sys_futex.c revision 1.12.4.3 1 1.12.4.3 thorpej /* $NetBSD: sys_futex.c,v 1.12.4.3 2021/08/06 18:23:57 thorpej Exp $ */
2 1.1 thorpej
3 1.1 thorpej /*-
4 1.1 thorpej * Copyright (c) 2018, 2019, 2020 The NetBSD Foundation, Inc.
5 1.1 thorpej * All rights reserved.
6 1.1 thorpej *
7 1.1 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.1 thorpej * by Taylor R. Campbell and Jason R. Thorpe.
9 1.1 thorpej *
10 1.1 thorpej * Redistribution and use in source and binary forms, with or without
11 1.1 thorpej * modification, are permitted provided that the following conditions
12 1.1 thorpej * are met:
13 1.1 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.1 thorpej * notice, this list of conditions and the following disclaimer.
15 1.1 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.1 thorpej * documentation and/or other materials provided with the distribution.
18 1.1 thorpej *
19 1.1 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 thorpej * POSSIBILITY OF SUCH DAMAGE.
30 1.1 thorpej */
31 1.1 thorpej
32 1.1 thorpej #include <sys/cdefs.h>
33 1.12.4.3 thorpej __KERNEL_RCSID(0, "$NetBSD: sys_futex.c,v 1.12.4.3 2021/08/06 18:23:57 thorpej Exp $");
34 1.1 thorpej
35 1.1 thorpej /*
36 1.1 thorpej * Futexes
37 1.1 thorpej *
38 1.1 thorpej * The futex system call coordinates notifying threads waiting for
39 1.1 thorpej * changes on a 32-bit word of memory. The word can be managed by
40 1.1 thorpej * CPU atomic operations in userland, without system calls, as long
41 1.1 thorpej * as there is no contention.
42 1.1 thorpej *
43 1.1 thorpej * The simplest use case demonstrating the utility is:
44 1.1 thorpej *
45 1.1 thorpej * // 32-bit word of memory shared among threads or
46 1.1 thorpej * // processes in userland. lock & 1 means owned;
47 1.1 thorpej * // lock & 2 means there are waiters waiting.
48 1.1 thorpej * volatile int lock = 0;
49 1.1 thorpej *
50 1.1 thorpej * int v;
51 1.1 thorpej *
52 1.1 thorpej * // Acquire a lock.
53 1.1 thorpej * do {
54 1.1 thorpej * v = lock;
55 1.1 thorpej * if (v & 1) {
56 1.1 thorpej * // Lock is held. Set a bit to say that
57 1.1 thorpej * // there are waiters, and wait for lock
58 1.1 thorpej * // to change to anything other than v;
59 1.1 thorpej * // then retry.
60 1.1 thorpej * if (atomic_cas_uint(&lock, v, v | 2) != v)
61 1.1 thorpej * continue;
62 1.1 thorpej * futex(FUTEX_WAIT, &lock, v | 2, NULL, NULL, 0);
63 1.1 thorpej * continue;
64 1.1 thorpej * }
65 1.1 thorpej * } while (atomic_cas_uint(&lock, v, v & ~1) != v);
66 1.1 thorpej * membar_enter();
67 1.1 thorpej *
68 1.1 thorpej * ...
69 1.1 thorpej *
70 1.1 thorpej * // Release the lock. Optimistically assume there are
71 1.1 thorpej * // no waiters first until demonstrated otherwise.
72 1.1 thorpej * membar_exit();
73 1.1 thorpej * if (atomic_cas_uint(&lock, 1, 0) != 1) {
74 1.1 thorpej * // There may be waiters.
75 1.1 thorpej * v = atomic_swap_uint(&lock, 0);
76 1.1 thorpej * // If there are still waiters, wake one.
77 1.1 thorpej * if (v & 2)
78 1.1 thorpej * futex(FUTEX_WAKE, &lock, 1, NULL, NULL, 0);
79 1.1 thorpej * }
80 1.1 thorpej *
81 1.1 thorpej * The goal is to avoid the futex system call unless there is
82 1.1 thorpej * contention; then if there is contention, to guarantee no missed
83 1.1 thorpej * wakeups.
84 1.1 thorpej *
85 1.1 thorpej * For a simple implementation, futex(FUTEX_WAIT) could queue
86 1.1 thorpej * itself to be woken, double-check the lock word, and then sleep;
87 1.1 thorpej * spurious wakeups are generally a fact of life, so any
88 1.1 thorpej * FUTEX_WAKE could just wake every FUTEX_WAIT in the system.
89 1.1 thorpej *
90 1.1 thorpej * If this were all there is to it, we could then increase
91 1.1 thorpej * parallelism by refining the approximation: partition the
92 1.1 thorpej * waiters into buckets by hashing the lock addresses to reduce
93 1.1 thorpej * the incidence of spurious wakeups. But this is not all.
94 1.1 thorpej *
95 1.1 thorpej * The futex(FUTEX_CMP_REQUEUE, &lock, n, &lock2, m, val)
96 1.1 thorpej * operation not only wakes n waiters on lock if lock == val, but
97 1.1 thorpej * also _transfers_ m additional waiters to lock2. Unless wakeups
98 1.1 thorpej * on lock2 also trigger wakeups on lock, we cannot move waiters
99 1.1 thorpej * to lock2 if they merely share the same hash as waiters on lock.
100 1.1 thorpej * Thus, we can't approximately distribute waiters into queues by
101 1.1 thorpej * a hash function; we must distinguish futex queues exactly by
102 1.1 thorpej * lock address.
103 1.1 thorpej *
104 1.1 thorpej * For now, we use a global red/black tree to index futexes. This
105 1.1 thorpej * should be replaced by a lockless radix tree with a thread to
106 1.1 thorpej * free entries no longer in use once all lookups on all CPUs have
107 1.1 thorpej * completed.
108 1.1 thorpej *
109 1.1 thorpej * Specifically, we maintain two maps:
110 1.1 thorpej *
111 1.1 thorpej * futex_tab.va[vmspace, va] for private futexes
112 1.1 thorpej * futex_tab.oa[uvm_voaddr] for shared futexes
113 1.1 thorpej *
114 1.1 thorpej * This implementation does not support priority inheritance.
115 1.1 thorpej */
116 1.1 thorpej
117 1.12 skrll #include <sys/param.h>
118 1.1 thorpej #include <sys/types.h>
119 1.1 thorpej #include <sys/atomic.h>
120 1.1 thorpej #include <sys/condvar.h>
121 1.1 thorpej #include <sys/futex.h>
122 1.1 thorpej #include <sys/mutex.h>
123 1.1 thorpej #include <sys/rbtree.h>
124 1.12.4.1 thorpej #include <sys/sleepq.h>
125 1.1 thorpej #include <sys/queue.h>
126 1.12.4.1 thorpej #include <sys/sdt.h>
127 1.1 thorpej
128 1.1 thorpej #include <sys/syscall.h>
129 1.1 thorpej #include <sys/syscallargs.h>
130 1.1 thorpej #include <sys/syscallvar.h>
131 1.1 thorpej
132 1.1 thorpej #include <uvm/uvm_extern.h>
133 1.1 thorpej
134 1.1 thorpej /*
135 1.12.4.1 thorpej * DTrace probes.
136 1.12.4.1 thorpej */
137 1.12.4.1 thorpej SDT_PROVIDER_DEFINE(futex);
138 1.12.4.1 thorpej
139 1.12.4.1 thorpej /* entry: uaddr, val, bitset, timeout, clkflags, fflags */
140 1.12.4.1 thorpej /* exit: error */
141 1.12.4.1 thorpej SDT_PROBE_DEFINE6(futex, func, wait, entry, "int *", "int", "int",
142 1.12.4.1 thorpej "struct timespec *", "int", "int");
143 1.12.4.1 thorpej SDT_PROBE_DEFINE1(futex, func, wait, exit, "int");
144 1.12.4.1 thorpej
145 1.12.4.1 thorpej /* entry: uaddr, nwake, bitset, fflags */
146 1.12.4.1 thorpej /* exit: error, nwoken */
147 1.12.4.1 thorpej SDT_PROBE_DEFINE4(futex, func, wake, entry, "int *", "int", "int", "int");
148 1.12.4.1 thorpej SDT_PROBE_DEFINE2(futex, func, wake, exit, "int", "int");
149 1.12.4.1 thorpej
150 1.12.4.1 thorpej /* entry: uaddr, nwake, uaddr2, nrequeue, fflags */
151 1.12.4.1 thorpej /* exit: error, nwoken */
152 1.12.4.1 thorpej SDT_PROBE_DEFINE5(futex, func, requeue, entry, "int *", "int", "int *", "int",
153 1.12.4.1 thorpej "int");
154 1.12.4.1 thorpej SDT_PROBE_DEFINE2(futex, func, requeue, exit, "int", "int");
155 1.12.4.1 thorpej
156 1.12.4.1 thorpej /* entry: uaddr, nwake, uaddr2, nrequeue, val3, fflags */
157 1.12.4.1 thorpej /* exit: error, nwoken */
158 1.12.4.1 thorpej SDT_PROBE_DEFINE6(futex, func, cmp_requeue, entry, "int *", "int", "int *",
159 1.12.4.1 thorpej "int", "int", "int");
160 1.12.4.1 thorpej SDT_PROBE_DEFINE2(futex, func, cmp_requeue, exit, "int", "int");
161 1.12.4.1 thorpej
162 1.12.4.1 thorpej /* entry: uaddr, nwake, uaddr2, nwake2, wakeop, fflags */
163 1.12.4.1 thorpej /* exit: error, nwoken */
164 1.12.4.1 thorpej SDT_PROBE_DEFINE6(futex, func, wake_op, entry, "int *", "int", "int *", "int",
165 1.12.4.1 thorpej "int", "int");
166 1.12.4.1 thorpej SDT_PROBE_DEFINE2(futex, func, wake_op, exit, "int", "int");
167 1.12.4.1 thorpej
168 1.12.4.1 thorpej SDT_PROBE_DEFINE0(futex, wait, finish, normally);
169 1.12.4.1 thorpej SDT_PROBE_DEFINE0(futex, wait, finish, wakerace);
170 1.12.4.1 thorpej SDT_PROBE_DEFINE0(futex, wait, finish, aborted);
171 1.12.4.1 thorpej
172 1.12.4.1 thorpej /* entry: timo */
173 1.12.4.1 thorpej /* exit: error */
174 1.12.4.1 thorpej SDT_PROBE_DEFINE1(futex, wait, sleepq_block, entry, "int");
175 1.12.4.1 thorpej SDT_PROBE_DEFINE1(futex, wait, sleepq_block, exit, "int");
176 1.12.4.1 thorpej
177 1.12.4.1 thorpej /*
178 1.1 thorpej * Lock order:
179 1.1 thorpej *
180 1.1 thorpej * futex_tab.lock
181 1.12.4.1 thorpej * futex::fx_op_lock ordered by kva of struct futex
182 1.12.4.1 thorpej * -> futex::fx_sq_lock ordered by kva of sleepq lock
183 1.12.4.1 thorpej *
184 1.12.4.1 thorpej * N.B. multiple futexes can share a single sleepq lock.
185 1.1 thorpej */
186 1.1 thorpej
187 1.1 thorpej /*
188 1.1 thorpej * union futex_key
189 1.1 thorpej *
190 1.1 thorpej * A futex is addressed either by a vmspace+va (private) or by
191 1.1 thorpej * a uvm_voaddr (shared).
192 1.1 thorpej */
193 1.1 thorpej union futex_key {
194 1.1 thorpej struct {
195 1.1 thorpej struct vmspace *vmspace;
196 1.1 thorpej vaddr_t va;
197 1.1 thorpej } fk_private;
198 1.1 thorpej struct uvm_voaddr fk_shared;
199 1.1 thorpej };
200 1.1 thorpej
201 1.1 thorpej /*
202 1.1 thorpej * struct futex
203 1.1 thorpej *
204 1.1 thorpej * Kernel state for a futex located at a particular address in a
205 1.1 thorpej * particular virtual address space.
206 1.1 thorpej *
207 1.1 thorpej * N.B. fx_refcnt is an unsigned long because we need to be able
208 1.1 thorpej * to operate on it atomically on all systems while at the same
209 1.1 thorpej * time rendering practically impossible the chance of it reaching
210 1.1 thorpej * its max value. In practice, we're limited by the number of LWPs
211 1.1 thorpej * that can be present on the system at any given time, and the
212 1.1 thorpej * assumption is that limit will be good enough on a 32-bit platform.
213 1.1 thorpej * See futex_wake() for why overflow needs to be avoided.
214 1.12.4.1 thorpej *
215 1.12.4.1 thorpej * XXX Since futex addresses must be 4-byte aligned, we could
216 1.12.4.1 thorpej * XXX squirrel away fx_shared and fx_on_tree bits in the "va"
217 1.12.4.1 thorpej * XXX field of the key. Worth it?
218 1.1 thorpej */
219 1.1 thorpej struct futex {
220 1.1 thorpej union futex_key fx_key;
221 1.12.4.1 thorpej struct rb_node fx_node;
222 1.1 thorpej unsigned long fx_refcnt;
223 1.1 thorpej bool fx_shared;
224 1.1 thorpej bool fx_on_tree;
225 1.12.4.1 thorpej uint8_t fx_class;
226 1.1 thorpej
227 1.12.4.1 thorpej kmutex_t fx_op_lock; /* adaptive */
228 1.12.4.1 thorpej kmutex_t * fx_sq_lock; /* &sleepq_locks[...] */
229 1.12.4.1 thorpej sleepq_t fx_sqs[2]; /* 0=reader, 1=writer */
230 1.12.4.1 thorpej unsigned int fx_nwaiters[2];
231 1.1 thorpej };
232 1.1 thorpej
233 1.1 thorpej /*
234 1.12.4.1 thorpej * futex classes: Some futex operations can only be carried out on
235 1.12.4.1 thorpej * futexes that are known to be abiding by a certain protocol. These
236 1.12.4.1 thorpej * classes are assigned to a futex when created due to a wait event,
237 1.12.4.1 thorpej * and when subsequent wake or requeue operations are issued, the
238 1.12.4.1 thorpej * class is checked at futex lookup time. If the class does not match,
239 1.12.4.1 thorpej * EINVAL is the result.
240 1.12.4.1 thorpej */
241 1.12.4.1 thorpej #define FUTEX_CLASS_ANY 0 /* match any class in lookup */
242 1.12.4.1 thorpej #define FUTEX_CLASS_NORMAL 1 /* normal futex */
243 1.12.4.1 thorpej #define FUTEX_CLASS_RWLOCK 2 /* rwlock futex */
244 1.12.4.1 thorpej #define FUTEX_CLASS_PI 3 /* for FUTEX_*_PI ops */
245 1.12.4.1 thorpej
246 1.12.4.1 thorpej /* sleepq definitions */
247 1.12.4.1 thorpej #define FUTEX_READERQ 0
248 1.12.4.1 thorpej #define FUTEX_WRITERQ 1
249 1.12.4.1 thorpej
250 1.12.4.1 thorpej static const char futex_wmesg[] = "futex";
251 1.12.4.1 thorpej
252 1.12.4.1 thorpej static void futex_unsleep(lwp_t *, bool);
253 1.12.4.1 thorpej
254 1.12.4.1 thorpej static syncobj_t futex_syncobj = {
255 1.12.4.1 thorpej .sobj_flag = SOBJ_SLEEPQ_SORTED,
256 1.12.4.1 thorpej .sobj_unsleep = futex_unsleep,
257 1.12.4.1 thorpej .sobj_changepri = sleepq_changepri,
258 1.12.4.1 thorpej .sobj_lendpri = sleepq_lendpri,
259 1.12.4.1 thorpej .sobj_owner = syncobj_noowner,
260 1.1 thorpej };
261 1.1 thorpej
262 1.1 thorpej /*
263 1.1 thorpej * futex_tab
264 1.1 thorpej *
265 1.1 thorpej * Global trees of futexes by vmspace/va and VM object address.
