fa = na;
345 1.1 thorpej const struct futex *fb = nb;
346 1.1 thorpej
347 1.1 thorpej return compare_futex_shared_key(cookie, fa, &fb->fx_key);
348 1.1 thorpej }
349 1.1 thorpej
350 1.1 thorpej static const rb_tree_ops_t futex_shared_rb_ops = {
351 1.1 thorpej .rbto_compare_nodes = compare_futex_shared,
352 1.1 thorpej .rbto_compare_key = compare_futex_shared_key,
353 1.1 thorpej .rbto_node_offset = offsetof(struct futex, fx_node),
354 1.1 thorpej };
355 1.1 thorpej
356 1.11.2.1 thorpej /*
357 1.11.2.1 thorpej * futex_sq_lock2(f, f2)
358 1.11.2.1 thorpej *
359 1.11.2.1 thorpej * Acquire the sleepq locks for f and f2, which may be null, or
360 1.11.2.1 thorpej * which may be the same. If they are distinct, an arbitrary total
361 1.11.2.1 thorpej * order is chosen on the locks.
362 1.11.2.1 thorpej *
363 1.11.2.1 thorpej * Callers should only ever acquire multiple sleepq locks
364 1.11.2.1 thorpej * simultaneously using futex_sq_lock2.
365 1.11.2.1 thorpej */
366 1.11.2.1 thorpej static void
367 1.11.2.1 thorpej futex_sq_lock2(struct futex * const f, struct futex * const f2)
368 1.11.2.1 thorpej {
369 1.11.2.1 thorpej
370 1.11.2.1 thorpej /*
371 1.11.2.1 thorpej * If both are null, do nothing; if one is null and the other
372 1.11.2.1 thorpej * is not, lock the other and be done with it.
373 1.11.2.1 thorpej */
374 1.11.2.1 thorpej if (f == NULL && f2 == NULL) {
375 1.11.2.1 thorpej return;
376 1.11.2.1 thorpej } else if (f == NULL) {
377 1.11.2.1 thorpej mutex_spin_enter(f2->fx_sq_lock);
378 1.11.2.1 thorpej return;
379 1.11.2.1 thorpej } else if (f2 == NULL) {
380 1.11.2.1 thorpej mutex_spin_enter(f->fx_sq_lock);
381 1.11.2.1 thorpej return;
382 1.11.2.1 thorpej }
383 1.11.2.1 thorpej
384 1.11.2.1 thorpej kmutex_t * const m = f->fx_sq_lock;
385 1.11.2.1 thorpej kmutex_t * const m2 = f2->fx_sq_lock;
386 1.11.2.1 thorpej
387 1.11.2.1 thorpej /* If both locks are the same, acquire only one. */
388 1.11.2.1 thorpej if (m == m2) {
389 1.11.2.1 thorpej mutex_spin_enter(m);
390 1.11.2.1 thorpej return;
391 1.11.2.1 thorpej }
392 1.11.2.1 thorpej
393 1.11.2.1 thorpej /* Otherwise, use the ordering on the kva of the lock pointer. */
394 1.11.2.1 thorpej if ((uintptr_t)m < (uintptr_t)m2) {
395 1.11.2.1 thorpej mutex_spin_enter(m);
396 1.11.2.1 thorpej mutex_spin_enter(m2);
397 1.11.2.1 thorpej } else {
398 1.11.2.1 thorpej mutex_spin_enter(m2);
399 1.11.2.1 thorpej mutex_spin_enter(m);
400 1.11.2.1 thorpej }
401 1.11.2.1 thorpej }
402 1.11.2.1 thorpej
403 1.11.2.1 thorpej /*
404 1.11.2.1 thorpej * futex_sq_unlock2(f, f2)
405 1.11.2.1 thorpej *
406 1.11.2.1 thorpej * Release the sleep queue locks for f and f2, which may be null, or
407 1.11.2.1 thorpej * which may have the same underlying lock.
408 1.11.2.1 thorpej */
409 1.11.2.1 thorpej static void
410 1.11.2.1 thorpej futex_sq_unlock2(struct futex * const f, struct futex * const f2)
411 1.11.2.1 thorpej {
412 1.11.2.1 thorpej
413 1.11.2.1 thorpej /*
414 1.11.2.1 thorpej * If both are null, do nothing; if one is null and the other
415 1.11.2.1 thorpej * is not, unlock the other and be done with it.
416 1.11.2.1 thorpej */
417 1.11.2.1 thorpej if (f == NULL && f2 == NULL) {
418 1.11.2.1 thorpej return;
419 1.11.2.1 thorpej } else if (f == NULL) {
420 1.11.2.1 thorpej mutex_spin_exit(f2->fx_sq_lock);
421 1.11.2.1 thorpej return;
422 1.11.2.1 thorpej } else if (f2 == NULL) {
423 1.11.2.1 thorpej mutex_spin_exit(f->fx_sq_lock);
424 1.11.2.1 thorpej return;
425 1.11.2.1 thorpej }
426 1.11.2.1 thorpej
427 1.11.2.1 thorpej kmutex_t * const m = f->fx_sq_lock;
428 1.11.2.1 thorpej kmutex_t * const m2 = f2->fx_sq_lock;
429 1.11.2.1 thorpej
430 1.11.2.1 thorpej /* If both locks are the same, release only one. */
431 1.11.2.1 thorpej if (m == m2) {
432 1.11.2.1 thorpej mutex_spin_exit(m);
433 1.11.2.1 thorpej return;
434 1.11.2.1 thorpej }
435 1.11.2.1 thorpej
436 1.11.2.1 thorpej /* Otherwise, use the ordering on the kva of the lock pointer. */
437 1.11.2.1 thorpej if ((uintptr_t)m < (uintptr_t)m2) {
438 1.11.2.1 thorpej mutex_spin_exit(m2);
439 1.11.2.1 thorpej mutex_spin_exit(m);
440 1.11.2.1 thorpej } else {
441 1.11.2.1 thorpej mutex_spin_exit(m);
442 1.11.2.1 thorpej mutex_spin_exit(m2);
443 1.11.2.1 thorpej }
444 1.11.2.1 thorpej }
445 1.1 thorpej
446 1.1 thorpej /*
447 1.1 thorpej * futex_load(uaddr, kaddr)
448 1.1 thorpej *
449 1.1 thorpej * Perform a single atomic load to read *uaddr, and return the
450 1.1 thorpej * result in *kaddr. Return 0 on success, EFAULT if uaddr is not
451 1.1 thorpej * mapped.
452 1.1 thorpej */
453 1.1 thorpej static inline int
454 1.1 thorpej futex_load(int *uaddr, int *kaddr)
455 1.1 thorpej {
456 1.1 thorpej return ufetch_int((u_int *)uaddr, (u_int *)kaddr);
457 1.1 thorpej }
458 1.1 thorpej
459 1.1 thorpej /*
460 1.1 thorpej * futex_test(uaddr, expected)
461 1.1 thorpej *
462 1.1 thorpej * True if *uaddr == expected. False if *uaddr != expected, or if
463 1.1 thorpej * uaddr is not mapped.
464 1.1 thorpej */
465 1.1 thorpej static bool
466 1.1 thorpej futex_test(int *uaddr, int expected)
467 1.1 thorpej {
468 1.1 thorpej int val;
469 1.1 thorpej int error;
470 1.1 thorpej
471 1.1 thorpej error = futex_load(uaddr, &val);
472 1.1 thorpej if (error)
473 1.1 thorpej return false;
474 1.1 thorpej return val == expected;
475 1.1 thorpej }
476 1.1 thorpej
477 1.11.2.1 thorpej static pool_cache_t futex_cache __read_mostly;
478 1.11.2.1 thorpej
479 1.11.2.1 thorpej static int futex_ctor(void *, void *, int);
480 1.11.2.1 thorpej static void futex_dtor(void *, void *);
481 1.11.2.1 thorpej
482 1.1 thorpej /*
483 1.1 thorpej * futex_sys_init()
484 1.1 thorpej *
485 1.1 thorpej * Initialize the futex subsystem.
486 1.1 thorpej */
487 1.1 thorpej void
488 1.1 thorpej futex_sys_init(void)
489 1.1 thorpej {
490 1.1 thorpej
491 1.1 thorpej mutex_init(&futex_tab.lock, MUTEX_DEFAULT, IPL_NONE);
492 1.1 thorpej rb_tree_init(&futex_tab.va, &futex_rb_ops);
493 1.1 thorpej rb_tree_init(&futex_tab.oa, &futex_shared_rb_ops);
494 1.11.2.1 thorpej
495 1.11.2.1 thorpej futex_cache = pool_cache_init(sizeof(struct futex),
496 1.11.2.1 thorpej coherency_unit, 0, 0, "futex", NULL, IPL_NONE, futex_ctor,
497 1.11.2.1 thorpej futex_dtor, NULL);
498 1.1 thorpej }
499 1.1 thorpej
500 1.1 thorpej /*
501 1.1 thorpej * futex_sys_fini()
502 1.1 thorpej *
503 1.1 thorpej * Finalize the futex subsystem.
504 1.1 thorpej */
505 1.1 thorpej void
506 1.1 thorpej futex_sys_fini(void)
507 1.1 thorpej {
508 1.1 thorpej
509 1.1 thorpej KASSERT(RB_TREE_MIN(&futex_tab.oa) == NULL);
510 1.1 thorpej KASSERT(RB_TREE_MIN(&futex_tab.va) == NULL);
511 1.1 thorpej mutex_destroy(&futex_tab.lock);
512 1.1 thorpej }
513 1.1 thorpej
514 1.1 thorpej /*
515 1.11.2.1 thorpej * futex_ctor()
516 1.1 thorpej *
517 1.11.2.1 thorpej * Futex object constructor.
518 1.1 thorpej */
519 1.11.2.1 thorpej static int
520 1.11.2.1 thorpej futex_ctor(void *arg __unused, void *obj, int flags __unused)
521 1.1 thorpej {
522 1.11.2.1 thorpej extern sleepqlock_t sleepq_locks[SLEEPTAB_HASH_SIZE];
523 1.11.2.1 thorpej struct futex * const f = obj;
524 1.1 thorpej
525 1.11.2.1 thorpej mutex_init(&f->fx_op_lock, MUTEX_DEFAULT, IPL_NONE);
526 1.11.2.1 thorpej f->fx_sq_lock = &sleepq_locks[SLEEPTAB_HASH(f)].lock;
527 1.1 thorpej
528 1.11.2.1 thorpej sleepq_init(&f->fx_sqs[FUTEX_READERQ]);
529 1.11.2.1 thorpej sleepq_init(&f->fx_sqs[FUTEX_WRITERQ]);
530 1.11.2.1 thorpej f->fx_nwaiters[FUTEX_READERQ] = f->fx_nwaiters[FUTEX_WRITERQ] = 0;
531 1.1 thorpej
532 1.11.2.1 thorpej return 0;
533 1.1 thorpej }
534 1.1 thorpej
535 1.1 thorpej /*
536 1.11.2.1 thorpej * futex_dtor()
537 1.1 thorpej *
538 1.11.2.1 thorpej * Futex object destructor.
539 1.1 thorpej */
540 1.1 thorpej static void
541 1.11.2.1 thorpej futex_dtor(void *arg __unused, void *obj)
542 1.1 thorpej {
543 1.11.2.1 thorpej struct futex * const f = obj;
544 1.1 thorpej
545 1.11.2.1 thorpej mutex_destroy(&f->fx_op_lock);
546 1.11.2.1 thorpej f->fx_sq_lock = NULL;
547 1.1 thorpej }
548 1.1 thorpej
549 1.1 thorpej /*
550 1.1 thorpej * futex_key_init(key, vm, va, shared)
551 1.1 thorpej *
552 1.1 thorpej * Initialize a futex key for lookup, etc.
553 1.1 thorpej */
554 1.1 thorpej static int
555 1.1 thorpej futex_key_init(union futex_key *fk, struct vmspace *vm, vaddr_t va, bool shared)
556 1.1 thorpej {
557 1.1 thorpej int error = 0;
558 1.1 thorpej
559 1.1 thorpej if (__predict_false(shared)) {
560 1.1 thorpej if (!uvm_voaddr_acquire(&vm->vm_map, va, &fk->fk_shared))
561 1.1 thorpej error = EFAULT;
562 1.1 thorpej } else {
563 1.1 thorpej fk->fk_private.vmspace = vm;
564 1.1 thorpej fk->fk_private.va = va;
565 1.1 thorpej }
566 1.1 thorpej
567 1.1 thorpej return error;
568 1.1 thorpej }
569 1.1 thorpej
570 1.1 thorpej /*
571 1.1 thorpej * futex_key_fini(key, shared)
572 1.1 thorpej *
573 1.1 thorpej * Release a futex key.
574 1.1 thorpej */
575 1.1 thorpej static void
576 1.1 thorpej futex_key_fini(union futex_key *fk, bool shared)
577 1.1 thorpej {
578 1.1 thorpej if (__predict_false(shared))
579 1.1 thorpej uvm_voaddr_release(&fk->fk_shared);
580 1.1 thorpej memset(fk, 0, sizeof(*fk));
581 1.1 thorpej }
582 1.1 thorpej
583 1.1 thorpej /*
584 1.1 thorpej * futex_create(fk, shared)
585 1.1 thorpej *
586 1.1 thorpej * Create a futex. Initial reference count is 1, representing the
587 1.1 thorpej * caller. Returns NULL on failure. Always takes ownership of the
588 1.1 thorpej * key, either transferring it to the newly-created futex, or releasing
589 1.1 thorpej * the key if creation fails.
590 1.1 thorpej *
591 1.1 thorpej * Never sleeps for memory, but may sleep to acquire a lock.
592 1.1 thorpej */
593 1.1 thorpej static struct futex *
594 1.11.2.1 thorpej futex_create(union futex_key *fk, bool shared, uint8_t class)
595 1.1 thorpej {
596 1.1 thorpej struct futex *f;
597 1.1 thorpej
598 1.11.2.1 thorpej f = pool_cache_get(futex_cache, PR_NOWAIT);
599 1.1 thorpej if (f == NULL) {
600 1.1 thorpej futex_key_fini(fk, shared);
601 1.1 thorpej return NULL;
602 1.1 thorpej }
603 1.1 thorpej f->fx_key = *fk;
604 1.1 thorpej f->fx_refcnt = 1;
605 1.1 thorpej f->fx_shared = shared;
606 1.1 thorpej f->fx_on_tree = false;
607 1.11.2.1 thorpej f->fx_class = class;
608 1.1 thorpej
609 1.1 thorpej return f;
610 1.1 thorpej }
611 1.1 thorpej
612 1.1 thorpej /*
613 1.1 thorpej * futex_destroy(f)
614 1.1 thorpej *
615 1.1 thorpej * Destroy a futex created with futex_create. Reference count
616 1.1 thorpej * must be zero.
617 1.1 thorpej *
618 1.1 thorpej * May sleep.
619 1.1 thorpej */
620 1.1 thorpej static void
621 1.1 thorpej futex_destroy(struct futex *f)
622 1.1 thorpej {
623 1.1 thorpej
624 1.1 thorpej ASSERT_SLEEPABLE();
625 1.1 thorpej
626 1.1 thorpej KASSERT(atomic_load_relaxed(&f->fx_refcnt) == 0);
627 1.1 thorpej KASSERT(!f->fx_on_tree);
628 1.11.2.1 thorpej KASSERT(LIST_EMPTY(&f->fx_sqs[FUTEX_READERQ]));
629 1.11.2.1 thorpej KASSERT(LIST_EMPTY(&f->fx_sqs[FUTEX_WRITERQ]));
630 1.11.2.1 thorpej KASSERT(f->fx_nwaiters[FUTEX_READERQ] == 0);
631 1.11.2.1 thorpej KASSERT(f->fx_nwaiters[FUTEX_WRITERQ] == 0);
632 1.1 thorpej
633 1.1 thorpej futex_key_fini(&f->fx_key, f->fx_shared);
634 1.1 thorpej
635 1.11.2.1 thorpej pool_cache_put(futex_cache, f);
636 1.1 thorpej }
637 1.1 thorpej
638 1.1 thorpej /*
639 1.11.2.1 thorpej * futex_hold_count(f, n)
640 1.1 thorpej *
641 1.1 thorpej * Attempt to acquire a reference to f. Return 0 on success,
642 1.1 thorpej * ENFILE on too many references.
643 1.1 thorpej *
644 1.1 thorpej * Never sleeps.
645 1.1 thorpej */
646 1.1 thorpej static int
647 1.11.2.1 thorpej futex_hold_count(struct futex *f, unsigned long const count)
648 1.1 thorpej {
649 1.1 thorpej unsigned long refcnt;
650 1.1 thorpej
651 1.1 thorpej do {
652 1.1 thorpej refcnt = atomic_load_relaxed(&f->fx_refcnt);
653 1.11.2.1 thorpej if (ULONG_MAX - refcnt < count)
654 1.1 thorpej return ENFILE;
655 1.11.2.1 thorpej } while (atomic_cas_ulong(&f->fx_refcnt, refcnt,
656 1.11.2.1 thorpej refcnt + count) != refcnt);
657 1.1 thorpej
658 1.1 thorpej return 0;
659 1.1 thorpej }
660 1.11.2.1 thorpej #define futex_hold(f) futex_hold_count(f, 1)
661 1.1 thorpej
662 1.1 thorpej /*
663 1.11.2.1 thorpej * futex_rele_count(f, n)
664 1.1 thorpej *
665 1.1 thorpej * Release a reference to f acquired with futex_create or
666 1.1 thorpej * futex_hold.
667 1.1 thorpej *
668 1.1 thorpej * May sleep to free f.
