sys_futex.c revision 1.18 1 1.18 riastrad /* $NetBSD: sys_futex.c,v 1.18 2022/04/21 12:05:13 riastradh Exp $ */
2 1.1 thorpej
3 1.1 thorpej /*-
4 1.1 thorpej * Copyright (c) 2018, 2019, 2020 The NetBSD Foundation, Inc.
5 1.1 thorpej * All rights reserved.
6 1.1 thorpej *
7 1.1 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.1 thorpej * by Taylor R. Campbell and Jason R. Thorpe.
9 1.1 thorpej *
10 1.1 thorpej * Redistribution and use in source and binary forms, with or without
11 1.1 thorpej * modification, are permitted provided that the following conditions
12 1.1 thorpej * are met:
13 1.1 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.1 thorpej * notice, this list of conditions and the following disclaimer.
15 1.1 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.1 thorpej * documentation and/or other materials provided with the distribution.
18 1.1 thorpej *
19 1.1 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 thorpej * POSSIBILITY OF SUCH DAMAGE.
30 1.1 thorpej */
31 1.1 thorpej
32 1.1 thorpej #include <sys/cdefs.h>
33 1.18 riastrad __KERNEL_RCSID(0, "$NetBSD: sys_futex.c,v 1.18 2022/04/21 12:05:13 riastradh Exp $");
34 1.1 thorpej
35 1.1 thorpej /*
36 1.1 thorpej * Futexes
37 1.1 thorpej *
38 1.1 thorpej * The futex system call coordinates notifying threads waiting for
39 1.1 thorpej * changes on a 32-bit word of memory. The word can be managed by
40 1.1 thorpej * CPU atomic operations in userland, without system calls, as long
41 1.1 thorpej * as there is no contention.
42 1.1 thorpej *
43 1.1 thorpej * The simplest use case demonstrating the utility is:
44 1.1 thorpej *
45 1.1 thorpej * // 32-bit word of memory shared among threads or
46 1.1 thorpej * // processes in userland. lock & 1 means owned;
47 1.1 thorpej * // lock & 2 means there are waiters waiting.
48 1.1 thorpej * volatile int lock = 0;
49 1.1 thorpej *
50 1.1 thorpej * int v;
51 1.1 thorpej *
52 1.1 thorpej * // Acquire a lock.
53 1.1 thorpej * do {
54 1.1 thorpej * v = lock;
55 1.1 thorpej * if (v & 1) {
56 1.1 thorpej * // Lock is held. Set a bit to say that
57 1.1 thorpej * // there are waiters, and wait for lock
58 1.1 thorpej * // to change to anything other than v;
59 1.1 thorpej * // then retry.
60 1.1 thorpej * if (atomic_cas_uint(&lock, v, v | 2) != v)
61 1.1 thorpej * continue;
62 1.1 thorpej * futex(FUTEX_WAIT, &lock, v | 2, NULL, NULL, 0);
63 1.1 thorpej * continue;
64 1.1 thorpej * }
65 1.1 thorpej * } while (atomic_cas_uint(&lock, v, v & ~1) != v);
66 1.18 riastrad * membar_acquire();
67 1.1 thorpej *
68 1.1 thorpej * ...
69 1.1 thorpej *
70 1.1 thorpej * // Release the lock. Optimistically assume there are
71 1.1 thorpej * // no waiters first until demonstrated otherwise.
72 1.18 riastrad * membar_release();
73 1.1 thorpej * if (atomic_cas_uint(&lock, 1, 0) != 1) {
74 1.1 thorpej * // There may be waiters.
75 1.1 thorpej * v = atomic_swap_uint(&lock, 0);
76 1.1 thorpej * // If there are still waiters, wake one.
77 1.1 thorpej * if (v & 2)
78 1.1 thorpej * futex(FUTEX_WAKE, &lock, 1, NULL, NULL, 0);
79 1.1 thorpej * }
80 1.1 thorpej *
81 1.1 thorpej * The goal is to avoid the futex system call unless there is
82 1.1 thorpej * contention; then if there is contention, to guarantee no missed
83 1.1 thorpej * wakeups.
84 1.1 thorpej *
85 1.1 thorpej * For a simple implementation, futex(FUTEX_WAIT) could queue
86 1.1 thorpej * itself to be woken, double-check the lock word, and then sleep;
87 1.1 thorpej * spurious wakeups are generally a fact of life, so any
88 1.1 thorpej * FUTEX_WAKE could just wake every FUTEX_WAIT in the system.
89 1.1 thorpej *
90 1.1 thorpej * If this were all there is to it, we could then increase
91 1.1 thorpej * parallelism by refining the approximation: partition the
92 1.1 thorpej * waiters into buckets by hashing the lock addresses to reduce
93 1.1 thorpej * the incidence of spurious wakeups. But this is not all.
94 1.1 thorpej *
95 1.1 thorpej * The futex(FUTEX_CMP_REQUEUE, &lock, n, &lock2, m, val)
96 1.1 thorpej * operation not only wakes n waiters on lock if lock == val, but
97 1.1 thorpej * also _transfers_ m additional waiters to lock2. Unless wakeups
98 1.1 thorpej * on lock2 also trigger wakeups on lock, we cannot move waiters
99 1.1 thorpej * to lock2 if they merely share the same hash as waiters on lock.
100 1.1 thorpej * Thus, we can't approximately distribute waiters into queues by
101 1.1 thorpej * a hash function; we must distinguish futex queues exactly by
102 1.1 thorpej * lock address.
103 1.1 thorpej *
104 1.1 thorpej * For now, we use a global red/black tree to index futexes. This
105 1.1 thorpej * should be replaced by a lockless radix tree with a thread to
106 1.1 thorpej * free entries no longer in use once all lookups on all CPUs have
107 1.1 thorpej * completed.
108 1.1 thorpej *
109 1.1 thorpej * Specifically, we maintain two maps:
110 1.1 thorpej *
111 1.1 thorpej * futex_tab.va[vmspace, va] for private futexes
112 1.1 thorpej * futex_tab.oa[uvm_voaddr] for shared futexes
113 1.1 thorpej *
114 1.1 thorpej * This implementation does not support priority inheritance.
115 1.1 thorpej */
116 1.1 thorpej
117 1.12 skrll #include <sys/param.h>
118 1.1 thorpej #include <sys/types.h>
119 1.1 thorpej #include <sys/atomic.h>
120 1.1 thorpej #include <sys/condvar.h>
121 1.1 thorpej #include <sys/futex.h>
122 1.1 thorpej #include <sys/mutex.h>
123 1.1 thorpej #include <sys/rbtree.h>
124 1.1 thorpej #include <sys/queue.h>
125 1.1 thorpej
126 1.1 thorpej #include <sys/syscall.h>
127 1.1 thorpej #include <sys/syscallargs.h>
128 1.1 thorpej #include <sys/syscallvar.h>
129 1.1 thorpej
130 1.1 thorpej #include <uvm/uvm_extern.h>
131 1.1 thorpej
132 1.1 thorpej /*
133 1.1 thorpej * Lock order:
134 1.1 thorpej *
135 1.1 thorpej * futex_tab.lock
136 1.1 thorpej * futex::fx_qlock ordered by kva of struct futex
137 1.1 thorpej * -> futex_wait::fw_lock only one at a time
138 1.1 thorpej * futex_wait::fw_lock only one at a time
139 1.1 thorpej * -> futex::fx_abortlock only one at a time
140 1.1 thorpej */
141 1.1 thorpej
142 1.1 thorpej /*
143 1.1 thorpej * union futex_key
144 1.1 thorpej *
145 1.1 thorpej * A futex is addressed either by a vmspace+va (private) or by
146 1.1 thorpej * a uvm_voaddr (shared).
147 1.1 thorpej */
148 1.1 thorpej union futex_key {
149 1.1 thorpej struct {
150 1.1 thorpej struct vmspace *vmspace;
151 1.1 thorpej vaddr_t va;
152 1.1 thorpej } fk_private;
153 1.1 thorpej struct uvm_voaddr fk_shared;
154 1.1 thorpej };
155 1.1 thorpej
156 1.1 thorpej /*
157 1.1 thorpej * struct futex
158 1.1 thorpej *
159 1.1 thorpej * Kernel state for a futex located at a particular address in a
160 1.1 thorpej * particular virtual address space.
161 1.1 thorpej *
162 1.1 thorpej * N.B. fx_refcnt is an unsigned long because we need to be able
163 1.1 thorpej * to operate on it atomically on all systems while at the same
164 1.1 thorpej * time rendering practically impossible the chance of it reaching
165 1.1 thorpej * its max value. In practice, we're limited by the number of LWPs
166 1.1 thorpej * that can be present on the system at any given time, and the
167 1.1 thorpej * assumption is that limit will be good enough on a 32-bit platform.
168 1.1 thorpej * See futex_wake() for why overflow needs to be avoided.
169 1.1 thorpej */
170 1.1 thorpej struct futex {
171 1.1 thorpej union futex_key fx_key;
172 1.1 thorpej unsigned long fx_refcnt;
173 1.1 thorpej bool fx_shared;
174 1.1 thorpej bool fx_on_tree;
175 1.1 thorpej struct rb_node fx_node;
176 1.1 thorpej
177 1.1 thorpej kmutex_t fx_qlock;
178 1.1 thorpej TAILQ_HEAD(, futex_wait) fx_queue;
179 1.1 thorpej
180 1.1 thorpej kmutex_t fx_abortlock;
181 1.1 thorpej LIST_HEAD(, futex_wait) fx_abortlist;
182 1.1 thorpej kcondvar_t fx_abortcv;
183 1.1 thorpej };
184 1.1 thorpej
185 1.1 thorpej /*
186 1.1 thorpej * struct futex_wait
187 1.1 thorpej *
188 1.1 thorpej * State for a thread to wait on a futex. Threads wait on fw_cv
189 1.1 thorpej * for fw_bitset to be set to zero. The thread may transition to
190 1.1 thorpej * a different futex queue at any time under the futex's lock.