266 1.1 thorpej *
267 1.1 thorpej * XXX This obviously doesn't scale in parallel. We could use a
268 1.1 thorpej * pserialize-safe data structure, but there may be a high cost to
269 1.1 thorpej * frequent deletion since we don't cache futexes after we're done
270 1.1 thorpej * with them. We could use hashed locks. But for now, just make
271 1.1 thorpej * sure userland can't DoS the serial performance, by using a
272 1.1 thorpej * balanced binary tree for lookup.
273 1.1 thorpej *
274 1.1 thorpej * XXX We could use a per-process tree for the table indexed by
275 1.1 thorpej * virtual address to reduce contention between processes.
276 1.1 thorpej */
277 1.1 thorpej static struct {
278 1.1 thorpej kmutex_t lock;
279 1.1 thorpej struct rb_tree va;
280 1.1 thorpej struct rb_tree oa;
281 1.1 thorpej } futex_tab __cacheline_aligned;
282 1.1 thorpej
283 1.1 thorpej static int
284 1.1 thorpej compare_futex_key(void *cookie, const void *n, const void *k)
285 1.1 thorpej {
286 1.1 thorpej const struct futex *fa = n;
287 1.1 thorpej const union futex_key *fka = &fa->fx_key;
288 1.1 thorpej const union futex_key *fkb = k;
289 1.1 thorpej
290 1.1 thorpej if ((uintptr_t)fka->fk_private.vmspace <
291 1.1 thorpej (uintptr_t)fkb->fk_private.vmspace)
292 1.1 thorpej return -1;
293 1.1 thorpej if ((uintptr_t)fka->fk_private.vmspace >
294 1.1 thorpej (uintptr_t)fkb->fk_private.vmspace)
295 1.1 thorpej return +1;
296 1.1 thorpej if (fka->fk_private.va < fkb->fk_private.va)
297 1.1 thorpej return -1;
298 1.1 thorpej if (fka->fk_private.va > fkb->fk_private.va)
299 1.1 thorpej return -1;
300 1.1 thorpej return 0;
301 1.1 thorpej }
302 1.1 thorpej
303 1.1 thorpej static int
304 1.1 thorpej compare_futex(void *cookie, const void *na, const void *nb)
305 1.1 thorpej {
306 1.1 thorpej const struct futex *fa = na;
307 1.1 thorpej const struct futex *fb = nb;
308 1.1 thorpej
309 1.1 thorpej return compare_futex_key(cookie, fa, &fb->fx_key);
310 1.1 thorpej }
311 1.1 thorpej
312 1.1 thorpej static const rb_tree_ops_t futex_rb_ops = {
313 1.1 thorpej .rbto_compare_nodes = compare_futex,
314 1.1 thorpej .rbto_compare_key = compare_futex_key,
315 1.1 thorpej .rbto_node_offset = offsetof(struct futex, fx_node),
316 1.1 thorpej };
317 1.1 thorpej
318 1.1 thorpej static int
319 1.1 thorpej compare_futex_shared_key(void *cookie, const void *n, const void *k)
320 1.1 thorpej {
321 1.1 thorpej const struct futex *fa = n;
322 1.1 thorpej const union futex_key *fka = &fa->fx_key;
323 1.1 thorpej const union futex_key *fkb = k;
324 1.1 thorpej
325 1.1 thorpej return uvm_voaddr_compare(&fka->fk_shared, &fkb->fk_shared);
326 1.1 thorpej }
327 1.1 thorpej
328 1.1 thorpej static int
329 1.1 thorpej compare_futex_shared(void *cookie, const void *na, const void *nb)
330 1.1 thorpej {
331 1.1 thorpej const struct futex *fa = na;
332 1.1 thorpej const struct futex *fb = nb;
333 1.1 thorpej
334 1.1 thorpej return compare_futex_shared_key(cookie, fa, &fb->fx_key);
335 1.1 thorpej }
336 1.1 thorpej
337 1.1 thorpej static const rb_tree_ops_t futex_shared_rb_ops = {
338 1.1 thorpej .rbto_compare_nodes = compare_futex_shared,
339 1.1 thorpej .rbto_compare_key = compare_futex_shared_key,
340 1.1 thorpej .rbto_node_offset = offsetof(struct futex, fx_node),
341 1.1 thorpej };
342 1.1 thorpej
343 1.12.4.1 thorpej /*
344 1.12.4.1 thorpej * futex_sq_lock2(f, f2)
345 1.12.4.1 thorpej *
346 1.12.4.1 thorpej * Acquire the sleepq locks for f and f2, which may be null, or
347 1.12.4.1 thorpej * which may be the same. If they are distinct, an arbitrary total
348 1.12.4.1 thorpej * order is chosen on the locks.
349 1.12.4.1 thorpej *
350 1.12.4.1 thorpej * Callers should only ever acquire multiple sleepq locks
351 1.12.4.1 thorpej * simultaneously using futex_sq_lock2.
352 1.12.4.1 thorpej */
353 1.12.4.1 thorpej static void
354 1.12.4.1 thorpej futex_sq_lock2(struct futex * const f, struct futex * const f2)
355 1.12.4.1 thorpej {
356 1.12.4.1 thorpej
357 1.12.4.1 thorpej /*
358 1.12.4.1 thorpej * If both are null, do nothing; if one is null and the other
359 1.12.4.1 thorpej * is not, lock the other and be done with it.
360 1.12.4.1 thorpej */
361 1.12.4.1 thorpej if (f == NULL && f2 == NULL) {
362 1.12.4.1 thorpej return;
363 1.12.4.1 thorpej } else if (f == NULL) {
364 1.12.4.1 thorpej mutex_spin_enter(f2->fx_sq_lock);
365 1.12.4.1 thorpej return;
366 1.12.4.1 thorpej } else if (f2 == NULL) {
367 1.12.4.1 thorpej mutex_spin_enter(f->fx_sq_lock);
368 1.12.4.1 thorpej return;
369 1.12.4.1 thorpej }
370 1.12.4.1 thorpej
371 1.12.4.1 thorpej kmutex_t * const m = f->fx_sq_lock;
372 1.12.4.1 thorpej kmutex_t * const m2 = f2->fx_sq_lock;
373 1.12.4.1 thorpej
374 1.12.4.1 thorpej /* If both locks are the same, acquire only one. */
375 1.12.4.1 thorpej if (m == m2) {
376 1.12.4.1 thorpej mutex_spin_enter(m);
377 1.12.4.1 thorpej return;
378 1.12.4.1 thorpej }
379 1.12.4.1 thorpej
380 1.12.4.1 thorpej /* Otherwise, use the ordering on the kva of the lock pointer. */
381 1.12.4.1 thorpej if ((uintptr_t)m < (uintptr_t)m2) {
382 1.12.4.1 thorpej mutex_spin_enter(m);
383 1.12.4.1 thorpej mutex_spin_enter(m2);
384 1.12.4.1 thorpej } else {
385 1.12.4.1 thorpej mutex_spin_enter(m2);
386 1.12.4.1 thorpej mutex_spin_enter(m);
387 1.12.4.1 thorpej }
388 1.12.4.1 thorpej }
389 1.12.4.1 thorpej
390 1.12.4.1 thorpej /*
391 1.12.4.1 thorpej * futex_sq_unlock2(f, f2)
392 1.12.4.1 thorpej *
393 1.12.4.1 thorpej * Release the sleep queue locks for f and f2, which may be null, or
394 1.12.4.1 thorpej * which may have the same underlying lock.
395 1.12.4.1 thorpej */
396 1.12.4.1 thorpej static void
397 1.12.4.1 thorpej futex_sq_unlock2(struct futex * const f, struct futex * const f2)
398 1.12.4.1 thorpej {
399 1.12.4.1 thorpej
400 1.12.4.1 thorpej /*
401 1.12.4.1 thorpej * If both are null, do nothing; if one is null and the other
402 1.12.4.1 thorpej * is not, unlock the other and be done with it.
403 1.12.4.1 thorpej */
404 1.12.4.1 thorpej if (f == NULL && f2 == NULL) {
405 1.12.4.1 thorpej return;
406 1.12.4.1 thorpej } else if (f == NULL) {
407 1.12.4.1 thorpej mutex_spin_exit(f2->fx_sq_lock);
408 1.12.4.1 thorpej return;
409 1.12.4.1 thorpej } else if (f2 == NULL) {
410 1.12.4.1 thorpej mutex_spin_exit(f->fx_sq_lock);
411 1.12.4.1 thorpej return;
412 1.12.4.1 thorpej }
413 1.12.4.1 thorpej
414 1.12.4.1 thorpej kmutex_t * const m = f->fx_sq_lock;
415 1.12.4.1 thorpej kmutex_t * const m2 = f2->fx_sq_lock;
416 1.12.4.1 thorpej
417 1.12.4.1 thorpej /* If both locks are the same, release only one. */
418 1.12.4.1 thorpej if (m == m2) {
419 1.12.4.1 thorpej mutex_spin_exit(m);
420 1.12.4.1 thorpej return;
421 1.12.4.1 thorpej }
422 1.12.4.1 thorpej
423 1.12.4.1 thorpej /* Otherwise, use the ordering on the kva of the lock pointer. */
424 1.12.4.1 thorpej if ((uintptr_t)m < (uintptr_t)m2) {
425 1.12.4.1 thorpej mutex_spin_exit(m2);
426 1.12.4.1 thorpej mutex_spin_exit(m);
427 1.12.4.1 thorpej } else {
428 1.12.4.1 thorpej mutex_spin_exit(m);
429 1.12.4.1 thorpej mutex_spin_exit(m2);
430 1.12.4.1 thorpej }
431 1.12.4.1 thorpej }
432 1.1 thorpej
433 1.1 thorpej /*
434 1.1 thorpej * futex_load(uaddr, kaddr)
435 1.1 thorpej *
436 1.1 thorpej * Perform a single atomic load to read *uaddr, and return the
437 1.1 thorpej * result in *kaddr. Return 0 on success, EFAULT if uaddr is not
438 1.1 thorpej * mapped.
439 1.1 thorpej */
440 1.1 thorpej static inline int
441 1.1 thorpej futex_load(int *uaddr, int *kaddr)
442 1.1 thorpej {
443 1.1 thorpej return ufetch_int((u_int *)uaddr, (u_int *)kaddr);
444 1.1 thorpej }
445 1.1 thorpej
446 1.1 thorpej /*
447 1.1 thorpej * futex_test(uaddr, expected)
448 1.1 thorpej *
449 1.1 thorpej * True if *uaddr == expected. False if *uaddr != expected, or if
450 1.1 thorpej * uaddr is not mapped.
451 1.1 thorpej */
452 1.1 thorpej static bool
453 1.1 thorpej futex_test(int *uaddr, int expected)
454 1.1 thorpej {
455 1.1 thorpej int val;
456 1.1 thorpej int error;
457 1.1 thorpej
458 1.1 thorpej error = futex_load(uaddr, &val);
459 1.1 thorpej if (error)
460 1.1 thorpej return false;
461 1.1 thorpej return val == expected;
462 1.1 thorpej }
463 1.1 thorpej
464 1.12.4.1 thorpej static pool_cache_t futex_cache __read_mostly;
465 1.12.4.1 thorpej
466 1.12.4.1 thorpej static int futex_ctor(void *, void *, int);
467 1.12.4.1 thorpej static void futex_dtor(void *, void *);
468 1.12.4.1 thorpej
469 1.1 thorpej /*
470 1.1 thorpej * futex_sys_init()
471 1.1 thorpej *
472 1.1 thorpej * Initialize the futex subsystem.
473 1.1 thorpej */
474 1.1 thorpej void
475 1.1 thorpej futex_sys_init(void)
476 1.1 thorpej {
477 1.1 thorpej
478 1.1 thorpej mutex_init(&futex_tab.lock, MUTEX_DEFAULT, IPL_NONE);
479 1.1 thorpej rb_tree_init(&futex_tab.va, &futex_rb_ops);
480 1.1 thorpej rb_tree_init(&futex_tab.oa, &futex_shared_rb_ops);
481 1.12.4.1 thorpej
482 1.12.4.1 thorpej futex_cache = pool_cache_init(sizeof(struct futex),
483 1.12.4.1 thorpej coherency_unit, 0, 0, "futex", NULL, IPL_NONE, futex_ctor,
484 1.12.4.1 thorpej futex_dtor, NULL);
485 1.1 thorpej }
486 1.1 thorpej
487 1.1 thorpej /*
488 1.1 thorpej * futex_sys_fini()
489 1.1 thorpej *
490 1.1 thorpej * Finalize the futex subsystem.
491 1.1 thorpej */
492 1.1 thorpej void
493 1.1 thorpej futex_sys_fini(void)
494 1.1 thorpej {
495 1.1 thorpej
496 1.1 thorpej KASSERT(RB_TREE_MIN(&futex_tab.oa) == NULL);
497 1.1 thorpej KASSERT(RB_TREE_MIN(&futex_tab.va) == NULL);
498 1.1 thorpej mutex_destroy(&futex_tab.lock);
499 1.1 thorpej }
500 1.1 thorpej
501 1.1 thorpej /*
502 1.12.4.1 thorpej * futex_ctor()
503 1.1 thorpej *
504 1.12.4.1 thorpej * Futex object constructor.
505 1.1 thorpej */
506 1.12.4.1 thorpej static int
507 1.12.4.1 thorpej futex_ctor(void *arg __unused, void *obj, int flags __unused)
508 1.1 thorpej {
509 1.12.4.1 thorpej extern sleepqlock_t sleepq_locks[SLEEPTAB_HASH_SIZE];
510 1.12.4.1 thorpej struct futex * const f = obj;
511 1.1 thorpej
512 1.12.4.1 thorpej mutex_init(&f->fx_op_lock, MUTEX_DEFAULT, IPL_NONE);
513 1.12.4.1 thorpej f->fx_sq_lock = &sleepq_locks[SLEEPTAB_HASH(f)].lock;
514 1.1 thorpej
515 1.12.4.1 thorpej sleepq_init(&f->fx_sqs[FUTEX_READERQ]);
516 1.12.4.1 thorpej sleepq_init(&f->fx_sqs[FUTEX_WRITERQ]);
517 1.12.4.1 thorpej f->fx_nwaiters[FUTEX_READERQ] = f->fx_nwaiters[FUTEX_WRITERQ] = 0;
518 1.1 thorpej
519 1.12.4.1 thorpej return 0;
520 1.1 thorpej }
521 1.1 thorpej
522 1.1 thorpej /*
523 1.12.4.1 thorpej * futex_dtor()
524 1.1 thorpej *
525 1.12.4.1 thorpej * Futex object destructor.
526 1.1 thorpej */
527 1.1 thorpej static void
528 1.12.4.1 thorpej futex_dtor(void *arg __unused, void *obj)
529 1.1 thorpej {
530 1.12.4.1 thorpej struct futex * const f = obj;
531 1.1 thorpej
532 1.12.4.1 thorpej mutex_destroy(&f->fx_op_lock);
533 1.12.4.1 thorpej f->fx_sq_lock = NULL;
534 1.1 thorpej }
535 1.1 thorpej
536 1.1 thorpej /*
537 1.1 thorpej * futex_key_init(key, vm, va, shared)
538 1.1 thorpej *
539 1.1 thorpej * Initialize a futex key for lookup, etc.
540 1.1 thorpej */
541 1.1 thorpej static int
542 1.1 thorpej futex_key_init(union futex_key *fk, struct vmspace *vm, vaddr_t va, bool shared)
543 1.1 thorpej {
544 1.1 thorpej int error = 0;
545 1.1 thorpej
546 1.1 thorpej if (__predict_false(shared)) {
547 1.1 thorpej if (!uvm_voaddr_acquire(&vm->vm_map, va, &fk->fk_shared))
548 1.1 thorpej error = EFAULT;
549 1.1 thorpej } else {
550 1.1 thorpej fk->fk_private.vmspace = vm;
551 1.1 thorpej fk->fk_private.va = va;
552 1.1 thorpej }
553 1.1 thorpej
554 1.1 thorpej return error;
555 1.1 thorpej }
556 1.1 thorpej
557 1.1 thorpej /*
558 1.1 thorpej * futex_key_fini(key, shared)
559 1.1 thorpej *
560 1.1 thorpej * Release a futex key.