669 1.1 thorpej */
670 1.1 thorpej static void
671 1.11.2.1 thorpej futex_rele_count(struct futex *f, unsigned long const count)
672 1.1 thorpej {
673 1.1 thorpej unsigned long refcnt;
674 1.1 thorpej
675 1.1 thorpej ASSERT_SLEEPABLE();
676 1.1 thorpej
677 1.1 thorpej do {
678 1.1 thorpej refcnt = atomic_load_relaxed(&f->fx_refcnt);
679 1.11.2.1 thorpej KASSERT(refcnt >= count);
680 1.11.2.1 thorpej if (refcnt - count == 0)
681 1.1 thorpej goto trylast;
682 1.11.2.1 thorpej } while (atomic_cas_ulong(&f->fx_refcnt, refcnt,
683 1.11.2.1 thorpej refcnt - count) != refcnt);
684 1.1 thorpej return;
685 1.1 thorpej
686 1.1 thorpej trylast:
687 1.11.2.1 thorpej KASSERT(count <= LONG_MAX);
688 1.1 thorpej mutex_enter(&futex_tab.lock);
689 1.11.2.1 thorpej if (atomic_add_long_nv(&f->fx_refcnt, -(long)count) == 0) {
690 1.1 thorpej if (f->fx_on_tree) {
691 1.1 thorpej if (__predict_false(f->fx_shared))
692 1.1 thorpej rb_tree_remove_node(&futex_tab.oa, f);
693 1.1 thorpej else
694 1.1 thorpej rb_tree_remove_node(&futex_tab.va, f);
695 1.1 thorpej f->fx_on_tree = false;
696 1.1 thorpej }
697 1.1 thorpej } else {
698 1.1 thorpej /* References remain -- don't destroy it. */
699 1.1 thorpej f = NULL;
700 1.1 thorpej }
701 1.1 thorpej mutex_exit(&futex_tab.lock);
702 1.1 thorpej if (f != NULL)
703 1.1 thorpej futex_destroy(f);
704 1.1 thorpej }
705 1.11.2.1 thorpej #define futex_rele(f) futex_rele_count(f, 1)
706 1.1 thorpej
707 1.1 thorpej /*
708 1.11.2.1 thorpej * futex_rele_count_not_last(f, n)
709 1.1 thorpej *
710 1.1 thorpej * Release a reference to f acquired with futex_create or
711 1.1 thorpej * futex_hold.
712 1.1 thorpej *
713 1.1 thorpej * This version asserts that we are not dropping the last
714 1.1 thorpej * reference to f.
715 1.1 thorpej */
716 1.1 thorpej static void
717 1.11.2.1 thorpej futex_rele_count_not_last(struct futex *f, unsigned long const count)
718 1.1 thorpej {
719 1.1 thorpej unsigned long refcnt;
720 1.1 thorpej
721 1.1 thorpej do {
722 1.1 thorpej refcnt = atomic_load_relaxed(&f->fx_refcnt);
723 1.11.2.1 thorpej KASSERT(refcnt >= count);
724 1.11.2.1 thorpej } while (atomic_cas_ulong(&f->fx_refcnt, refcnt,
725 1.11.2.1 thorpej refcnt - count) != refcnt);
726 1.1 thorpej }
727 1.1 thorpej
728 1.1 thorpej /*
729 1.11.2.1 thorpej * futex_lookup_by_key(key, shared, class, &f)
730 1.1 thorpej *
731 1.1 thorpej * Try to find an existing futex va reference in the specified key
732 1.1 thorpej * On success, return 0, set f to found futex or to NULL if not found,
733 1.1 thorpej * and increment f's reference count if found.
734 1.1 thorpej *
735 1.1 thorpej * Return ENFILE if reference count too high.
736 1.1 thorpej *
737 1.1 thorpej * Internal lookup routine shared by futex_lookup() and
738 1.5 riastrad * futex_lookup_create().
739 1.1 thorpej */
740 1.1 thorpej static int
741 1.11.2.1 thorpej futex_lookup_by_key(union futex_key *fk, bool shared, uint8_t class,
742 1.11.2.1 thorpej struct futex **fp)
743 1.1 thorpej {
744 1.1 thorpej struct futex *f;
745 1.1 thorpej int error = 0;
746 1.1 thorpej
747 1.1 thorpej mutex_enter(&futex_tab.lock);
748 1.1 thorpej if (__predict_false(shared)) {
749 1.1 thorpej f = rb_tree_find_node(&futex_tab.oa, fk);
750 1.1 thorpej } else {
751 1.1 thorpej f = rb_tree_find_node(&futex_tab.va, fk);
752 1.1 thorpej }
753 1.1 thorpej if (f) {
754 1.11.2.1 thorpej if (__predict_true(f->fx_class == class ||
755 1.11.2.1 thorpej class == FUTEX_CLASS_ANY))
756 1.11.2.1 thorpej error = futex_hold(f);
757 1.11.2.1 thorpej else
758 1.11.2.1 thorpej error = EINVAL;
759 1.1 thorpej if (error)
760 1.1 thorpej f = NULL;
761 1.1 thorpej }
762 1.1 thorpej *fp = f;
763 1.1 thorpej mutex_exit(&futex_tab.lock);
764 1.1 thorpej
765 1.1 thorpej return error;
766 1.1 thorpej }
767 1.1 thorpej
768 1.1 thorpej /*
769 1.1 thorpej * futex_insert(f, fp)
770 1.1 thorpej *
771 1.1 thorpej * Try to insert the futex f into the tree by va. If there
772 1.1 thorpej * already is a futex for its va, acquire a reference to it, and
773 1.1 thorpej * store it in *fp; otherwise store f in *fp.
774 1.1 thorpej *
775 1.1 thorpej * Return 0 on success, ENFILE if there already is a futex but its
776 1.1 thorpej * reference count is too high.
777 1.1 thorpej */
778 1.1 thorpej static int
779 1.1 thorpej futex_insert(struct futex *f, struct futex **fp)
780 1.1 thorpej {
781 1.1 thorpej struct futex *f0;
782 1.1 thorpej int error;
783 1.1 thorpej
784 1.1 thorpej KASSERT(atomic_load_relaxed(&f->fx_refcnt) != 0);
785 1.1 thorpej KASSERT(!f->fx_on_tree);
786 1.1 thorpej
787 1.1 thorpej mutex_enter(&futex_tab.lock);
788 1.1 thorpej if (__predict_false(f->fx_shared))
789 1.1 thorpej f0 = rb_tree_insert_node(&futex_tab.oa, f);
790 1.1 thorpej else
791 1.1 thorpej f0 = rb_tree_insert_node(&futex_tab.va, f);
792 1.1 thorpej if (f0 == f) {
793 1.1 thorpej f->fx_on_tree = true;
794 1.1 thorpej error = 0;
795 1.1 thorpej } else {
796 1.1 thorpej KASSERT(atomic_load_relaxed(&f0->fx_refcnt) != 0);
797 1.1 thorpej KASSERT(f0->fx_on_tree);
798 1.1 thorpej error = futex_hold(f0);
799 1.1 thorpej if (error)
800 1.1 thorpej goto out;
801 1.1 thorpej }
802 1.1 thorpej *fp = f0;
803 1.1 thorpej out: mutex_exit(&futex_tab.lock);
804 1.1 thorpej
805 1.1 thorpej return error;
806 1.1 thorpej }
807 1.1 thorpej
808 1.1 thorpej /*
809 1.11.2.1 thorpej * futex_lookup(uaddr, shared, class, &f)
810 1.1 thorpej *
811 1.1 thorpej * Find a futex at the userland pointer uaddr in the current
812 1.1 thorpej * process's VM space. On success, return the futex in f and
813 1.1 thorpej * increment its reference count.
814 1.1 thorpej *
815 1.5 riastrad * Caller must call futex_rele when done.
816 1.1 thorpej */
817 1.1 thorpej static int
818 1.11.2.1 thorpej futex_lookup(int *uaddr, bool shared, uint8_t class, struct futex **fp)
819 1.1 thorpej {
820 1.1 thorpej union futex_key fk;
821 1.1 thorpej struct vmspace *vm = curproc->p_vmspace;
822 1.1 thorpej vaddr_t va = (vaddr_t)uaddr;
823 1.1 thorpej int error;
824 1.1 thorpej
825 1.1 thorpej /*
826 1.1 thorpej * Reject unaligned user pointers so we don't cross page
827 1.1 thorpej * boundaries and so atomics will work.
828 1.1 thorpej */
829 1.11.2.1 thorpej if (__predict_false((va & 3) != 0))
830 1.1 thorpej return EINVAL;
831 1.1 thorpej
832 1.1 thorpej /* Look it up. */
833 1.1 thorpej error = futex_key_init(&fk, vm, va, shared);
834 1.1 thorpej if (error)
835 1.1 thorpej return error;
836 1.1 thorpej
837 1.11.2.1 thorpej error = futex_lookup_by_key(&fk, shared, class, fp);
838 1.1 thorpej futex_key_fini(&fk, shared);
839 1.1 thorpej if (error)
840 1.1 thorpej return error;
841 1.1 thorpej
842 1.1 thorpej KASSERT(*fp == NULL || (*fp)->fx_shared == shared);
843 1.11.2.1 thorpej KASSERT(*fp == NULL || (*fp)->fx_class == class);
844 1.1 thorpej KASSERT(*fp == NULL || atomic_load_relaxed(&(*fp)->fx_refcnt) != 0);
845 1.1 thorpej
846 1.1 thorpej /*
847 1.1 thorpej * Success! (Caller must still check whether we found
848 1.1 thorpej * anything, but nothing went _wrong_ like trying to use
849 1.1 thorpej * unmapped memory.)
850 1.1 thorpej */
851 1.1 thorpej KASSERT(error == 0);
852 1.1 thorpej
853 1.1 thorpej return error;
854 1.1 thorpej }
855 1.1 thorpej
856 1.1 thorpej /*
857 1.11.2.1 thorpej * futex_lookup_create(uaddr, shared, class, &f)
858 1.1 thorpej *
859 1.1 thorpej * Find or create a futex at the userland pointer uaddr in the
860 1.1 thorpej * current process's VM space. On success, return the futex in f
861 1.1 thorpej * and increment its reference count.
862 1.1 thorpej *
863 1.5 riastrad * Caller must call futex_rele when done.
864 1.1 thorpej */
865 1.1 thorpej static int
866 1.11.2.1 thorpej futex_lookup_create(int *uaddr, bool shared, uint8_t class, struct futex **fp)
867 1.1 thorpej {
868 1.1 thorpej union futex_key fk;
869 1.1 thorpej struct vmspace *vm = curproc->p_vmspace;
870 1.1 thorpej struct futex *f = NULL;
871 1.1 thorpej vaddr_t va = (vaddr_t)uaddr;
872 1.1 thorpej int error;
873 1.1 thorpej
874 1.1 thorpej /*
875 1.1 thorpej * Reject unaligned user pointers so we don't cross page
876 1.1 thorpej * boundaries and so atomics will work.
877 1.1 thorpej */
878 1.11.2.1 thorpej if (__predict_false((va & 3) != 0))
879 1.11.2.1 thorpej return EINVAL;
880 1.11.2.1 thorpej
881 1.11.2.1 thorpej if (__predict_false(class == FUTEX_CLASS_ANY))
882 1.1 thorpej return EINVAL;
883 1.1 thorpej
884 1.1 thorpej error = futex_key_init(&fk, vm, va, shared);
885 1.1 thorpej if (error)
886 1.1 thorpej return error;
887 1.1 thorpej
888 1.1 thorpej /*
889 1.1 thorpej * Optimistically assume there already is one, and try to find
890 1.1 thorpej * it.
891 1.1 thorpej */
892 1.11.2.1 thorpej error = futex_lookup_by_key(&fk, shared, class, fp);
893 1.1 thorpej if (error || *fp != NULL) {
894 1.1 thorpej /*
895 1.1 thorpej * We either found one, or there was an error.
896 1.1 thorpej * In either case, we are done with the key.
897 1.1 thorpej */
898 1.1 thorpej futex_key_fini(&fk, shared);
899 1.1 thorpej goto out;
900 1.1 thorpej }
901 1.1 thorpej
902 1.1 thorpej /*
903 1.1 thorpej * Create a futex recoard. This tranfers ownership of the key
904 1.1 thorpej * in all cases.
905 1.1 thorpej */
906 1.11.2.1 thorpej f = futex_create(&fk, shared, class);
907 1.1 thorpej if (f == NULL) {
908 1.1 thorpej error = ENOMEM;
909 1.1 thorpej goto out;
910 1.1 thorpej }
911 1.1 thorpej
912 1.1 thorpej /*
913 1.1 thorpej * Insert our new futex, or use existing if someone else beat
914 1.1 thorpej * us to it.
915 1.1 thorpej */
916 1.1 thorpej error = futex_insert(f, fp);
917 1.1 thorpej if (error)
918 1.1 thorpej goto out;
919 1.1 thorpej if (*fp == f)
920 1.1 thorpej f = NULL; /* don't release on exit */
921 1.1 thorpej
922 1.1 thorpej /* Success! */
923 1.1 thorpej KASSERT(error == 0);
924 1.1 thorpej
925 1.1 thorpej out: if (f != NULL)
926 1.1 thorpej futex_rele(f);
927 1.1 thorpej KASSERT(error || *fp != NULL);
928 1.1 thorpej KASSERT(error || atomic_load_relaxed(&(*fp)->fx_refcnt) != 0);
929 1.1 thorpej return error;
930 1.1 thorpej }
931 1.1 thorpej
932 1.1 thorpej /*
933 1.11.2.1 thorpej * futex_unsleep:
934 1.1 thorpej *
935 1.11.2.1 thorpej * Remove an LWP from the futex and sleep queue. This is called when
936 1.11.2.1 thorpej * the LWP has not been awoken normally but instead interrupted: for
937 1.11.2.1 thorpej * example, when a signal is received. Must be called with the LWP
938 1.11.2.1 thorpej * locked. Will unlock if "unlock" is true.
939 1.1 thorpej */
940 1.1 thorpej static void
941 1.11.2.1 thorpej futex_unsleep(lwp_t *l, bool unlock)
942 1.1 thorpej {
943 1.11.2.1 thorpej struct futex *f __diagused;
944 1.1 thorpej
945 1.11.2.1 thorpej f = (struct futex *)(uintptr_t)l->l_wchan;
946 1.6 riastrad
947 1.11.2.1 thorpej KASSERT(mutex_owned(f->fx_sq_lock));
948 1.1 thorpej
949 1.11.2.1 thorpej /* WRITERQ is more likely */
950 1.11.2.1 thorpej if (__predict_true(l->l_sleepq == &f->fx_sqs[FUTEX_WRITERQ])) {
951 1.11.2.1 thorpej KASSERT(f->fx_nwaiters[FUTEX_WRITERQ] > 0);
952 1.11.2.1 thorpej f->fx_nwaiters[FUTEX_WRITERQ]--;
953 1.11.2.1 thorpej } else {
954 1.11.2.1 thorpej KASSERT(l->l_sleepq == &f->fx_sqs[FUTEX_READERQ]);
955 1.11.2.1 thorpej KASSERT(f->fx_nwaiters[FUTEX_READERQ] > 0);
956 1.11.2.1 thorpej f->fx_nwaiters[FUTEX_READERQ]--;
957 1.11.2.1 thorpej }
958 1.1 thorpej
959 1.11.2.1 thorpej sleepq_unsleep(l, unlock);
960 1.1 thorpej }
961 1.1 thorpej
962 1.1 thorpej /*
963 1.11.2.1 thorpej * futex_wait(f, timeout, clkid, bitset)
964 1.1 thorpej *
965 1.11.2.1 thorpej * Wait until deadline on the clock clkid, or forever if deadline
966 1.11.2.1 thorpej * is NULL, for a futex wakeup. Return 0 on explicit wakeup,
967 1.11.2.1 thorpej * ETIMEDOUT on timeout, EINTR on signal.
968 1.1 thorpej */
969 1.11.2.1 thorpej static int
970 1.11.2.1 thorpej futex_wait(struct futex *f, int q, const struct timespec *deadline,
971 1.11.2.1 thorpej clockid_t clkid, int bitset)
972 1.1 thorpej {
973 1.1 thorpej
974 1.1 thorpej /*
975 1.11.2.1 thorpej * Some things to note about how this function works:
976 1.11.2.1 thorpej *
977 1.11.2.1 thorpej * ==> When we enter futex_wait(), the futex's op lock is
978 1.11.2.1 thorpej * held, preventing us from missing wakes. Once we are on
979 1.11.2.1 thorpej * the futex's sleepq, it is safe to release the op lock.
980 1.11.2.1 thorpej *
981 1.11.2.1 thorpej * ==> We have a single early escape to avoid calling
982 1.11.2.1 thorpej * sleepq_block(): our deadline already having passed.
983 1.11.2.1 thorpej * If this is a no-timeout wait, or if the deadline has
984 1.11.2.1 thorpej * not already passed, we are guaranteed to call sleepq_block().
985 1.11.2.1 thorpej *
986 1.11.2.1 thorpej * ==> sleepq_block() contains all of the necessary logic
987 1.11.2.1 thorpej * for handling signals; we do not need to check for them
988 1.11.2.1 thorpej * ourselves.
989 1.11.2.1 thorpej *
990 1.11.2.1 thorpej * ==> Once we have blocked, other futex operations will
991 1.11.2.1 thorpej * be able to wake us or requeue us. Until we have blocked,
992 1.11.2.1 thorpej * those other futex operations will not be able to acquire
993 1.11.2.1 thorpej * the sleepq locks in order to perform those operations,
994 1.11.2.1 thorpej * even if we have dropped the op lock. Thus, we will not
995 1.11.2.1 thorpej * miss wakes. This fundamental invariant is relied upon by
996 1.11.2.1 thorpej * every other synchronization object in the kernel.