191 1.1 thorpej */
192 1.1 thorpej struct futex_wait {
193 1.1 thorpej kmutex_t fw_lock;
194 1.1 thorpej kcondvar_t fw_cv;
195 1.1 thorpej struct futex *fw_futex;
196 1.1 thorpej TAILQ_ENTRY(futex_wait) fw_entry; /* queue lock */
197 1.1 thorpej LIST_ENTRY(futex_wait) fw_abort; /* queue abortlock */
198 1.1 thorpej int fw_bitset;
199 1.4 riastrad bool fw_aborting; /* fw_lock */
200 1.1 thorpej };
201 1.1 thorpej
202 1.1 thorpej /*
203 1.1 thorpej * futex_tab
204 1.1 thorpej *
205 1.1 thorpej * Global trees of futexes by vmspace/va and VM object address.
206 1.1 thorpej *
207 1.1 thorpej * XXX This obviously doesn't scale in parallel. We could use a
208 1.1 thorpej * pserialize-safe data structure, but there may be a high cost to
209 1.1 thorpej * frequent deletion since we don't cache futexes after we're done
210 1.1 thorpej * with them. We could use hashed locks. But for now, just make
211 1.1 thorpej * sure userland can't DoS the serial performance, by using a
212 1.1 thorpej * balanced binary tree for lookup.
213 1.1 thorpej *
214 1.1 thorpej * XXX We could use a per-process tree for the table indexed by
215 1.1 thorpej * virtual address to reduce contention between processes.
216 1.1 thorpej */
217 1.1 thorpej static struct {
218 1.1 thorpej kmutex_t lock;
219 1.1 thorpej struct rb_tree va;
220 1.1 thorpej struct rb_tree oa;
221 1.1 thorpej } futex_tab __cacheline_aligned;
222 1.1 thorpej
223 1.1 thorpej static int
224 1.1 thorpej compare_futex_key(void *cookie, const void *n, const void *k)
225 1.1 thorpej {
226 1.1 thorpej const struct futex *fa = n;
227 1.1 thorpej const union futex_key *fka = &fa->fx_key;
228 1.1 thorpej const union futex_key *fkb = k;
229 1.1 thorpej
230 1.1 thorpej if ((uintptr_t)fka->fk_private.vmspace <
231 1.1 thorpej (uintptr_t)fkb->fk_private.vmspace)
232 1.1 thorpej return -1;
233 1.1 thorpej if ((uintptr_t)fka->fk_private.vmspace >
234 1.1 thorpej (uintptr_t)fkb->fk_private.vmspace)
235 1.1 thorpej return +1;
236 1.1 thorpej if (fka->fk_private.va < fkb->fk_private.va)
237 1.1 thorpej return -1;
238 1.1 thorpej if (fka->fk_private.va > fkb->fk_private.va)
239 1.15 chs return +1;
240 1.1 thorpej return 0;
241 1.1 thorpej }
242 1.1 thorpej
243 1.1 thorpej static int
244 1.1 thorpej compare_futex(void *cookie, const void *na, const void *nb)
245 1.1 thorpej {
246 1.1 thorpej const struct futex *fa = na;
247 1.1 thorpej const struct futex *fb = nb;
248 1.1 thorpej
249 1.1 thorpej return compare_futex_key(cookie, fa, &fb->fx_key);
250 1.1 thorpej }
251 1.1 thorpej
252 1.1 thorpej static const rb_tree_ops_t futex_rb_ops = {
253 1.1 thorpej .rbto_compare_nodes = compare_futex,
254 1.1 thorpej .rbto_compare_key = compare_futex_key,
255 1.1 thorpej .rbto_node_offset = offsetof(struct futex, fx_node),
256 1.1 thorpej };
257 1.1 thorpej
258 1.1 thorpej static int
259 1.1 thorpej compare_futex_shared_key(void *cookie, const void *n, const void *k)
260 1.1 thorpej {
261 1.1 thorpej const struct futex *fa = n;
262 1.1 thorpej const union futex_key *fka = &fa->fx_key;
263 1.1 thorpej const union futex_key *fkb = k;
264 1.1 thorpej
265 1.1 thorpej return uvm_voaddr_compare(&fka->fk_shared, &fkb->fk_shared);
266 1.1 thorpej }
267 1.1 thorpej
268 1.1 thorpej static int
269 1.1 thorpej compare_futex_shared(void *cookie, const void *na, const void *nb)
270 1.1 thorpej {
271 1.1 thorpej const struct futex *fa = na;
272 1.1 thorpej const struct futex *fb = nb;
273 1.1 thorpej
274 1.1 thorpej return compare_futex_shared_key(cookie, fa, &fb->fx_key);
275 1.1 thorpej }
276 1.1 thorpej
277 1.1 thorpej static const rb_tree_ops_t futex_shared_rb_ops = {
278 1.1 thorpej .rbto_compare_nodes = compare_futex_shared,
279 1.1 thorpej .rbto_compare_key = compare_futex_shared_key,
280 1.1 thorpej .rbto_node_offset = offsetof(struct futex, fx_node),
281 1.1 thorpej };
282 1.1 thorpej
283 1.1 thorpej static void futex_wait_dequeue(struct futex_wait *, struct futex *);
284 1.1 thorpej
285 1.1 thorpej /*
286 1.1 thorpej * futex_load(uaddr, kaddr)
287 1.1 thorpej *
288 1.1 thorpej * Perform a single atomic load to read *uaddr, and return the
289 1.1 thorpej * result in *kaddr. Return 0 on success, EFAULT if uaddr is not
290 1.1 thorpej * mapped.
291 1.1 thorpej */
292 1.1 thorpej static inline int
293 1.1 thorpej futex_load(int *uaddr, int *kaddr)
294 1.1 thorpej {
295 1.1 thorpej return ufetch_int((u_int *)uaddr, (u_int *)kaddr);
296 1.1 thorpej }
297 1.1 thorpej
298 1.1 thorpej /*
299 1.1 thorpej * futex_test(uaddr, expected)
300 1.1 thorpej *
301 1.1 thorpej * True if *uaddr == expected. False if *uaddr != expected, or if
302 1.1 thorpej * uaddr is not mapped.
303 1.1 thorpej */
304 1.1 thorpej static bool
305 1.1 thorpej futex_test(int *uaddr, int expected)
306 1.1 thorpej {
307 1.1 thorpej int val;
308 1.1 thorpej int error;
309 1.1 thorpej
310 1.1 thorpej error = futex_load(uaddr, &val);
311 1.1 thorpej if (error)
312 1.1 thorpej return false;
313 1.1 thorpej return val == expected;
314 1.1 thorpej }
315 1.1 thorpej
316 1.1 thorpej /*
317 1.1 thorpej * futex_sys_init()
318 1.1 thorpej *
319 1.1 thorpej * Initialize the futex subsystem.
320 1.1 thorpej */
321 1.1 thorpej void
322 1.1 thorpej futex_sys_init(void)
323 1.1 thorpej {
324 1.1 thorpej
325 1.1 thorpej mutex_init(&futex_tab.lock, MUTEX_DEFAULT, IPL_NONE);
326 1.1 thorpej rb_tree_init(&futex_tab.va, &futex_rb_ops);
327 1.1 thorpej rb_tree_init(&futex_tab.oa, &futex_shared_rb_ops);
328 1.1 thorpej }
329 1.1 thorpej
330 1.1 thorpej /*
331 1.1 thorpej * futex_sys_fini()
332 1.1 thorpej *
333 1.1 thorpej * Finalize the futex subsystem.
334 1.1 thorpej */
335 1.1 thorpej void
336 1.1 thorpej futex_sys_fini(void)
337 1.1 thorpej {
338 1.1 thorpej
339 1.1 thorpej KASSERT(RB_TREE_MIN(&futex_tab.oa) == NULL);
340 1.1 thorpej KASSERT(RB_TREE_MIN(&futex_tab.va) == NULL);
341 1.1 thorpej mutex_destroy(&futex_tab.lock);
342 1.1 thorpej }
343 1.1 thorpej
344 1.1 thorpej /*
345 1.1 thorpej * futex_queue_init(f)
346 1.1 thorpej *
347 1.1 thorpej * Initialize the futex queue. Caller must call futex_queue_fini
348 1.1 thorpej * when done.
349 1.1 thorpej *
350 1.1 thorpej * Never sleeps.
351 1.1 thorpej */
352 1.1 thorpej static void
353 1.1 thorpej futex_queue_init(struct futex *f)
354 1.1 thorpej {
355 1.1 thorpej
356 1.1 thorpej mutex_init(&f->fx_qlock, MUTEX_DEFAULT, IPL_NONE);
357 1.1 thorpej mutex_init(&f->fx_abortlock, MUTEX_DEFAULT, IPL_NONE);
358 1.1 thorpej cv_init(&f->fx_abortcv, "fqabort");
359 1.1 thorpej LIST_INIT(&f->fx_abortlist);
360 1.1 thorpej TAILQ_INIT(&f->fx_queue);
361 1.1 thorpej }
362 1.1 thorpej
363 1.1 thorpej /*
364 1.1 thorpej * futex_queue_drain(f)
365 1.1 thorpej *
366 1.1 thorpej * Wait for any aborting waiters in f; then empty the queue of
367 1.1 thorpej * any stragglers and wake them. Caller must guarantee no new
368 1.1 thorpej * references to f.
369 1.1 thorpej *
370 1.1 thorpej * May sleep.
371 1.1 thorpej */
372 1.1 thorpej static void
373 1.1 thorpej futex_queue_drain(struct futex *f)
374 1.1 thorpej {
375 1.1 thorpej struct futex_wait *fw, *fw_next;
376 1.1 thorpej
377 1.1 thorpej mutex_enter(&f->fx_abortlock);
378 1.1 thorpej while (!LIST_EMPTY(&f->fx_abortlist))
379 1.1 thorpej cv_wait(&f->fx_abortcv, &f->fx_abortlock);
380 1.1 thorpej mutex_exit(&f->fx_abortlock);
381 1.1 thorpej
382 1.1 thorpej mutex_enter(&f->fx_qlock);
383 1.1 thorpej TAILQ_FOREACH_SAFE(fw, &f->fx_queue, fw_entry, fw_next) {
384 1.1 thorpej mutex_enter(&fw->fw_lock);
385 1.1 thorpej futex_wait_dequeue(fw, f);
386 1.1 thorpej cv_broadcast(&fw->fw_cv);
387 1.1 thorpej mutex_exit(&fw->fw_lock);
388 1.1 thorpej }
389 1.1 thorpej mutex_exit(&f->fx_qlock);
390 1.1 thorpej }
391 1.1 thorpej
392 1.1 thorpej /*
393 1.1 thorpej * futex_queue_fini(fq)
394 1.1 thorpej *
395 1.1 thorpej * Finalize the futex queue initialized by futex_queue_init. Queue
396 1.1 thorpej * must be empty. Caller must not use f again until a subsequent
397 1.1 thorpej * futex_queue_init.