561 1.1 thorpej */
562 1.1 thorpej static void
563 1.1 thorpej futex_key_fini(union futex_key *fk, bool shared)
564 1.1 thorpej {
565 1.1 thorpej if (__predict_false(shared))
566 1.1 thorpej uvm_voaddr_release(&fk->fk_shared);
567 1.1 thorpej memset(fk, 0, sizeof(*fk));
568 1.1 thorpej }
569 1.1 thorpej
570 1.1 thorpej /*
571 1.1 thorpej * futex_create(fk, shared)
572 1.1 thorpej *
573 1.1 thorpej * Create a futex. Initial reference count is 1, representing the
574 1.1 thorpej * caller. Returns NULL on failure. Always takes ownership of the
575 1.1 thorpej * key, either transferring it to the newly-created futex, or releasing
576 1.1 thorpej * the key if creation fails.
577 1.1 thorpej *
578 1.1 thorpej * Never sleeps for memory, but may sleep to acquire a lock.
579 1.1 thorpej */
580 1.1 thorpej static struct futex *
581 1.12.4.1 thorpej futex_create(union futex_key *fk, bool shared, uint8_t class)
582 1.1 thorpej {
583 1.1 thorpej struct futex *f;
584 1.1 thorpej
585 1.12.4.1 thorpej f = pool_cache_get(futex_cache, PR_NOWAIT);
586 1.1 thorpej if (f == NULL) {
587 1.1 thorpej futex_key_fini(fk, shared);
588 1.1 thorpej return NULL;
589 1.1 thorpej }
590 1.1 thorpej f->fx_key = *fk;
591 1.1 thorpej f->fx_refcnt = 1;
592 1.1 thorpej f->fx_shared = shared;
593 1.1 thorpej f->fx_on_tree = false;
594 1.12.4.1 thorpej f->fx_class = class;
595 1.1 thorpej
596 1.1 thorpej return f;
597 1.1 thorpej }
598 1.1 thorpej
599 1.1 thorpej /*
600 1.1 thorpej * futex_destroy(f)
601 1.1 thorpej *
602 1.1 thorpej * Destroy a futex created with futex_create. Reference count
603 1.1 thorpej * must be zero.
604 1.1 thorpej *
605 1.1 thorpej * May sleep.
606 1.1 thorpej */
607 1.1 thorpej static void
608 1.1 thorpej futex_destroy(struct futex *f)
609 1.1 thorpej {
610 1.1 thorpej
611 1.1 thorpej ASSERT_SLEEPABLE();
612 1.1 thorpej
613 1.1 thorpej KASSERT(atomic_load_relaxed(&f->fx_refcnt) == 0);
614 1.1 thorpej KASSERT(!f->fx_on_tree);
615 1.12.4.1 thorpej KASSERT(LIST_EMPTY(&f->fx_sqs[FUTEX_READERQ]));
616 1.12.4.1 thorpej KASSERT(LIST_EMPTY(&f->fx_sqs[FUTEX_WRITERQ]));
617 1.12.4.1 thorpej KASSERT(f->fx_nwaiters[FUTEX_READERQ] == 0);
618 1.12.4.1 thorpej KASSERT(f->fx_nwaiters[FUTEX_WRITERQ] == 0);
619 1.1 thorpej
620 1.1 thorpej futex_key_fini(&f->fx_key, f->fx_shared);
621 1.1 thorpej
622 1.12.4.1 thorpej pool_cache_put(futex_cache, f);
623 1.1 thorpej }
624 1.1 thorpej
625 1.1 thorpej /*
626 1.12.4.1 thorpej * futex_hold_count(f, n)
627 1.1 thorpej *
628 1.1 thorpej * Attempt to acquire a reference to f. Return 0 on success,
629 1.1 thorpej * ENFILE on too many references.
630 1.1 thorpej *
631 1.1 thorpej * Never sleeps.
632 1.1 thorpej */
633 1.1 thorpej static int
634 1.12.4.1 thorpej futex_hold_count(struct futex *f, unsigned long const count)
635 1.1 thorpej {
636 1.1 thorpej unsigned long refcnt;
637 1.1 thorpej
638 1.1 thorpej do {
639 1.1 thorpej refcnt = atomic_load_relaxed(&f->fx_refcnt);
640 1.12.4.1 thorpej if (ULONG_MAX - refcnt < count)
641 1.1 thorpej return ENFILE;
642 1.12.4.1 thorpej } while (atomic_cas_ulong(&f->fx_refcnt, refcnt,
643 1.12.4.1 thorpej refcnt + count) != refcnt);
644 1.1 thorpej
645 1.1 thorpej return 0;
646 1.1 thorpej }
647 1.12.4.1 thorpej #define futex_hold(f) futex_hold_count(f, 1)
648 1.1 thorpej
649 1.1 thorpej /*
650 1.12.4.1 thorpej * futex_rele_count(f, n)
651 1.1 thorpej *
652 1.1 thorpej * Release a reference to f acquired with futex_create or
653 1.1 thorpej * futex_hold.
654 1.1 thorpej *
655 1.1 thorpej * May sleep to free f.
656 1.1 thorpej */
657 1.1 thorpej static void
658 1.12.4.1 thorpej futex_rele_count(struct futex *f, unsigned long const count)
659 1.1 thorpej {
660 1.1 thorpej unsigned long refcnt;
661 1.1 thorpej
662 1.1 thorpej ASSERT_SLEEPABLE();
663 1.1 thorpej
664 1.1 thorpej do {
665 1.1 thorpej refcnt = atomic_load_relaxed(&f->fx_refcnt);
666 1.12.4.1 thorpej KASSERT(refcnt >= count);
667 1.12.4.1 thorpej if (refcnt - count == 0)
668 1.1 thorpej goto trylast;
669 1.12.4.1 thorpej } while (atomic_cas_ulong(&f->fx_refcnt, refcnt,
670 1.12.4.1 thorpej refcnt - count) != refcnt);
671 1.1 thorpej return;
672 1.1 thorpej
673 1.1 thorpej trylast:
674 1.12.4.1 thorpej KASSERT(count <= LONG_MAX);
675 1.1 thorpej mutex_enter(&futex_tab.lock);
676 1.12.4.1 thorpej if (atomic_add_long_nv(&f->fx_refcnt, -(long)count) == 0) {
677 1.1 thorpej if (f->fx_on_tree) {
678 1.1 thorpej if (__predict_false(f->fx_shared))
679 1.1 thorpej rb_tree_remove_node(&futex_tab.oa, f);
680 1.1 thorpej else
681 1.1 thorpej rb_tree_remove_node(&futex_tab.va, f);
682 1.1 thorpej f->fx_on_tree = false;
683 1.1 thorpej }
684 1.1 thorpej } else {
685 1.1 thorpej /* References remain -- don't destroy it. */
686 1.1 thorpej f = NULL;
687 1.1 thorpej }
688 1.1 thorpej mutex_exit(&futex_tab.lock);
689 1.1 thorpej if (f != NULL)
690 1.1 thorpej futex_destroy(f);
691 1.1 thorpej }
692 1.12.4.1 thorpej #define futex_rele(f) futex_rele_count(f, 1)
693 1.1 thorpej
694 1.1 thorpej /*
695 1.12.4.1 thorpej * futex_rele_count_not_last(f, n)
696 1.1 thorpej *
697 1.1 thorpej * Release a reference to f acquired with futex_create or
698 1.1 thorpej * futex_hold.
699 1.1 thorpej *
700 1.1 thorpej * This version asserts that we are not dropping the last
701 1.1 thorpej * reference to f.
702 1.1 thorpej */
703 1.1 thorpej static void
704 1.12.4.1 thorpej futex_rele_count_not_last(struct futex *f, unsigned long const count)
705 1.1 thorpej {
706 1.1 thorpej unsigned long refcnt;
707 1.1 thorpej
708 1.1 thorpej do {
709 1.1 thorpej refcnt = atomic_load_relaxed(&f->fx_refcnt);
710 1.12.4.1 thorpej KASSERT(refcnt >= count);
711 1.12.4.1 thorpej } while (atomic_cas_ulong(&f->fx_refcnt, refcnt,
712 1.12.4.1 thorpej refcnt - count) != refcnt);
713 1.1 thorpej }
714 1.1 thorpej
715 1.1 thorpej /*
716 1.12.4.1 thorpej * futex_lookup_by_key(key, shared, class, &f)
717 1.1 thorpej *
718 1.1 thorpej * Try to find an existing futex va reference in the specified key
719 1.1 thorpej * On success, return 0, set f to found futex or to NULL if not found,
720 1.1 thorpej * and increment f's reference count if found.
721 1.1 thorpej *
722 1.1 thorpej * Return ENFILE if reference count too high.
723 1.1 thorpej *
724 1.1 thorpej * Internal lookup routine shared by futex_lookup() and
725 1.5 riastrad * futex_lookup_create().
726 1.1 thorpej */
727 1.1 thorpej static int
728 1.12.4.1 thorpej futex_lookup_by_key(union futex_key *fk, bool shared, uint8_t class,
729 1.12.4.1 thorpej struct futex **fp)
730 1.1 thorpej {
731 1.1 thorpej struct futex *f;
732 1.1 thorpej int error = 0;
733 1.1 thorpej
734 1.1 thorpej mutex_enter(&futex_tab.lock);
735 1.1 thorpej if (__predict_false(shared)) {
736 1.1 thorpej f = rb_tree_find_node(&futex_tab.oa, fk);
737 1.1 thorpej } else {
738 1.1 thorpej f = rb_tree_find_node(&futex_tab.va, fk);
739 1.1 thorpej }
740 1.1 thorpej if (f) {
741 1.12.4.1 thorpej if (__predict_true(f->fx_class == class ||
742 1.12.4.1 thorpej class == FUTEX_CLASS_ANY))
743 1.12.4.1 thorpej error = futex_hold(f);
744 1.12.4.1 thorpej else
745 1.12.4.1 thorpej error = EINVAL;
746 1.1 thorpej if (error)
747 1.1 thorpej f = NULL;
748 1.1 thorpej }
749 1.1 thorpej *fp = f;
750 1.1 thorpej mutex_exit(&futex_tab.lock);
751 1.1 thorpej
752 1.1 thorpej return error;
753 1.1 thorpej }
754 1.1 thorpej
755 1.1 thorpej /*
756 1.1 thorpej * futex_insert(f, fp)
757 1.1 thorpej *
758 1.1 thorpej * Try to insert the futex f into the tree by va. If there
759 1.1 thorpej * already is a futex for its va, acquire a reference to it, and
760 1.1 thorpej * store it in *fp; otherwise store f in *fp.
761 1.1 thorpej *
762 1.1 thorpej * Return 0 on success, ENFILE if there already is a futex but its
763 1.1 thorpej * reference count is too high.
764 1.1 thorpej */
765 1.1 thorpej static int
766 1.1 thorpej futex_insert(struct futex *f, struct futex **fp)
767 1.1 thorpej {
768 1.1 thorpej struct futex *f0;
769 1.1 thorpej int error;
770 1.1 thorpej
771 1.1 thorpej KASSERT(atomic_load_relaxed(&f->fx_refcnt) != 0);
772 1.1 thorpej KASSERT(!f->fx_on_tree);
773 1.1 thorpej
774 1.1 thorpej mutex_enter(&futex_tab.lock);
775 1.1 thorpej if (__predict_false(f->fx_shared))
776 1.1 thorpej f0 = rb_tree_insert_node(&futex_tab.oa, f);
777 1.1 thorpej else
778 1.1 thorpej f0 = rb_tree_insert_node(&futex_tab.va, f);
779 1.1 thorpej if (f0 == f) {
780 1.1 thorpej f->fx_on_tree = true;
781 1.1 thorpej error = 0;
782 1.1 thorpej } else {
783 1.1 thorpej KASSERT(atomic_load_relaxed(&f0->fx_refcnt) != 0);
784 1.1 thorpej KASSERT(f0->fx_on_tree);
785 1.1 thorpej error = futex_hold(f0);
786 1.1 thorpej if (error)
787 1.1 thorpej goto out;
788 1.1 thorpej }
789 1.1 thorpej *fp = f0;
790 1.1 thorpej out: mutex_exit(&futex_tab.lock);
791 1.1 thorpej
792 1.1 thorpej return error;
793 1.1 thorpej }
794 1.1 thorpej
795 1.1 thorpej /*
796 1.12.4.1 thorpej * futex_lookup(uaddr, shared, class, &f)
797 1.1 thorpej *
798 1.1 thorpej * Find a futex at the userland pointer uaddr in the current
799 1.1 thorpej * process's VM space. On success, return the futex in f and
800 1.1 thorpej * increment its reference count.
801 1.1 thorpej *
802 1.5 riastrad * Caller must call futex_rele when done.
803 1.1 thorpej */
804 1.1 thorpej static int
805 1.12.4.1 thorpej futex_lookup(int *uaddr, bool shared, uint8_t class, struct futex **fp)
806 1.1 thorpej {
807 1.1 thorpej union futex_key fk;
808 1.1 thorpej struct vmspace *vm = curproc->p_vmspace;
809 1.1 thorpej vaddr_t va = (vaddr_t)uaddr;
810 1.1 thorpej int error;
811 1.1 thorpej
812 1.1 thorpej /*
813 1.1 thorpej * Reject unaligned user pointers so we don't cross page
814 1.1 thorpej * boundaries and so atomics will work.
815 1.1 thorpej */
816 1.12.4.1 thorpej if (__predict_false((va & 3) != 0))
817 1.1 thorpej return EINVAL;
818 1.1 thorpej
819 1.1 thorpej /* Look it up. */
820 1.1 thorpej error = futex_key_init(&fk, vm, va, shared);
821 1.1 thorpej if (error)
822 1.1 thorpej return error;
823 1.1 thorpej
824 1.12.4.1 thorpej error = futex_lookup_by_key(&fk, shared, class, fp);
825 1.1 thorpej futex_key_fini(&fk, shared);
826 1.1 thorpej if (error)
827 1.1 thorpej return error;
828 1.1 thorpej
829 1.1 thorpej KASSERT(*fp == NULL || (*fp)->fx_shared == shared);
830 1.12.4.1 thorpej KASSERT(*fp == NULL || (*fp)->fx_class == class);
831 1.1 thorpej KASSERT(*fp == NULL || atomic_load_relaxed(&(*fp)->fx_refcnt) != 0);
832 1.1 thorpej
833 1.1 thorpej /*
834 1.1 thorpej * Success! (Caller must still check whether we found
835 1.1 thorpej * anything, but nothing went _wrong_ like trying to use
836 1.1 thorpej * unmapped memory.)
837 1.1 thorpej */
838 1.1 thorpej KASSERT(error == 0);
839 1.1 thorpej
840 1.1 thorpej return error;
841 1.1 thorpej }
842 1.1 thorpej
843 1.1 thorpej /*
844 1.12.4.1 thorpej * futex_lookup_create(uaddr, shared, class, &f)
845 1.1 thorpej *
846 1.1 thorpej * Find or create a futex at the userland pointer uaddr in the
847 1.1 thorpej * current process's VM space. On success, return the futex in f
848 1.1 thorpej * and increment its reference count.
849 1.1 thorpej *
850 1.5 riastrad * Caller must call futex_rele when done.
851 1.1 thorpej */
852 1.1 thorpej static int
853 1.12.4.1 thorpej futex_lookup_create(int *uaddr, bool shared, uint8_t class, struct futex **fp)
854 1.1 thorpej {
855 1.1 thorpej union futex_key fk;
856 1.1 thorpej struct vmspace *vm = curproc->p_vmspace;
857 1.1 thorpej struct futex *f = NULL;
858 1.1 thorpej vaddr_t va = (vaddr_t)uaddr;
859 1.1 thorpej int error;
860 1.1 thorpej
861 1.1 thorpej /*
862 1.1 thorpej * Reject unaligned user pointers so we don't cross page
863 1.1 thorpej * boundaries and so atomics will work.