997 1.11.2.1 thorpej *
998 1.11.2.1 thorpej * ==> sleepq_block() returns for one of three reasons:
999 1.11.2.1 thorpej *
1000 1.11.2.1 thorpej * -- We were awakened.
1001 1.11.2.1 thorpej * -- We were signaled.
1002 1.11.2.1 thorpej * -- We timed out.
1003 1.11.2.1 thorpej *
1004 1.11.2.1 thorpej * ==> Once sleepq_block() returns, we will not call
1005 1.11.2.1 thorpej * sleepq_block() again.
1006 1.11.2.1 thorpej *
1007 1.11.2.1 thorpej * ==> If sleepq_block() returns due to being signaled,
1008 1.11.2.1 thorpej * we must check to see if we were also awakened. This
1009 1.11.2.1 thorpej * is to handle the following sequence:
1010 1.11.2.1 thorpej *
1011 1.11.2.1 thorpej * -- Futex wake takes us off sleepq, places us on runq.
1012 1.11.2.1 thorpej * -- We are signaled while sitting on the runq.
1013 1.11.2.1 thorpej * -- We run, and sleepq_block() notices the signal and
1014 1.11.2.1 thorpej * returns EINTR/ERESTART.
1015 1.11.2.1 thorpej *
1016 1.11.2.1 thorpej * In this situation, we want to indicate a successful wake
1017 1.11.2.1 thorpej * to the caller, because that wake has been reported to the
1018 1.11.2.1 thorpej * thread that issued it.
1019 1.11.2.1 thorpej *
1020 1.11.2.1 thorpej * Note that it is NOT possible for a wake to be issued after
1021 1.11.2.1 thorpej * a signal; the LWP will already have been taken off the sleepq
1022 1.11.2.1 thorpej * by the signal, so the wake will never happen. Note that for
1023 1.11.2.1 thorpej * this reason, we must *never* return ERESTART, because it could
1024 1.11.2.1 thorpej * result in us waiting again with no one to awaken us.
1025 1.1 thorpej */
1026 1.1 thorpej
1027 1.11.2.1 thorpej struct lwp * const l = curlwp;
1028 1.11.2.1 thorpej int timo;
1029 1.11.2.1 thorpej int error;
1030 1.1 thorpej
1031 1.4 riastrad /*
1032 1.11.2.1 thorpej * Compute our timeout before taking any locks.
1033 1.4 riastrad */
1034 1.11.2.1 thorpej if (deadline) {
1035 1.11.2.1 thorpej struct timespec ts;
1036 1.4 riastrad
1037 1.11.2.1 thorpej /* Check our watch. */
1038 1.11.2.1 thorpej error = clock_gettime1(clkid, &ts);
1039 1.11.2.1 thorpej if (error) {
1040 1.11.2.1 thorpej mutex_exit(&f->fx_op_lock);
1041 1.11.2.1 thorpej return error;
1042 1.11.2.1 thorpej }
1043 1.1 thorpej
1044 1.11.2.1 thorpej /*
1045 1.11.2.1 thorpej * If we're past the deadline, ETIMEDOUT.
1046 1.11.2.1 thorpej */
1047 1.11.2.1 thorpej if (timespeccmp(deadline, &ts, <=)) {
1048 1.11.2.1 thorpej mutex_exit(&f->fx_op_lock);
1049 1.11.2.1 thorpej return ETIMEDOUT;
1050 1.11.2.1 thorpej } else {
1051 1.11.2.1 thorpej /* Count how much time is left. */
1052 1.11.2.1 thorpej timespecsub(deadline, &ts, &ts);
1053 1.11.2.1 thorpej timo = tstohz(&ts);
1054 1.11.2.1 thorpej if (timo == 0) {
1055 1.11.2.1 thorpej /*
1056 1.11.2.1 thorpej * tstohz() already rounds up, and
1057 1.11.2.1 thorpej * a return value of 0 ticks means
1058 1.11.2.1 thorpej * "expired now or in the past".
1059 1.11.2.1 thorpej */
1060 1.11.2.1 thorpej mutex_exit(&f->fx_op_lock);
1061 1.11.2.1 thorpej return ETIMEDOUT;
1062 1.11.2.1 thorpej }
1063 1.11.2.1 thorpej }
1064 1.11.2.1 thorpej } else {
1065 1.11.2.1 thorpej timo = 0;
1066 1.11.2.1 thorpej }
1067 1.1 thorpej
1068 1.1 thorpej /*
1069 1.11.2.1 thorpej * Acquire in sleepq -> lwp order. While we're at it, ensure
1070 1.11.2.1 thorpej * that there's room for us to block.
1071 1.1 thorpej */
1072 1.11.2.1 thorpej mutex_spin_enter(f->fx_sq_lock);
1073 1.11.2.1 thorpej if (__predict_false(q == FUTEX_READERQ &&
1074 1.11.2.1 thorpej f->fx_nwaiters[q] == FUTEX_TID_MASK)) {
1075 1.11.2.1 thorpej mutex_spin_exit(f->fx_sq_lock);
1076 1.11.2.1 thorpej mutex_exit(&f->fx_op_lock);
1077 1.11.2.1 thorpej return ENFILE;
1078 1.11.2.1 thorpej }
1079 1.11.2.1 thorpej lwp_lock(l);
1080 1.4 riastrad
1081 1.4 riastrad /*
1082 1.11.2.1 thorpej * No need for locks here; until we're on a futex's sleepq, these
1083 1.11.2.1 thorpej * values are private to the LWP, and the locks needed to get onto
1084 1.11.2.1 thorpej * the sleepq provide the memory barriers needed to ensure visibility.
1085 1.4 riastrad */
1086 1.11.2.1 thorpej l->l_futex = f;
1087 1.11.2.1 thorpej l->l_futex_wakesel = bitset;
1088 1.4 riastrad
1089 1.4 riastrad /*
1090 1.11.2.1 thorpej * This is an inlined bit of sleepq_enter();
1091 1.11.2.1 thorpej * we already hold the lwp lock.
1092 1.4 riastrad */
1093 1.11.2.1 thorpej lwp_unlock_to(l, f->fx_sq_lock);
1094 1.11.2.1 thorpej KERNEL_UNLOCK_ALL(NULL, &l->l_biglocks);
1095 1.11.2.1 thorpej KASSERT(lwp_locked(l, f->fx_sq_lock));
1096 1.1 thorpej
1097 1.11.2.1 thorpej sleepq_enqueue(&f->fx_sqs[q], f, futex_wmesg, &futex_syncobj, true);
1098 1.11.2.1 thorpej f->fx_nwaiters[q]++;
1099 1.4 riastrad
1100 1.11.2.1 thorpej /* We can now safely release the op lock. */
1101 1.11.2.1 thorpej mutex_exit(&f->fx_op_lock);
1102 1.11 riastrad
1103 1.11.2.1 thorpej SDT_PROBE1(futex, wait, sleepq_block, entry, timo);
1104 1.11.2.1 thorpej error = sleepq_block(timo, true);
1105 1.11.2.1 thorpej SDT_PROBE1(futex, wait, sleepq_block, exit, error);
1106 1.11 riastrad
1107 1.11.2.1 thorpej /*
1108 1.11.2.1 thorpej * f is no longer valid; we may have been moved to another
1109 1.11.2.1 thorpej * futex sleepq while we slept.
1110 1.11.2.1 thorpej */
1111 1.4 riastrad
1112 1.4 riastrad /*
1113 1.11.2.1 thorpej * If something went wrong, we may still have a futex reference.
1114 1.11.2.1 thorpej * Check for that here and drop it if so. We can do this without
1115 1.11.2.1 thorpej * taking any locks because l->l_futex is private to the LWP when
1116 1.11.2.1 thorpej * not on any futex's sleepq, and we are not on any sleepq because
1117 1.11.2.1 thorpej * we are running.
1118 1.11.2.1 thorpej *
1119 1.11.2.1 thorpej * Convert EWOULDBLOCK to ETIMEDOUT in case sleepq_block() returned
1120 1.11.2.1 thorpej * EWOULDBLOCK, and ensure the only other error we return is EINTR.
1121 1.4 riastrad */
1122 1.4 riastrad if (error) {
1123 1.11.2.1 thorpej f = l->l_futex;
1124 1.11.2.1 thorpej if (f != NULL) {
1125 1.11.2.1 thorpej SDT_PROBE0(futex, wait, finish, aborted);
1126 1.11.2.1 thorpej l->l_futex = NULL;
1127 1.11.2.1 thorpej futex_rele(f);
1128 1.11.2.1 thorpej } else {
1129 1.11.2.1 thorpej /* Raced with wakeup; report success. */
1130 1.11.2.1 thorpej SDT_PROBE0(futex, wait, finish, wakerace);
1131 1.11.2.1 thorpej error = 0;
1132 1.11.2.1 thorpej }
1133 1.4 riastrad if (error == EWOULDBLOCK)
1134 1.4 riastrad error = ETIMEDOUT;
1135 1.11.2.1 thorpej else if (error != ETIMEDOUT)
1136 1.11.2.1 thorpej error = EINTR;
1137 1.11.2.1 thorpej } else {
1138 1.11.2.1 thorpej KASSERT(l->l_futex == NULL);
1139 1.11.2.1 thorpej SDT_PROBE0(futex, wait, finish, normally);
1140 1.4 riastrad }
1141 1.4 riastrad
1142 1.1 thorpej return error;
1143 1.1 thorpej }
1144 1.1 thorpej
1145 1.1 thorpej /*
1146 1.11.2.1 thorpej * futex_wake(f, q, nwake, f2, q2, nrequeue, bitset)
1147 1.1 thorpej *
1148 1.1 thorpej * Wake up to nwake waiters on f matching bitset; then, if f2 is
1149 1.1 thorpej * provided, move up to nrequeue remaining waiters on f matching
1150 1.1 thorpej * bitset to f2. Return the number of waiters actually woken.
1151 1.1 thorpej * Caller must hold the locks of f and f2, if provided.
1152 1.1 thorpej */
1153 1.1 thorpej static unsigned
1154 1.11.2.1 thorpej futex_wake(struct futex *f, int q, unsigned int const nwake,
1155 1.11.2.1 thorpej struct futex *f2, int q2, unsigned int const nrequeue,
1156 1.11.2.1 thorpej int bitset)
1157 1.1 thorpej {
1158 1.11.2.1 thorpej struct lwp *l, *l_next;
1159 1.1 thorpej unsigned nwoken = 0;
1160 1.11.2.1 thorpej unsigned nrequeued = 0;
1161 1.11.2.1 thorpej
1162 1.11.2.1 thorpej KASSERT(mutex_owned(&f->fx_op_lock));
1163 1.11.2.1 thorpej KASSERT(f2 == NULL || mutex_owned(&f2->fx_op_lock));
1164 1.1 thorpej
1165 1.11.2.1 thorpej futex_sq_lock2(f, f2);
1166 1.1 thorpej
1167 1.1 thorpej /* Wake up to nwake waiters, and count the number woken. */
1168 1.11.2.1 thorpej LIST_FOREACH_SAFE(l, &f->fx_sqs[q], l_sleepchain, l_next) {
1169 1.11.2.1 thorpej if (nwoken == nwake)
1170 1.1 thorpej break;
1171 1.11.2.1 thorpej
1172 1.11.2.1 thorpej KASSERT(l->l_syncobj == &futex_syncobj);
1173 1.11.2.1 thorpej KASSERT(l->l_wchan == (wchan_t)f);
1174 1.11.2.1 thorpej KASSERT(l->l_futex == f);
1175 1.11.2.1 thorpej KASSERT(l->l_sleepq == &f->fx_sqs[q]);
1176 1.11.2.1 thorpej KASSERT(l->l_mutex == f->fx_sq_lock);
1177 1.11.2.1 thorpej
1178 1.11.2.1 thorpej if ((l->l_futex_wakesel & bitset) == 0)
1179 1.11.2.1 thorpej continue;
1180 1.11.2.1 thorpej
1181 1.11.2.1 thorpej l->l_futex_wakesel = 0;
1182 1.11.2.1 thorpej l->l_futex = NULL;
1183 1.11.2.1 thorpej sleepq_remove(&f->fx_sqs[q], l);
1184 1.11.2.1 thorpej f->fx_nwaiters[q]--;
1185 1.11.2.1 thorpej nwoken++;
1186 1.11.2.1 thorpej /* hold counts adjusted in bulk below */
1187 1.1 thorpej }
1188 1.1 thorpej
1189 1.11.2.1 thorpej if (nrequeue) {
1190 1.11.2.1 thorpej KASSERT(f2 != NULL);
1191 1.1 thorpej /* Move up to nrequeue waiters from f's queue to f2's queue. */
1192 1.11.2.1 thorpej LIST_FOREACH_SAFE(l, &f->fx_sqs[q], l_sleepchain, l_next) {
1193 1.11.2.1 thorpej if (nrequeued == nrequeue)
1194 1.1 thorpej break;
1195 1.11.2.1 thorpej
1196 1.11.2.1 thorpej KASSERT(l->l_syncobj == &futex_syncobj);
1197 1.11.2.1 thorpej KASSERT(l->l_wchan == (wchan_t)f);
1198 1.11.2.1 thorpej KASSERT(l->l_futex == f);
1199 1.11.2.1 thorpej KASSERT(l->l_sleepq == &f->fx_sqs[q]);
1200 1.11.2.1 thorpej KASSERT(l->l_mutex == f->fx_sq_lock);
1201 1.11.2.1 thorpej
1202 1.11.2.1 thorpej if ((l->l_futex_wakesel & bitset) == 0)
1203 1.11.2.1 thorpej continue;
1204 1.11.2.1 thorpej
1205 1.11.2.1 thorpej l->l_futex = f2;
1206 1.11.2.1 thorpej sleepq_transfer(l, &f->fx_sqs[q],
1207 1.11.2.1 thorpej &f2->fx_sqs[q2], f2, futex_wmesg,
1208 1.11.2.1 thorpej &futex_syncobj, f2->fx_sq_lock, true);
1209 1.11.2.1 thorpej f->fx_nwaiters[q]--;
1210 1.11.2.1 thorpej f2->fx_nwaiters[q2]++;
1211 1.11.2.1 thorpej nrequeued++;
1212 1.11.2.1 thorpej /* hold counts adjusted in bulk below */
1213 1.11.2.1 thorpej }
1214 1.11.2.1 thorpej if (nrequeued) {
1215 1.11.2.1 thorpej /* XXX futex_hold() could theoretically fail here. */
1216 1.11.2.1 thorpej int hold_error __diagused =
1217 1.11.2.1 thorpej futex_hold_count(f2, nrequeued);
1218 1.11.2.1 thorpej KASSERT(hold_error == 0);
1219 1.1 thorpej }
1220 1.1 thorpej }
1221 1.1 thorpej
1222 1.11.2.1 thorpej /*
1223 1.11.2.1 thorpej * Adjust the futex reference counts for the wakes and
1224 1.11.2.1 thorpej * requeues.
1225 1.11.2.1 thorpej */
1226 1.11.2.1 thorpej KASSERT(nwoken + nrequeued <= LONG_MAX);
1227 1.11.2.1 thorpej futex_rele_count_not_last(f, nwoken + nrequeued);
1228 1.11.2.1 thorpej
1229 1.11.2.1 thorpej futex_sq_unlock2(f, f2);
1230 1.11.2.1 thorpej
1231 1.11.2.1 thorpej /* Return the number of waiters woken and requeued. */
1232 1.11.2.1 thorpej return nwoken + nrequeued;
1233 1.1 thorpej }
1234 1.1 thorpej
1235 1.1 thorpej /*
1236 1.11.2.1 thorpej * futex_op_lock(f)
1237 1.1 thorpej *
1238 1.11.2.1 thorpej * Acquire the op lock of f. Pair with futex_op_unlock. Do
1239 1.1 thorpej * not use if caller needs to acquire two locks; use
1240 1.11.2.1 thorpej * futex_op_lock2 instead.
1241 1.1 thorpej */
1242 1.1 thorpej static void
1243 1.11.2.1 thorpej futex_op_lock(struct futex *f)
1244 1.1 thorpej {
1245 1.11.2.1 thorpej mutex_enter(&f->fx_op_lock);
1246 1.1 thorpej }
1247 1.1 thorpej
1248 1.1 thorpej /*
1249 1.11.2.1 thorpej * futex_op_unlock(f)
1250 1.1 thorpej *
1251 1.1 thorpej * Release the queue lock of f.
1252 1.1 thorpej */
1253 1.1 thorpej static void
1254 1.11.2.1 thorpej futex_op_unlock(struct futex *f)
1255 1.1 thorpej {
1256 1.11.2.1 thorpej mutex_exit(&f->fx_op_lock);
1257 1.1 thorpej }
1258 1.1 thorpej
1259 1.1 thorpej /*
1260 1.11.2.1 thorpej * futex_op_lock2(f, f2)
1261 1.1 thorpej *
1262 1.11.2.1 thorpej * Acquire the op locks of both f and f2, which may be null, or
1263 1.11.2.1 thorpej * which may be the same. If they are distinct, an arbitrary total
1264 1.11.2.1 thorpej * order is chosen on the locks.
1265 1.1 thorpej *
1266 1.11.2.1 thorpej * Callers should only ever acquire multiple op locks
1267 1.11.2.1 thorpej * simultaneously using futex_op_lock2.
1268 1.1 thorpej */
1269 1.1 thorpej static void
1270 1.11.2.1 thorpej futex_op_lock2(struct futex *f, struct futex *f2)
1271 1.1 thorpej {
1272 1.1 thorpej
1273 1.1 thorpej /*
1274 1.1 thorpej * If both are null, do nothing; if one is null and the other
1275 1.1 thorpej * is not, lock the other and be done with it.