398 1.1 thorpej */
399 1.1 thorpej static void
400 1.1 thorpej futex_queue_fini(struct futex *f)
401 1.1 thorpej {
402 1.1 thorpej
403 1.1 thorpej KASSERT(TAILQ_EMPTY(&f->fx_queue));
404 1.1 thorpej KASSERT(LIST_EMPTY(&f->fx_abortlist));
405 1.1 thorpej mutex_destroy(&f->fx_qlock);
406 1.1 thorpej mutex_destroy(&f->fx_abortlock);
407 1.1 thorpej cv_destroy(&f->fx_abortcv);
408 1.1 thorpej }
409 1.1 thorpej
410 1.1 thorpej /*
411 1.1 thorpej * futex_key_init(key, vm, va, shared)
412 1.1 thorpej *
413 1.1 thorpej * Initialize a futex key for lookup, etc.
414 1.1 thorpej */
415 1.1 thorpej static int
416 1.1 thorpej futex_key_init(union futex_key *fk, struct vmspace *vm, vaddr_t va, bool shared)
417 1.1 thorpej {
418 1.1 thorpej int error = 0;
419 1.1 thorpej
420 1.1 thorpej if (__predict_false(shared)) {
421 1.1 thorpej if (!uvm_voaddr_acquire(&vm->vm_map, va, &fk->fk_shared))
422 1.1 thorpej error = EFAULT;
423 1.1 thorpej } else {
424 1.1 thorpej fk->fk_private.vmspace = vm;
425 1.1 thorpej fk->fk_private.va = va;
426 1.1 thorpej }
427 1.1 thorpej
428 1.1 thorpej return error;
429 1.1 thorpej }
430 1.1 thorpej
431 1.1 thorpej /*
432 1.1 thorpej * futex_key_fini(key, shared)
433 1.1 thorpej *
434 1.1 thorpej * Release a futex key.
435 1.1 thorpej */
436 1.1 thorpej static void
437 1.1 thorpej futex_key_fini(union futex_key *fk, bool shared)
438 1.1 thorpej {
439 1.1 thorpej if (__predict_false(shared))
440 1.1 thorpej uvm_voaddr_release(&fk->fk_shared);
441 1.1 thorpej memset(fk, 0, sizeof(*fk));
442 1.1 thorpej }
443 1.1 thorpej
444 1.1 thorpej /*
445 1.1 thorpej * futex_create(fk, shared)
446 1.1 thorpej *
447 1.1 thorpej * Create a futex. Initial reference count is 1, representing the
448 1.1 thorpej * caller. Returns NULL on failure. Always takes ownership of the
449 1.1 thorpej * key, either transferring it to the newly-created futex, or releasing
450 1.1 thorpej * the key if creation fails.
451 1.1 thorpej *
452 1.1 thorpej * Never sleeps for memory, but may sleep to acquire a lock.
453 1.1 thorpej */
454 1.1 thorpej static struct futex *
455 1.1 thorpej futex_create(union futex_key *fk, bool shared)
456 1.1 thorpej {
457 1.1 thorpej struct futex *f;
458 1.1 thorpej
459 1.1 thorpej f = kmem_alloc(sizeof(*f), KM_NOSLEEP);
460 1.1 thorpej if (f == NULL) {
461 1.1 thorpej futex_key_fini(fk, shared);
462 1.1 thorpej return NULL;
463 1.1 thorpej }
464 1.1 thorpej f->fx_key = *fk;
465 1.1 thorpej f->fx_refcnt = 1;
466 1.1 thorpej f->fx_shared = shared;
467 1.1 thorpej f->fx_on_tree = false;
468 1.1 thorpej futex_queue_init(f);
469 1.1 thorpej
470 1.1 thorpej return f;
471 1.1 thorpej }
472 1.1 thorpej
473 1.1 thorpej /*
474 1.1 thorpej * futex_destroy(f)
475 1.1 thorpej *
476 1.1 thorpej * Destroy a futex created with futex_create. Reference count
477 1.1 thorpej * must be zero.
478 1.1 thorpej *
479 1.1 thorpej * May sleep.
480 1.1 thorpej */
481 1.1 thorpej static void
482 1.1 thorpej futex_destroy(struct futex *f)
483 1.1 thorpej {
484 1.1 thorpej
485 1.1 thorpej ASSERT_SLEEPABLE();
486 1.1 thorpej
487 1.1 thorpej KASSERT(atomic_load_relaxed(&f->fx_refcnt) == 0);
488 1.1 thorpej KASSERT(!f->fx_on_tree);
489 1.1 thorpej
490 1.1 thorpej /* Drain and destroy the private queue. */
491 1.1 thorpej futex_queue_drain(f);
492 1.1 thorpej futex_queue_fini(f);
493 1.1 thorpej
494 1.1 thorpej futex_key_fini(&f->fx_key, f->fx_shared);
495 1.1 thorpej
496 1.1 thorpej kmem_free(f, sizeof(*f));
497 1.1 thorpej }
498 1.1 thorpej
499 1.1 thorpej /*
500 1.1 thorpej * futex_hold(f)
501 1.1 thorpej *
502 1.1 thorpej * Attempt to acquire a reference to f. Return 0 on success,
503 1.1 thorpej * ENFILE on too many references.
504 1.1 thorpej *
505 1.1 thorpej * Never sleeps.
506 1.1 thorpej */
507 1.1 thorpej static int
508 1.1 thorpej futex_hold(struct futex *f)
509 1.1 thorpej {
510 1.1 thorpej unsigned long refcnt;
511 1.1 thorpej
512 1.1 thorpej do {
513 1.1 thorpej refcnt = atomic_load_relaxed(&f->fx_refcnt);
514 1.1 thorpej if (refcnt == ULONG_MAX)
515 1.1 thorpej return ENFILE;
516 1.1 thorpej } while (atomic_cas_ulong(&f->fx_refcnt, refcnt, refcnt + 1) != refcnt);
517 1.1 thorpej
518 1.1 thorpej return 0;
519 1.1 thorpej }
520 1.1 thorpej
521 1.1 thorpej /*
522 1.1 thorpej * futex_rele(f)
523 1.1 thorpej *
524 1.1 thorpej * Release a reference to f acquired with futex_create or
525 1.1 thorpej * futex_hold.
526 1.1 thorpej *
527 1.1 thorpej * May sleep to free f.
528 1.1 thorpej */
529 1.1 thorpej static void
530 1.1 thorpej futex_rele(struct futex *f)
531 1.1 thorpej {
532 1.1 thorpej unsigned long refcnt;
533 1.1 thorpej
534 1.1 thorpej ASSERT_SLEEPABLE();
535 1.1 thorpej
536 1.1 thorpej do {
537 1.1 thorpej refcnt = atomic_load_relaxed(&f->fx_refcnt);
538 1.1 thorpej if (refcnt == 1)
539 1.1 thorpej goto trylast;
540 1.16 riastrad #ifndef __HAVE_ATOMIC_AS_MEMBAR
541 1.17 riastrad membar_release();
542 1.16 riastrad #endif
543 1.1 thorpej } while (atomic_cas_ulong(&f->fx_refcnt, refcnt, refcnt - 1) != refcnt);
544 1.1 thorpej return;
545 1.1 thorpej
546 1.1 thorpej trylast:
547 1.1 thorpej mutex_enter(&futex_tab.lock);
548 1.1 thorpej if (atomic_dec_ulong_nv(&f->fx_refcnt) == 0) {
549 1.16 riastrad #ifndef __HAVE_ATOMIC_AS_MEMBAR
550 1.17 riastrad membar_acquire();
551 1.16 riastrad #endif
552 1.1 thorpej if (f->fx_on_tree) {
553 1.1 thorpej if (__predict_false(f->fx_shared))
554 1.1 thorpej rb_tree_remove_node(&futex_tab.oa, f);
555 1.1 thorpej else
556 1.1 thorpej rb_tree_remove_node(&futex_tab.va, f);
557 1.1 thorpej f->fx_on_tree = false;
558 1.1 thorpej }
559 1.1 thorpej } else {
560 1.1 thorpej /* References remain -- don't destroy it. */
561 1.1 thorpej f = NULL;
562 1.1 thorpej }
563 1.1 thorpej mutex_exit(&futex_tab.lock);
564 1.1 thorpej if (f != NULL)
565 1.1 thorpej futex_destroy(f);
566 1.1 thorpej }
567 1.1 thorpej
568 1.1 thorpej /*
569 1.1 thorpej * futex_rele_not_last(f)
570 1.1 thorpej *
571 1.1 thorpej * Release a reference to f acquired with futex_create or
572 1.1 thorpej * futex_hold.
573 1.1 thorpej *
574 1.1 thorpej * This version asserts that we are not dropping the last
575 1.1 thorpej * reference to f.
576 1.1 thorpej */
577 1.1 thorpej static void
578 1.1 thorpej futex_rele_not_last(struct futex *f)
579 1.1 thorpej {
580 1.1 thorpej unsigned long refcnt;
581 1.1 thorpej
582 1.1 thorpej do {
583 1.1 thorpej refcnt = atomic_load_relaxed(&f->fx_refcnt);
584 1.1 thorpej KASSERT(refcnt > 1);
585 1.1 thorpej } while (atomic_cas_ulong(&f->fx_refcnt, refcnt, refcnt - 1) != refcnt);
586 1.1 thorpej }
587 1.1 thorpej
588 1.1 thorpej /*
589 1.1 thorpej * futex_lookup_by_key(key, shared, &f)
590 1.1 thorpej *
591 1.1 thorpej * Try to find an existing futex va reference in the specified key
592 1.1 thorpej * On success, return 0, set f to found futex or to NULL if not found,
593 1.1 thorpej * and increment f's reference count if found.