864 1.1 thorpej */
865 1.12.4.1 thorpej if (__predict_false((va & 3) != 0))
866 1.12.4.1 thorpej return EINVAL;
867 1.12.4.1 thorpej
868 1.12.4.1 thorpej if (__predict_false(class == FUTEX_CLASS_ANY))
869 1.1 thorpej return EINVAL;
870 1.1 thorpej
871 1.1 thorpej error = futex_key_init(&fk, vm, va, shared);
872 1.1 thorpej if (error)
873 1.1 thorpej return error;
874 1.1 thorpej
875 1.1 thorpej /*
876 1.1 thorpej * Optimistically assume there already is one, and try to find
877 1.1 thorpej * it.
878 1.1 thorpej */
879 1.12.4.1 thorpej error = futex_lookup_by_key(&fk, shared, class, fp);
880 1.1 thorpej if (error || *fp != NULL) {
881 1.1 thorpej /*
882 1.1 thorpej * We either found one, or there was an error.
883 1.1 thorpej * In either case, we are done with the key.
884 1.1 thorpej */
885 1.1 thorpej futex_key_fini(&fk, shared);
886 1.1 thorpej goto out;
887 1.1 thorpej }
888 1.1 thorpej
889 1.1 thorpej /*
890 1.1 thorpej * Create a futex recoard. This tranfers ownership of the key
891 1.1 thorpej * in all cases.
892 1.1 thorpej */
893 1.12.4.1 thorpej f = futex_create(&fk, shared, class);
894 1.1 thorpej if (f == NULL) {
895 1.1 thorpej error = ENOMEM;
896 1.1 thorpej goto out;
897 1.1 thorpej }
898 1.1 thorpej
899 1.1 thorpej /*
900 1.1 thorpej * Insert our new futex, or use existing if someone else beat
901 1.1 thorpej * us to it.
902 1.1 thorpej */
903 1.1 thorpej error = futex_insert(f, fp);
904 1.1 thorpej if (error)
905 1.1 thorpej goto out;
906 1.1 thorpej if (*fp == f)
907 1.1 thorpej f = NULL; /* don't release on exit */
908 1.1 thorpej
909 1.1 thorpej /* Success! */
910 1.1 thorpej KASSERT(error == 0);
911 1.1 thorpej
912 1.1 thorpej out: if (f != NULL)
913 1.1 thorpej futex_rele(f);
914 1.1 thorpej KASSERT(error || *fp != NULL);
915 1.1 thorpej KASSERT(error || atomic_load_relaxed(&(*fp)->fx_refcnt) != 0);
916 1.1 thorpej return error;
917 1.1 thorpej }
918 1.1 thorpej
919 1.1 thorpej /*
920 1.12.4.1 thorpej * futex_unsleep:
921 1.1 thorpej *
922 1.12.4.1 thorpej * Remove an LWP from the futex and sleep queue. This is called when
923 1.12.4.1 thorpej * the LWP has not been awoken normally but instead interrupted: for
924 1.12.4.1 thorpej * example, when a signal is received. Must be called with the LWP
925 1.12.4.1 thorpej * locked. Will unlock if "unlock" is true.
926 1.1 thorpej */
927 1.1 thorpej static void
928 1.12.4.1 thorpej futex_unsleep(lwp_t *l, bool unlock)
929 1.1 thorpej {
930 1.12.4.1 thorpej struct futex *f __diagused;
931 1.1 thorpej
932 1.12.4.1 thorpej f = (struct futex *)(uintptr_t)l->l_wchan;
933 1.1 thorpej
934 1.12.4.1 thorpej KASSERT(mutex_owned(f->fx_sq_lock));
935 1.1 thorpej
936 1.12.4.1 thorpej /* WRITERQ is more likely */
937 1.12.4.1 thorpej if (__predict_true(l->l_sleepq == &f->fx_sqs[FUTEX_WRITERQ])) {
938 1.12.4.1 thorpej KASSERT(f->fx_nwaiters[FUTEX_WRITERQ] > 0);
939 1.12.4.1 thorpej f->fx_nwaiters[FUTEX_WRITERQ]--;
940 1.12.4.1 thorpej } else {
941 1.12.4.1 thorpej KASSERT(l->l_sleepq == &f->fx_sqs[FUTEX_READERQ]);
942 1.12.4.1 thorpej KASSERT(f->fx_nwaiters[FUTEX_READERQ] > 0);
943 1.12.4.1 thorpej f->fx_nwaiters[FUTEX_READERQ]--;
944 1.12.4.1 thorpej }
945 1.1 thorpej
946 1.12.4.1 thorpej sleepq_unsleep(l, unlock);
947 1.1 thorpej }
948 1.1 thorpej
949 1.1 thorpej /*
950 1.12.4.1 thorpej * futex_wait(f, timeout, clkid, bitset)
951 1.1 thorpej *
952 1.12.4.1 thorpej * Wait until deadline on the clock clkid, or forever if deadline
953 1.12.4.1 thorpej * is NULL, for a futex wakeup. Return 0 on explicit wakeup,
954 1.12.4.1 thorpej * ETIMEDOUT on timeout, EINTR on signal.
955 1.1 thorpej */
956 1.12.4.1 thorpej static int
957 1.12.4.1 thorpej futex_wait(struct futex *f, int q, const struct timespec *deadline,
958 1.12.4.1 thorpej clockid_t clkid, int bitset)
959 1.1 thorpej {
960 1.1 thorpej
961 1.1 thorpej /*
962 1.12.4.1 thorpej * Some things to note about how this function works:
963 1.12.4.1 thorpej *
964 1.12.4.1 thorpej * ==> When we enter futex_wait(), the futex's op lock is
965 1.12.4.1 thorpej * held, preventing us from missing wakes. Once we are on
966 1.12.4.1 thorpej * the futex's sleepq, it is safe to release the op lock.
967 1.12.4.1 thorpej *
968 1.12.4.1 thorpej * ==> We have a single early escape to avoid calling
969 1.12.4.1 thorpej * sleepq_block(): our deadline already having passed.
970 1.12.4.1 thorpej * If this is a no-timeout wait, or if the deadline has
971 1.12.4.1 thorpej * not already passed, we are guaranteed to call sleepq_block().
972 1.12.4.1 thorpej *
973 1.12.4.1 thorpej * ==> sleepq_block() contains all of the necessary logic
974 1.12.4.1 thorpej * for handling signals; we do not need to check for them
975 1.12.4.1 thorpej * ourselves.
976 1.12.4.1 thorpej *
977 1.12.4.1 thorpej * ==> Once we have blocked, other futex operations will
978 1.12.4.1 thorpej * be able to wake us or requeue us. Until we have blocked,
979 1.12.4.1 thorpej * those other futex operations will not be able to acquire
980 1.12.4.1 thorpej * the sleepq locks in order to perform those operations,
981 1.12.4.1 thorpej * even if we have dropped the op lock. Thus, we will not
982 1.12.4.1 thorpej * miss wakes. This fundamental invariant is relied upon by
983 1.12.4.1 thorpej * every other synchronization object in the kernel.
984 1.12.4.1 thorpej *
985 1.12.4.1 thorpej * ==> sleepq_block() returns for one of three reasons:
986 1.12.4.1 thorpej *
987 1.12.4.1 thorpej * -- We were awakened.
988 1.12.4.1 thorpej * -- We were signaled.
989 1.12.4.1 thorpej * -- We timed out.
990 1.12.4.1 thorpej *
991 1.12.4.1 thorpej * ==> Once sleepq_block() returns, we will not call
992 1.12.4.1 thorpej * sleepq_block() again.
993 1.12.4.1 thorpej *
994 1.12.4.1 thorpej * ==> If sleepq_block() returns due to being signaled,
995 1.12.4.1 thorpej * we must check to see if we were also awakened. This
996 1.12.4.1 thorpej * is to handle the following sequence:
997 1.12.4.1 thorpej *
998 1.12.4.1 thorpej * -- Futex wake takes us off sleepq, places us on runq.
999 1.12.4.1 thorpej * -- We are signaled while sitting on the runq.
1000 1.12.4.1 thorpej * -- We run, and sleepq_block() notices the signal and
1001 1.12.4.1 thorpej * returns EINTR/ERESTART.
1002 1.12.4.1 thorpej *
1003 1.12.4.1 thorpej * In this situation, we want to indicate a successful wake
1004 1.12.4.1 thorpej * to the caller, because that wake has been reported to the
1005 1.12.4.1 thorpej * thread that issued it.
1006 1.12.4.1 thorpej *
1007 1.12.4.1 thorpej * Note that it is NOT possible for a wake to be issued after
1008 1.12.4.1 thorpej * a signal; the LWP will already have been taken off the sleepq
1009 1.12.4.1 thorpej * by the signal, so the wake will never happen. Note that for
1010 1.12.4.1 thorpej * this reason, we must *never* return ERESTART, because it could
1011 1.12.4.1 thorpej * result in us waiting again with no one to awaken us.
1012 1.1 thorpej */
1013 1.1 thorpej
1014 1.12.4.1 thorpej struct lwp * const l = curlwp;
1015 1.12.4.1 thorpej int timo;
1016 1.12.4.1 thorpej int error;
1017 1.1 thorpej
1018 1.4 riastrad /*
1019 1.12.4.1 thorpej * Compute our timeout before taking any locks.
1020 1.4 riastrad */
1021 1.12.4.1 thorpej if (deadline) {
1022 1.12.4.1 thorpej struct timespec ts;
1023 1.4 riastrad
1024 1.12.4.1 thorpej /* Check our watch. */
1025 1.12.4.1 thorpej error = clock_gettime1(clkid, &ts);
1026 1.12.4.1 thorpej if (error) {
1027 1.12.4.1 thorpej mutex_exit(&f->fx_op_lock);
1028 1.12.4.1 thorpej return error;
1029 1.12.4.1 thorpej }
1030 1.1 thorpej
1031 1.12.4.1 thorpej /*
1032 1.12.4.1 thorpej * If we're past the deadline, ETIMEDOUT.
1033 1.12.4.1 thorpej */
1034 1.12.4.1 thorpej if (timespeccmp(deadline, &ts, <=)) {
1035 1.12.4.1 thorpej mutex_exit(&f->fx_op_lock);
1036 1.12.4.1 thorpej return ETIMEDOUT;
1037 1.12.4.1 thorpej } else {
1038 1.12.4.1 thorpej /* Count how much time is left. */
1039 1.12.4.1 thorpej timespecsub(deadline, &ts, &ts);
1040 1.12.4.1 thorpej timo = tstohz(&ts);
1041 1.12.4.1 thorpej if (timo == 0) {
1042 1.12.4.1 thorpej /*
1043 1.12.4.1 thorpej * tstohz() already rounds up, and
1044 1.12.4.1 thorpej * a return value of 0 ticks means
1045 1.12.4.1 thorpej * "expired now or in the past".
1046 1.12.4.1 thorpej */
1047 1.12.4.1 thorpej mutex_exit(&f->fx_op_lock);
1048 1.12.4.1 thorpej return ETIMEDOUT;
1049 1.12.4.1 thorpej }
1050 1.12.4.1 thorpej }
1051 1.12.4.1 thorpej } else {
1052 1.12.4.1 thorpej timo = 0;
1053 1.12.4.1 thorpej }
1054 1.1 thorpej
1055 1.1 thorpej /*
1056 1.12.4.1 thorpej * Acquire in sleepq -> lwp order. While we're at it, ensure
1057 1.12.4.1 thorpej * that there's room for us to block.
1058 1.1 thorpej */
1059 1.12.4.1 thorpej mutex_spin_enter(f->fx_sq_lock);
1060 1.12.4.1 thorpej if (__predict_false(q == FUTEX_READERQ &&
1061 1.12.4.1 thorpej f->fx_nwaiters[q] == FUTEX_TID_MASK)) {
1062 1.12.4.1 thorpej mutex_spin_exit(f->fx_sq_lock);
1063 1.12.4.1 thorpej mutex_exit(&f->fx_op_lock);
1064 1.12.4.1 thorpej return ENFILE;
1065 1.12.4.1 thorpej }
1066 1.12.4.1 thorpej lwp_lock(l);
1067 1.4 riastrad
1068 1.4 riastrad /*
1069 1.12.4.1 thorpej * No need for locks here; until we're on a futex's sleepq, these
1070 1.12.4.1 thorpej * values are private to the LWP, and the locks needed to get onto
1071 1.12.4.1 thorpej * the sleepq provide the memory barriers needed to ensure visibility.
1072 1.4 riastrad */
1073 1.12.4.1 thorpej l->l_futex = f;
1074 1.12.4.1 thorpej l->l_futex_wakesel = bitset;
1075 1.4 riastrad
1076 1.4 riastrad /*
1077 1.12.4.1 thorpej * This is an inlined bit of sleepq_enter();
1078 1.12.4.1 thorpej * we already hold the lwp lock.
1079 1.4 riastrad */
1080 1.12.4.1 thorpej lwp_unlock_to(l, f->fx_sq_lock);
1081 1.12.4.1 thorpej KERNEL_UNLOCK_ALL(NULL, &l->l_biglocks);
1082 1.12.4.1 thorpej KASSERT(lwp_locked(l, f->fx_sq_lock));
1083 1.4 riastrad
1084 1.12.4.1 thorpej sleepq_enqueue(&f->fx_sqs[q], f, futex_wmesg, &futex_syncobj, true);
1085 1.12.4.1 thorpej f->fx_nwaiters[q]++;
1086 1.11 riastrad
1087 1.12.4.1 thorpej /* We can now safely release the op lock. */
1088 1.12.4.1 thorpej mutex_exit(&f->fx_op_lock);
1089 1.11 riastrad
1090 1.12.4.1 thorpej SDT_PROBE1(futex, wait, sleepq_block, entry, timo);
1091 1.12.4.1 thorpej error = sleepq_block(timo, true);
1092 1.12.4.1 thorpej SDT_PROBE1(futex, wait, sleepq_block, exit, error);
1093 1.11 riastrad
1094 1.12.4.1 thorpej /*
1095 1.12.4.1 thorpej * f is no longer valid; we may have been moved to another
1096 1.12.4.1 thorpej * futex sleepq while we slept.
1097 1.12.4.1 thorpej */
1098 1.4 riastrad
1099 1.4 riastrad /*
1100 1.12.4.1 thorpej * If something went wrong, we may still have a futex reference.
1101 1.12.4.1 thorpej * Check for that here and drop it if so. We can do this without
1102 1.12.4.1 thorpej * taking any locks because l->l_futex is private to the LWP when
1103 1.12.4.1 thorpej * not on any futex's sleepq, and we are not on any sleepq because
1104 1.12.4.1 thorpej * we are running.
1105 1.12.4.1 thorpej *
1106 1.12.4.1 thorpej * Convert EWOULDBLOCK to ETIMEDOUT in case sleepq_block() returned
1107 1.12.4.1 thorpej * EWOULDBLOCK, and ensure the only other error we return is EINTR.
1108 1.4 riastrad */
1109 1.4 riastrad if (error) {
1110 1.12.4.1 thorpej f = l->l_futex;
1111 1.12.4.1 thorpej if (f != NULL) {
1112 1.12.4.1 thorpej SDT_PROBE0(futex, wait, finish, aborted);
1113 1.12.4.1 thorpej l->l_futex = NULL;
1114 1.12.4.1 thorpej futex_rele(f);
1115 1.12.4.1 thorpej } else {
1116 1.12.4.1 thorpej /* Raced with wakeup; report success. */
1117 1.12.4.1 thorpej SDT_PROBE0(futex, wait, finish, wakerace);
1118 1.12.4.1 thorpej error = 0;
1119 1.12.4.1 thorpej }
1120 1.4 riastrad if (error == EWOULDBLOCK)
1121 1.4 riastrad error = ETIMEDOUT;
1122 1.12.4.1 thorpej else if (error != ETIMEDOUT)
1123 1.12.4.1 thorpej error = EINTR;
1124 1.12.4.1 thorpej } else {
1125 1.12.4.2 thorpej f = l->l_futex;
1126 1.12.4.2 thorpej if (__predict_false(f != NULL)) {
1127 1.12.4.2 thorpej /*
1128 1.12.4.2 thorpej * There are certain situations that can cause
1129 1.12.4.2 thorpej * sleepq_block() to return 0 even if we were
1130 1.12.4.2 thorpej * signalled (by e.g. SIGKILL). In this case,
1131 1.12.4.2 thorpej * we will need to release our futex hold and
1132 1.12.4.2 thorpej * return EINTR (we're probably about to die
1133 1.12.4.2 thorpej * anyway).