1276 1.1 thorpej */
1277 1.1 thorpej if (f == NULL && f2 == NULL) {
1278 1.1 thorpej return;
1279 1.1 thorpej } else if (f == NULL) {
1280 1.11.2.1 thorpej mutex_enter(&f2->fx_op_lock);
1281 1.1 thorpej return;
1282 1.1 thorpej } else if (f2 == NULL) {
1283 1.11.2.1 thorpej mutex_enter(&f->fx_op_lock);
1284 1.1 thorpej return;
1285 1.1 thorpej }
1286 1.1 thorpej
1287 1.1 thorpej /* If both futexes are the same, acquire only one. */
1288 1.1 thorpej if (f == f2) {
1289 1.11.2.1 thorpej mutex_enter(&f->fx_op_lock);
1290 1.1 thorpej return;
1291 1.1 thorpej }
1292 1.1 thorpej
1293 1.1 thorpej /* Otherwise, use the ordering on the kva of the futex pointer. */
1294 1.1 thorpej if ((uintptr_t)f < (uintptr_t)f2) {
1295 1.11.2.1 thorpej mutex_enter(&f->fx_op_lock);
1296 1.11.2.1 thorpej mutex_enter(&f2->fx_op_lock);
1297 1.1 thorpej } else {
1298 1.11.2.1 thorpej mutex_enter(&f2->fx_op_lock);
1299 1.11.2.1 thorpej mutex_enter(&f->fx_op_lock);
1300 1.1 thorpej }
1301 1.1 thorpej }
1302 1.1 thorpej
1303 1.1 thorpej /*
1304 1.11.2.1 thorpej * futex_op_unlock2(f, f2)
1305 1.1 thorpej *
1306 1.1 thorpej * Release the queue locks of both f and f2, which may be null, or
1307 1.1 thorpej * which may have the same underlying queue.
1308 1.1 thorpej */
1309 1.1 thorpej static void
1310 1.11.2.1 thorpej futex_op_unlock2(struct futex *f, struct futex *f2)
1311 1.1 thorpej {
1312 1.1 thorpej
1313 1.1 thorpej /*
1314 1.1 thorpej * If both are null, do nothing; if one is null and the other
1315 1.1 thorpej * is not, unlock the other and be done with it.
1316 1.1 thorpej */
1317 1.1 thorpej if (f == NULL && f2 == NULL) {
1318 1.1 thorpej return;
1319 1.1 thorpej } else if (f == NULL) {
1320 1.11.2.1 thorpej mutex_exit(&f2->fx_op_lock);
1321 1.1 thorpej return;
1322 1.1 thorpej } else if (f2 == NULL) {
1323 1.11.2.1 thorpej mutex_exit(&f->fx_op_lock);
1324 1.1 thorpej return;
1325 1.1 thorpej }
1326 1.1 thorpej
1327 1.1 thorpej /* If both futexes are the same, release only one. */
1328 1.1 thorpej if (f == f2) {
1329 1.11.2.1 thorpej mutex_exit(&f->fx_op_lock);
1330 1.1 thorpej return;
1331 1.1 thorpej }
1332 1.1 thorpej
1333 1.1 thorpej /* Otherwise, use the ordering on the kva of the futex pointer. */
1334 1.1 thorpej if ((uintptr_t)f < (uintptr_t)f2) {
1335 1.11.2.1 thorpej mutex_exit(&f2->fx_op_lock);
1336 1.11.2.1 thorpej mutex_exit(&f->fx_op_lock);
1337 1.1 thorpej } else {
1338 1.11.2.1 thorpej mutex_exit(&f->fx_op_lock);
1339 1.11.2.1 thorpej mutex_exit(&f2->fx_op_lock);
1340 1.1 thorpej }
1341 1.1 thorpej }
1342 1.1 thorpej
1343 1.1 thorpej /*
1344 1.1 thorpej * futex_func_wait(uaddr, val, val3, timeout, clkid, clkflags, retval)
1345 1.1 thorpej *
1346 1.11.2.1 thorpej * Implement futex(FUTEX_WAIT) and futex(FUTEX_WAIT_BITSET).
1347 1.1 thorpej */
1348 1.1 thorpej static int
1349 1.1 thorpej futex_func_wait(bool shared, int *uaddr, int val, int val3,
1350 1.11 riastrad const struct timespec *timeout, clockid_t clkid, int clkflags,
1351 1.1 thorpej register_t *retval)
1352 1.1 thorpej {
1353 1.1 thorpej struct futex *f;
1354 1.11 riastrad struct timespec ts;
1355 1.11 riastrad const struct timespec *deadline;
1356 1.1 thorpej int error;
1357 1.1 thorpej
1358 1.6 riastrad /*
1359 1.6 riastrad * If there's nothing to wait for, and nobody will ever wake
1360 1.6 riastrad * us, then don't set anything up to wait -- just stop here.
1361 1.6 riastrad */
1362 1.6 riastrad if (val3 == 0)
1363 1.7 riastrad return EINVAL;
1364 1.6 riastrad
1365 1.1 thorpej /* Optimistically test before anything else. */
1366 1.1 thorpej if (!futex_test(uaddr, val))
1367 1.1 thorpej return EAGAIN;
1368 1.1 thorpej
1369 1.11 riastrad /* Determine a deadline on the specified clock. */
1370 1.11 riastrad if (timeout == NULL || (clkflags & TIMER_ABSTIME) == TIMER_ABSTIME) {
1371 1.11 riastrad deadline = timeout;
1372 1.11 riastrad } else {
1373 1.11.2.1 thorpej struct timespec interval = *timeout;
1374 1.11.2.1 thorpej
1375 1.11.2.1 thorpej error = itimespecfix(&interval);
1376 1.11.2.1 thorpej if (error)
1377 1.11.2.1 thorpej return error;
1378 1.11 riastrad error = clock_gettime1(clkid, &ts);
1379 1.11 riastrad if (error)
1380 1.11 riastrad return error;
1381 1.11.2.1 thorpej timespecadd(&ts, &interval, &ts);
1382 1.11 riastrad deadline = &ts;
1383 1.11 riastrad }
1384 1.11 riastrad
1385 1.1 thorpej /* Get the futex, creating it if necessary. */
1386 1.11.2.1 thorpej error = futex_lookup_create(uaddr, shared, FUTEX_CLASS_NORMAL, &f);
1387 1.1 thorpej if (error)
1388 1.1 thorpej return error;
1389 1.1 thorpej KASSERT(f);
1390 1.1 thorpej
1391 1.1 thorpej /*
1392 1.11.2.1 thorpej * Under the op lock, check the value again: if it has
1393 1.1 thorpej * already changed, EAGAIN; otherwise enqueue the waiter.
1394 1.1 thorpej * Since FUTEX_WAKE will use the same lock and be done after
1395 1.1 thorpej * modifying the value, the order in which we check and enqueue
1396 1.1 thorpej * is immaterial.
1397 1.1 thorpej */
1398 1.11.2.1 thorpej futex_op_lock(f);
1399 1.1 thorpej if (!futex_test(uaddr, val)) {
1400 1.11.2.1 thorpej futex_op_unlock(f);
1401 1.1 thorpej error = EAGAIN;
1402 1.1 thorpej goto out;
1403 1.1 thorpej }
1404 1.11.2.1 thorpej
1405 1.11.2.1 thorpej /*
1406 1.11.2.1 thorpej * Now wait. futex_wait() will drop our op lock once we
1407 1.11.2.1 thorpej * are entered into the sleep queue, thus ensuring atomicity
1408 1.11.2.1 thorpej * of wakes with respect to waits.
1409 1.11.2.1 thorpej */
1410 1.11.2.1 thorpej error = futex_wait(f, FUTEX_WRITERQ, deadline, clkid, val3);
1411 1.1 thorpej
1412 1.1 thorpej /*
1413 1.1 thorpej * We cannot drop our reference to the futex here, because
1414 1.1 thorpej * we might be enqueued on a different one when we are awakened.
1415 1.11.2.1 thorpej * The references will be managed on our behalf in the requeue,
1416 1.11.2.1 thorpej * wake, and error cases.
1417 1.1 thorpej */
1418 1.1 thorpej f = NULL;
1419 1.1 thorpej
1420 1.11.2.1 thorpej if (__predict_true(error == 0)) {
1421 1.11.2.1 thorpej /* Return 0 on success, error on failure. */
1422 1.11.2.1 thorpej *retval = 0;
1423 1.11.2.1 thorpej }
1424 1.1 thorpej
1425 1.1 thorpej out: if (f != NULL)
1426 1.5 riastrad futex_rele(f);
1427 1.1 thorpej return error;
1428 1.1 thorpej }
1429 1.1 thorpej
1430 1.1 thorpej /*
1431 1.1 thorpej * futex_func_wake(uaddr, val, val3, retval)
1432 1.1 thorpej *
1433 1.1 thorpej * Implement futex(FUTEX_WAKE) and futex(FUTEX_WAKE_BITSET).
1434 1.1 thorpej */
1435 1.1 thorpej static int
1436 1.1 thorpej futex_func_wake(bool shared, int *uaddr, int val, int val3, register_t *retval)
1437 1.1 thorpej {
1438 1.1 thorpej struct futex *f;
1439 1.1 thorpej unsigned int nwoken = 0;
1440 1.1 thorpej int error = 0;
1441 1.1 thorpej
1442 1.1 thorpej /* Reject negative number of wakeups. */
1443 1.1 thorpej if (val < 0) {
1444 1.1 thorpej error = EINVAL;
1445 1.1 thorpej goto out;
1446 1.1 thorpej }
1447 1.1 thorpej
1448 1.1 thorpej /* Look up the futex, if any. */
1449 1.11.2.1 thorpej error = futex_lookup(uaddr, shared, FUTEX_CLASS_NORMAL, &f);
1450 1.1 thorpej if (error)
1451 1.1 thorpej goto out;
1452 1.1 thorpej
1453 1.1 thorpej /* If there's no futex, there are no waiters to wake. */
1454 1.1 thorpej if (f == NULL)
1455 1.1 thorpej goto out;
1456 1.1 thorpej
1457 1.1 thorpej /*
1458 1.11.2.1 thorpej * Under f's op lock, wake the waiters and remember the
1459 1.1 thorpej * number woken.
1460 1.1 thorpej */
1461 1.11.2.1 thorpej futex_op_lock(f);
1462 1.11.2.1 thorpej nwoken = futex_wake(f, FUTEX_WRITERQ, val,
1463 1.11.2.1 thorpej NULL, FUTEX_WRITERQ, 0, val3);
1464 1.11.2.1 thorpej futex_op_unlock(f);
1465 1.1 thorpej
1466 1.1 thorpej /* Release the futex. */
1467 1.5 riastrad futex_rele(f);
1468 1.1 thorpej
1469 1.1 thorpej out:
1470 1.1 thorpej /* Return the number of waiters woken. */
1471 1.1 thorpej *retval = nwoken;
1472 1.1 thorpej
1473 1.1 thorpej /* Success! */
1474 1.1 thorpej return error;
1475 1.1 thorpej }
1476 1.1 thorpej
1477 1.1 thorpej /*
1478 1.1 thorpej * futex_func_requeue(op, uaddr, val, uaddr2, val2, val3, retval)
1479 1.1 thorpej *
1480 1.1 thorpej * Implement futex(FUTEX_REQUEUE) and futex(FUTEX_CMP_REQUEUE).
1481 1.1 thorpej */
1482 1.1 thorpej static int
1483 1.1 thorpej futex_func_requeue(bool shared, int op, int *uaddr, int val, int *uaddr2,
1484 1.1 thorpej int val2, int val3, register_t *retval)
1485 1.1 thorpej {
1486 1.1 thorpej struct futex *f = NULL, *f2 = NULL;
1487 1.1 thorpej unsigned nwoken = 0; /* default to zero woken on early return */
1488 1.1 thorpej int error;
1489 1.1 thorpej
1490 1.1 thorpej /* Reject negative number of wakeups or requeues. */
1491 1.1 thorpej if (val < 0 || val2 < 0) {
1492 1.1 thorpej error = EINVAL;
1493 1.1 thorpej goto out;
1494 1.1 thorpej }
1495 1.1 thorpej
1496 1.1 thorpej /* Look up the source futex, if any. */
1497 1.11.2.1 thorpej error = futex_lookup(uaddr, shared, FUTEX_CLASS_NORMAL, &f);
1498 1.1 thorpej if (error)
1499 1.1 thorpej goto out;
1500 1.1 thorpej
1501 1.1 thorpej /* If there is none, nothing to do. */
1502 1.1 thorpej if (f == NULL)
1503 1.1 thorpej goto out;
1504 1.1 thorpej
1505 1.1 thorpej /*
1506 1.1 thorpej * We may need to create the destination futex because it's
1507 1.1 thorpej * entirely possible it does not currently have any waiters.
1508 1.1 thorpej */
1509 1.11.2.1 thorpej error = futex_lookup_create(uaddr2, shared, FUTEX_CLASS_NORMAL, &f2);
1510 1.1 thorpej if (error)
1511 1.1 thorpej goto out;
1512 1.1 thorpej
1513 1.1 thorpej /*
1514 1.11.2.1 thorpej * Under the futexes' op locks, check the value; if
1515 1.1 thorpej * unchanged from val3, wake the waiters.
1516 1.1 thorpej */
1517 1.11.2.1 thorpej futex_op_lock2(f, f2);
1518 1.1 thorpej if (op == FUTEX_CMP_REQUEUE && !futex_test(uaddr, val3)) {
1519 1.1 thorpej error = EAGAIN;
1520 1.1 thorpej } else {
1521 1.1 thorpej error = 0;
1522 1.11.2.1 thorpej nwoken = futex_wake(f, FUTEX_WRITERQ, val,
1523 1.11.2.1 thorpej f2, FUTEX_WRITERQ, val2,
1524 1.11.2.1 thorpej FUTEX_BITSET_MATCH_ANY);
1525 1.1 thorpej }
1526 1.11.2.1 thorpej futex_op_unlock2(f, f2);
1527 1.1 thorpej
1528 1.1 thorpej out:
1529 1.1 thorpej /* Return the number of waiters woken. */
1530 1.1 thorpej *retval = nwoken;
1531 1.1 thorpej
1532 1.1 thorpej /* Release the futexes if we got them. */
1533 1.1 thorpej if (f2)
1534 1.5 riastrad futex_rele(f2);
1535 1.1 thorpej if (f)
1536 1.5 riastrad futex_rele(f);
1537 1.1 thorpej return error;
1538 1.1 thorpej }
1539 1.1 thorpej
1540 1.1 thorpej /*
1541 1.1 thorpej * futex_validate_op_cmp(val3)
1542 1.1 thorpej *
1543 1.1 thorpej * Validate an op/cmp argument for FUTEX_WAKE_OP.
1544 1.1 thorpej */
1545 1.1 thorpej static int
1546 1.1 thorpej futex_validate_op_cmp(int val3)
1547 1.1 thorpej {
1548 1.1 thorpej int op = __SHIFTOUT(val3, FUTEX_OP_OP_MASK);
1549 1.1 thorpej int cmp = __SHIFTOUT(val3, FUTEX_OP_CMP_MASK);
1550 1.1 thorpej
1551 1.1 thorpej if (op & FUTEX_OP_OPARG_SHIFT) {
1552 1.1 thorpej int oparg = __SHIFTOUT(val3, FUTEX_OP_OPARG_MASK);
1553 1.1 thorpej if (oparg < 0)
1554 1.1 thorpej return EINVAL;
1555 1.1 thorpej if (oparg >= 32)
1556 1.1 thorpej return EINVAL;
1557 1.1 thorpej op &= ~FUTEX_OP_OPARG_SHIFT;
1558 1.1 thorpej }
1559 1.1 thorpej
1560 1.1 thorpej switch (op) {
1561 1.1 thorpej case FUTEX_OP_SET:
1562 1.1 thorpej case FUTEX_OP_ADD:
1563 1.1 thorpej case FUTEX_OP_OR:
1564 1.1 thorpej case FUTEX_OP_ANDN:
1565 1.1 thorpej case FUTEX_OP_XOR:
1566 1.1 thorpej break;
1567 1.1 thorpej default:
1568 1.1 thorpej return EINVAL;
1569 1.1 thorpej }
1570 1.1 thorpej
1571 1.1 thorpej switch (cmp) {
1572 1.1 thorpej case FUTEX_OP_CMP_EQ:
1573 1.1 thorpej case FUTEX_OP_CMP_NE:
1574 1.1 thorpej case FUTEX_OP_CMP_LT:
1575 1.1 thorpej case FUTEX_OP_CMP_LE:
1576 1.1 thorpej case FUTEX_OP_CMP_GT:
1577 1.1 thorpej case FUTEX_OP_CMP_GE:
1578 1.1 thorpej break;
1579 1.1 thorpej default:
1580 1.1 thorpej return EINVAL;
1581 1.1 thorpej }
1582 1.1 thorpej
1583 1.1 thorpej return 0;
1584 1.1 thorpej }
1585 1.1 thorpej
1586 1.1 thorpej /*
1587 1.1 thorpej * futex_compute_op(oldval, val3)
1588 1.1 thorpej *
1589 1.1 thorpej * Apply a FUTEX_WAIT_OP operation to oldval.
1590 1.1 thorpej */
1591 1.1 thorpej static int
1592 1.1 thorpej futex_compute_op(int oldval, int val3)
1593 1.1 thorpej {
1594 1.1 thorpej int op = __SHIFTOUT(val3, FUTEX_OP_OP_MASK);
1595 1.1 thorpej int oparg = __SHIFTOUT(val3, FUTEX_OP_OPARG_MASK);
1596 1.1 thorpej
1597 1.1 thorpej if (op & FUTEX_OP_OPARG_SHIFT) {
1598 1.1 thorpej KASSERT(oparg >= 0);
1599 1.1 thorpej KASSERT(oparg < 32);
1600 1.1 thorpej oparg = 1u << oparg;
1601 1.1 thorpej op &= ~FUTEX_OP_OPARG_SHIFT;
1602 1.1 thorpej }
1603 1.1 thorpej
1604 1.1 thorpej switch (op) {
1605 1.1 thorpej case FUTEX_OP_SET:
1606 1.1 thorpej return oparg;
1607 1.1 thorpej
1608 1.1 thorpej case FUTEX_OP_ADD:
1609 1.1 thorpej /*
1610 1.1 thorpej * Avoid signed arithmetic overflow by doing
1611 1.1 thorpej * arithmetic unsigned and converting back to signed
1612 1.1 thorpej * at the end.