594 1.1 thorpej *
595 1.1 thorpej * Return ENFILE if reference count too high.
596 1.1 thorpej *
597 1.1 thorpej * Internal lookup routine shared by futex_lookup() and
598 1.5 riastrad * futex_lookup_create().
599 1.1 thorpej */
600 1.1 thorpej static int
601 1.1 thorpej futex_lookup_by_key(union futex_key *fk, bool shared, struct futex **fp)
602 1.1 thorpej {
603 1.1 thorpej struct futex *f;
604 1.1 thorpej int error = 0;
605 1.1 thorpej
606 1.1 thorpej mutex_enter(&futex_tab.lock);
607 1.1 thorpej if (__predict_false(shared)) {
608 1.1 thorpej f = rb_tree_find_node(&futex_tab.oa, fk);
609 1.1 thorpej } else {
610 1.1 thorpej f = rb_tree_find_node(&futex_tab.va, fk);
611 1.1 thorpej }
612 1.1 thorpej if (f) {
613 1.1 thorpej error = futex_hold(f);
614 1.1 thorpej if (error)
615 1.1 thorpej f = NULL;
616 1.1 thorpej }
617 1.1 thorpej *fp = f;
618 1.1 thorpej mutex_exit(&futex_tab.lock);
619 1.1 thorpej
620 1.1 thorpej return error;
621 1.1 thorpej }
622 1.1 thorpej
623 1.1 thorpej /*
624 1.1 thorpej * futex_insert(f, fp)
625 1.1 thorpej *
626 1.1 thorpej * Try to insert the futex f into the tree by va. If there
627 1.1 thorpej * already is a futex for its va, acquire a reference to it, and
628 1.1 thorpej * store it in *fp; otherwise store f in *fp.
629 1.1 thorpej *
630 1.1 thorpej * Return 0 on success, ENFILE if there already is a futex but its
631 1.1 thorpej * reference count is too high.
632 1.1 thorpej */
633 1.1 thorpej static int
634 1.1 thorpej futex_insert(struct futex *f, struct futex **fp)
635 1.1 thorpej {
636 1.1 thorpej struct futex *f0;
637 1.1 thorpej int error;
638 1.1 thorpej
639 1.1 thorpej KASSERT(atomic_load_relaxed(&f->fx_refcnt) != 0);
640 1.1 thorpej KASSERT(!f->fx_on_tree);
641 1.1 thorpej
642 1.1 thorpej mutex_enter(&futex_tab.lock);
643 1.1 thorpej if (__predict_false(f->fx_shared))
644 1.1 thorpej f0 = rb_tree_insert_node(&futex_tab.oa, f);
645 1.1 thorpej else
646 1.1 thorpej f0 = rb_tree_insert_node(&futex_tab.va, f);
647 1.1 thorpej if (f0 == f) {
648 1.1 thorpej f->fx_on_tree = true;
649 1.1 thorpej error = 0;
650 1.1 thorpej } else {
651 1.1 thorpej KASSERT(atomic_load_relaxed(&f0->fx_refcnt) != 0);
652 1.1 thorpej KASSERT(f0->fx_on_tree);
653 1.1 thorpej error = futex_hold(f0);
654 1.1 thorpej if (error)
655 1.1 thorpej goto out;
656 1.1 thorpej }
657 1.1 thorpej *fp = f0;
658 1.1 thorpej out: mutex_exit(&futex_tab.lock);
659 1.1 thorpej
660 1.1 thorpej return error;
661 1.1 thorpej }
662 1.1 thorpej
663 1.1 thorpej /*
664 1.1 thorpej * futex_lookup(uaddr, shared, &f)
665 1.1 thorpej *
666 1.1 thorpej * Find a futex at the userland pointer uaddr in the current
667 1.1 thorpej * process's VM space. On success, return the futex in f and
668 1.1 thorpej * increment its reference count.
669 1.1 thorpej *
670 1.5 riastrad * Caller must call futex_rele when done.
671 1.1 thorpej */
672 1.1 thorpej static int
673 1.1 thorpej futex_lookup(int *uaddr, bool shared, struct futex **fp)
674 1.1 thorpej {
675 1.1 thorpej union futex_key fk;
676 1.1 thorpej struct vmspace *vm = curproc->p_vmspace;
677 1.1 thorpej vaddr_t va = (vaddr_t)uaddr;
678 1.1 thorpej int error;
679 1.1 thorpej
680 1.1 thorpej /*
681 1.1 thorpej * Reject unaligned user pointers so we don't cross page
682 1.1 thorpej * boundaries and so atomics will work.
683 1.1 thorpej */
684 1.1 thorpej if ((va & 3) != 0)
685 1.1 thorpej return EINVAL;
686 1.1 thorpej
687 1.1 thorpej /* Look it up. */
688 1.1 thorpej error = futex_key_init(&fk, vm, va, shared);
689 1.1 thorpej if (error)
690 1.1 thorpej return error;
691 1.1 thorpej
692 1.1 thorpej error = futex_lookup_by_key(&fk, shared, fp);
693 1.1 thorpej futex_key_fini(&fk, shared);
694 1.1 thorpej if (error)
695 1.1 thorpej return error;
696 1.1 thorpej
697 1.1 thorpej KASSERT(*fp == NULL || (*fp)->fx_shared == shared);
698 1.1 thorpej KASSERT(*fp == NULL || atomic_load_relaxed(&(*fp)->fx_refcnt) != 0);
699 1.1 thorpej
700 1.1 thorpej /*
701 1.1 thorpej * Success! (Caller must still check whether we found
702 1.1 thorpej * anything, but nothing went _wrong_ like trying to use
703 1.1 thorpej * unmapped memory.)
704 1.1 thorpej */
705 1.1 thorpej KASSERT(error == 0);
706 1.1 thorpej
707 1.1 thorpej return error;
708 1.1 thorpej }
709 1.1 thorpej
710 1.1 thorpej /*
711 1.5 riastrad * futex_lookup_create(uaddr, shared, &f)
712 1.1 thorpej *
713 1.1 thorpej * Find or create a futex at the userland pointer uaddr in the
714 1.1 thorpej * current process's VM space. On success, return the futex in f
715 1.1 thorpej * and increment its reference count.
716 1.1 thorpej *
717 1.5 riastrad * Caller must call futex_rele when done.
718 1.1 thorpej */
719 1.1 thorpej static int
720 1.5 riastrad futex_lookup_create(int *uaddr, bool shared, struct futex **fp)
721 1.1 thorpej {
722 1.1 thorpej union futex_key fk;
723 1.1 thorpej struct vmspace *vm = curproc->p_vmspace;
724 1.1 thorpej struct futex *f = NULL;
725 1.1 thorpej vaddr_t va = (vaddr_t)uaddr;
726 1.1 thorpej int error;
727 1.1 thorpej
728 1.1 thorpej /*
729 1.1 thorpej * Reject unaligned user pointers so we don't cross page
730 1.1 thorpej * boundaries and so atomics will work.
731 1.1 thorpej */
732 1.1 thorpej if ((va & 3) != 0)
733 1.1 thorpej return EINVAL;
734 1.1 thorpej
735 1.1 thorpej error = futex_key_init(&fk, vm, va, shared);
736 1.1 thorpej if (error)
737 1.1 thorpej return error;
738 1.1 thorpej
739 1.1 thorpej /*
740 1.1 thorpej * Optimistically assume there already is one, and try to find
741 1.1 thorpej * it.
742 1.1 thorpej */
743 1.1 thorpej error = futex_lookup_by_key(&fk, shared, fp);
744 1.1 thorpej if (error || *fp != NULL) {
745 1.1 thorpej /*
746 1.1 thorpej * We either found one, or there was an error.
747 1.1 thorpej * In either case, we are done with the key.
748 1.1 thorpej */
749 1.1 thorpej futex_key_fini(&fk, shared);
750 1.1 thorpej goto out;
751 1.1 thorpej }
752 1.1 thorpej
753 1.1 thorpej /*
754 1.14 andvar * Create a futex record. This transfers ownership of the key
755 1.1 thorpej * in all cases.
756 1.1 thorpej */
757 1.1 thorpej f = futex_create(&fk, shared);
758 1.1 thorpej if (f == NULL) {
759 1.1 thorpej error = ENOMEM;
760 1.1 thorpej goto out;
761 1.1 thorpej }
762 1.1 thorpej
763 1.1 thorpej /*
764 1.1 thorpej * Insert our new futex, or use existing if someone else beat
765 1.1 thorpej * us to it.
766 1.1 thorpej */
767 1.1 thorpej error = futex_insert(f, fp);
768 1.1 thorpej if (error)
769 1.1 thorpej goto out;
770 1.1 thorpej if (*fp == f)
771 1.1 thorpej f = NULL; /* don't release on exit */
772 1.1 thorpej
773 1.1 thorpej /* Success! */
774 1.1 thorpej KASSERT(error == 0);
775 1.1 thorpej
776 1.1 thorpej out: if (f != NULL)
777 1.1 thorpej futex_rele(f);
778 1.1 thorpej KASSERT(error || *fp != NULL);
779 1.1 thorpej KASSERT(error || atomic_load_relaxed(&(*fp)->fx_refcnt) != 0);
780 1.1 thorpej return error;
781 1.1 thorpej }
782 1.1 thorpej
783 1.1 thorpej /*
784 1.1 thorpej * futex_wait_init(fw, bitset)
785 1.1 thorpej *
786 1.1 thorpej * Initialize a record for a thread to wait on a futex matching
787 1.1 thorpej * the specified bit set. Should be passed to futex_wait_enqueue
788 1.1 thorpej * before futex_wait, and should be passed to futex_wait_fini when
789 1.1 thorpej * done.