1134 1.12.4.2 thorpej */
1135 1.12.4.2 thorpej SDT_PROBE0(futex, wait, finish, aborted);
1136 1.12.4.2 thorpej l->l_futex = NULL;
1137 1.12.4.2 thorpej futex_rele(f);
1138 1.12.4.2 thorpej error = EINTR;
1139 1.12.4.2 thorpej } else {
1140 1.12.4.2 thorpej SDT_PROBE0(futex, wait, finish, normally);
1141 1.12.4.2 thorpej }
1142 1.4 riastrad }
1143 1.4 riastrad
1144 1.1 thorpej return error;
1145 1.1 thorpej }
1146 1.1 thorpej
1147 1.1 thorpej /*
1148 1.12.4.1 thorpej * futex_wake(f, q, nwake, f2, q2, nrequeue, bitset)
1149 1.1 thorpej *
1150 1.1 thorpej * Wake up to nwake waiters on f matching bitset; then, if f2 is
1151 1.1 thorpej * provided, move up to nrequeue remaining waiters on f matching
1152 1.1 thorpej * bitset to f2. Return the number of waiters actually woken.
1153 1.1 thorpej * Caller must hold the locks of f and f2, if provided.
1154 1.1 thorpej */
1155 1.1 thorpej static unsigned
1156 1.12.4.1 thorpej futex_wake(struct futex *f, int q, unsigned int const nwake,
1157 1.12.4.1 thorpej struct futex *f2, int q2, unsigned int const nrequeue,
1158 1.12.4.1 thorpej int bitset)
1159 1.1 thorpej {
1160 1.12.4.1 thorpej struct lwp *l, *l_next;
1161 1.1 thorpej unsigned nwoken = 0;
1162 1.12.4.1 thorpej unsigned nrequeued = 0;
1163 1.1 thorpej
1164 1.12.4.1 thorpej KASSERT(mutex_owned(&f->fx_op_lock));
1165 1.12.4.1 thorpej KASSERT(f2 == NULL || mutex_owned(&f2->fx_op_lock));
1166 1.12.4.1 thorpej
1167 1.12.4.1 thorpej futex_sq_lock2(f, f2);
1168 1.1 thorpej
1169 1.1 thorpej /* Wake up to nwake waiters, and count the number woken. */
1170 1.12.4.1 thorpej LIST_FOREACH_SAFE(l, &f->fx_sqs[q], l_sleepchain, l_next) {
1171 1.12.4.1 thorpej if (nwoken == nwake)
1172 1.1 thorpej break;
1173 1.12.4.1 thorpej
1174 1.12.4.1 thorpej KASSERT(l->l_syncobj == &futex_syncobj);
1175 1.12.4.1 thorpej KASSERT(l->l_wchan == (wchan_t)f);
1176 1.12.4.1 thorpej KASSERT(l->l_futex == f);
1177 1.12.4.1 thorpej KASSERT(l->l_sleepq == &f->fx_sqs[q]);
1178 1.12.4.1 thorpej KASSERT(l->l_mutex == f->fx_sq_lock);
1179 1.12.4.1 thorpej
1180 1.12.4.1 thorpej if ((l->l_futex_wakesel & bitset) == 0)
1181 1.12.4.1 thorpej continue;
1182 1.12.4.1 thorpej
1183 1.12.4.1 thorpej l->l_futex_wakesel = 0;
1184 1.12.4.1 thorpej l->l_futex = NULL;
1185 1.12.4.1 thorpej sleepq_remove(&f->fx_sqs[q], l);
1186 1.12.4.1 thorpej f->fx_nwaiters[q]--;
1187 1.12.4.1 thorpej nwoken++;
1188 1.12.4.1 thorpej /* hold counts adjusted in bulk below */
1189 1.1 thorpej }
1190 1.1 thorpej
1191 1.12.4.1 thorpej if (nrequeue) {
1192 1.12.4.1 thorpej KASSERT(f2 != NULL);
1193 1.1 thorpej /* Move up to nrequeue waiters from f's queue to f2's queue. */
1194 1.12.4.1 thorpej LIST_FOREACH_SAFE(l, &f->fx_sqs[q], l_sleepchain, l_next) {
1195 1.12.4.1 thorpej if (nrequeued == nrequeue)
1196 1.1 thorpej break;
1197 1.12.4.1 thorpej
1198 1.12.4.1 thorpej KASSERT(l->l_syncobj == &futex_syncobj);
1199 1.12.4.1 thorpej KASSERT(l->l_wchan == (wchan_t)f);
1200 1.12.4.1 thorpej KASSERT(l->l_futex == f);
1201 1.12.4.1 thorpej KASSERT(l->l_sleepq == &f->fx_sqs[q]);
1202 1.12.4.1 thorpej KASSERT(l->l_mutex == f->fx_sq_lock);
1203 1.12.4.1 thorpej
1204 1.12.4.1 thorpej if ((l->l_futex_wakesel & bitset) == 0)
1205 1.12.4.1 thorpej continue;
1206 1.12.4.1 thorpej
1207 1.12.4.1 thorpej l->l_futex = f2;
1208 1.12.4.1 thorpej sleepq_transfer(l, &f->fx_sqs[q],
1209 1.12.4.1 thorpej &f2->fx_sqs[q2], f2, futex_wmesg,
1210 1.12.4.1 thorpej &futex_syncobj, f2->fx_sq_lock, true);
1211 1.12.4.1 thorpej f->fx_nwaiters[q]--;
1212 1.12.4.1 thorpej f2->fx_nwaiters[q2]++;
1213 1.12.4.1 thorpej nrequeued++;
1214 1.12.4.1 thorpej /* hold counts adjusted in bulk below */
1215 1.12.4.1 thorpej }
1216 1.12.4.1 thorpej if (nrequeued) {
1217 1.12.4.1 thorpej /* XXX futex_hold() could theoretically fail here. */
1218 1.12.4.1 thorpej int hold_error __diagused =
1219 1.12.4.1 thorpej futex_hold_count(f2, nrequeued);
1220 1.12.4.1 thorpej KASSERT(hold_error == 0);
1221 1.1 thorpej }
1222 1.1 thorpej }
1223 1.1 thorpej
1224 1.12.4.1 thorpej /*
1225 1.12.4.1 thorpej * Adjust the futex reference counts for the wakes and
1226 1.12.4.1 thorpej * requeues.
1227 1.12.4.1 thorpej */
1228 1.12.4.1 thorpej KASSERT(nwoken + nrequeued <= LONG_MAX);
1229 1.12.4.1 thorpej futex_rele_count_not_last(f, nwoken + nrequeued);
1230 1.12.4.1 thorpej
1231 1.12.4.1 thorpej futex_sq_unlock2(f, f2);
1232 1.12.4.1 thorpej
1233 1.12.4.1 thorpej /* Return the number of waiters woken and requeued. */
1234 1.12.4.1 thorpej return nwoken + nrequeued;
1235 1.1 thorpej }
1236 1.1 thorpej
1237 1.1 thorpej /*
1238 1.12.4.1 thorpej * futex_op_lock(f)
1239 1.1 thorpej *
1240 1.12.4.1 thorpej * Acquire the op lock of f. Pair with futex_op_unlock. Do
1241 1.1 thorpej * not use if caller needs to acquire two locks; use
1242 1.12.4.1 thorpej * futex_op_lock2 instead.
1243 1.1 thorpej */
1244 1.1 thorpej static void
1245 1.12.4.1 thorpej futex_op_lock(struct futex *f)
1246 1.1 thorpej {
1247 1.12.4.1 thorpej mutex_enter(&f->fx_op_lock);
1248 1.1 thorpej }
1249 1.1 thorpej
1250 1.1 thorpej /*
1251 1.12.4.1 thorpej * futex_op_unlock(f)
1252 1.1 thorpej *
1253 1.12.4.3 thorpej * Release the op lock of f.
1254 1.1 thorpej */
1255 1.1 thorpej static void
1256 1.12.4.1 thorpej futex_op_unlock(struct futex *f)
1257 1.1 thorpej {
1258 1.12.4.1 thorpej mutex_exit(&f->fx_op_lock);
1259 1.1 thorpej }
1260 1.1 thorpej
1261 1.1 thorpej /*
1262 1.12.4.1 thorpej * futex_op_lock2(f, f2)
1263 1.1 thorpej *
1264 1.12.4.1 thorpej * Acquire the op locks of both f and f2, which may be null, or
1265 1.12.4.1 thorpej * which may be the same. If they are distinct, an arbitrary total
1266 1.12.4.1 thorpej * order is chosen on the locks.
1267 1.1 thorpej *
1268 1.12.4.1 thorpej * Callers should only ever acquire multiple op locks
1269 1.12.4.1 thorpej * simultaneously using futex_op_lock2.
1270 1.1 thorpej */
1271 1.1 thorpej static void
1272 1.12.4.1 thorpej futex_op_lock2(struct futex *f, struct futex *f2)
1273 1.1 thorpej {
1274 1.1 thorpej
1275 1.1 thorpej /*
1276 1.1 thorpej * If both are null, do nothing; if one is null and the other
1277 1.1 thorpej * is not, lock the other and be done with it.
1278 1.1 thorpej */
1279 1.1 thorpej if (f == NULL && f2 == NULL) {
1280 1.1 thorpej return;
1281 1.1 thorpej } else if (f == NULL) {
1282 1.12.4.1 thorpej mutex_enter(&f2->fx_op_lock);
1283 1.1 thorpej return;
1284 1.1 thorpej } else if (f2 == NULL) {
1285 1.12.4.1 thorpej mutex_enter(&f->fx_op_lock);
1286 1.1 thorpej return;
1287 1.1 thorpej }
1288 1.1 thorpej
1289 1.1 thorpej /* If both futexes are the same, acquire only one. */
1290 1.1 thorpej if (f == f2) {
1291 1.12.4.1 thorpej mutex_enter(&f->fx_op_lock);
1292 1.1 thorpej return;
1293 1.1 thorpej }
1294 1.1 thorpej
1295 1.1 thorpej /* Otherwise, use the ordering on the kva of the futex pointer. */
1296 1.1 thorpej if ((uintptr_t)f < (uintptr_t)f2) {
1297 1.12.4.1 thorpej mutex_enter(&f->fx_op_lock);
1298 1.12.4.1 thorpej mutex_enter(&f2->fx_op_lock);
1299 1.1 thorpej } else {
1300 1.12.4.1 thorpej mutex_enter(&f2->fx_op_lock);
1301 1.12.4.1 thorpej mutex_enter(&f->fx_op_lock);
1302 1.1 thorpej }
1303 1.1 thorpej }
1304 1.1 thorpej
1305 1.1 thorpej /*
1306 1.12.4.1 thorpej * futex_op_unlock2(f, f2)
1307 1.1 thorpej *
1308 1.1 thorpej * Release the queue locks of both f and f2, which may be null, or
1309 1.1 thorpej * which may have the same underlying queue.
1310 1.1 thorpej */
1311 1.1 thorpej static void
1312 1.12.4.1 thorpej futex_op_unlock2(struct futex *f, struct futex *f2)
1313 1.1 thorpej {
1314 1.1 thorpej
1315 1.1 thorpej /*
1316 1.1 thorpej * If both are null, do nothing; if one is null and the other
1317 1.1 thorpej * is not, unlock the other and be done with it.
1318 1.1 thorpej */
1319 1.1 thorpej if (f == NULL && f2 == NULL) {
1320 1.1 thorpej return;
1321 1.1 thorpej } else if (f == NULL) {
1322 1.12.4.1 thorpej mutex_exit(&f2->fx_op_lock);
1323 1.1 thorpej return;
1324 1.1 thorpej } else if (f2 == NULL) {
1325 1.12.4.1 thorpej mutex_exit(&f->fx_op_lock);
1326 1.1 thorpej return;
1327 1.1 thorpej }
1328 1.1 thorpej
1329 1.1 thorpej /* If both futexes are the same, release only one. */
1330 1.1 thorpej if (f == f2) {
1331 1.12.4.1 thorpej mutex_exit(&f->fx_op_lock);
1332 1.1 thorpej return;
1333 1.1 thorpej }
1334 1.1 thorpej
1335 1.1 thorpej /* Otherwise, use the ordering on the kva of the futex pointer. */
1336 1.1 thorpej if ((uintptr_t)f < (uintptr_t)f2) {
1337 1.12.4.1 thorpej mutex_exit(&f2->fx_op_lock);
1338 1.12.4.1 thorpej mutex_exit(&f->fx_op_lock);
1339 1.1 thorpej } else {
1340 1.12.4.1 thorpej mutex_exit(&f->fx_op_lock);
1341 1.12.4.1 thorpej mutex_exit(&f2->fx_op_lock);
1342 1.1 thorpej }
1343 1.1 thorpej }
1344 1.1 thorpej
1345 1.1 thorpej /*
1346 1.1 thorpej * futex_func_wait(uaddr, val, val3, timeout, clkid, clkflags, retval)
1347 1.1 thorpej *
1348 1.12.4.1 thorpej * Implement futex(FUTEX_WAIT) and futex(FUTEX_WAIT_BITSET).
1349 1.1 thorpej */
1350 1.1 thorpej static int
1351 1.1 thorpej futex_func_wait(bool shared, int *uaddr, int val, int val3,
1352 1.11 riastrad const struct timespec *timeout, clockid_t clkid, int clkflags,
1353 1.1 thorpej register_t *retval)
1354 1.1 thorpej {
1355 1.1 thorpej struct futex *f;
1356 1.11 riastrad struct timespec ts;
1357 1.11 riastrad const struct timespec *deadline;
1358 1.1 thorpej int error;
1359 1.1 thorpej
1360 1.6 riastrad /*
1361 1.6 riastrad * If there's nothing to wait for, and nobody will ever wake
1362 1.6 riastrad * us, then don't set anything up to wait -- just stop here.
1363 1.6 riastrad */
1364 1.6 riastrad if (val3 == 0)
1365 1.7 riastrad return EINVAL;
1366 1.6 riastrad
1367 1.1 thorpej /* Optimistically test before anything else. */
1368 1.1 thorpej if (!futex_test(uaddr, val))
1369 1.1 thorpej return EAGAIN;
1370 1.1 thorpej
1371 1.11 riastrad /* Determine a deadline on the specified clock. */
1372 1.12.4.1 thorpej if (timeout == NULL) {
1373 1.12.4.1 thorpej deadline = timeout;
1374 1.12.4.1 thorpej } else if ((clkflags & TIMER_ABSTIME) == TIMER_ABSTIME) {
1375 1.12.4.1 thorpej /* Sanity-check the deadline. */
1376 1.12.4.1 thorpej if (timeout->tv_sec < 0 ||
1377 1.12.4.1 thorpej timeout->tv_nsec < 0 ||
1378 1.12.4.1 thorpej timeout->tv_nsec >= 1000000000L) {
1379 1.12.4.1 thorpej return EINVAL;
1380 1.12.4.1 thorpej }
1381 1.11 riastrad deadline = timeout;
1382 1.11 riastrad } else {
1383 1.12.4.1 thorpej struct timespec interval = *timeout;
1384 1.12.4.1 thorpej
1385 1.12.4.1 thorpej error = itimespecfix(&interval);
1386 1.12.4.1 thorpej if (error)
1387 1.12.4.1 thorpej return error;
1388 1.11 riastrad error = clock_gettime1(clkid, &ts);
1389 1.11 riastrad if (error)
1390 1.11 riastrad return error;
1391 1.12.4.1 thorpej timespecadd(&ts, &interval, &ts);
1392 1.11 riastrad deadline = &ts;
1393 1.11 riastrad }
1394 1.11 riastrad
1395 1.1 thorpej /* Get the futex, creating it if necessary. */
1396 1.12.4.1 thorpej error = futex_lookup_create(uaddr, shared, FUTEX_CLASS_NORMAL, &f);
1397 1.1 thorpej if (error)
1398 1.1 thorpej return error;
1399 1.1 thorpej KASSERT(f);
1400 1.1 thorpej
1401 1.1 thorpej /*
1402 1.12.4.1 thorpej * Under the op lock, check the value again: if it has
1403 1.1 thorpej * already changed, EAGAIN; otherwise enqueue the waiter.