1613 1.1 thorpej */
1614 1.1 thorpej return (int)((unsigned)oldval + (unsigned)oparg);
1615 1.1 thorpej
1616 1.1 thorpej case FUTEX_OP_OR:
1617 1.1 thorpej return oldval | oparg;
1618 1.1 thorpej
1619 1.1 thorpej case FUTEX_OP_ANDN:
1620 1.1 thorpej return oldval & ~oparg;
1621 1.1 thorpej
1622 1.1 thorpej case FUTEX_OP_XOR:
1623 1.1 thorpej return oldval ^ oparg;
1624 1.1 thorpej
1625 1.1 thorpej default:
1626 1.1 thorpej panic("invalid futex op");
1627 1.1 thorpej }
1628 1.1 thorpej }
1629 1.1 thorpej
1630 1.1 thorpej /*
1631 1.1 thorpej * futex_compute_cmp(oldval, val3)
1632 1.1 thorpej *
1633 1.1 thorpej * Apply a FUTEX_WAIT_OP comparison to oldval.
1634 1.1 thorpej */
1635 1.1 thorpej static bool
1636 1.1 thorpej futex_compute_cmp(int oldval, int val3)
1637 1.1 thorpej {
1638 1.1 thorpej int cmp = __SHIFTOUT(val3, FUTEX_OP_CMP_MASK);
1639 1.1 thorpej int cmparg = __SHIFTOUT(val3, FUTEX_OP_CMPARG_MASK);
1640 1.1 thorpej
1641 1.1 thorpej switch (cmp) {
1642 1.1 thorpej case FUTEX_OP_CMP_EQ:
1643 1.1 thorpej return (oldval == cmparg);
1644 1.1 thorpej
1645 1.1 thorpej case FUTEX_OP_CMP_NE:
1646 1.1 thorpej return (oldval != cmparg);
1647 1.1 thorpej
1648 1.1 thorpej case FUTEX_OP_CMP_LT:
1649 1.1 thorpej return (oldval < cmparg);
1650 1.1 thorpej
1651 1.1 thorpej case FUTEX_OP_CMP_LE:
1652 1.1 thorpej return (oldval <= cmparg);
1653 1.1 thorpej
1654 1.1 thorpej case FUTEX_OP_CMP_GT:
1655 1.1 thorpej return (oldval > cmparg);
1656 1.1 thorpej
1657 1.1 thorpej case FUTEX_OP_CMP_GE:
1658 1.1 thorpej return (oldval >= cmparg);
1659 1.1 thorpej
1660 1.1 thorpej default:
1661 1.1 thorpej panic("invalid futex cmp operation");
1662 1.1 thorpej }
1663 1.1 thorpej }
1664 1.1 thorpej
1665 1.1 thorpej /*
1666 1.1 thorpej * futex_func_wake_op(uaddr, val, uaddr2, val2, val3, retval)
1667 1.1 thorpej *
1668 1.1 thorpej * Implement futex(FUTEX_WAKE_OP).
1669 1.1 thorpej */
1670 1.1 thorpej static int
1671 1.1 thorpej futex_func_wake_op(bool shared, int *uaddr, int val, int *uaddr2, int val2,
1672 1.1 thorpej int val3, register_t *retval)
1673 1.1 thorpej {
1674 1.1 thorpej struct futex *f = NULL, *f2 = NULL;
1675 1.1 thorpej int oldval, newval, actual;
1676 1.1 thorpej unsigned nwoken = 0;
1677 1.1 thorpej int error;
1678 1.1 thorpej
1679 1.1 thorpej /* Reject negative number of wakeups. */
1680 1.1 thorpej if (val < 0 || val2 < 0) {
1681 1.1 thorpej error = EINVAL;
1682 1.1 thorpej goto out;
1683 1.1 thorpej }
1684 1.1 thorpej
1685 1.1 thorpej /* Reject invalid operations before we start doing things. */
1686 1.1 thorpej if ((error = futex_validate_op_cmp(val3)) != 0)
1687 1.1 thorpej goto out;
1688 1.1 thorpej
1689 1.1 thorpej /* Look up the first futex, if any. */
1690 1.11.2.1 thorpej error = futex_lookup(uaddr, shared, FUTEX_CLASS_NORMAL, &f);
1691 1.1 thorpej if (error)
1692 1.1 thorpej goto out;
1693 1.1 thorpej
1694 1.1 thorpej /* Look up the second futex, if any. */
1695 1.11.2.1 thorpej error = futex_lookup(uaddr2, shared, FUTEX_CLASS_NORMAL, &f2);
1696 1.1 thorpej if (error)
1697 1.1 thorpej goto out;
1698 1.1 thorpej
1699 1.1 thorpej /*
1700 1.11.2.1 thorpej * Under the op locks:
1701 1.1 thorpej *
1702 1.1 thorpej * 1. Read/modify/write: *uaddr2 op= oparg.
1703 1.1 thorpej * 2. Unconditionally wake uaddr.
1704 1.11.2.1 thorpej * 3. Conditionally wake uaddr2, if it previously matched val3.
1705 1.1 thorpej */
1706 1.11.2.1 thorpej futex_op_lock2(f, f2);
1707 1.1 thorpej do {
1708 1.1 thorpej error = futex_load(uaddr2, &oldval);
1709 1.1 thorpej if (error)
1710 1.1 thorpej goto out_unlock;
1711 1.1 thorpej newval = futex_compute_op(oldval, val3);
1712 1.1 thorpej error = ucas_int(uaddr2, oldval, newval, &actual);
1713 1.1 thorpej if (error)
1714 1.1 thorpej goto out_unlock;
1715 1.1 thorpej } while (actual != oldval);
1716 1.11.2.1 thorpej nwoken = (f ? futex_wake(f, FUTEX_WRITERQ, val,
1717 1.11.2.1 thorpej NULL, FUTEX_WRITERQ, 0,
1718 1.11.2.1 thorpej FUTEX_BITSET_MATCH_ANY) : 0);
1719 1.1 thorpej if (f2 && futex_compute_cmp(oldval, val3))
1720 1.11.2.1 thorpej nwoken += futex_wake(f2, FUTEX_WRITERQ, val2,
1721 1.11.2.1 thorpej NULL, FUTEX_WRITERQ, 0,
1722 1.11.2.1 thorpej FUTEX_BITSET_MATCH_ANY);
1723 1.1 thorpej
1724 1.1 thorpej /* Success! */
1725 1.1 thorpej error = 0;
1726 1.1 thorpej out_unlock:
1727 1.11.2.1 thorpej futex_op_unlock2(f, f2);
1728 1.1 thorpej
1729 1.1 thorpej out:
1730 1.1 thorpej /* Return the number of waiters woken. */
1731 1.1 thorpej *retval = nwoken;
1732 1.1 thorpej
1733 1.1 thorpej /* Release the futexes, if we got them. */
1734 1.1 thorpej if (f2)
1735 1.5 riastrad futex_rele(f2);
1736 1.1 thorpej if (f)
1737 1.5 riastrad futex_rele(f);
1738 1.1 thorpej return error;
1739 1.1 thorpej }
1740 1.1 thorpej
1741 1.1 thorpej /*
1742 1.11.2.1 thorpej * futex_read_waiter_prio(l)
1743 1.11.2.1 thorpej *
1744 1.11.2.1 thorpej * Returns the read-waiter priority for purposes of comparing
1745 1.11.2.1 thorpej * against a write-waiter's priority. Read-waiters are only
1746 1.11.2.1 thorpej * prioritized if they are real-time threads.
1747 1.11.2.1 thorpej */
1748 1.11.2.1 thorpej static inline pri_t
1749 1.11.2.1 thorpej futex_read_waiter_prio(struct lwp * const l)
1750 1.11.2.1 thorpej {
1751 1.11.2.1 thorpej const pri_t pri = lwp_eprio(l);
1752 1.11.2.1 thorpej if (__predict_false(pri >= PRI_USER_RT))
1753 1.11.2.1 thorpej return pri;
1754 1.11.2.1 thorpej return PRI_NONE;
1755 1.11.2.1 thorpej }
1756 1.11.2.1 thorpej
1757 1.11.2.1 thorpej #if 0 /* XXX */
1758 1.11.2.1 thorpej /*
1759 1.11.2.1 thorpej * futex_rw_handle_rt_reader(f, uaddr, val, pri, errorp)
1760 1.11.2.1 thorpej *
1761 1.11.2.1 thorpej * Attempt to resolve the case of a real-time thread attempting
1762 1.11.2.1 thorpej * to acquire a read lock. Turns true if the attempt is resolved
1763 1.11.2.1 thorpej * and the wait should be elided.
1764 1.11.2.1 thorpej */
1765 1.11.2.1 thorpej static int __noinline
1766 1.11.2.1 thorpej futex_rw_handle_rt_reader(struct futex *f, int *uaddr, int val,
1767 1.11.2.1 thorpej pri_t pri_reader)
1768 1.11.2.1 thorpej {
1769 1.11.2.1 thorpej struct lwp *l_writer = NULL;
1770 1.11.2.1 thorpej int newval, next;
1771 1.11.2.1 thorpej int error;
1772 1.11.2.1 thorpej
1773 1.11.2.1 thorpej KASSERT(mutex_owned(&f->fx_op_lock));
1774 1.11.2.1 thorpej
1775 1.11.2.1 thorpej /*
1776 1.11.2.1 thorpej * If the lock is write-locked, there isn't anything we
1777 1.11.2.1 thorpej * can do but wait.
1778 1.11.2.1 thorpej */
1779 1.11.2.1 thorpej if (val & FUTEX_RW_WRITE_LOCKED) {
1780 1.11.2.1 thorpej return 0;
1781 1.11.2.1 thorpej }
1782 1.11.2.1 thorpej
1783 1.11.2.1 thorpej /*
1784 1.11.2.1 thorpej * If we're maxed out on readers already, nothing we can do.
1785 1.11.2.1 thorpej */
1786 1.11.2.1 thorpej if ((val & FUTEX_TID_MASK) == FUTEX_TID_MASK) {
1787 1.11.2.1 thorpej return ENFILE; /* disctinct from EAGAIN */
1788 1.11.2.1 thorpej }
1789 1.11.2.1 thorpej
1790 1.11.2.1 thorpej /*
1791 1.11.2.1 thorpej * The assumption then is that we arrived here with WRITE_WANTED
1792 1.11.2.1 thorpej * set. We're not going to bother testing that, however. We
1793 1.11.2.1 thorpej * will preserve it if we see it.
1794 1.11.2.1 thorpej *
1795 1.11.2.1 thorpej * Because WRITE_WANTED is set, This will cause everyone to enter
1796 1.11.2.1 thorpej * the futex to rw_wait. And we are holding the op lock so no
1797 1.11.2.1 thorpej * additional waiters will apear on the sleepq. We are going
1798 1.11.2.1 thorpej * to do the same tricky dance as rw_handoff to let higher-priority
1799 1.11.2.1 thorpej * real-time waiters slip past the gate.
1800 1.11.2.1 thorpej */
1801 1.11.2.1 thorpej
1802 1.11.2.1 thorpej /*
1803 1.11.2.1 thorpej * All we want to do here is check if there is a writer waiting.
1804 1.11.2.1 thorpej * If there is, and it is equal or greater priority, this reader
1805 1.11.2.1 thorpej * loses, otherwise we will just make note if it to ensure that
1806 1.11.2.1 thorpej * the WRITE_WANTED bit is set when we update the futex word.
1807 1.11.2.1 thorpej *
1808 1.11.2.1 thorpej * Since we are not going to actually wake someone from the
1809 1.11.2.1 thorpej * queue here, we're not really interested if the write-waiter
1810 1.11.2.1 thorpej * happens to leave based on a timeout or signal; we know that
1811 1.11.2.1 thorpej * any write-waiter *after* the first one is of equal or lower
1812 1.11.2.1 thorpej * priority, so we would still best it.
1813 1.11.2.1 thorpej */
1814 1.11.2.1 thorpej mutex_spin_enter(f->fx_sq_lock);
1815 1.11.2.1 thorpej l_writer = LIST_FIRST(&f->fx_sqs[FUTEX_WRITERQ]);
1816 1.11.2.1 thorpej if (__predict_true(l_writer != NULL)) {
1817 1.11.2.1 thorpej if (pri_reader <= lwp_eprio(l_writer)) {
1818 1.11.2.1 thorpej return 0;
1819 1.11.2.1 thorpej }
1820 1.11.2.1 thorpej }
1821 1.11.2.1 thorpej mutex_spin_exit(f->fx_sq_lock);
1822 1.11.2.1 thorpej
1823 1.11.2.1 thorpej for (;; val = next) {
1824 1.11.2.1 thorpej if (__predict_true(l_writer != NULL)) {
1825 1.11.2.1 thorpej newval = (val + 1) | FUTEX_RW_WRITE_WANTED;
1826 1.11.2.1 thorpej } else {
1827 1.11.2.1 thorpej /*
1828 1.11.2.1 thorpej * No writer waiting; increment the reader
1829 1.11.2.1 thorpej * count, preserve any WRITE_WANTED bit.
1830 1.11.2.1 thorpej */
1831 1.11.2.1 thorpej newval = val + 1;
1832 1.11.2.1 thorpej KASSERT(((newval ^ val) & FUTEX_RW_WRITE_WANTED) == 0);
1833 1.11.2.1 thorpej }
1834 1.11.2.1 thorpej
1835 1.11.2.1 thorpej error = ucas_int(uaddr, val, newval, &next);
1836 1.11.2.1 thorpej if (__predict_false(error != 0)) {
1837 1.11.2.1 thorpej return error;
1838 1.11.2.1 thorpej }
1839 1.11.2.1 thorpej if (next == val) {
1840 1.11.2.1 thorpej /* Successfully acquired the read lock. */
1841 1.11.2.1 thorpej return EJUSTRETURN;
1842 1.11.2.1 thorpej }
1843 1.11.2.1 thorpej /*
1844 1.11.2.1 thorpej * Repeat the terminal checks from above on the new
1845 1.11.2.1 thorpej * value.
1846 1.11.2.1 thorpej */
1847 1.11.2.1 thorpej if (next & FUTEX_RW_WRITE_LOCKED) {
1848 1.11.2.1 thorpej return 0;
1849 1.11.2.1 thorpej }
1850 1.11.2.1 thorpej if ((next & FUTEX_TID_MASK) == FUTEX_TID_MASK) {
1851 1.11.2.1 thorpej return ENFILE; /* disctinct from EAGAIN */
1852 1.11.2.1 thorpej }
1853 1.11.2.1 thorpej }
1854 1.11.2.1 thorpej }
1855 1.11.2.1 thorpej #endif /* XXX */
1856 1.11.2.1 thorpej
1857 1.11.2.1 thorpej /*
1858 1.11.2.1 thorpej * futex_func_rw_wait(uaddr, val, val3, abstime, clkid, retval)
1859 1.11.2.1 thorpej *
1860 1.11.2.1 thorpej * Implement futex(FUTEX_NETBSD_RW_WAIT).
1861 1.11.2.1 thorpej */
1862 1.11.2.1 thorpej static int
1863 1.11.2.1 thorpej futex_func_rw_wait(bool shared, int *uaddr, int val, int val3,
1864 1.11.2.1 thorpej const struct timespec *abstime, clockid_t clkid, register_t *retval)
1865 1.11.2.1 thorpej {
1866 1.11.2.1 thorpej #if 1
1867 1.11.2.1 thorpej /* XXX NETBSD_RW ops are currently broken XXX */
1868 1.11.2.1 thorpej return ENOSYS;
1869 1.11.2.1 thorpej #else
1870 1.11.2.1 thorpej struct futex *f;
1871 1.11.2.1 thorpej int error;
1872 1.11.2.1 thorpej
1873 1.11.2.1 thorpej /* Must specify READER or WRITER. */
1874 1.11.2.1 thorpej if (__predict_false(val3 != FUTEX_RW_READER &&
1875 1.11.2.1 thorpej val3 != FUTEX_RW_WRITER))
1876 1.11.2.1 thorpej return EINVAL;
1877 1.11.2.1 thorpej
1878 1.11.2.1 thorpej /* Optimistically test before anything else. */
1879 1.11.2.1 thorpej if (!futex_test(uaddr, val))
1880 1.11.2.1 thorpej return EAGAIN;
1881 1.11.2.1 thorpej
1882 1.11.2.1 thorpej /* Get the futex, creating it if necessary. */
1883 1.11.2.1 thorpej error = futex_lookup_create(uaddr, shared, FUTEX_CLASS_RWLOCK, &f);
1884 1.11.2.1 thorpej if (error)
1885 1.11.2.1 thorpej return error;
1886 1.11.2.1 thorpej KASSERT(f);
1887 1.11.2.1 thorpej
1888 1.11.2.1 thorpej /*
1889 1.11.2.1 thorpej * Under the op lock, check the value again: if it has
1890 1.11.2.1 thorpej * already changed, EAGAIN; otherwise, enqueue the waiter
1891 1.11.2.1 thorpej * on the specified queue.