790 1.1 thorpej */
791 1.1 thorpej static void
792 1.1 thorpej futex_wait_init(struct futex_wait *fw, int bitset)
793 1.1 thorpej {
794 1.1 thorpej
795 1.6 riastrad KASSERT(bitset);
796 1.6 riastrad
797 1.1 thorpej mutex_init(&fw->fw_lock, MUTEX_DEFAULT, IPL_NONE);
798 1.1 thorpej cv_init(&fw->fw_cv, "futex");
799 1.1 thorpej fw->fw_futex = NULL;
800 1.1 thorpej fw->fw_bitset = bitset;
801 1.4 riastrad fw->fw_aborting = false;
802 1.1 thorpej }
803 1.1 thorpej
804 1.1 thorpej /*
805 1.1 thorpej * futex_wait_fini(fw)
806 1.1 thorpej *
807 1.1 thorpej * Finalize a record for a futex waiter. Must not be on any
808 1.1 thorpej * futex's queue.
809 1.1 thorpej */
810 1.1 thorpej static void
811 1.1 thorpej futex_wait_fini(struct futex_wait *fw)
812 1.1 thorpej {
813 1.1 thorpej
814 1.6 riastrad KASSERT(fw->fw_futex == NULL);
815 1.6 riastrad
816 1.1 thorpej cv_destroy(&fw->fw_cv);
817 1.1 thorpej mutex_destroy(&fw->fw_lock);
818 1.1 thorpej }
819 1.1 thorpej
820 1.1 thorpej /*
821 1.1 thorpej * futex_wait_enqueue(fw, f)
822 1.1 thorpej *
823 1.1 thorpej * Put fw on the futex queue. Must be done before futex_wait.
824 1.1 thorpej * Caller must hold fw's lock and f's lock, and fw must not be on
825 1.1 thorpej * any existing futex's waiter list.
826 1.1 thorpej */
827 1.1 thorpej static void
828 1.1 thorpej futex_wait_enqueue(struct futex_wait *fw, struct futex *f)
829 1.1 thorpej {
830 1.1 thorpej
831 1.1 thorpej KASSERT(mutex_owned(&f->fx_qlock));
832 1.1 thorpej KASSERT(mutex_owned(&fw->fw_lock));
833 1.1 thorpej KASSERT(fw->fw_futex == NULL);
834 1.4 riastrad KASSERT(!fw->fw_aborting);
835 1.1 thorpej
836 1.1 thorpej fw->fw_futex = f;
837 1.1 thorpej TAILQ_INSERT_TAIL(&f->fx_queue, fw, fw_entry);
838 1.1 thorpej }
839 1.1 thorpej
840 1.1 thorpej /*
841 1.1 thorpej * futex_wait_dequeue(fw, f)
842 1.1 thorpej *
843 1.1 thorpej * Remove fw from the futex queue. Precludes subsequent
844 1.1 thorpej * futex_wait until a futex_wait_enqueue. Caller must hold fw's
845 1.1 thorpej * lock and f's lock, and fw must be on f.
846 1.1 thorpej */
847 1.1 thorpej static void
848 1.1 thorpej futex_wait_dequeue(struct futex_wait *fw, struct futex *f)
849 1.1 thorpej {
850 1.1 thorpej
851 1.1 thorpej KASSERT(mutex_owned(&f->fx_qlock));
852 1.1 thorpej KASSERT(mutex_owned(&fw->fw_lock));
853 1.1 thorpej KASSERT(fw->fw_futex == f);
854 1.1 thorpej
855 1.1 thorpej TAILQ_REMOVE(&f->fx_queue, fw, fw_entry);
856 1.1 thorpej fw->fw_futex = NULL;
857 1.1 thorpej }
858 1.1 thorpej
859 1.1 thorpej /*
860 1.1 thorpej * futex_wait_abort(fw)
861 1.1 thorpej *
862 1.1 thorpej * Caller is no longer waiting for fw. Remove it from any queue
863 1.4 riastrad * if it was on one. Caller must hold fw->fw_lock.
864 1.1 thorpej */
865 1.1 thorpej static void
866 1.1 thorpej futex_wait_abort(struct futex_wait *fw)
867 1.1 thorpej {
868 1.1 thorpej struct futex *f;
869 1.1 thorpej
870 1.4 riastrad KASSERT(mutex_owned(&fw->fw_lock));
871 1.1 thorpej
872 1.1 thorpej /*
873 1.1 thorpej * Grab the futex queue. It can't go away as long as we hold
874 1.1 thorpej * fw_lock. However, we can't take the queue lock because
875 1.1 thorpej * that's a lock order reversal.
876 1.1 thorpej */
877 1.1 thorpej f = fw->fw_futex;
878 1.1 thorpej
879 1.1 thorpej /* Put us on the abort list so that fq won't go away. */
880 1.1 thorpej mutex_enter(&f->fx_abortlock);
881 1.1 thorpej LIST_INSERT_HEAD(&f->fx_abortlist, fw, fw_abort);
882 1.1 thorpej mutex_exit(&f->fx_abortlock);
883 1.1 thorpej
884 1.4 riastrad /*
885 1.4 riastrad * Mark fw as aborting so it won't lose wakeups and won't be
886 1.4 riastrad * transferred to any other queue.
887 1.4 riastrad */
888 1.4 riastrad fw->fw_aborting = true;
889 1.4 riastrad
890 1.1 thorpej /* f is now stable, so we can release fw_lock. */
891 1.1 thorpej mutex_exit(&fw->fw_lock);
892 1.1 thorpej
893 1.1 thorpej /* Now we can remove fw under the queue lock. */
894 1.1 thorpej mutex_enter(&f->fx_qlock);
895 1.4 riastrad mutex_enter(&fw->fw_lock);
896 1.4 riastrad futex_wait_dequeue(fw, f);
897 1.4 riastrad mutex_exit(&fw->fw_lock);
898 1.1 thorpej mutex_exit(&f->fx_qlock);
899 1.1 thorpej
900 1.1 thorpej /*
901 1.1 thorpej * Finally, remove us from the abort list and notify anyone
902 1.1 thorpej * waiting for the abort to complete if we were the last to go.
903 1.1 thorpej */
904 1.1 thorpej mutex_enter(&f->fx_abortlock);
905 1.1 thorpej LIST_REMOVE(fw, fw_abort);
906 1.1 thorpej if (LIST_EMPTY(&f->fx_abortlist))
907 1.1 thorpej cv_broadcast(&f->fx_abortcv);
908 1.1 thorpej mutex_exit(&f->fx_abortlock);
909 1.4 riastrad
910 1.4 riastrad /*
911 1.4 riastrad * Release our reference to the futex now that we are not
912 1.4 riastrad * waiting for it.
913 1.4 riastrad */
914 1.4 riastrad futex_rele(f);
915 1.4 riastrad
916 1.4 riastrad /*
917 1.4 riastrad * Reacquire the fw lock as caller expects. Verify that we're
918 1.4 riastrad * aborting and no longer associated with a futex.
919 1.4 riastrad */
920 1.4 riastrad mutex_enter(&fw->fw_lock);
921 1.4 riastrad KASSERT(fw->fw_aborting);
922 1.4 riastrad KASSERT(fw->fw_futex == NULL);
923 1.1 thorpej }
924 1.1 thorpej
925 1.1 thorpej /*
926 1.11 riastrad * futex_wait(fw, deadline, clkid)
927 1.1 thorpej *
928 1.11 riastrad * fw must be a waiter on a futex's queue. Wait until deadline on
929 1.11 riastrad * the clock clkid, or forever if deadline is NULL, for a futex
930 1.11 riastrad * wakeup. Return 0 on explicit wakeup or destruction of futex,
931 1.11 riastrad * ETIMEDOUT on timeout, EINTR/ERESTART on signal. Either way, fw
932 1.11 riastrad * will no longer be on a futex queue on return.
933 1.1 thorpej */
934 1.1 thorpej static int
935 1.11 riastrad futex_wait(struct futex_wait *fw, const struct timespec *deadline,
936 1.11 riastrad clockid_t clkid)
937 1.1 thorpej {
938 1.1 thorpej int error = 0;
939 1.1 thorpej
940 1.1 thorpej /* Test and wait under the wait lock. */
941 1.1 thorpej mutex_enter(&fw->fw_lock);
942 1.4 riastrad
943 1.4 riastrad for (;;) {
944 1.11 riastrad /* If we're done yet, stop and report success. */
945 1.4 riastrad if (fw->fw_bitset == 0 || fw->fw_futex == NULL) {
946 1.4 riastrad error = 0;
947 1.4 riastrad break;
948 1.4 riastrad }
949 1.4 riastrad
950 1.4 riastrad /* If anything went wrong in the last iteration, stop. */
951 1.4 riastrad if (error)
952 1.4 riastrad break;
953 1.4 riastrad
954 1.1 thorpej /* Not done yet. Wait. */
955 1.11 riastrad if (deadline) {
956 1.11 riastrad struct timespec ts;
957 1.11 riastrad
958 1.11 riastrad /* Check our watch. */
959 1.11 riastrad error = clock_gettime1(clkid, &ts);
960 1.11 riastrad if (error)
961 1.11 riastrad break;
962 1.11 riastrad
963 1.11 riastrad /* If we're past the deadline, ETIMEDOUT. */
964 1.11 riastrad if (timespeccmp(deadline, &ts, <=)) {
965 1.11 riastrad error = ETIMEDOUT;
966 1.11 riastrad break;
967 1.11 riastrad }
968 1.11 riastrad
969 1.11 riastrad /* Count how much time is left. */
970 1.11 riastrad timespecsub(deadline, &ts, &ts);
971 1.11 riastrad
972 1.11 riastrad /* Wait for that much time, allowing signals. */
973 1.11 riastrad error = cv_timedwait_sig(&fw->fw_cv, &fw->fw_lock,
974 1.11 riastrad tstohz(&ts));
975 1.11 riastrad } else {
976 1.11 riastrad /* Wait indefinitely, allowing signals. */
977 1.11 riastrad error = cv_wait_sig(&fw->fw_cv, &fw->fw_lock);
978 1.11 riastrad }
979 1.1 thorpej }
980 1.4 riastrad
981 1.4 riastrad /*
982 1.4 riastrad * If we were woken up, the waker will have removed fw from the
983 1.4 riastrad * queue. But if anything went wrong, we must remove fw from
984 1.4 riastrad * the queue ourselves. While here, convert EWOULDBLOCK to
985 1.10 riastrad * ETIMEDOUT.