1404 1.1 thorpej * Since FUTEX_WAKE will use the same lock and be done after
1405 1.1 thorpej * modifying the value, the order in which we check and enqueue
1406 1.1 thorpej * is immaterial.
1407 1.1 thorpej */
1408 1.12.4.1 thorpej futex_op_lock(f);
1409 1.1 thorpej if (!futex_test(uaddr, val)) {
1410 1.12.4.1 thorpej futex_op_unlock(f);
1411 1.1 thorpej error = EAGAIN;
1412 1.1 thorpej goto out;
1413 1.1 thorpej }
1414 1.12.4.1 thorpej
1415 1.12.4.1 thorpej /*
1416 1.12.4.1 thorpej * Now wait. futex_wait() will drop our op lock once we
1417 1.12.4.1 thorpej * are entered into the sleep queue, thus ensuring atomicity
1418 1.12.4.1 thorpej * of wakes with respect to waits.
1419 1.12.4.1 thorpej */
1420 1.12.4.1 thorpej error = futex_wait(f, FUTEX_WRITERQ, deadline, clkid, val3);
1421 1.1 thorpej
1422 1.1 thorpej /*
1423 1.1 thorpej * We cannot drop our reference to the futex here, because
1424 1.1 thorpej * we might be enqueued on a different one when we are awakened.
1425 1.12.4.1 thorpej * The references will be managed on our behalf in the requeue,
1426 1.12.4.1 thorpej * wake, and error cases.
1427 1.1 thorpej */
1428 1.1 thorpej f = NULL;
1429 1.1 thorpej
1430 1.12.4.1 thorpej if (__predict_true(error == 0)) {
1431 1.12.4.1 thorpej /* Return 0 on success, error on failure. */
1432 1.12.4.1 thorpej *retval = 0;
1433 1.12.4.1 thorpej }
1434 1.1 thorpej
1435 1.1 thorpej out: if (f != NULL)
1436 1.5 riastrad futex_rele(f);
1437 1.1 thorpej return error;
1438 1.1 thorpej }
1439 1.1 thorpej
1440 1.1 thorpej /*
1441 1.1 thorpej * futex_func_wake(uaddr, val, val3, retval)
1442 1.1 thorpej *
1443 1.1 thorpej * Implement futex(FUTEX_WAKE) and futex(FUTEX_WAKE_BITSET).
1444 1.1 thorpej */
1445 1.1 thorpej static int
1446 1.1 thorpej futex_func_wake(bool shared, int *uaddr, int val, int val3, register_t *retval)
1447 1.1 thorpej {
1448 1.1 thorpej struct futex *f;
1449 1.1 thorpej unsigned int nwoken = 0;
1450 1.1 thorpej int error = 0;
1451 1.1 thorpej
1452 1.1 thorpej /* Reject negative number of wakeups. */
1453 1.1 thorpej if (val < 0) {
1454 1.1 thorpej error = EINVAL;
1455 1.1 thorpej goto out;
1456 1.1 thorpej }
1457 1.1 thorpej
1458 1.1 thorpej /* Look up the futex, if any. */
1459 1.12.4.1 thorpej error = futex_lookup(uaddr, shared, FUTEX_CLASS_NORMAL, &f);
1460 1.1 thorpej if (error)
1461 1.1 thorpej goto out;
1462 1.1 thorpej
1463 1.1 thorpej /* If there's no futex, there are no waiters to wake. */
1464 1.1 thorpej if (f == NULL)
1465 1.1 thorpej goto out;
1466 1.1 thorpej
1467 1.1 thorpej /*
1468 1.12.4.1 thorpej * Under f's op lock, wake the waiters and remember the
1469 1.1 thorpej * number woken.
1470 1.1 thorpej */
1471 1.12.4.1 thorpej futex_op_lock(f);
1472 1.12.4.1 thorpej nwoken = futex_wake(f, FUTEX_WRITERQ, val,
1473 1.12.4.1 thorpej NULL, FUTEX_WRITERQ, 0, val3);
1474 1.12.4.1 thorpej futex_op_unlock(f);
1475 1.1 thorpej
1476 1.1 thorpej /* Release the futex. */
1477 1.5 riastrad futex_rele(f);
1478 1.1 thorpej
1479 1.1 thorpej out:
1480 1.1 thorpej /* Return the number of waiters woken. */
1481 1.1 thorpej *retval = nwoken;
1482 1.1 thorpej
1483 1.1 thorpej /* Success! */
1484 1.1 thorpej return error;
1485 1.1 thorpej }
1486 1.1 thorpej
1487 1.1 thorpej /*
1488 1.1 thorpej * futex_func_requeue(op, uaddr, val, uaddr2, val2, val3, retval)
1489 1.1 thorpej *
1490 1.1 thorpej * Implement futex(FUTEX_REQUEUE) and futex(FUTEX_CMP_REQUEUE).
1491 1.1 thorpej */
1492 1.1 thorpej static int
1493 1.1 thorpej futex_func_requeue(bool shared, int op, int *uaddr, int val, int *uaddr2,
1494 1.1 thorpej int val2, int val3, register_t *retval)
1495 1.1 thorpej {
1496 1.1 thorpej struct futex *f = NULL, *f2 = NULL;
1497 1.1 thorpej unsigned nwoken = 0; /* default to zero woken on early return */
1498 1.1 thorpej int error;
1499 1.1 thorpej
1500 1.1 thorpej /* Reject negative number of wakeups or requeues. */
1501 1.1 thorpej if (val < 0 || val2 < 0) {
1502 1.1 thorpej error = EINVAL;
1503 1.1 thorpej goto out;
1504 1.1 thorpej }
1505 1.1 thorpej
1506 1.1 thorpej /* Look up the source futex, if any. */
1507 1.12.4.1 thorpej error = futex_lookup(uaddr, shared, FUTEX_CLASS_NORMAL, &f);
1508 1.1 thorpej if (error)
1509 1.1 thorpej goto out;
1510 1.1 thorpej
1511 1.1 thorpej /* If there is none, nothing to do. */
1512 1.1 thorpej if (f == NULL)
1513 1.1 thorpej goto out;
1514 1.1 thorpej
1515 1.1 thorpej /*
1516 1.1 thorpej * We may need to create the destination futex because it's
1517 1.1 thorpej * entirely possible it does not currently have any waiters.
1518 1.1 thorpej */
1519 1.12.4.1 thorpej error = futex_lookup_create(uaddr2, shared, FUTEX_CLASS_NORMAL, &f2);
1520 1.1 thorpej if (error)
1521 1.1 thorpej goto out;
1522 1.1 thorpej
1523 1.1 thorpej /*
1524 1.12.4.1 thorpej * Under the futexes' op locks, check the value; if
1525 1.1 thorpej * unchanged from val3, wake the waiters.
1526 1.1 thorpej */
1527 1.12.4.1 thorpej futex_op_lock2(f, f2);
1528 1.1 thorpej if (op == FUTEX_CMP_REQUEUE && !futex_test(uaddr, val3)) {
1529 1.1 thorpej error = EAGAIN;
1530 1.1 thorpej } else {
1531 1.1 thorpej error = 0;
1532 1.12.4.1 thorpej nwoken = futex_wake(f, FUTEX_WRITERQ, val,
1533 1.12.4.1 thorpej f2, FUTEX_WRITERQ, val2,
1534 1.12.4.1 thorpej FUTEX_BITSET_MATCH_ANY);
1535 1.1 thorpej }
1536 1.12.4.1 thorpej futex_op_unlock2(f, f2);
1537 1.1 thorpej
1538 1.1 thorpej out:
1539 1.1 thorpej /* Return the number of waiters woken. */
1540 1.1 thorpej *retval = nwoken;
1541 1.1 thorpej
1542 1.1 thorpej /* Release the futexes if we got them. */
1543 1.1 thorpej if (f2)
1544 1.5 riastrad futex_rele(f2);
1545 1.1 thorpej if (f)
1546 1.5 riastrad futex_rele(f);
1547 1.1 thorpej return error;
1548 1.1 thorpej }
1549 1.1 thorpej
1550 1.1 thorpej /*
1551 1.1 thorpej * futex_validate_op_cmp(val3)
1552 1.1 thorpej *
1553 1.1 thorpej * Validate an op/cmp argument for FUTEX_WAKE_OP.
1554 1.1 thorpej */
1555 1.1 thorpej static int
1556 1.1 thorpej futex_validate_op_cmp(int val3)
1557 1.1 thorpej {
1558 1.1 thorpej int op = __SHIFTOUT(val3, FUTEX_OP_OP_MASK);
1559 1.1 thorpej int cmp = __SHIFTOUT(val3, FUTEX_OP_CMP_MASK);
1560 1.1 thorpej
1561 1.1 thorpej if (op & FUTEX_OP_OPARG_SHIFT) {
1562 1.1 thorpej int oparg = __SHIFTOUT(val3, FUTEX_OP_OPARG_MASK);
1563 1.1 thorpej if (oparg < 0)
1564 1.1 thorpej return EINVAL;
1565 1.1 thorpej if (oparg >= 32)
1566 1.1 thorpej return EINVAL;
1567 1.1 thorpej op &= ~FUTEX_OP_OPARG_SHIFT;
1568 1.1 thorpej }
1569 1.1 thorpej
1570 1.1 thorpej switch (op) {
1571 1.1 thorpej case FUTEX_OP_SET:
1572 1.1 thorpej case FUTEX_OP_ADD:
1573 1.1 thorpej case FUTEX_OP_OR:
1574 1.1 thorpej case FUTEX_OP_ANDN:
1575 1.1 thorpej case FUTEX_OP_XOR:
1576 1.1 thorpej break;
1577 1.1 thorpej default:
1578 1.1 thorpej return EINVAL;
1579 1.1 thorpej }
1580 1.1 thorpej
1581 1.1 thorpej switch (cmp) {
1582 1.1 thorpej case FUTEX_OP_CMP_EQ:
1583 1.1 thorpej case FUTEX_OP_CMP_NE:
1584 1.1 thorpej case FUTEX_OP_CMP_LT:
1585 1.1 thorpej case FUTEX_OP_CMP_LE:
1586 1.1 thorpej case FUTEX_OP_CMP_GT:
1587 1.1 thorpej case FUTEX_OP_CMP_GE:
1588 1.1 thorpej break;
1589 1.1 thorpej default:
1590 1.1 thorpej return EINVAL;
1591 1.1 thorpej }
1592 1.1 thorpej
1593 1.1 thorpej return 0;
1594 1.1 thorpej }
1595 1.1 thorpej
1596 1.1 thorpej /*
1597 1.1 thorpej * futex_compute_op(oldval, val3)
1598 1.1 thorpej *
1599 1.1 thorpej * Apply a FUTEX_WAIT_OP operation to oldval.
1600 1.1 thorpej */
1601 1.1 thorpej static int
1602 1.1 thorpej futex_compute_op(int oldval, int val3)
1603 1.1 thorpej {
1604 1.1 thorpej int op = __SHIFTOUT(val3, FUTEX_OP_OP_MASK);
1605 1.1 thorpej int oparg = __SHIFTOUT(val3, FUTEX_OP_OPARG_MASK);
1606 1.1 thorpej
1607 1.1 thorpej if (op & FUTEX_OP_OPARG_SHIFT) {
1608 1.1 thorpej KASSERT(oparg >= 0);
1609 1.1 thorpej KASSERT(oparg < 32);
1610 1.1 thorpej oparg = 1u << oparg;
1611 1.1 thorpej op &= ~FUTEX_OP_OPARG_SHIFT;
1612 1.1 thorpej }
1613 1.1 thorpej
1614 1.1 thorpej switch (op) {
1615 1.1 thorpej case FUTEX_OP_SET:
1616 1.1 thorpej return oparg;
1617 1.1 thorpej
1618 1.1 thorpej case FUTEX_OP_ADD:
1619 1.1 thorpej /*
1620 1.1 thorpej * Avoid signed arithmetic overflow by doing
1621 1.1 thorpej * arithmetic unsigned and converting back to signed
1622 1.1 thorpej * at the end.
1623 1.1 thorpej */
1624 1.1 thorpej return (int)((unsigned)oldval + (unsigned)oparg);
1625 1.1 thorpej
1626 1.1 thorpej case FUTEX_OP_OR:
1627 1.1 thorpej return oldval | oparg;
1628 1.1 thorpej
1629 1.1 thorpej case FUTEX_OP_ANDN:
1630 1.1 thorpej return oldval & ~oparg;
1631 1.1 thorpej
1632 1.1 thorpej case FUTEX_OP_XOR:
1633 1.1 thorpej return oldval ^ oparg;
1634 1.1 thorpej
1635 1.1 thorpej default:
1636 1.1 thorpej panic("invalid futex op");
1637 1.1 thorpej }
1638 1.1 thorpej }
1639 1.1 thorpej
1640 1.1 thorpej /*
1641 1.1 thorpej * futex_compute_cmp(oldval, val3)
1642 1.1 thorpej *
1643 1.1 thorpej * Apply a FUTEX_WAIT_OP comparison to oldval.
1644 1.1 thorpej */
1645 1.1 thorpej static bool
1646 1.1 thorpej futex_compute_cmp(int oldval, int val3)
1647 1.1 thorpej {
1648 1.1 thorpej int cmp = __SHIFTOUT(val3, FUTEX_OP_CMP_MASK);
1649 1.1 thorpej int cmparg = __SHIFTOUT(val3, FUTEX_OP_CMPARG_MASK);
1650 1.1 thorpej
1651 1.1 thorpej switch (cmp) {
1652 1.1 thorpej case FUTEX_OP_CMP_EQ:
1653 1.1 thorpej return (oldval == cmparg);
1654 1.1 thorpej
1655 1.1 thorpej case FUTEX_OP_CMP_NE:
1656 1.1 thorpej return (oldval != cmparg);
1657 1.1 thorpej
1658 1.1 thorpej case FUTEX_OP_CMP_LT:
1659 1.1 thorpej return (oldval < cmparg);
1660 1.1 thorpej
1661 1.1 thorpej case FUTEX_OP_CMP_LE:
1662 1.1 thorpej return (oldval <= cmparg);
1663 1.1 thorpej
1664 1.1 thorpej case FUTEX_OP_CMP_GT:
1665 1.1 thorpej return (oldval > cmparg);
1666 1.1 thorpej
1667 1.1 thorpej case FUTEX_OP_CMP_GE:
1668 1.1 thorpej return (oldval >= cmparg);
1669 1.1 thorpej
1670 1.1 thorpej default:
1671 1.1 thorpej panic("invalid futex cmp operation");
1672 1.1 thorpej }
1673 1.1 thorpej }
1674 1.1 thorpej
1675 1.1 thorpej /*
1676 1.1 thorpej * futex_func_wake_op(uaddr, val, uaddr2, val2, val3, retval)
1677 1.1 thorpej *
1678 1.1 thorpej * Implement futex(FUTEX_WAKE_OP).