1892 1.11.2.1 thorpej */
1893 1.11.2.1 thorpej futex_op_lock(f);
1894 1.11.2.1 thorpej if (!futex_test(uaddr, val)) {
1895 1.11.2.1 thorpej futex_op_unlock(f);
1896 1.11.2.1 thorpej error = EAGAIN;
1897 1.11.2.1 thorpej goto out;
1898 1.11.2.1 thorpej }
1899 1.11.2.1 thorpej
1900 1.11.2.1 thorpej /*
1901 1.11.2.1 thorpej * POSIX dictates that a real-time reader will be prioritized
1902 1.11.2.1 thorpej * over writers of lesser priority, when normally we would
1903 1.11.2.1 thorpej * prefer the writers.
1904 1.11.2.1 thorpej */
1905 1.11.2.1 thorpej if (__predict_false(val3 == FUTEX_RW_READER)) {
1906 1.11.2.1 thorpej struct lwp * const l = curlwp;
1907 1.11.2.1 thorpej const pri_t pri_reader = futex_read_waiter_prio(l);
1908 1.11.2.1 thorpej if (__predict_false(pri_reader > PRI_NONE)) {
1909 1.11.2.1 thorpej error = futex_rw_handle_rt_reader(f, uaddr, val,
1910 1.11.2.1 thorpej pri_reader);
1911 1.11.2.1 thorpej if (error) {
1912 1.11.2.1 thorpej if (__predict_true(error == EJUSTRETURN)) {
1913 1.11.2.1 thorpej /* RT reader acquired the lock. */
1914 1.11.2.1 thorpej error = 0;
1915 1.11.2.1 thorpej }
1916 1.11.2.1 thorpej futex_op_unlock(f);
1917 1.11.2.1 thorpej goto out;
1918 1.11.2.1 thorpej }
1919 1.11.2.1 thorpej }
1920 1.11.2.1 thorpej }
1921 1.11.2.1 thorpej
1922 1.11.2.1 thorpej /*
1923 1.11.2.1 thorpej * Now wait. futex_wait() will dop our op lock once we
1924 1.11.2.1 thorpej * are entered into the sleep queue, thus ensuring atomicity
1925 1.11.2.1 thorpej * of wakes with respect to waits.
1926 1.11.2.1 thorpej *
1927 1.11.2.1 thorpej * Use a wake selector of 0 so that this waiter won't match on any
1928 1.11.2.1 thorpej * of the other operations in case someone makes that error; only
1929 1.11.2.1 thorpej * rw_handoff is allowed! This is critical because a waiter that
1930 1.11.2.1 thorpej * awakens from an rw_wait assumes it has been given ownership of
1931 1.11.2.1 thorpej * the lock.
1932 1.11.2.1 thorpej */
1933 1.11.2.1 thorpej error = futex_wait(f, val3, abstime, clkid, 0);
1934 1.11.2.1 thorpej
1935 1.11.2.1 thorpej /*
1936 1.11.2.1 thorpej * Don't drop our reference here. We won't be requeued, but
1937 1.11.2.1 thorpej * it's best to main symmetry with other operations.
1938 1.11.2.1 thorpej */
1939 1.11.2.1 thorpej f = NULL;
1940 1.11.2.1 thorpej
1941 1.11.2.1 thorpej out: if (__predict_true(error == 0)) {
1942 1.11.2.1 thorpej /* Return 0 on success, error on failure. */
1943 1.11.2.1 thorpej *retval = 0;
1944 1.11.2.1 thorpej }
1945 1.11.2.1 thorpej
1946 1.11.2.1 thorpej if (f != NULL)
1947 1.11.2.1 thorpej futex_rele(f);
1948 1.11.2.1 thorpej return error;
1949 1.11.2.1 thorpej #endif
1950 1.11.2.1 thorpej }
1951 1.11.2.1 thorpej
1952 1.11.2.1 thorpej /*
1953 1.11.2.1 thorpej * futex_func_rw_handoff(uaddr, val, retval)
1954 1.11.2.1 thorpej *
1955 1.11.2.1 thorpej * Implement futex(FUTEX_NETBSD_RW_HANDOFF).
1956 1.11.2.1 thorpej *
1957 1.11.2.1 thorpej * This implements direct hand-off to either a single writer
1958 1.11.2.1 thorpej * or all readers.
1959 1.11.2.1 thorpej */
1960 1.11.2.1 thorpej static int
1961 1.11.2.1 thorpej futex_func_rw_handoff(bool shared, int *uaddr, int val, register_t *retval)
1962 1.11.2.1 thorpej {
1963 1.11.2.1 thorpej #if 1
1964 1.11.2.1 thorpej /* XXX NETBSD_RW ops are currently broken XXX */
1965 1.11.2.1 thorpej return ENOSYS;
1966 1.11.2.1 thorpej #else
1967 1.11.2.1 thorpej struct lwp *l, *l_next, *l_writer, *l_reader;
1968 1.11.2.1 thorpej struct futex *f;
1969 1.11.2.1 thorpej sleepq_t wsq, *sq;
1970 1.11.2.1 thorpej int error = 0;
1971 1.11.2.1 thorpej int newval, next, nwake, nwoken = 0;
1972 1.11.2.1 thorpej int allreaders __diagused = 0;
1973 1.11.2.1 thorpej unsigned int *nwaitersp;
1974 1.11.2.1 thorpej pri_t pri_writer;
1975 1.11.2.1 thorpej
1976 1.11.2.1 thorpej /* Look up the futex, if any. */
1977 1.11.2.1 thorpej error = futex_lookup(uaddr, shared, FUTEX_CLASS_RWLOCK, &f);
1978 1.11.2.1 thorpej if (error)
1979 1.11.2.1 thorpej goto out;
1980 1.11.2.1 thorpej
1981 1.11.2.1 thorpej /*
1982 1.11.2.1 thorpej * There are a couple of diffrent scenarios where a thread
1983 1.11.2.1 thorpej * releasing a RW lock would call rw_handoff, yet we find no
1984 1.11.2.1 thorpej * waiters:
1985 1.11.2.1 thorpej *
1986 1.11.2.1 thorpej * ==> There were waiters on the queue, but they left the queue
1987 1.11.2.1 thorpej * due to a signal.
1988 1.11.2.1 thorpej * ==> The waiting thread set the waiter bit(s), but decided to
1989 1.11.2.1 thorpej * try spinning before calling rw_wait.
1990 1.11.2.1 thorpej *
1991 1.11.2.1 thorpej * In both of these cases, we will ensure that the lock word
1992 1.11.2.1 thorpej * gets cleared.
1993 1.11.2.1 thorpej */
1994 1.11.2.1 thorpej
1995 1.11.2.1 thorpej /* If there's no futex, there are no waiters to wake. */
1996 1.11.2.1 thorpej if (__predict_false(f == NULL)) {
1997 1.11.2.1 thorpej /*
1998 1.11.2.1 thorpej * If there are no waiters, ensure that the lock
1999 1.11.2.1 thorpej * word is cleared.
2000 1.11.2.1 thorpej */
2001 1.11.2.1 thorpej error = ucas_int(uaddr, val, 0, &next);
2002 1.11.2.1 thorpej if (__predict_true(error == 0)) {
2003 1.11.2.1 thorpej if (__predict_false(val != next))
2004 1.11.2.1 thorpej error = EAGAIN;
2005 1.11.2.1 thorpej }
2006 1.11.2.1 thorpej goto out;
2007 1.11.2.1 thorpej }
2008 1.11.2.1 thorpej
2009 1.11.2.1 thorpej /*
2010 1.11.2.1 thorpej * Compute the new value and store it in the futex word.
2011 1.11.2.1 thorpej *
2012 1.11.2.1 thorpej * This is a little tricky because the ucas could cause
2013 1.11.2.1 thorpej * a page fault, and we can't let that happen while holding
2014 1.11.2.1 thorpej * the sleepq locks. But we have to make sure that choices
2015 1.11.2.1 thorpej * we make regarding what threads to wake is accurately
2016 1.11.2.1 thorpej * reflected in the futex word and that the futex word is
2017 1.11.2.1 thorpej * updated before the LWPs can run.
2018 1.11.2.1 thorpej *
2019 1.11.2.1 thorpej * This is easy enough ... we can transfer the LWPs to a private
2020 1.11.2.1 thorpej * sleepq to prevent changes in the original sleepq while we have
2021 1.11.2.1 thorpej * it unlocked from affecting the results, but we must also
2022 1.11.2.1 thorpej * consider that LWPs might be using timed-wait, so we have to
2023 1.11.2.1 thorpej * make sure that won't wake the LWP up out from under us if the
2024 1.11.2.1 thorpej * timer fires. To do this, we have to set the "wchan" to NULL
2025 1.11.2.1 thorpej * and use a dummy syncobj that takes no action on "unsleep".
2026 1.11.2.1 thorpej *
2027 1.11.2.1 thorpej * We thus perform the hand-off in three steps, all with the op
2028 1.11.2.1 thorpej * lock held:
2029 1.11.2.1 thorpej *
2030 1.11.2.1 thorpej * ==> Wake selection: sleepq locked, select LWPs to wake,
2031 1.11.2.1 thorpej * compute new futex word. LWPs are tranferred from the
2032 1.11.2.1 thorpej * futex sleepq to the private sleepq and further sedated.
2033 1.11.2.1 thorpej *
2034 1.11.2.1 thorpej * ==> Futex word update: sleepq unlocked, use a loop around ucas
2035 1.11.2.1 thorpej * to update the futex word. There are no scenarios where
2036 1.11.2.1 thorpej * user space code can update the futex in a way that would
2037 1.11.2.1 thorpej * impact the work we do here; because we've been asked to do
2038 1.11.2.1 thorpej * the hand-off, any new LWPs attempting to acquire the lock
2039 1.11.2.1 thorpej * would be entering rw_wait by definition (either because
2040 1.11.2.1 thorpej * they're read-lockers and the lock is write-wanted, or they're
2041 1.11.2.1 thorpej * write-lockers and the lock is read-held). Those new rw_wait
2042 1.11.2.1 thorpej * LWPs will serialize against the op lock. We DO, however,
2043 1.11.2.1 thorpej * need to preserve any newly-set WANTED bits, hence the ucas
2044 1.11.2.1 thorpej * loop. Those newly-set WANTED bits, however, will not impact
2045 1.11.2.1 thorpej * our decisions. Those LWPs have simply lost the race to
2046 1.11.2.1 thorpej * acquire the lock, and we don't consult those bits anyway;
2047 1.11.2.1 thorpej * we instead use the contents of the sleepqs as the truth
2048 1.11.2.1 thorpej * about who is waiting, and now new waiters will appear on
2049 1.11.2.1 thorpej * the sleepqs while we hold the op lock.
2050 1.11.2.1 thorpej *
2051 1.11.2.1 thorpej * ==> Wake waiters: sleepq locked, run down our private sleepq
2052 1.11.2.1 thorpej * and actually awaken all of the LWPs we selected earlier.
2053 1.11.2.1 thorpej *
2054 1.11.2.1 thorpej * If for some reason, the ucas fails because it page backing it
2055 1.11.2.1 thorpej * was unmapped, all bets are off. We still awaken the waiters.
2056 1.11.2.1 thorpej * This is either a malicious attempt to screw things up, or a
2057 1.11.2.1 thorpej * programming error, and we don't care about either one.
2058 1.11.2.1 thorpej */
2059 1.11.2.1 thorpej sleepq_init(&wsq);
2060 1.11.2.1 thorpej
2061 1.11.2.1 thorpej futex_op_lock(f);
2062 1.11.2.1 thorpej mutex_spin_enter(f->fx_sq_lock);
2063 1.11.2.1 thorpej
2064 1.11.2.1 thorpej /*
2065 1.11.2.1 thorpej * STEP 1
2066 1.11.2.1 thorpej */
2067 1.11.2.1 thorpej
2068 1.11.2.1 thorpej /*
2069 1.11.2.1 thorpej * POSIX dictates that any real-time waiters will acquire the
2070 1.11.2.1 thorpej * lock in priority order. This implies that a real-time
2071 1.11.2.1 thorpej * read-waiter has priority over a non-real-time write-waiter,
2072 1.11.2.1 thorpej * where we would otherwise prioritize waking the write-waiter.
2073 1.11.2.1 thorpej */
2074 1.11.2.1 thorpej l_writer = LIST_FIRST(&f->fx_sqs[FUTEX_WRITERQ]);
2075 1.11.2.1 thorpej l_reader = LIST_FIRST(&f->fx_sqs[FUTEX_READERQ]);
2076 1.11.2.1 thorpej if (__predict_true(l_writer == NULL)) {
2077 1.11.2.1 thorpej /* We will wake all the readers. */
2078 1.11.2.1 thorpej sq = &f->fx_sqs[FUTEX_READERQ];
2079 1.11.2.1 thorpej nwaitersp = &f->fx_nwaiters[FUTEX_READERQ];
2080 1.11.2.1 thorpej nwake = allreaders = f->fx_nwaiters[FUTEX_READERQ];
2081 1.11.2.1 thorpej KASSERT(nwake >= 0 && nwake <= FUTEX_TID_MASK);
2082 1.11.2.1 thorpej if (__predict_false(nwake == 0)) {
2083 1.11.2.1 thorpej KASSERT(l_reader == NULL);
2084 1.11.2.1 thorpej newval = 0;
2085 1.11.2.1 thorpej } else {
2086 1.11.2.1 thorpej KASSERT(l_reader != NULL);
2087 1.11.2.1 thorpej newval = nwake;
2088 1.11.2.1 thorpej }
2089 1.11.2.1 thorpej l = l_reader;
2090 1.11.2.1 thorpej } else if (__predict_false(l_reader != NULL &&
2091 1.11.2.1 thorpej futex_read_waiter_prio(l_reader) >
2092 1.11.2.1 thorpej (pri_writer = lwp_eprio(l_writer)))) {
2093 1.11.2.1 thorpej /*
2094 1.11.2.1 thorpej * Count the number of real-time read-waiters that
2095 1.11.2.1 thorpej * exceed the write-waiter's priority. We will
2096 1.11.2.1 thorpej * wake that many (we alreay know it's at least one).
2097 1.11.2.1 thorpej */
2098 1.11.2.1 thorpej sq = &f->fx_sqs[FUTEX_READERQ];
2099 1.11.2.1 thorpej nwaitersp = &f->fx_nwaiters[FUTEX_READERQ];
2100 1.11.2.1 thorpej for (nwake = 1, l = LIST_NEXT(l_reader, l_sleepchain);
2101 1.11.2.1 thorpej l != NULL && futex_read_waiter_prio(l) > pri_writer;
2102 1.11.2.1 thorpej l = LIST_NEXT(l, l_sleepchain)) {
2103 1.11.2.1 thorpej nwake++;
2104 1.11.2.1 thorpej }
2105 1.11.2.1 thorpej KASSERT(nwake >= 0 && nwake <= FUTEX_TID_MASK);
2106 1.11.2.1 thorpej /* We know there is at least one write-waiter. */
2107 1.11.2.1 thorpej newval = nwake | FUTEX_WAITERS | FUTEX_RW_WRITE_WANTED;
2108 1.11.2.1 thorpej l = l_reader;
2109 1.11.2.1 thorpej } else {
2110 1.11.2.1 thorpej /* We will wake one writer. */
2111 1.11.2.1 thorpej sq = &f->fx_sqs[FUTEX_WRITERQ];
2112 1.11.2.1 thorpej nwaitersp = &f->fx_nwaiters[FUTEX_WRITERQ];
2113 1.11.2.1 thorpej nwake = 1;
2114 1.11.2.1 thorpej newval = FUTEX_RW_WRITE_LOCKED | l_writer->l_lid;
2115 1.11.2.1 thorpej if (__predict_false(f->fx_nwaiters[FUTEX_WRITERQ] > 1)) {
2116 1.11.2.1 thorpej KASSERT(LIST_NEXT(l_writer, l_sleepchain) != NULL);
2117 1.11.2.1 thorpej newval |= FUTEX_WAITERS | FUTEX_RW_WRITE_WANTED;
2118 1.11.2.1 thorpej } else if (__predict_true(f->fx_nwaiters[FUTEX_READERQ] != 0)) {
2119 1.11.2.1 thorpej KASSERT(!LIST_EMPTY(&f->fx_sqs[FUTEX_READERQ]));
2120 1.11.2.1 thorpej newval |= FUTEX_WAITERS;
2121 1.11.2.1 thorpej } else {
2122 1.11.2.1 thorpej KASSERT(LIST_EMPTY(&f->fx_sqs[FUTEX_READERQ]));
2123 1.11.2.1 thorpej }
2124 1.11.2.1 thorpej l = l_writer;
2125 1.11.2.1 thorpej }
2126 1.11.2.1 thorpej
2127 1.11.2.1 thorpej KASSERT(sq == &f->fx_sqs[FUTEX_READERQ] ||
2128 1.11.2.1 thorpej sq == &f->fx_sqs[FUTEX_WRITERQ]);
2129 1.11.2.1 thorpej while (nwake != 0 && l != NULL) {
2130 1.11.2.1 thorpej l_next = LIST_NEXT(l, l_sleepchain);
2131 1.11.2.1 thorpej KASSERT(l->l_syncobj == &futex_syncobj);
2132 1.11.2.1 thorpej KASSERT(l->l_wchan == (wchan_t)f);
2133 1.11.2.1 thorpej KASSERT(l->l_futex == f);
2134 1.11.2.1 thorpej KASSERT(l->l_sleepq == sq);
2135 1.11.2.1 thorpej KASSERT(l->l_mutex == f->fx_sq_lock);
2136 1.11.2.1 thorpej
2137 1.11.2.1 thorpej /*
2138 1.11.2.1 thorpej * NULL wchan --> timeout will not wake LWP.
2139 1.11.2.1 thorpej * NULL lock --> keep existing lock.