986 1.4 riastrad */
987 1.4 riastrad if (error) {
988 1.4 riastrad futex_wait_abort(fw);
989 1.4 riastrad if (error == EWOULDBLOCK)
990 1.4 riastrad error = ETIMEDOUT;
991 1.4 riastrad }
992 1.4 riastrad
993 1.1 thorpej mutex_exit(&fw->fw_lock);
994 1.1 thorpej
995 1.1 thorpej return error;
996 1.1 thorpej }
997 1.1 thorpej
998 1.1 thorpej /*
999 1.1 thorpej * futex_wake(f, nwake, f2, nrequeue, bitset)
1000 1.1 thorpej *
1001 1.1 thorpej * Wake up to nwake waiters on f matching bitset; then, if f2 is
1002 1.1 thorpej * provided, move up to nrequeue remaining waiters on f matching
1003 1.1 thorpej * bitset to f2. Return the number of waiters actually woken.
1004 1.1 thorpej * Caller must hold the locks of f and f2, if provided.
1005 1.1 thorpej */
1006 1.1 thorpej static unsigned
1007 1.1 thorpej futex_wake(struct futex *f, unsigned nwake, struct futex *f2,
1008 1.1 thorpej unsigned nrequeue, int bitset)
1009 1.1 thorpej {
1010 1.1 thorpej struct futex_wait *fw, *fw_next;
1011 1.1 thorpej unsigned nwoken = 0;
1012 1.2 mlelstv int hold_error __diagused;
1013 1.1 thorpej
1014 1.1 thorpej KASSERT(mutex_owned(&f->fx_qlock));
1015 1.1 thorpej KASSERT(f2 == NULL || mutex_owned(&f2->fx_qlock));
1016 1.1 thorpej
1017 1.1 thorpej /* Wake up to nwake waiters, and count the number woken. */
1018 1.1 thorpej TAILQ_FOREACH_SAFE(fw, &f->fx_queue, fw_entry, fw_next) {
1019 1.1 thorpej if ((fw->fw_bitset & bitset) == 0)
1020 1.1 thorpej continue;
1021 1.4 riastrad if (nwake > 0) {
1022 1.1 thorpej mutex_enter(&fw->fw_lock);
1023 1.4 riastrad if (__predict_false(fw->fw_aborting)) {
1024 1.4 riastrad mutex_exit(&fw->fw_lock);
1025 1.4 riastrad continue;
1026 1.4 riastrad }
1027 1.1 thorpej futex_wait_dequeue(fw, f);
1028 1.1 thorpej fw->fw_bitset = 0;
1029 1.1 thorpej cv_broadcast(&fw->fw_cv);
1030 1.1 thorpej mutex_exit(&fw->fw_lock);
1031 1.4 riastrad nwake--;
1032 1.1 thorpej nwoken++;
1033 1.1 thorpej /*
1034 1.1 thorpej * Drop the futex reference on behalf of the
1035 1.1 thorpej * waiter. We assert this is not the last
1036 1.1 thorpej * reference on the futex (our caller should
1037 1.1 thorpej * also have one).
1038 1.1 thorpej */
1039 1.1 thorpej futex_rele_not_last(f);
1040 1.1 thorpej } else {
1041 1.1 thorpej break;
1042 1.1 thorpej }
1043 1.1 thorpej }
1044 1.1 thorpej
1045 1.1 thorpej if (f2) {
1046 1.1 thorpej /* Move up to nrequeue waiters from f's queue to f2's queue. */
1047 1.1 thorpej TAILQ_FOREACH_SAFE(fw, &f->fx_queue, fw_entry, fw_next) {
1048 1.1 thorpej if ((fw->fw_bitset & bitset) == 0)
1049 1.1 thorpej continue;
1050 1.4 riastrad if (nrequeue > 0) {
1051 1.1 thorpej mutex_enter(&fw->fw_lock);
1052 1.4 riastrad if (__predict_false(fw->fw_aborting)) {
1053 1.4 riastrad mutex_exit(&fw->fw_lock);
1054 1.4 riastrad continue;
1055 1.4 riastrad }
1056 1.1 thorpej futex_wait_dequeue(fw, f);
1057 1.1 thorpej futex_wait_enqueue(fw, f2);
1058 1.1 thorpej mutex_exit(&fw->fw_lock);
1059 1.4 riastrad nrequeue--;
1060 1.1 thorpej /*
1061 1.1 thorpej * Transfer the reference from f to f2.
1062 1.1 thorpej * As above, we assert that we are not
1063 1.1 thorpej * dropping the last reference to f here.
1064 1.1 thorpej *
1065 1.1 thorpej * XXX futex_hold() could theoretically
1066 1.1 thorpej * XXX fail here.
1067 1.1 thorpej */
1068 1.1 thorpej futex_rele_not_last(f);
1069 1.1 thorpej hold_error = futex_hold(f2);
1070 1.1 thorpej KASSERT(hold_error == 0);
1071 1.1 thorpej } else {
1072 1.1 thorpej break;
1073 1.1 thorpej }
1074 1.1 thorpej }
1075 1.1 thorpej } else {
1076 1.1 thorpej KASSERT(nrequeue == 0);
1077 1.1 thorpej }
1078 1.1 thorpej
1079 1.1 thorpej /* Return the number of waiters woken. */
1080 1.1 thorpej return nwoken;
1081 1.1 thorpej }
1082 1.1 thorpej
1083 1.1 thorpej /*
1084 1.1 thorpej * futex_queue_lock(f)
1085 1.1 thorpej *
1086 1.1 thorpej * Acquire the queue lock of f. Pair with futex_queue_unlock. Do
1087 1.1 thorpej * not use if caller needs to acquire two locks; use
1088 1.1 thorpej * futex_queue_lock2 instead.
1089 1.1 thorpej */
1090 1.1 thorpej static void
1091 1.1 thorpej futex_queue_lock(struct futex *f)
1092 1.1 thorpej {
1093 1.1 thorpej mutex_enter(&f->fx_qlock);
1094 1.1 thorpej }
1095 1.1 thorpej
1096 1.1 thorpej /*
1097 1.1 thorpej * futex_queue_unlock(f)
1098 1.1 thorpej *
1099 1.1 thorpej * Release the queue lock of f.
1100 1.1 thorpej */
1101 1.1 thorpej static void
1102 1.1 thorpej futex_queue_unlock(struct futex *f)
1103 1.1 thorpej {
1104 1.1 thorpej mutex_exit(&f->fx_qlock);
1105 1.1 thorpej }
1106 1.1 thorpej
1107 1.1 thorpej /*
1108 1.1 thorpej * futex_queue_lock2(f, f2)
1109 1.1 thorpej *
1110 1.1 thorpej * Acquire the queue locks of both f and f2, which may be null, or
1111 1.1 thorpej * which may have the same underlying queue. If they are
1112 1.1 thorpej * distinct, an arbitrary total order is chosen on the locks.
1113 1.1 thorpej *
1114 1.1 thorpej * Callers should only ever acquire multiple queue locks
1115 1.1 thorpej * simultaneously using futex_queue_lock2.
1116 1.1 thorpej */
1117 1.1 thorpej static void
1118 1.1 thorpej futex_queue_lock2(struct futex *f, struct futex *f2)
1119 1.1 thorpej {
1120 1.1 thorpej
1121 1.1 thorpej /*
1122 1.1 thorpej * If both are null, do nothing; if one is null and the other
1123 1.1 thorpej * is not, lock the other and be done with it.
1124 1.1 thorpej */
1125 1.1 thorpej if (f == NULL && f2 == NULL) {
1126 1.1 thorpej return;
1127 1.1 thorpej } else if (f == NULL) {
1128 1.1 thorpej mutex_enter(&f2->fx_qlock);
1129 1.1 thorpej return;
1130 1.1 thorpej } else if (f2 == NULL) {
1131 1.1 thorpej mutex_enter(&f->fx_qlock);
1132 1.1 thorpej return;
1133 1.1 thorpej }
1134 1.1 thorpej
1135 1.1 thorpej /* If both futexes are the same, acquire only one. */
1136 1.1 thorpej if (f == f2) {
1137 1.1 thorpej mutex_enter(&f->fx_qlock);
1138 1.1 thorpej return;
1139 1.1 thorpej }
1140 1.1 thorpej
1141 1.1 thorpej /* Otherwise, use the ordering on the kva of the futex pointer. */
1142 1.1 thorpej if ((uintptr_t)f < (uintptr_t)f2) {
1143 1.1 thorpej mutex_enter(&f->fx_qlock);
1144 1.1 thorpej mutex_enter(&f2->fx_qlock);
1145 1.1 thorpej } else {
1146 1.1 thorpej mutex_enter(&f2->fx_qlock);
1147 1.1 thorpej mutex_enter(&f->fx_qlock);
1148 1.1 thorpej }
1149 1.1 thorpej }
1150 1.1 thorpej
1151 1.1 thorpej /*
1152 1.1 thorpej * futex_queue_unlock2(f, f2)
1153 1.1 thorpej *
1154 1.1 thorpej * Release the queue locks of both f and f2, which may be null, or
1155 1.1 thorpej * which may have the same underlying queue.
1156 1.1 thorpej */
1157 1.1 thorpej static void
1158 1.1 thorpej futex_queue_unlock2(struct futex *f, struct futex *f2)
1159 1.1 thorpej {
1160 1.1 thorpej
1161 1.1 thorpej /*
1162 1.1 thorpej * If both are null, do nothing; if one is null and the other
1163 1.1 thorpej * is not, unlock the other and be done with it.