1679 1.1 thorpej */
1680 1.1 thorpej static int
1681 1.1 thorpej futex_func_wake_op(bool shared, int *uaddr, int val, int *uaddr2, int val2,
1682 1.1 thorpej int val3, register_t *retval)
1683 1.1 thorpej {
1684 1.1 thorpej struct futex *f = NULL, *f2 = NULL;
1685 1.1 thorpej int oldval, newval, actual;
1686 1.1 thorpej unsigned nwoken = 0;
1687 1.1 thorpej int error;
1688 1.1 thorpej
1689 1.1 thorpej /* Reject negative number of wakeups. */
1690 1.1 thorpej if (val < 0 || val2 < 0) {
1691 1.1 thorpej error = EINVAL;
1692 1.1 thorpej goto out;
1693 1.1 thorpej }
1694 1.1 thorpej
1695 1.1 thorpej /* Reject invalid operations before we start doing things. */
1696 1.1 thorpej if ((error = futex_validate_op_cmp(val3)) != 0)
1697 1.1 thorpej goto out;
1698 1.1 thorpej
1699 1.1 thorpej /* Look up the first futex, if any. */
1700 1.12.4.1 thorpej error = futex_lookup(uaddr, shared, FUTEX_CLASS_NORMAL, &f);
1701 1.1 thorpej if (error)
1702 1.1 thorpej goto out;
1703 1.1 thorpej
1704 1.1 thorpej /* Look up the second futex, if any. */
1705 1.12.4.1 thorpej error = futex_lookup(uaddr2, shared, FUTEX_CLASS_NORMAL, &f2);
1706 1.1 thorpej if (error)
1707 1.1 thorpej goto out;
1708 1.1 thorpej
1709 1.1 thorpej /*
1710 1.12.4.1 thorpej * Under the op locks:
1711 1.1 thorpej *
1712 1.1 thorpej * 1. Read/modify/write: *uaddr2 op= oparg.
1713 1.1 thorpej * 2. Unconditionally wake uaddr.
1714 1.12.4.1 thorpej * 3. Conditionally wake uaddr2, if it previously matched val3.
1715 1.1 thorpej */
1716 1.12.4.1 thorpej futex_op_lock2(f, f2);
1717 1.1 thorpej do {
1718 1.1 thorpej error = futex_load(uaddr2, &oldval);
1719 1.1 thorpej if (error)
1720 1.1 thorpej goto out_unlock;
1721 1.1 thorpej newval = futex_compute_op(oldval, val3);
1722 1.1 thorpej error = ucas_int(uaddr2, oldval, newval, &actual);
1723 1.1 thorpej if (error)
1724 1.1 thorpej goto out_unlock;
1725 1.1 thorpej } while (actual != oldval);
1726 1.12.4.1 thorpej nwoken = (f ? futex_wake(f, FUTEX_WRITERQ, val,
1727 1.12.4.1 thorpej NULL, FUTEX_WRITERQ, 0,
1728 1.12.4.1 thorpej FUTEX_BITSET_MATCH_ANY) : 0);
1729 1.1 thorpej if (f2 && futex_compute_cmp(oldval, val3))
1730 1.12.4.1 thorpej nwoken += futex_wake(f2, FUTEX_WRITERQ, val2,
1731 1.12.4.1 thorpej NULL, FUTEX_WRITERQ, 0,
1732 1.12.4.1 thorpej FUTEX_BITSET_MATCH_ANY);
1733 1.1 thorpej
1734 1.1 thorpej /* Success! */
1735 1.1 thorpej error = 0;
1736 1.1 thorpej out_unlock:
1737 1.12.4.1 thorpej futex_op_unlock2(f, f2);
1738 1.1 thorpej
1739 1.1 thorpej out:
1740 1.1 thorpej /* Return the number of waiters woken. */
1741 1.1 thorpej *retval = nwoken;
1742 1.1 thorpej
1743 1.1 thorpej /* Release the futexes, if we got them. */
1744 1.1 thorpej if (f2)
1745 1.5 riastrad futex_rele(f2);
1746 1.1 thorpej if (f)
1747 1.5 riastrad futex_rele(f);
1748 1.1 thorpej return error;
1749 1.1 thorpej }
1750 1.1 thorpej
1751 1.1 thorpej /*
1752 1.1 thorpej * do_futex(uaddr, op, val, timeout, uaddr2, val2, val3)
1753 1.1 thorpej *
1754 1.1 thorpej * Implement the futex system call with all the parameters
1755 1.1 thorpej * parsed out.
1756 1.1 thorpej */
1757 1.1 thorpej int
1758 1.11 riastrad do_futex(int *uaddr, int op, int val, const struct timespec *timeout,
1759 1.11 riastrad int *uaddr2, int val2, int val3, register_t *retval)
1760 1.1 thorpej {
1761 1.1 thorpej const bool shared = (op & FUTEX_PRIVATE_FLAG) ? false : true;
1762 1.1 thorpej const clockid_t clkid = (op & FUTEX_CLOCK_REALTIME) ? CLOCK_REALTIME
1763 1.1 thorpej : CLOCK_MONOTONIC;
1764 1.12.4.1 thorpej int error;
1765 1.1 thorpej
1766 1.1 thorpej op &= FUTEX_CMD_MASK;
1767 1.1 thorpej
1768 1.1 thorpej switch (op) {
1769 1.1 thorpej case FUTEX_WAIT:
1770 1.12.4.1 thorpej SDT_PROBE6(futex, func, wait, entry,
1771 1.12.4.1 thorpej uaddr, val, FUTEX_BITSET_MATCH_ANY, timeout,
1772 1.12.4.1 thorpej TIMER_RELTIME, op & ~FUTEX_CMD_MASK);
1773 1.12.4.1 thorpej error = futex_func_wait(shared, uaddr, val,
1774 1.1 thorpej FUTEX_BITSET_MATCH_ANY, timeout, clkid, TIMER_RELTIME,
1775 1.1 thorpej retval);
1776 1.12.4.1 thorpej SDT_PROBE1(futex, func, wait, exit, error);
1777 1.12.4.1 thorpej break;
1778 1.12.4.1 thorpej
1779 1.12.4.1 thorpej case FUTEX_WAIT_BITSET:
1780 1.12.4.1 thorpej SDT_PROBE6(futex, func, wait, entry,
1781 1.12.4.1 thorpej uaddr, val, val3, timeout,
1782 1.12.4.1 thorpej TIMER_ABSTIME, op & ~FUTEX_CMD_MASK);
1783 1.12.4.1 thorpej error = futex_func_wait(shared, uaddr, val, val3, timeout,
1784 1.12.4.1 thorpej clkid, TIMER_ABSTIME, retval);
1785 1.12.4.1 thorpej SDT_PROBE1(futex, func, wait, exit, error);
1786 1.12.4.1 thorpej break;
1787 1.1 thorpej
1788 1.1 thorpej case FUTEX_WAKE:
1789 1.12.4.1 thorpej SDT_PROBE4(futex, func, wake, entry,
1790 1.12.4.1 thorpej uaddr, val, FUTEX_BITSET_MATCH_ANY, op & ~FUTEX_CMD_MASK);
1791 1.12.4.1 thorpej error = futex_func_wake(shared, uaddr, val,
1792 1.12.4.1 thorpej FUTEX_BITSET_MATCH_ANY, retval);
1793 1.12.4.1 thorpej SDT_PROBE2(futex, func, wake, exit, error, *retval);
1794 1.12.4.1 thorpej break;
1795 1.12.4.1 thorpej
1796 1.1 thorpej case FUTEX_WAKE_BITSET:
1797 1.12.4.1 thorpej SDT_PROBE4(futex, func, wake, entry,
1798 1.12.4.1 thorpej uaddr, val, val3, op & ~FUTEX_CMD_MASK);
1799 1.12.4.1 thorpej error = futex_func_wake(shared, uaddr, val, val3, retval);
1800 1.12.4.1 thorpej SDT_PROBE2(futex, func, wake, exit, error, *retval);
1801 1.12.4.1 thorpej break;
1802 1.1 thorpej
1803 1.1 thorpej case FUTEX_REQUEUE:
1804 1.12.4.1 thorpej SDT_PROBE5(futex, func, requeue, entry,
1805 1.12.4.1 thorpej uaddr, val, uaddr2, val2, op & ~FUTEX_CMD_MASK);
1806 1.12.4.1 thorpej error = futex_func_requeue(shared, op, uaddr, val, uaddr2,
1807 1.12.4.1 thorpej val2, 0, retval);
1808 1.12.4.1 thorpej SDT_PROBE2(futex, func, requeue, exit, error, *retval);
1809 1.12.4.1 thorpej break;
1810 1.12.4.1 thorpej
1811 1.1 thorpej case FUTEX_CMP_REQUEUE:
1812 1.12.4.1 thorpej SDT_PROBE6(futex, func, cmp_requeue, entry,
1813 1.12.4.1 thorpej uaddr, val, uaddr2, val2, val3, op & ~FUTEX_CMD_MASK);
1814 1.12.4.1 thorpej error = futex_func_requeue(shared, op, uaddr, val, uaddr2,
1815 1.1 thorpej val2, val3, retval);
1816 1.12.4.1 thorpej SDT_PROBE2(futex, func, cmp_requeue, exit, error, *retval);
1817 1.12.4.1 thorpej break;
1818 1.1 thorpej
1819 1.1 thorpej case FUTEX_WAKE_OP:
1820 1.12.4.1 thorpej SDT_PROBE6(futex, func, wake_op, entry,
1821 1.12.4.1 thorpej uaddr, val, uaddr2, val2, val3, op & ~FUTEX_CMD_MASK);
1822 1.12.4.1 thorpej error = futex_func_wake_op(shared, uaddr, val, uaddr2, val2,
1823 1.1 thorpej val3, retval);
1824 1.12.4.1 thorpej SDT_PROBE2(futex, func, wake_op, exit, error, *retval);
1825 1.12.4.1 thorpej break;
1826 1.1 thorpej
1827 1.1 thorpej case FUTEX_FD:
1828 1.1 thorpej default:
1829 1.12.4.1 thorpej error = ENOSYS;
1830 1.12.4.1 thorpej break;
1831 1.1 thorpej }
1832 1.12.4.1 thorpej
1833 1.12.4.1 thorpej return error;
1834 1.1 thorpej }
1835 1.1 thorpej
1836 1.1 thorpej /*
1837 1.1 thorpej * sys___futex(l, uap, retval)
1838 1.1 thorpej *
1839 1.1 thorpej * __futex(2) system call: generic futex operations.
1840 1.1 thorpej */
1841 1.1 thorpej int
1842 1.1 thorpej sys___futex(struct lwp *l, const struct sys___futex_args *uap,
1843 1.1 thorpej register_t *retval)
1844 1.1 thorpej {
1845 1.1 thorpej /* {
1846 1.1 thorpej syscallarg(int *) uaddr;
1847 1.1 thorpej syscallarg(int) op;
1848 1.1 thorpej syscallarg(int) val;
1849 1.1 thorpej syscallarg(const struct timespec *) timeout;
1850 1.1 thorpej syscallarg(int *) uaddr2;
1851 1.1 thorpej syscallarg(int) val2;
1852 1.1 thorpej syscallarg(int) val3;
1853 1.1 thorpej } */
1854 1.1 thorpej struct timespec ts, *tsp;
1855 1.1 thorpej int error;
1856 1.1 thorpej
1857 1.1 thorpej /*
1858 1.1 thorpej * Copy in the timeout argument, if specified.
1859 1.1 thorpej */
1860 1.1 thorpej if (SCARG(uap, timeout)) {
1861 1.1 thorpej error = copyin(SCARG(uap, timeout), &ts, sizeof(ts));
1862 1.1 thorpej if (error)
1863 1.1 thorpej return error;
1864 1.1 thorpej tsp = &ts;
1865 1.1 thorpej } else {
1866 1.1 thorpej tsp = NULL;
1867 1.1 thorpej }
1868 1.1 thorpej
1869 1.1 thorpej return do_futex(SCARG(uap, uaddr), SCARG(uap, op), SCARG(uap, val),
1870 1.1 thorpej tsp, SCARG(uap, uaddr2), SCARG(uap, val2), SCARG(uap, val3),
1871 1.1 thorpej retval);
1872 1.1 thorpej }
1873 1.1 thorpej
1874 1.1 thorpej /*
1875 1.1 thorpej * sys___futex_set_robust_list(l, uap, retval)
1876 1.1 thorpej *
1877 1.1 thorpej * __futex_set_robust_list(2) system call for robust futexes.
1878 1.1 thorpej */
1879 1.1 thorpej int
1880 1.1 thorpej sys___futex_set_robust_list(struct lwp *l,
1881 1.1 thorpej const struct sys___futex_set_robust_list_args *uap, register_t *retval)
1882 1.1 thorpej {
1883 1.1 thorpej /* {
1884 1.1 thorpej syscallarg(void *) head;
1885 1.1 thorpej syscallarg(size_t) len;
1886 1.1 thorpej } */
1887 1.1 thorpej void *head = SCARG(uap, head);
1888 1.1 thorpej
1889 1.1 thorpej if (SCARG(uap, len) != _FUTEX_ROBUST_HEAD_SIZE)
1890 1.1 thorpej return EINVAL;
1891 1.1 thorpej if ((uintptr_t)head % sizeof(u_long))
1892 1.1 thorpej return EINVAL;
1893 1.1 thorpej
1894 1.1 thorpej l->l_robust_head = (uintptr_t)head;
1895 1.1 thorpej
1896 1.1 thorpej return 0;
1897 1.1 thorpej }
1898 1.1 thorpej
1899 1.1 thorpej /*
1900 1.1 thorpej * sys___futex_get_robust_list(l, uap, retval)
1901 1.1 thorpej *
1902 1.1 thorpej * __futex_get_robust_list(2) system call for robust futexes.
1903 1.1 thorpej */
1904 1.1 thorpej int
1905 1.1 thorpej sys___futex_get_robust_list(struct lwp *l,
1906 1.1 thorpej const struct sys___futex_get_robust_list_args *uap, register_t *retval)
1907 1.1 thorpej {
1908 1.1 thorpej /* {
1909 1.1 thorpej syscallarg(lwpid_t) lwpid;
1910 1.1 thorpej syscallarg(void **) headp;
1911 1.1 thorpej syscallarg(size_t *) lenp;
1912 1.1 thorpej } */
1913 1.1 thorpej void *head;
1914 1.1 thorpej const size_t len = _FUTEX_ROBUST_HEAD_SIZE;
1915 1.1 thorpej int error;
1916 1.1 thorpej
1917 1.1 thorpej error = futex_robust_head_lookup(l, SCARG(uap, lwpid), &head);
1918 1.1 thorpej if (error)
1919 1.1 thorpej return error;
1920 1.1 thorpej
1921 1.1 thorpej /* Copy out the head pointer and the head structure length. */
1922 1.1 thorpej error = copyout(&head, SCARG(uap, headp), sizeof(head));
1923 1.1 thorpej if (__predict_true(error == 0)) {
1924 1.1 thorpej error = copyout(&len, SCARG(uap, lenp), sizeof(len));
1925 1.1 thorpej }
1926 1.1 thorpej
1927 1.1 thorpej return error;
1928 1.1 thorpej }
1929 1.1 thorpej
1930 1.1 thorpej /*
1931 1.1 thorpej * release_futex(uva, tid)
1932 1.1 thorpej *
1933 1.1 thorpej * Try to release the robust futex at uva in the current process
1934 1.1 thorpej * on lwp exit. If anything goes wrong, silently fail. It is the
1935 1.1 thorpej * userland program's obligation to arrange correct behaviour.
1936 1.1 thorpej */
1937 1.1 thorpej static void
1938 1.1 thorpej release_futex(uintptr_t const uptr, lwpid_t const tid, bool const is_pi,
1939 1.1 thorpej bool const is_pending)
1940 1.1 thorpej {
1941 1.1 thorpej int *uaddr;
1942 1.1 thorpej struct futex *f;
1943 1.1 thorpej int oldval, newval, actual;
1944 1.1 thorpej int error;
1945 1.12.4.1 thorpej bool shared;
1946 1.1 thorpej
1947 1.1 thorpej /* If it's misaligned, tough. */
1948 1.1 thorpej if (__predict_false(uptr & 3))
1949 1.1 thorpej return;
1950 1.1 thorpej uaddr = (int *)uptr;
1951 1.1 thorpej
1952 1.1 thorpej error = futex_load(uaddr, &oldval);
1953 1.1 thorpej if (__predict_false(error))
1954 1.1 thorpej return;
1955 1.1 thorpej
1956 1.1 thorpej /*
1957 1.1 thorpej * There are two race conditions we need to handle here:
1958 1.1 thorpej *
1959 1.1 thorpej * 1. User space cleared the futex word but died before
1960 1.1 thorpej * being able to issue the wakeup. No wakeups will
1961 1.1 thorpej * ever be issued, oops!