2140 1.11.2.1 thorpej */
2141 1.11.2.1 thorpej sleepq_transfer(l, sq, &wsq, NULL/*wchan*/, futex_wmesg,
2142 1.11.2.1 thorpej &sched_syncobj, NULL/*lock*/, false);
2143 1.11.2.1 thorpej
2144 1.11.2.1 thorpej KASSERT(*nwaitersp > 0);
2145 1.11.2.1 thorpej (*nwaitersp)--;
2146 1.11.2.1 thorpej nwoken++;
2147 1.11.2.1 thorpej nwake--;
2148 1.11.2.1 thorpej /* hold count adjusted below */
2149 1.11.2.1 thorpej l = l_next;
2150 1.11.2.1 thorpej }
2151 1.11.2.1 thorpej
2152 1.11.2.1 thorpej mutex_spin_exit(f->fx_sq_lock);
2153 1.11.2.1 thorpej
2154 1.11.2.1 thorpej /*
2155 1.11.2.1 thorpej * STEP 2
2156 1.11.2.1 thorpej */
2157 1.11.2.1 thorpej for (;; val = next) {
2158 1.11.2.1 thorpej error = ucas_int(uaddr, val, newval, &next);
2159 1.11.2.1 thorpej if (__predict_false(error != 0)) {
2160 1.11.2.1 thorpej /*
2161 1.11.2.1 thorpej * The futex word has become unmapped. All bets
2162 1.11.2.1 thorpej * are off. Break out of the loop and awaken the
2163 1.11.2.1 thorpej * waiters; this is easier than trying to stuff
2164 1.11.2.1 thorpej * them back into their previous sleepq, and the
2165 1.11.2.1 thorpej * application is screwed anyway.
2166 1.11.2.1 thorpej */
2167 1.11.2.1 thorpej break;
2168 1.11.2.1 thorpej }
2169 1.11.2.1 thorpej if (__predict_true(next == val)) {
2170 1.11.2.1 thorpej /*
2171 1.11.2.1 thorpej * Successfully updated the futex word!
2172 1.11.2.1 thorpej */
2173 1.11.2.1 thorpej break;
2174 1.11.2.1 thorpej }
2175 1.11.2.1 thorpej /*
2176 1.11.2.1 thorpej * The only thing that could have possibly happened
2177 1.11.2.1 thorpej * (barring some bug in the thread library) is that
2178 1.11.2.1 thorpej * additional waiter bits arrived. Those new waiters
2179 1.11.2.1 thorpej * have lost the race to acquire the lock, but we
2180 1.11.2.1 thorpej * need to preserve those bits.
2181 1.11.2.1 thorpej */
2182 1.11.2.1 thorpej newval |= next & (FUTEX_WAITERS | FUTEX_RW_WRITE_WANTED);
2183 1.11.2.1 thorpej }
2184 1.11.2.1 thorpej
2185 1.11.2.1 thorpej mutex_spin_enter(f->fx_sq_lock);
2186 1.11.2.1 thorpej
2187 1.11.2.1 thorpej /*
2188 1.11.2.1 thorpej * STEP 3
2189 1.11.2.1 thorpej */
2190 1.11.2.1 thorpej
2191 1.11.2.1 thorpej LIST_FOREACH_SAFE(l, &wsq, l_sleepchain, l_next) {
2192 1.11.2.1 thorpej KASSERT(l->l_syncobj == &sched_syncobj);
2193 1.11.2.1 thorpej KASSERT(l->l_wchan == NULL);
2194 1.11.2.1 thorpej KASSERT(l->l_futex == f);
2195 1.11.2.1 thorpej KASSERT(l->l_sleepq == &wsq);
2196 1.11.2.1 thorpej KASSERT(l->l_mutex == f->fx_sq_lock);
2197 1.11.2.1 thorpej
2198 1.11.2.1 thorpej l->l_futex_wakesel = 0;
2199 1.11.2.1 thorpej l->l_futex = NULL;
2200 1.11.2.1 thorpej sleepq_remove(&wsq, l);
2201 1.11.2.1 thorpej }
2202 1.11.2.1 thorpej /* If we woke all-readers, ensure we will wake them all. */
2203 1.11.2.1 thorpej KASSERT(allreaders == 0 || allreaders == nwoken);
2204 1.11.2.1 thorpej KASSERT(allreaders == 0 || LIST_EMPTY(&f->fx_sqs[FUTEX_READERQ]));
2205 1.11.2.1 thorpej KASSERT(allreaders == 0 || f->fx_nwaiters[FUTEX_READERQ] == 0);
2206 1.11.2.1 thorpej
2207 1.11.2.1 thorpej mutex_spin_exit(f->fx_sq_lock);
2208 1.11.2.1 thorpej
2209 1.11.2.1 thorpej /* Adjust hold count. */
2210 1.11.2.1 thorpej futex_rele_count_not_last(f, nwoken);
2211 1.11.2.1 thorpej
2212 1.11.2.1 thorpej futex_op_unlock(f);
2213 1.11.2.1 thorpej
2214 1.11.2.1 thorpej /* Release the futex. */
2215 1.11.2.1 thorpej futex_rele(f);
2216 1.11.2.1 thorpej
2217 1.11.2.1 thorpej out: if (__predict_true(error == 0)) {
2218 1.11.2.1 thorpej /* Return the number of waiters woken. */
2219 1.11.2.1 thorpej *retval = nwoken;
2220 1.11.2.1 thorpej }
2221 1.11.2.1 thorpej
2222 1.11.2.1 thorpej /* Success! */
2223 1.11.2.1 thorpej return error;
2224 1.11.2.1 thorpej #endif
2225 1.11.2.1 thorpej }
2226 1.11.2.1 thorpej
2227 1.11.2.1 thorpej /*
2228 1.1 thorpej * do_futex(uaddr, op, val, timeout, uaddr2, val2, val3)
2229 1.1 thorpej *
2230 1.1 thorpej * Implement the futex system call with all the parameters
2231 1.1 thorpej * parsed out.
2232 1.1 thorpej */
2233 1.1 thorpej int
2234 1.11 riastrad do_futex(int *uaddr, int op, int val, const struct timespec *timeout,
2235 1.11 riastrad int *uaddr2, int val2, int val3, register_t *retval)
2236 1.1 thorpej {
2237 1.1 thorpej const bool shared = (op & FUTEX_PRIVATE_FLAG) ? false : true;
2238 1.1 thorpej const clockid_t clkid = (op & FUTEX_CLOCK_REALTIME) ? CLOCK_REALTIME
2239 1.1 thorpej : CLOCK_MONOTONIC;
2240 1.11.2.1 thorpej int error;
2241 1.1 thorpej
2242 1.1 thorpej op &= FUTEX_CMD_MASK;
2243 1.1 thorpej
2244 1.1 thorpej switch (op) {
2245 1.1 thorpej case FUTEX_WAIT:
2246 1.11.2.1 thorpej SDT_PROBE6(futex, func, wait, entry,
2247 1.11.2.1 thorpej uaddr, val, FUTEX_BITSET_MATCH_ANY, timeout,
2248 1.11.2.1 thorpej TIMER_RELTIME, op & ~FUTEX_CMD_MASK);
2249 1.11.2.1 thorpej error = futex_func_wait(shared, uaddr, val,
2250 1.1 thorpej FUTEX_BITSET_MATCH_ANY, timeout, clkid, TIMER_RELTIME,
2251 1.1 thorpej retval);
2252 1.11.2.1 thorpej SDT_PROBE1(futex, func, wait, exit, error);
2253 1.11.2.1 thorpej break;
2254 1.11.2.1 thorpej
2255 1.11.2.1 thorpej case FUTEX_WAIT_BITSET:
2256 1.11.2.1 thorpej SDT_PROBE6(futex, func, wait, entry,
2257 1.11.2.1 thorpej uaddr, val, val3, timeout,
2258 1.11.2.1 thorpej TIMER_ABSTIME, op & ~FUTEX_CMD_MASK);
2259 1.11.2.1 thorpej error = futex_func_wait(shared, uaddr, val, val3, timeout,
2260 1.11.2.1 thorpej clkid, TIMER_ABSTIME, retval);
2261 1.11.2.1 thorpej SDT_PROBE1(futex, func, wait, exit, error);
2262 1.11.2.1 thorpej break;
2263 1.1 thorpej
2264 1.1 thorpej case FUTEX_WAKE:
2265 1.11.2.1 thorpej SDT_PROBE4(futex, func, wake, entry,
2266 1.11.2.1 thorpej uaddr, val, FUTEX_BITSET_MATCH_ANY, op & ~FUTEX_CMD_MASK);
2267 1.11.2.1 thorpej error = futex_func_wake(shared, uaddr, val,
2268 1.11.2.1 thorpej FUTEX_BITSET_MATCH_ANY, retval);
2269 1.11.2.1 thorpej SDT_PROBE2(futex, func, wake, exit, error, *retval);
2270 1.11.2.1 thorpej break;
2271 1.11.2.1 thorpej
2272 1.1 thorpej case FUTEX_WAKE_BITSET:
2273 1.11.2.1 thorpej SDT_PROBE4(futex, func, wake, entry,
2274 1.11.2.1 thorpej uaddr, val, val3, op & ~FUTEX_CMD_MASK);
2275 1.11.2.1 thorpej error = futex_func_wake(shared, uaddr, val, val3, retval);
2276 1.11.2.1 thorpej SDT_PROBE2(futex, func, wake, exit, error, *retval);
2277 1.11.2.1 thorpej break;
2278 1.1 thorpej
2279 1.1 thorpej case FUTEX_REQUEUE:
2280 1.11.2.1 thorpej SDT_PROBE5(futex, func, requeue, entry,
2281 1.11.2.1 thorpej uaddr, val, uaddr2, val2, op & ~FUTEX_CMD_MASK);
2282 1.11.2.1 thorpej error = futex_func_requeue(shared, op, uaddr, val, uaddr2,
2283 1.11.2.1 thorpej val2, 0, retval);
2284 1.11.2.1 thorpej SDT_PROBE2(futex, func, requeue, exit, error, *retval);
2285 1.11.2.1 thorpej break;
2286 1.11.2.1 thorpej
2287 1.1 thorpej case FUTEX_CMP_REQUEUE:
2288 1.11.2.1 thorpej SDT_PROBE6(futex, func, cmp_requeue, entry,
2289 1.11.2.1 thorpej uaddr, val, uaddr2, val2, val3, op & ~FUTEX_CMD_MASK);
2290 1.11.2.1 thorpej error = futex_func_requeue(shared, op, uaddr, val, uaddr2,
2291 1.1 thorpej val2, val3, retval);
2292 1.11.2.1 thorpej SDT_PROBE2(futex, func, cmp_requeue, exit, error, *retval);
2293 1.11.2.1 thorpej break;
2294 1.1 thorpej
2295 1.1 thorpej case FUTEX_WAKE_OP:
2296 1.11.2.1 thorpej SDT_PROBE6(futex, func, wake_op, entry,
2297 1.11.2.1 thorpej uaddr, val, uaddr2, val2, val3, op & ~FUTEX_CMD_MASK);
2298 1.11.2.1 thorpej error = futex_func_wake_op(shared, uaddr, val, uaddr2, val2,
2299 1.1 thorpej val3, retval);
2300 1.11.2.1 thorpej SDT_PROBE2(futex, func, wake_op, exit, error, *retval);
2301 1.11.2.1 thorpej break;
2302 1.11.2.1 thorpej
2303 1.11.2.1 thorpej case FUTEX_NETBSD_RW_WAIT:
2304 1.11.2.1 thorpej SDT_PROBE5(futex, func, rw_wait, entry,
2305 1.11.2.1 thorpej uaddr, val, val3, timeout, op & ~FUTEX_CMD_MASK);
2306 1.11.2.1 thorpej error = futex_func_rw_wait(shared, uaddr, val, val3,
2307 1.11.2.1 thorpej timeout, clkid, retval);
2308 1.11.2.1 thorpej SDT_PROBE1(futex, func, rw_wait, exit, error);
2309 1.11.2.1 thorpej break;
2310 1.11.2.1 thorpej
2311 1.11.2.1 thorpej case FUTEX_NETBSD_RW_HANDOFF:
2312 1.11.2.1 thorpej SDT_PROBE3(futex, func, rw_handoff, entry,
2313 1.11.2.1 thorpej uaddr, val, op & ~FUTEX_CMD_MASK);
2314 1.11.2.1 thorpej error = futex_func_rw_handoff(shared, uaddr, val, retval);
2315 1.11.2.1 thorpej SDT_PROBE2(futex, func, rw_handoff, exit, error, *retval);
2316 1.11.2.1 thorpej break;
2317 1.1 thorpej
2318 1.1 thorpej case FUTEX_FD:
2319 1.1 thorpej default:
2320 1.11.2.1 thorpej error = ENOSYS;
2321 1.11.2.1 thorpej break;
2322 1.1 thorpej }
2323 1.11.2.1 thorpej
2324 1.11.2.1 thorpej return error;
2325 1.1 thorpej }
2326 1.1 thorpej
2327 1.1 thorpej /*
2328 1.1 thorpej * sys___futex(l, uap, retval)
2329 1.1 thorpej *
2330 1.1 thorpej * __futex(2) system call: generic futex operations.
2331 1.1 thorpej */
2332 1.1 thorpej int
2333 1.1 thorpej sys___futex(struct lwp *l, const struct sys___futex_args *uap,
2334 1.1 thorpej register_t *retval)
2335 1.1 thorpej {
2336 1.1 thorpej /* {
2337 1.1 thorpej syscallarg(int *) uaddr;
2338 1.1 thorpej syscallarg(int) op;
2339 1.1 thorpej syscallarg(int) val;
2340 1.1 thorpej syscallarg(const struct timespec *) timeout;
2341 1.1 thorpej syscallarg(int *) uaddr2;
2342 1.1 thorpej syscallarg(int) val2;
2343 1.1 thorpej syscallarg(int) val3;
2344 1.1 thorpej } */
2345 1.1 thorpej struct timespec ts, *tsp;
2346 1.1 thorpej int error;
2347 1.1 thorpej
2348 1.1 thorpej /*
2349 1.1 thorpej * Copy in the timeout argument, if specified.
2350 1.1 thorpej */
2351 1.1 thorpej if (SCARG(uap, timeout)) {
2352 1.1 thorpej error = copyin(SCARG(uap, timeout), &ts, sizeof(ts));
2353 1.1 thorpej if (error)
2354 1.1 thorpej return error;
2355 1.1 thorpej tsp = &ts;
2356 1.1 thorpej } else {
2357 1.1 thorpej tsp = NULL;
2358 1.1 thorpej }
2359 1.1 thorpej
2360 1.1 thorpej return do_futex(SCARG(uap, uaddr), SCARG(uap, op), SCARG(uap, val),
2361 1.1 thorpej tsp, SCARG(uap, uaddr2), SCARG(uap, val2), SCARG(uap, val3),
2362 1.1 thorpej retval);
2363 1.1 thorpej }
2364 1.1 thorpej
2365 1.1 thorpej /*
2366 1.1 thorpej * sys___futex_set_robust_list(l, uap, retval)
2367 1.1 thorpej *
2368 1.1 thorpej * __futex_set_robust_list(2) system call for robust futexes.
2369 1.1 thorpej */
2370 1.1 thorpej int
2371 1.1 thorpej sys___futex_set_robust_list(struct lwp *l,
2372 1.1 thorpej const struct sys___futex_set_robust_list_args *uap, register_t *retval)
2373 1.1 thorpej {
2374 1.1 thorpej /* {
2375 1.1 thorpej syscallarg(void *) head;
2376 1.1 thorpej syscallarg(size_t) len;
2377 1.1 thorpej } */
2378 1.1 thorpej void *head = SCARG(uap, head);
2379 1.1 thorpej
2380 1.1 thorpej if (SCARG(uap, len) != _FUTEX_ROBUST_HEAD_SIZE)
2381 1.1 thorpej return EINVAL;
2382 1.1 thorpej if ((uintptr_t)head % sizeof(u_long))
2383 1.1 thorpej return EINVAL;
2384 1.1 thorpej
2385 1.1 thorpej l->l_robust_head = (uintptr_t)head;
2386 1.1 thorpej
2387 1.1 thorpej return 0;
2388 1.1 thorpej }
2389 1.1 thorpej
2390 1.1 thorpej /*
2391 1.1 thorpej * sys___futex_get_robust_list(l, uap, retval)
2392 1.1 thorpej *
2393 1.1 thorpej * __futex_get_robust_list(2) system call for robust futexes.
2394 1.1 thorpej */
2395 1.1 thorpej int
2396 1.1 thorpej sys___futex_get_robust_list(struct lwp *l,
2397 1.1 thorpej const struct sys___futex_get_robust_list_args *uap, register_t *retval)
2398 1.1 thorpej {
2399 1.1 thorpej /* {
2400 1.1 thorpej syscallarg(lwpid_t) lwpid;
2401 1.1 thorpej syscallarg(void **) headp;
2402 1.1 thorpej syscallarg(size_t *) lenp;
2403 1.1 thorpej } */
2404 1.1 thorpej void *head;
2405 1.1 thorpej const size_t len = _FUTEX_ROBUST_HEAD_SIZE;
2406 1.1 thorpej int error;
2407 1.1 thorpej
2408 1.1 thorpej error = futex_robust_head_lookup(l, SCARG(uap, lwpid), &head);
2409 1.1 thorpej if (error)
2410 1.1 thorpej return error;
2411 1.1 thorpej
2412 1.1 thorpej /* Copy out the head pointer and the head structure length. */
2413 1.1 thorpej error = copyout(&head, SCARG(uap, headp), sizeof(head));
2414 1.1 thorpej if (__predict_true(error == 0)) {
2415 1.1 thorpej error = copyout(&len, SCARG(uap, lenp), sizeof(len));
2416 1.1 thorpej }
2417 1.1 thorpej
2418 1.1 thorpej return error;
2419 1.1 thorpej }
2420 1.1 thorpej
2421 1.1 thorpej /*
2422 1.1 thorpej * release_futex(uva, tid)
2423 1.1 thorpej *
2424 1.1 thorpej * Try to release the robust futex at uva in the current process
2425 1.1 thorpej * on lwp exit. If anything goes wrong, silently fail. It is the
2426 1.1 thorpej * userland program's obligation to arrange correct behaviour.