1164 1.1 thorpej */
1165 1.1 thorpej if (f == NULL && f2 == NULL) {
1166 1.1 thorpej return;
1167 1.1 thorpej } else if (f == NULL) {
1168 1.1 thorpej mutex_exit(&f2->fx_qlock);
1169 1.1 thorpej return;
1170 1.1 thorpej } else if (f2 == NULL) {
1171 1.1 thorpej mutex_exit(&f->fx_qlock);
1172 1.1 thorpej return;
1173 1.1 thorpej }
1174 1.1 thorpej
1175 1.1 thorpej /* If both futexes are the same, release only one. */
1176 1.1 thorpej if (f == f2) {
1177 1.1 thorpej mutex_exit(&f->fx_qlock);
1178 1.1 thorpej return;
1179 1.1 thorpej }
1180 1.1 thorpej
1181 1.1 thorpej /* Otherwise, use the ordering on the kva of the futex pointer. */
1182 1.1 thorpej if ((uintptr_t)f < (uintptr_t)f2) {
1183 1.1 thorpej mutex_exit(&f2->fx_qlock);
1184 1.1 thorpej mutex_exit(&f->fx_qlock);
1185 1.1 thorpej } else {
1186 1.1 thorpej mutex_exit(&f->fx_qlock);
1187 1.1 thorpej mutex_exit(&f2->fx_qlock);
1188 1.1 thorpej }
1189 1.1 thorpej }
1190 1.1 thorpej
1191 1.1 thorpej /*
1192 1.1 thorpej * futex_func_wait(uaddr, val, val3, timeout, clkid, clkflags, retval)
1193 1.1 thorpej *
1194 1.1 thorpej * Implement futex(FUTEX_WAIT).
1195 1.1 thorpej */
1196 1.1 thorpej static int
1197 1.1 thorpej futex_func_wait(bool shared, int *uaddr, int val, int val3,
1198 1.11 riastrad const struct timespec *timeout, clockid_t clkid, int clkflags,
1199 1.1 thorpej register_t *retval)
1200 1.1 thorpej {
1201 1.1 thorpej struct futex *f;
1202 1.1 thorpej struct futex_wait wait, *fw = &wait;
1203 1.11 riastrad struct timespec ts;
1204 1.11 riastrad const struct timespec *deadline;
1205 1.1 thorpej int error;
1206 1.1 thorpej
1207 1.6 riastrad /*
1208 1.6 riastrad * If there's nothing to wait for, and nobody will ever wake
1209 1.6 riastrad * us, then don't set anything up to wait -- just stop here.
1210 1.6 riastrad */
1211 1.6 riastrad if (val3 == 0)
1212 1.7 riastrad return EINVAL;
1213 1.6 riastrad
1214 1.1 thorpej /* Optimistically test before anything else. */
1215 1.1 thorpej if (!futex_test(uaddr, val))
1216 1.1 thorpej return EAGAIN;
1217 1.1 thorpej
1218 1.11 riastrad /* Determine a deadline on the specified clock. */
1219 1.11 riastrad if (timeout == NULL || (clkflags & TIMER_ABSTIME) == TIMER_ABSTIME) {
1220 1.11 riastrad deadline = timeout;
1221 1.11 riastrad } else {
1222 1.11 riastrad error = clock_gettime1(clkid, &ts);
1223 1.11 riastrad if (error)
1224 1.11 riastrad return error;
1225 1.11 riastrad timespecadd(&ts, timeout, &ts);
1226 1.11 riastrad deadline = &ts;
1227 1.11 riastrad }
1228 1.11 riastrad
1229 1.1 thorpej /* Get the futex, creating it if necessary. */
1230 1.5 riastrad error = futex_lookup_create(uaddr, shared, &f);
1231 1.1 thorpej if (error)
1232 1.1 thorpej return error;
1233 1.1 thorpej KASSERT(f);
1234 1.1 thorpej
1235 1.1 thorpej /* Get ready to wait. */
1236 1.1 thorpej futex_wait_init(fw, val3);
1237 1.1 thorpej
1238 1.1 thorpej /*
1239 1.1 thorpej * Under the queue lock, check the value again: if it has
1240 1.1 thorpej * already changed, EAGAIN; otherwise enqueue the waiter.
1241 1.1 thorpej * Since FUTEX_WAKE will use the same lock and be done after
1242 1.1 thorpej * modifying the value, the order in which we check and enqueue
1243 1.1 thorpej * is immaterial.
1244 1.1 thorpej */
1245 1.1 thorpej futex_queue_lock(f);
1246 1.1 thorpej if (!futex_test(uaddr, val)) {
1247 1.1 thorpej futex_queue_unlock(f);
1248 1.1 thorpej error = EAGAIN;
1249 1.1 thorpej goto out;
1250 1.1 thorpej }
1251 1.1 thorpej mutex_enter(&fw->fw_lock);
1252 1.1 thorpej futex_wait_enqueue(fw, f);
1253 1.1 thorpej mutex_exit(&fw->fw_lock);
1254 1.1 thorpej futex_queue_unlock(f);
1255 1.1 thorpej
1256 1.1 thorpej /*
1257 1.1 thorpej * We cannot drop our reference to the futex here, because
1258 1.1 thorpej * we might be enqueued on a different one when we are awakened.
1259 1.1 thorpej * The references will be managed on our behalf in the requeue
1260 1.1 thorpej * and wake cases.
1261 1.1 thorpej */
1262 1.1 thorpej f = NULL;
1263 1.1 thorpej
1264 1.1 thorpej /* Wait. */
1265 1.11 riastrad error = futex_wait(fw, deadline, clkid);
1266 1.4 riastrad if (error)
1267 1.1 thorpej goto out;
1268 1.1 thorpej
1269 1.1 thorpej /* Return 0 on success, error on failure. */
1270 1.1 thorpej *retval = 0;
1271 1.1 thorpej
1272 1.1 thorpej out: if (f != NULL)
1273 1.5 riastrad futex_rele(f);
1274 1.1 thorpej futex_wait_fini(fw);
1275 1.1 thorpej return error;
1276 1.1 thorpej }
1277 1.1 thorpej
1278 1.1 thorpej /*
1279 1.1 thorpej * futex_func_wake(uaddr, val, val3, retval)
1280 1.1 thorpej *
1281 1.1 thorpej * Implement futex(FUTEX_WAKE) and futex(FUTEX_WAKE_BITSET).
1282 1.1 thorpej */
1283 1.1 thorpej static int
1284 1.1 thorpej futex_func_wake(bool shared, int *uaddr, int val, int val3, register_t *retval)
1285 1.1 thorpej {
1286 1.1 thorpej struct futex *f;
1287 1.1 thorpej unsigned int nwoken = 0;
1288 1.1 thorpej int error = 0;
1289 1.1 thorpej
1290 1.1 thorpej /* Reject negative number of wakeups. */
1291 1.1 thorpej if (val < 0) {
1292 1.1 thorpej error = EINVAL;
1293 1.1 thorpej goto out;
1294 1.1 thorpej }
1295 1.1 thorpej
1296 1.1 thorpej /* Look up the futex, if any. */
1297 1.1 thorpej error = futex_lookup(uaddr, shared, &f);
1298 1.1 thorpej if (error)
1299 1.1 thorpej goto out;
1300 1.1 thorpej
1301 1.1 thorpej /* If there's no futex, there are no waiters to wake. */
1302 1.1 thorpej if (f == NULL)
1303 1.1 thorpej goto out;
1304 1.1 thorpej
1305 1.1 thorpej /*
1306 1.1 thorpej * Under f's queue lock, wake the waiters and remember the
1307 1.1 thorpej * number woken.
1308 1.1 thorpej */
1309 1.1 thorpej futex_queue_lock(f);
1310 1.1 thorpej nwoken = futex_wake(f, val, NULL, 0, val3);
1311 1.1 thorpej futex_queue_unlock(f);
1312 1.1 thorpej
1313 1.1 thorpej /* Release the futex. */
1314 1.5 riastrad futex_rele(f);
1315 1.1 thorpej
1316 1.1 thorpej out:
1317 1.1 thorpej /* Return the number of waiters woken. */
1318 1.1 thorpej *retval = nwoken;
1319 1.1 thorpej
1320 1.1 thorpej /* Success! */
1321 1.1 thorpej return error;
1322 1.1 thorpej }
1323 1.1 thorpej
1324 1.1 thorpej /*
1325 1.1 thorpej * futex_func_requeue(op, uaddr, val, uaddr2, val2, val3, retval)
1326 1.1 thorpej *
1327 1.1 thorpej * Implement futex(FUTEX_REQUEUE) and futex(FUTEX_CMP_REQUEUE).
1328 1.1 thorpej */
1329 1.1 thorpej static int
1330 1.1 thorpej futex_func_requeue(bool shared, int op, int *uaddr, int val, int *uaddr2,
1331 1.1 thorpej int val2, int val3, register_t *retval)
1332 1.1 thorpej {
1333 1.1 thorpej struct futex *f = NULL, *f2 = NULL;
1334 1.1 thorpej unsigned nwoken = 0; /* default to zero woken on early return */
1335 1.1 thorpej int error;
1336 1.1 thorpej
1337 1.1 thorpej /* Reject negative number of wakeups or requeues. */
1338 1.1 thorpej if (val < 0 || val2 < 0) {
1339 1.1 thorpej error = EINVAL;
1340 1.1 thorpej goto out;
1341 1.1 thorpej }
1342 1.1 thorpej
1343 1.1 thorpej /* Look up the source futex, if any. */
1344 1.1 thorpej error = futex_lookup(uaddr, shared, &f);
1345 1.1 thorpej if (error)
1346 1.1 thorpej goto out;
1347 1.1 thorpej
1348 1.1 thorpej /* If there is none, nothing to do. */
1349 1.1 thorpej if (f == NULL)
1350 1.1 thorpej goto out;
1351 1.1 thorpej
1352 1.1 thorpej /*
1353 1.1 thorpej * We may need to create the destination futex because it's
1354 1.1 thorpej * entirely possible it does not currently have any waiters.
1355 1.1 thorpej */
1356 1.5 riastrad error = futex_lookup_create(uaddr2, shared, &f2);
1357 1.1 thorpej if (error)
1358 1.1 thorpej goto out;
1359 1.1 thorpej
1360 1.1 thorpej /*
1361 1.1 thorpej * Under the futexes' queue locks, check the value; if
1362 1.1 thorpej * unchanged from val3, wake the waiters.