1962 1.1 thorpej *
1963 1.1 thorpej * 2. Awakened waiter died before being able to acquire
1964 1.1 thorpej * the futex in user space. Any other waiters are
1965 1.1 thorpej * now stuck, oops!
1966 1.1 thorpej *
1967 1.1 thorpej * In both of these cases, the futex word will be 0 (because
1968 1.1 thorpej * it's updated before the wake is issued). The best we can
1969 1.1 thorpej * do is detect this situation if it's the pending futex and
1970 1.1 thorpej * issue a wake without modifying the futex word.
1971 1.1 thorpej *
1972 1.1 thorpej * XXX eventual PI handling?
1973 1.1 thorpej */
1974 1.1 thorpej if (__predict_false(is_pending && (oldval & ~FUTEX_WAITERS) == 0)) {
1975 1.1 thorpej register_t retval;
1976 1.12.4.1 thorpej error = futex_func_wake(/*shared*/true, uaddr, 1,
1977 1.1 thorpej FUTEX_BITSET_MATCH_ANY, &retval);
1978 1.12.4.1 thorpej if (error != 0 || retval == 0)
1979 1.12.4.1 thorpej (void) futex_func_wake(/*shared*/false, uaddr, 1,
1980 1.12.4.1 thorpej FUTEX_BITSET_MATCH_ANY, &retval);
1981 1.1 thorpej return;
1982 1.1 thorpej }
1983 1.1 thorpej
1984 1.1 thorpej /* Optimistically test whether we need to do anything at all. */
1985 1.1 thorpej if ((oldval & FUTEX_TID_MASK) != tid)
1986 1.1 thorpej return;
1987 1.1 thorpej
1988 1.1 thorpej /*
1989 1.1 thorpej * We need to handle the case where this thread owned the futex,
1990 1.1 thorpej * but it was uncontended. In this case, there won't be any
1991 1.1 thorpej * kernel state to look up. All we can do is mark the futex
1992 1.1 thorpej * as a zombie to be mopped up the next time another thread
1993 1.1 thorpej * attempts to acquire it.
1994 1.1 thorpej *
1995 1.1 thorpej * N.B. It's important to ensure to set FUTEX_OWNER_DIED in
1996 1.1 thorpej * this loop, even if waiters appear while we're are doing
1997 1.1 thorpej * so. This is beause FUTEX_WAITERS is set by user space
1998 1.1 thorpej * before calling __futex() to wait, and the futex needs
1999 1.1 thorpej * to be marked as a zombie when the new waiter gets into
2000 1.1 thorpej * the kernel.
2001 1.1 thorpej */
2002 1.1 thorpej if ((oldval & FUTEX_WAITERS) == 0) {
2003 1.1 thorpej do {
2004 1.1 thorpej error = futex_load(uaddr, &oldval);
2005 1.1 thorpej if (error)
2006 1.1 thorpej return;
2007 1.1 thorpej if ((oldval & FUTEX_TID_MASK) != tid)
2008 1.1 thorpej return;
2009 1.1 thorpej newval = oldval | FUTEX_OWNER_DIED;
2010 1.1 thorpej error = ucas_int(uaddr, oldval, newval, &actual);
2011 1.1 thorpej if (error)
2012 1.1 thorpej return;
2013 1.1 thorpej } while (actual != oldval);
2014 1.1 thorpej
2015 1.1 thorpej /*
2016 1.1 thorpej * If where is still no indication of waiters, then there is
2017 1.1 thorpej * no more work for us to do.
2018 1.1 thorpej */
2019 1.1 thorpej if ((oldval & FUTEX_WAITERS) == 0)
2020 1.1 thorpej return;
2021 1.1 thorpej }
2022 1.1 thorpej
2023 1.1 thorpej /*
2024 1.12.4.1 thorpej * Look for a futex. Try shared first, then private. If we
2025 1.12.4.1 thorpej * can't fine one, tough.
2026 1.12.4.1 thorpej *
2027 1.12.4.1 thorpej * Note: the assumption here is that anyone placing a futex on
2028 1.12.4.1 thorpej * the robust list is adhering to the rules, regardless of the
2029 1.12.4.1 thorpej * futex class.
2030 1.1 thorpej */
2031 1.12.4.1 thorpej for (f = NULL, shared = true; f == NULL; shared = false) {
2032 1.12.4.1 thorpej error = futex_lookup(uaddr, shared, FUTEX_CLASS_ANY, &f);
2033 1.12.4.1 thorpej if (error)
2034 1.12.4.1 thorpej return;
2035 1.12.4.1 thorpej if (f == NULL && shared == false)
2036 1.12.4.1 thorpej return;
2037 1.12.4.1 thorpej }
2038 1.1 thorpej
2039 1.12.4.1 thorpej /* Work under the futex op lock. */
2040 1.12.4.1 thorpej futex_op_lock(f);
2041 1.1 thorpej
2042 1.1 thorpej /*
2043 1.1 thorpej * Fetch the word: if the tid doesn't match ours, skip;
2044 1.1 thorpej * otherwise, set the owner-died bit, atomically.
2045 1.1 thorpej */
2046 1.1 thorpej do {
2047 1.1 thorpej error = futex_load(uaddr, &oldval);
2048 1.1 thorpej if (error)
2049 1.1 thorpej goto out;
2050 1.1 thorpej if ((oldval & FUTEX_TID_MASK) != tid)
2051 1.1 thorpej goto out;
2052 1.1 thorpej newval = oldval | FUTEX_OWNER_DIED;
2053 1.1 thorpej error = ucas_int(uaddr, oldval, newval, &actual);
2054 1.1 thorpej if (error)
2055 1.1 thorpej goto out;
2056 1.1 thorpej } while (actual != oldval);
2057 1.1 thorpej
2058 1.1 thorpej /*
2059 1.1 thorpej * If there may be waiters, try to wake one. If anything goes
2060 1.1 thorpej * wrong, tough.
2061 1.1 thorpej *
2062 1.1 thorpej * XXX eventual PI handling?
2063 1.1 thorpej */
2064 1.12.4.1 thorpej if (oldval & FUTEX_WAITERS) {
2065 1.12.4.1 thorpej (void)futex_wake(f, FUTEX_WRITERQ, 1,
2066 1.12.4.1 thorpej NULL, FUTEX_WRITERQ, 0,
2067 1.12.4.1 thorpej FUTEX_BITSET_MATCH_ANY);
2068 1.12.4.1 thorpej }
2069 1.1 thorpej
2070 1.1 thorpej /* Unlock the queue and release the futex. */
2071 1.12.4.1 thorpej out: futex_op_unlock(f);
2072 1.5 riastrad futex_rele(f);
2073 1.1 thorpej }
2074 1.1 thorpej
2075 1.1 thorpej /*
2076 1.1 thorpej * futex_robust_head_lookup(l, lwpid)
2077 1.1 thorpej *
2078 1.1 thorpej * Helper function to look up a robust head by LWP ID.
2079 1.1 thorpej */
2080 1.1 thorpej int
2081 1.1 thorpej futex_robust_head_lookup(struct lwp *l, lwpid_t lwpid, void **headp)
2082 1.1 thorpej {
2083 1.1 thorpej struct proc *p = l->l_proc;
2084 1.1 thorpej
2085 1.1 thorpej /* Find the other lwp, if requested; otherwise use our robust head. */
2086 1.1 thorpej if (lwpid) {
2087 1.1 thorpej mutex_enter(p->p_lock);
2088 1.1 thorpej l = lwp_find(p, lwpid);
2089 1.1 thorpej if (l == NULL) {
2090 1.1 thorpej mutex_exit(p->p_lock);
2091 1.1 thorpej return ESRCH;
2092 1.1 thorpej }
2093 1.1 thorpej *headp = (void *)l->l_robust_head;
2094 1.1 thorpej mutex_exit(p->p_lock);
2095 1.1 thorpej } else {
2096 1.1 thorpej *headp = (void *)l->l_robust_head;
2097 1.1 thorpej }
2098 1.1 thorpej return 0;
2099 1.1 thorpej }
2100 1.1 thorpej
2101 1.1 thorpej /*
2102 1.1 thorpej * futex_fetch_robust_head(uaddr)
2103 1.1 thorpej *
2104 1.1 thorpej * Helper routine to fetch the futex robust list head that
2105 1.1 thorpej * handles 32-bit binaries running on 64-bit kernels.
2106 1.1 thorpej */
2107 1.1 thorpej static int
2108 1.1 thorpej futex_fetch_robust_head(uintptr_t uaddr, u_long *rhead)
2109 1.1 thorpej {
2110 1.1 thorpej #ifdef _LP64
2111 1.1 thorpej if (curproc->p_flag & PK_32) {
2112 1.1 thorpej uint32_t rhead32[_FUTEX_ROBUST_HEAD_NWORDS];
2113 1.1 thorpej int error;
2114 1.1 thorpej
2115 1.1 thorpej error = copyin((void *)uaddr, rhead32, sizeof(rhead32));
2116 1.1 thorpej if (__predict_true(error == 0)) {
2117 1.1 thorpej for (int i = 0; i < _FUTEX_ROBUST_HEAD_NWORDS; i++) {
2118 1.1 thorpej if (i == _FUTEX_ROBUST_HEAD_OFFSET) {
2119 1.1 thorpej /*
2120 1.1 thorpej * Make sure the offset is sign-
2121 1.1 thorpej * extended.
2122 1.1 thorpej */
2123 1.1 thorpej rhead[i] = (int32_t)rhead32[i];
2124 1.1 thorpej } else {
2125 1.1 thorpej rhead[i] = rhead32[i];
2126 1.1 thorpej }
2127 1.1 thorpej }
2128 1.1 thorpej }
2129 1.1 thorpej return error;
2130 1.1 thorpej }
2131 1.1 thorpej #endif /* _L64 */
2132 1.1 thorpej
2133 1.1 thorpej return copyin((void *)uaddr, rhead,
2134 1.1 thorpej sizeof(*rhead) * _FUTEX_ROBUST_HEAD_NWORDS);
2135 1.1 thorpej }
2136 1.1 thorpej
2137 1.1 thorpej /*
2138 1.1 thorpej * futex_decode_robust_word(word)
2139 1.1 thorpej *
2140 1.1 thorpej * Decode a robust futex list word into the entry and entry
2141 1.1 thorpej * properties.
2142 1.1 thorpej */
2143 1.1 thorpej static inline void
2144 1.1 thorpej futex_decode_robust_word(uintptr_t const word, uintptr_t * const entry,
2145 1.1 thorpej bool * const is_pi)
2146 1.1 thorpej {
2147 1.1 thorpej *is_pi = (word & _FUTEX_ROBUST_ENTRY_PI) ? true : false;
2148 1.1 thorpej *entry = word & ~_FUTEX_ROBUST_ENTRY_PI;
2149 1.1 thorpej }
2150 1.1 thorpej
2151 1.1 thorpej /*
2152 1.1 thorpej * futex_fetch_robust_entry(uaddr)
2153 1.1 thorpej *
2154 1.1 thorpej * Helper routine to fetch and decode a robust futex entry
2155 1.1 thorpej * that handles 32-bit binaries running on 64-bit kernels.
2156 1.1 thorpej */
2157 1.1 thorpej static int
2158 1.1 thorpej futex_fetch_robust_entry(uintptr_t const uaddr, uintptr_t * const valp,
2159 1.1 thorpej bool * const is_pi)
2160 1.1 thorpej {
2161 1.1 thorpej uintptr_t val = 0;
2162 1.1 thorpej int error = 0;
2163 1.1 thorpej
2164 1.1 thorpej #ifdef _LP64
2165 1.1 thorpej if (curproc->p_flag & PK_32) {
2166 1.1 thorpej uint32_t val32;
2167 1.1 thorpej
2168 1.1 thorpej error = ufetch_32((uint32_t *)uaddr, &val32);
2169 1.1 thorpej if (__predict_true(error == 0))
2170 1.1 thorpej val = val32;
2171 1.1 thorpej } else
2172 1.1 thorpej #endif /* _LP64 */
2173 1.1 thorpej error = ufetch_long((u_long *)uaddr, (u_long *)&val);
2174 1.1 thorpej if (__predict_false(error))
2175 1.1 thorpej return error;
2176 1.1 thorpej
2177 1.1 thorpej futex_decode_robust_word(val, valp, is_pi);
2178 1.1 thorpej return 0;
2179 1.1 thorpej }
2180 1.1 thorpej
2181 1.1 thorpej /*
2182 1.1 thorpej * futex_release_all_lwp(l, tid)
2183 1.1 thorpej *
2184 1.1 thorpej * Release all l's robust futexes. If anything looks funny in
2185 1.1 thorpej * the process, give up -- it's userland's responsibility to dot
2186 1.1 thorpej * the i's and cross the t's.
2187 1.1 thorpej */
2188 1.1 thorpej void
2189 1.1 thorpej futex_release_all_lwp(struct lwp * const l, lwpid_t const tid)
2190 1.1 thorpej {
2191 1.1 thorpej u_long rhead[_FUTEX_ROBUST_HEAD_NWORDS];
2192 1.1 thorpej int limit = 1000000;
2193 1.1 thorpej int error;
2194 1.1 thorpej
2195 1.1 thorpej /* If there's no robust list there's nothing to do. */
2196 1.1 thorpej if (l->l_robust_head == 0)
2197 1.1 thorpej return;
2198 1.1 thorpej
2199 1.1 thorpej /* Read the final snapshot of the robust list head. */
2200 1.1 thorpej error = futex_fetch_robust_head(l->l_robust_head, rhead);
2201 1.1 thorpej if (error) {
2202 1.1 thorpej printf("WARNING: pid %jd (%s) lwp %jd tid %jd:"
2203 1.1 thorpej " unmapped robust futex list head\n",
2204 1.1 thorpej (uintmax_t)l->l_proc->p_pid, l->l_proc->p_comm,
2205 1.1 thorpej (uintmax_t)l->l_lid, (uintmax_t)tid);
2206 1.1 thorpej return;
2207 1.1 thorpej }
2208 1.1 thorpej
2209 1.1 thorpej const long offset = (long)rhead[_FUTEX_ROBUST_HEAD_OFFSET];
2210 1.1 thorpej
2211 1.1 thorpej uintptr_t next, pending;
2212 1.1 thorpej bool is_pi, pending_is_pi;
2213 1.1 thorpej
2214 1.1 thorpej futex_decode_robust_word(rhead[_FUTEX_ROBUST_HEAD_LIST],
2215 1.1 thorpej &next, &is_pi);
2216 1.1 thorpej futex_decode_robust_word(rhead[_FUTEX_ROBUST_HEAD_PENDING],
2217 1.1 thorpej &pending, &pending_is_pi);
2218 1.1 thorpej
2219 1.1 thorpej /*
2220 1.1 thorpej * Walk down the list of locked futexes and release them, up
2221 1.1 thorpej * to one million of them before we give up.
2222 1.1 thorpej */
2223 1.1 thorpej
2224 1.1 thorpej while (next != l->l_robust_head && limit-- > 0) {
2225 1.1 thorpej /* pending handled below. */
2226 1.1 thorpej if (next != pending)
2227 1.1 thorpej release_futex(next + offset, tid, is_pi, false);
2228 1.1 thorpej error = futex_fetch_robust_entry(next, &next, &is_pi);
2229 1.1 thorpej if (error)
2230 1.1 thorpej break;
2231 1.1 thorpej preempt_point();
2232 1.1 thorpej }
2233 1.1 thorpej if (limit <= 0) {
2234 1.1 thorpej printf("WARNING: pid %jd (%s) lwp %jd tid %jd:"
2235 1.1 thorpej " exhausted robust futex limit\n",
2236 1.1 thorpej (uintmax_t)l->l_proc->p_pid, l->l_proc->p_comm,
2237 1.1 thorpej (uintmax_t)l->l_lid, (uintmax_t)tid);
2238 1.1 thorpej }
2239 1.1 thorpej
2240 1.1 thorpej /* If there's a pending futex, it may need to be released too. */
2241 1.1 thorpej if (pending != 0) {
2242 1.1 thorpej release_futex(pending + offset, tid, pending_is_pi, true);
2243 1.1 thorpej }
2244 1.1 thorpej }
2245