2427 1.1 thorpej */
2428 1.1 thorpej static void
2429 1.1 thorpej release_futex(uintptr_t const uptr, lwpid_t const tid, bool const is_pi,
2430 1.1 thorpej bool const is_pending)
2431 1.1 thorpej {
2432 1.1 thorpej int *uaddr;
2433 1.1 thorpej struct futex *f;
2434 1.1 thorpej int oldval, newval, actual;
2435 1.1 thorpej int error;
2436 1.11.2.1 thorpej bool shared;
2437 1.1 thorpej
2438 1.1 thorpej /* If it's misaligned, tough. */
2439 1.1 thorpej if (__predict_false(uptr & 3))
2440 1.1 thorpej return;
2441 1.1 thorpej uaddr = (int *)uptr;
2442 1.1 thorpej
2443 1.1 thorpej error = futex_load(uaddr, &oldval);
2444 1.1 thorpej if (__predict_false(error))
2445 1.1 thorpej return;
2446 1.1 thorpej
2447 1.1 thorpej /*
2448 1.1 thorpej * There are two race conditions we need to handle here:
2449 1.1 thorpej *
2450 1.1 thorpej * 1. User space cleared the futex word but died before
2451 1.1 thorpej * being able to issue the wakeup. No wakeups will
2452 1.1 thorpej * ever be issued, oops!
2453 1.1 thorpej *
2454 1.1 thorpej * 2. Awakened waiter died before being able to acquire
2455 1.1 thorpej * the futex in user space. Any other waiters are
2456 1.1 thorpej * now stuck, oops!
2457 1.1 thorpej *
2458 1.1 thorpej * In both of these cases, the futex word will be 0 (because
2459 1.1 thorpej * it's updated before the wake is issued). The best we can
2460 1.1 thorpej * do is detect this situation if it's the pending futex and
2461 1.1 thorpej * issue a wake without modifying the futex word.
2462 1.1 thorpej *
2463 1.1 thorpej * XXX eventual PI handling?
2464 1.1 thorpej */
2465 1.1 thorpej if (__predict_false(is_pending && (oldval & ~FUTEX_WAITERS) == 0)) {
2466 1.1 thorpej register_t retval;
2467 1.11.2.1 thorpej error = futex_func_wake(/*shared*/true, uaddr, 1,
2468 1.1 thorpej FUTEX_BITSET_MATCH_ANY, &retval);
2469 1.11.2.1 thorpej if (error != 0 || retval == 0)
2470 1.11.2.1 thorpej (void) futex_func_wake(/*shared*/false, uaddr, 1,
2471 1.11.2.1 thorpej FUTEX_BITSET_MATCH_ANY, &retval);
2472 1.1 thorpej return;
2473 1.1 thorpej }
2474 1.1 thorpej
2475 1.1 thorpej /* Optimistically test whether we need to do anything at all. */
2476 1.1 thorpej if ((oldval & FUTEX_TID_MASK) != tid)
2477 1.1 thorpej return;
2478 1.1 thorpej
2479 1.1 thorpej /*
2480 1.1 thorpej * We need to handle the case where this thread owned the futex,
2481 1.1 thorpej * but it was uncontended. In this case, there won't be any
2482 1.1 thorpej * kernel state to look up. All we can do is mark the futex
2483 1.1 thorpej * as a zombie to be mopped up the next time another thread
2484 1.1 thorpej * attempts to acquire it.
2485 1.1 thorpej *
2486 1.1 thorpej * N.B. It's important to ensure to set FUTEX_OWNER_DIED in
2487 1.1 thorpej * this loop, even if waiters appear while we're are doing
2488 1.1 thorpej * so. This is beause FUTEX_WAITERS is set by user space
2489 1.1 thorpej * before calling __futex() to wait, and the futex needs
2490 1.1 thorpej * to be marked as a zombie when the new waiter gets into
2491 1.1 thorpej * the kernel.
2492 1.1 thorpej */
2493 1.1 thorpej if ((oldval & FUTEX_WAITERS) == 0) {
2494 1.1 thorpej do {
2495 1.1 thorpej error = futex_load(uaddr, &oldval);
2496 1.1 thorpej if (error)
2497 1.1 thorpej return;
2498 1.1 thorpej if ((oldval & FUTEX_TID_MASK) != tid)
2499 1.1 thorpej return;
2500 1.1 thorpej newval = oldval | FUTEX_OWNER_DIED;
2501 1.1 thorpej error = ucas_int(uaddr, oldval, newval, &actual);
2502 1.1 thorpej if (error)
2503 1.1 thorpej return;
2504 1.1 thorpej } while (actual != oldval);
2505 1.1 thorpej
2506 1.1 thorpej /*
2507 1.1 thorpej * If where is still no indication of waiters, then there is
2508 1.1 thorpej * no more work for us to do.
2509 1.1 thorpej */
2510 1.1 thorpej if ((oldval & FUTEX_WAITERS) == 0)
2511 1.1 thorpej return;
2512 1.1 thorpej }
2513 1.1 thorpej
2514 1.1 thorpej /*
2515 1.11.2.1 thorpej * Look for a futex. Try shared first, then private. If we
2516 1.11.2.1 thorpej * can't fine one, tough.
2517 1.11.2.1 thorpej *
2518 1.11.2.1 thorpej * Note: the assumption here is that anyone placing a futex on
2519 1.11.2.1 thorpej * the robust list is adhering to the rules, regardless of the
2520 1.11.2.1 thorpej * futex class.
2521 1.1 thorpej */
2522 1.11.2.1 thorpej for (f = NULL, shared = true; f == NULL; shared = false) {
2523 1.11.2.1 thorpej error = futex_lookup(uaddr, shared, FUTEX_CLASS_ANY, &f);
2524 1.11.2.1 thorpej if (error)
2525 1.11.2.1 thorpej return;
2526 1.11.2.1 thorpej if (f == NULL && shared == false)
2527 1.11.2.1 thorpej return;
2528 1.11.2.1 thorpej }
2529 1.1 thorpej
2530 1.11.2.1 thorpej /* Work under the futex op lock. */
2531 1.11.2.1 thorpej futex_op_lock(f);
2532 1.1 thorpej
2533 1.1 thorpej /*
2534 1.1 thorpej * Fetch the word: if the tid doesn't match ours, skip;
2535 1.1 thorpej * otherwise, set the owner-died bit, atomically.
2536 1.1 thorpej */
2537 1.1 thorpej do {
2538 1.1 thorpej error = futex_load(uaddr, &oldval);
2539 1.1 thorpej if (error)
2540 1.1 thorpej goto out;
2541 1.1 thorpej if ((oldval & FUTEX_TID_MASK) != tid)
2542 1.1 thorpej goto out;
2543 1.1 thorpej newval = oldval | FUTEX_OWNER_DIED;
2544 1.1 thorpej error = ucas_int(uaddr, oldval, newval, &actual);
2545 1.1 thorpej if (error)
2546 1.1 thorpej goto out;
2547 1.1 thorpej } while (actual != oldval);
2548 1.1 thorpej
2549 1.1 thorpej /*
2550 1.1 thorpej * If there may be waiters, try to wake one. If anything goes
2551 1.1 thorpej * wrong, tough.
2552 1.1 thorpej *
2553 1.1 thorpej * XXX eventual PI handling?
2554 1.1 thorpej */
2555 1.11.2.1 thorpej if (oldval & FUTEX_WAITERS) {
2556 1.11.2.1 thorpej (void)futex_wake(f, FUTEX_WRITERQ, 1,
2557 1.11.2.1 thorpej NULL, FUTEX_WRITERQ, 0,
2558 1.11.2.1 thorpej FUTEX_BITSET_MATCH_ANY);
2559 1.11.2.1 thorpej }
2560 1.1 thorpej
2561 1.1 thorpej /* Unlock the queue and release the futex. */
2562 1.11.2.1 thorpej out: futex_op_unlock(f);
2563 1.5 riastrad futex_rele(f);
2564 1.1 thorpej }
2565 1.1 thorpej
2566 1.1 thorpej /*
2567 1.1 thorpej * futex_robust_head_lookup(l, lwpid)
2568 1.1 thorpej *
2569 1.1 thorpej * Helper function to look up a robust head by LWP ID.
2570 1.1 thorpej */
2571 1.1 thorpej int
2572 1.1 thorpej futex_robust_head_lookup(struct lwp *l, lwpid_t lwpid, void **headp)
2573 1.1 thorpej {
2574 1.1 thorpej struct proc *p = l->l_proc;
2575 1.1 thorpej
2576 1.1 thorpej /* Find the other lwp, if requested; otherwise use our robust head. */
2577 1.1 thorpej if (lwpid) {
2578 1.1 thorpej mutex_enter(p->p_lock);
2579 1.1 thorpej l = lwp_find(p, lwpid);
2580 1.1 thorpej if (l == NULL) {
2581 1.1 thorpej mutex_exit(p->p_lock);
2582 1.1 thorpej return ESRCH;
2583 1.1 thorpej }
2584 1.1 thorpej *headp = (void *)l->l_robust_head;
2585 1.1 thorpej mutex_exit(p->p_lock);
2586 1.1 thorpej } else {
2587 1.1 thorpej *headp = (void *)l->l_robust_head;
2588 1.1 thorpej }
2589 1.1 thorpej return 0;
2590 1.1 thorpej }
2591 1.1 thorpej
2592 1.1 thorpej /*
2593 1.1 thorpej * futex_fetch_robust_head(uaddr)
2594 1.1 thorpej *
2595 1.1 thorpej * Helper routine to fetch the futex robust list head that
2596 1.1 thorpej * handles 32-bit binaries running on 64-bit kernels.
2597 1.1 thorpej */
2598 1.1 thorpej static int
2599 1.1 thorpej futex_fetch_robust_head(uintptr_t uaddr, u_long *rhead)
2600 1.1 thorpej {
2601 1.1 thorpej #ifdef _LP64
2602 1.1 thorpej if (curproc->p_flag & PK_32) {
2603 1.1 thorpej uint32_t rhead32[_FUTEX_ROBUST_HEAD_NWORDS];
2604 1.1 thorpej int error;
2605 1.1 thorpej
2606 1.1 thorpej error = copyin((void *)uaddr, rhead32, sizeof(rhead32));
2607 1.1 thorpej if (__predict_true(error == 0)) {
2608 1.1 thorpej for (int i = 0; i < _FUTEX_ROBUST_HEAD_NWORDS; i++) {
2609 1.1 thorpej if (i == _FUTEX_ROBUST_HEAD_OFFSET) {
2610 1.1 thorpej /*
2611 1.1 thorpej * Make sure the offset is sign-
2612 1.1 thorpej * extended.
2613 1.1 thorpej */
2614 1.1 thorpej rhead[i] = (int32_t)rhead32[i];
2615 1.1 thorpej } else {
2616 1.1 thorpej rhead[i] = rhead32[i];
2617 1.1 thorpej }
2618 1.1 thorpej }
2619 1.1 thorpej }
2620 1.1 thorpej return error;
2621 1.1 thorpej }
2622 1.1 thorpej #endif /* _L64 */
2623 1.1 thorpej
2624 1.1 thorpej return copyin((void *)uaddr, rhead,
2625 1.1 thorpej sizeof(*rhead) * _FUTEX_ROBUST_HEAD_NWORDS);
2626 1.1 thorpej }
2627 1.1 thorpej
2628 1.1 thorpej /*
2629 1.1 thorpej * futex_decode_robust_word(word)
2630 1.1 thorpej *
2631 1.1 thorpej * Decode a robust futex list word into the entry and entry
2632 1.1 thorpej * properties.
2633 1.1 thorpej */
2634 1.1 thorpej static inline void
2635 1.1 thorpej futex_decode_robust_word(uintptr_t const word, uintptr_t * const entry,
2636 1.1 thorpej bool * const is_pi)
2637 1.1 thorpej {
2638 1.1 thorpej *is_pi = (word & _FUTEX_ROBUST_ENTRY_PI) ? true : false;
2639 1.1 thorpej *entry = word & ~_FUTEX_ROBUST_ENTRY_PI;
2640 1.1 thorpej }
2641 1.1 thorpej
2642 1.1 thorpej /*
2643 1.1 thorpej * futex_fetch_robust_entry(uaddr)
2644 1.1 thorpej *
2645 1.1 thorpej * Helper routine to fetch and decode a robust futex entry
2646 1.1 thorpej * that handles 32-bit binaries running on 64-bit kernels.
2647 1.1 thorpej */
2648 1.1 thorpej static int
2649 1.1 thorpej futex_fetch_robust_entry(uintptr_t const uaddr, uintptr_t * const valp,
2650 1.1 thorpej bool * const is_pi)
2651 1.1 thorpej {
2652 1.1 thorpej uintptr_t val = 0;
2653 1.1 thorpej int error = 0;
2654 1.1 thorpej
2655 1.1 thorpej #ifdef _LP64
2656 1.1 thorpej if (curproc->p_flag & PK_32) {
2657 1.1 thorpej uint32_t val32;
2658 1.1 thorpej
2659 1.1 thorpej error = ufetch_32((uint32_t *)uaddr, &val32);
2660 1.1 thorpej if (__predict_true(error == 0))
2661 1.1 thorpej val = val32;
2662 1.1 thorpej } else
2663 1.1 thorpej #endif /* _LP64 */
2664 1.1 thorpej error = ufetch_long((u_long *)uaddr, (u_long *)&val);
2665 1.1 thorpej if (__predict_false(error))
2666 1.1 thorpej return error;
2667 1.1 thorpej
2668 1.1 thorpej futex_decode_robust_word(val, valp, is_pi);
2669 1.1 thorpej return 0;
2670 1.1 thorpej }
2671 1.1 thorpej
2672 1.1 thorpej /*
2673 1.1 thorpej * futex_release_all_lwp(l, tid)
2674 1.1 thorpej *
2675 1.1 thorpej * Release all l's robust futexes. If anything looks funny in
2676 1.1 thorpej * the process, give up -- it's userland's responsibility to dot
2677 1.1 thorpej * the i's and cross the t's.
2678 1.1 thorpej */
2679 1.1 thorpej void
2680 1.1 thorpej futex_release_all_lwp(struct lwp * const l, lwpid_t const tid)
2681 1.1 thorpej {
2682 1.1 thorpej u_long rhead[_FUTEX_ROBUST_HEAD_NWORDS];
2683 1.1 thorpej int limit = 1000000;
2684 1.1 thorpej int error;
2685 1.1 thorpej
2686 1.1 thorpej /* If there's no robust list there's nothing to do. */
2687 1.1 thorpej if (l->l_robust_head == 0)
2688 1.1 thorpej return;
2689 1.1 thorpej
2690 1.1 thorpej /* Read the final snapshot of the robust list head. */
2691 1.1 thorpej error = futex_fetch_robust_head(l->l_robust_head, rhead);
2692 1.1 thorpej if (error) {
2693 1.1 thorpej printf("WARNING: pid %jd (%s) lwp %jd tid %jd:"
2694 1.1 thorpej " unmapped robust futex list head\n",
2695 1.1 thorpej (uintmax_t)l->l_proc->p_pid, l->l_proc->p_comm,
2696 1.1 thorpej (uintmax_t)l->l_lid, (uintmax_t)tid);
2697 1.1 thorpej return;
2698 1.1 thorpej }
2699 1.1 thorpej
2700 1.1 thorpej const long offset = (long)rhead[_FUTEX_ROBUST_HEAD_OFFSET];
2701 1.1 thorpej
2702 1.1 thorpej uintptr_t next, pending;
2703 1.1 thorpej bool is_pi, pending_is_pi;
2704 1.1 thorpej
2705 1.1 thorpej futex_decode_robust_word(rhead[_FUTEX_ROBUST_HEAD_LIST],
2706 1.1 thorpej &next, &is_pi);
2707 1.1 thorpej futex_decode_robust_word(rhead[_FUTEX_ROBUST_HEAD_PENDING],
2708 1.1 thorpej &pending, &pending_is_pi);
2709 1.1 thorpej
2710 1.1 thorpej /*
2711 1.1 thorpej * Walk down the list of locked futexes and release them, up
2712 1.1 thorpej * to one million of them before we give up.
2713 1.1 thorpej */
2714 1.1 thorpej
2715 1.1 thorpej while (next != l->l_robust_head && limit-- > 0) {
2716 1.1 thorpej /* pending handled below. */
2717 1.1 thorpej if (next != pending)
2718 1.1 thorpej release_futex(next + offset, tid, is_pi, false);
2719 1.1 thorpej error = futex_fetch_robust_entry(next, &next, &is_pi);
2720 1.1 thorpej if (error)
2721 1.1 thorpej break;
2722 1.1 thorpej preempt_point();
2723 1.1 thorpej }
2724 1.1 thorpej if (limit <= 0) {
2725 1.1 thorpej printf("WARNING: pid %jd (%s) lwp %jd tid %jd:"
2726 1.1 thorpej " exhausted robust futex limit\n",
2727 1.1 thorpej (uintmax_t)l->l_proc->p_pid, l->l_proc->p_comm,
2728 1.1 thorpej (uintmax_t)l->l_lid, (uintmax_t)tid);
2729 1.1 thorpej }
2730 1.1 thorpej
2731 1.1 thorpej /* If there's a pending futex, it may need to be released too. */
2732 1.1 thorpej if (pending != 0) {
2733 1.1 thorpej release_futex(pending + offset, tid, pending_is_pi, true);
2734 1.1 thorpej }
2735 1.1 thorpej }
2736