1363 1.1 thorpej */
1364 1.1 thorpej futex_queue_lock2(f, f2);
1365 1.1 thorpej if (op == FUTEX_CMP_REQUEUE && !futex_test(uaddr, val3)) {
1366 1.1 thorpej error = EAGAIN;
1367 1.1 thorpej } else {
1368 1.1 thorpej error = 0;
1369 1.1 thorpej nwoken = futex_wake(f, val, f2, val2, FUTEX_BITSET_MATCH_ANY);
1370 1.1 thorpej }
1371 1.1 thorpej futex_queue_unlock2(f, f2);
1372 1.1 thorpej
1373 1.1 thorpej out:
1374 1.1 thorpej /* Return the number of waiters woken. */
1375 1.1 thorpej *retval = nwoken;
1376 1.1 thorpej
1377 1.1 thorpej /* Release the futexes if we got them. */
1378 1.1 thorpej if (f2)
1379 1.5 riastrad futex_rele(f2);
1380 1.1 thorpej if (f)
1381 1.5 riastrad futex_rele(f);
1382 1.1 thorpej return error;
1383 1.1 thorpej }
1384 1.1 thorpej
1385 1.1 thorpej /*
1386 1.1 thorpej * futex_validate_op_cmp(val3)
1387 1.1 thorpej *
1388 1.1 thorpej * Validate an op/cmp argument for FUTEX_WAKE_OP.
1389 1.1 thorpej */
1390 1.1 thorpej static int
1391 1.1 thorpej futex_validate_op_cmp(int val3)
1392 1.1 thorpej {
1393 1.1 thorpej int op = __SHIFTOUT(val3, FUTEX_OP_OP_MASK);
1394 1.1 thorpej int cmp = __SHIFTOUT(val3, FUTEX_OP_CMP_MASK);
1395 1.1 thorpej
1396 1.1 thorpej if (op & FUTEX_OP_OPARG_SHIFT) {
1397 1.1 thorpej int oparg = __SHIFTOUT(val3, FUTEX_OP_OPARG_MASK);
1398 1.1 thorpej if (oparg < 0)
1399 1.1 thorpej return EINVAL;
1400 1.1 thorpej if (oparg >= 32)
1401 1.1 thorpej return EINVAL;
1402 1.1 thorpej op &= ~FUTEX_OP_OPARG_SHIFT;
1403 1.1 thorpej }
1404 1.1 thorpej
1405 1.1 thorpej switch (op) {
1406 1.1 thorpej case FUTEX_OP_SET:
1407 1.1 thorpej case FUTEX_OP_ADD:
1408 1.1 thorpej case FUTEX_OP_OR:
1409 1.1 thorpej case FUTEX_OP_ANDN:
1410 1.1 thorpej case FUTEX_OP_XOR:
1411 1.1 thorpej break;
1412 1.1 thorpej default:
1413 1.1 thorpej return EINVAL;
1414 1.1 thorpej }
1415 1.1 thorpej
1416 1.1 thorpej switch (cmp) {
1417 1.1 thorpej case FUTEX_OP_CMP_EQ:
1418 1.1 thorpej case FUTEX_OP_CMP_NE:
1419 1.1 thorpej case FUTEX_OP_CMP_LT:
1420 1.1 thorpej case FUTEX_OP_CMP_LE:
1421 1.1 thorpej case FUTEX_OP_CMP_GT:
1422 1.1 thorpej case FUTEX_OP_CMP_GE:
1423 1.1 thorpej break;
1424 1.1 thorpej default:
1425 1.1 thorpej return EINVAL;
1426 1.1 thorpej }
1427 1.1 thorpej
1428 1.1 thorpej return 0;
1429 1.1 thorpej }
1430 1.1 thorpej
1431 1.1 thorpej /*
1432 1.1 thorpej * futex_compute_op(oldval, val3)
1433 1.1 thorpej *
1434 1.1 thorpej * Apply a FUTEX_WAIT_OP operation to oldval.
1435 1.1 thorpej */
1436 1.1 thorpej static int
1437 1.1 thorpej futex_compute_op(int oldval, int val3)
1438 1.1 thorpej {
1439 1.1 thorpej int op = __SHIFTOUT(val3, FUTEX_OP_OP_MASK);
1440 1.1 thorpej int oparg = __SHIFTOUT(val3, FUTEX_OP_OPARG_MASK);
1441 1.1 thorpej
1442 1.1 thorpej if (op & FUTEX_OP_OPARG_SHIFT) {
1443 1.1 thorpej KASSERT(oparg >= 0);
1444 1.1 thorpej KASSERT(oparg < 32);
1445 1.1 thorpej oparg = 1u << oparg;
1446 1.1 thorpej op &= ~FUTEX_OP_OPARG_SHIFT;
1447 1.1 thorpej }
1448 1.1 thorpej
1449 1.1 thorpej switch (op) {
1450 1.1 thorpej case FUTEX_OP_SET:
1451 1.1 thorpej return oparg;
1452 1.1 thorpej
1453 1.1 thorpej case FUTEX_OP_ADD:
1454 1.1 thorpej /*
1455 1.1 thorpej * Avoid signed arithmetic overflow by doing
1456 1.1 thorpej * arithmetic unsigned and converting back to signed
1457 1.1 thorpej * at the end.
1458 1.1 thorpej */
1459 1.1 thorpej return (int)((unsigned)oldval + (unsigned)oparg);
1460 1.1 thorpej
1461 1.1 thorpej case FUTEX_OP_OR:
1462 1.1 thorpej return oldval | oparg;
1463 1.1 thorpej
1464 1.1 thorpej case FUTEX_OP_ANDN:
1465 1.1 thorpej return oldval & ~oparg;
1466 1.1 thorpej
1467 1.1 thorpej case FUTEX_OP_XOR:
1468 1.1 thorpej return oldval ^ oparg;
1469 1.1 thorpej
1470 1.1 thorpej default:
1471 1.1 thorpej panic("invalid futex op");
1472 1.1 thorpej }
1473 1.1 thorpej }
1474 1.1 thorpej
1475 1.1 thorpej /*
1476 1.1 thorpej * futex_compute_cmp(oldval, val3)
1477 1.1 thorpej *
1478 1.1 thorpej * Apply a FUTEX_WAIT_OP comparison to oldval.
1479 1.1 thorpej */
1480 1.1 thorpej static bool
1481 1.1 thorpej futex_compute_cmp(int oldval, int val3)
1482 1.1 thorpej {
1483 1.1 thorpej int cmp = __SHIFTOUT(val3, FUTEX_OP_CMP_MASK);
1484 1.1 thorpej int cmparg = __SHIFTOUT(val3, FUTEX_OP_CMPARG_MASK);
1485 1.1 thorpej
1486 1.1 thorpej switch (cmp) {
1487 1.1 thorpej case FUTEX_OP_CMP_EQ:
1488 1.1 thorpej return (oldval == cmparg);
1489 1.1 thorpej
1490 1.1 thorpej case FUTEX_OP_CMP_NE:
1491 1.1 thorpej return (oldval != cmparg);
1492 1.1 thorpej
1493 1.1 thorpej case FUTEX_OP_CMP_LT:
1494 1.1 thorpej return (oldval < cmparg);
1495 1.1 thorpej
1496 1.1 thorpej case FUTEX_OP_CMP_LE:
1497 1.1 thorpej return (oldval <= cmparg);
1498 1.1 thorpej
1499 1.1 thorpej case FUTEX_OP_CMP_GT:
1500 1.1 thorpej return (oldval > cmparg);
1501 1.1 thorpej
1502 1.1 thorpej case FUTEX_OP_CMP_GE:
1503 1.1 thorpej return (oldval >= cmparg);
1504 1.1 thorpej
1505 1.1 thorpej default:
1506 1.1 thorpej panic("invalid futex cmp operation");
1507 1.1 thorpej }
1508 1.1 thorpej }
1509 1.1 thorpej
1510 1.1 thorpej /*
1511 1.1 thorpej * futex_func_wake_op(uaddr, val, uaddr2, val2, val3, retval)
1512 1.1 thorpej *
1513 1.1 thorpej * Implement futex(FUTEX_WAKE_OP).
1514 1.1 thorpej */
1515 1.1 thorpej static int
1516 1.1 thorpej futex_func_wake_op(bool shared, int *uaddr, int val, int *uaddr2, int val2,
1517 1.1 thorpej int val3, register_t *retval)
1518 1.1 thorpej {
1519 1.1 thorpej struct futex *f = NULL, *f2 = NULL;
1520 1.1 thorpej int oldval, newval, actual;
1521 1.1 thorpej unsigned nwoken = 0;
1522 1.1 thorpej int error;
1523 1.1 thorpej
1524 1.1 thorpej /* Reject negative number of wakeups. */
1525 1.1 thorpej if (val < 0 || val2 < 0) {
1526 1.1 thorpej error = EINVAL;
1527 1.1 thorpej goto out;
1528 1.1 thorpej }
1529 1.1 thorpej
1530 1.1 thorpej /* Reject invalid operations before we start doing things. */
1531 1.1 thorpej if ((error = futex_validate_op_cmp(val3)) != 0)
1532 1.1 thorpej goto out;
1533 1.1 thorpej
1534 1.1 thorpej /* Look up the first futex, if any. */
1535 1.1 thorpej error = futex_lookup(uaddr, shared, &f);
1536 1.1 thorpej if (error)
1537 1.1 thorpej goto out;
1538 1.1 thorpej
1539 1.1 thorpej /* Look up the second futex, if any. */
1540 1.1 thorpej error = futex_lookup(uaddr2, shared, &f2);
1541 1.1 thorpej if (error)
1542 1.1 thorpej goto out;
1543 1.1 thorpej
1544 1.1 thorpej /*
1545 1.1 thorpej * Under the queue locks:
1546 1.1 thorpej *
1547 1.1 thorpej * 1. Read/modify/write: *uaddr2 op= oparg.
1548 1.1 thorpej * 2. Unconditionally wake uaddr.
1549 1.1 thorpej * 3. Conditionally wake uaddr2, if it previously matched val2.
1550 1.1 thorpej */
1551 1.1 thorpej futex_queue_lock2(f, f2);
1552 1.1 thorpej do {
1553 1.1 thorpej error = futex_load(uaddr2, &oldval);
1554 1.1 thorpej if (error)
1555 1.1 thorpej goto out_unlock;
1556 1.1 thorpej newval = futex_compute_op(oldval, val3);
1557 1.1 thorpej error = ucas_int(uaddr2, oldval, newval, &actual);
1558 1.1 thorpej if (error)
1559 1.1 thorpej goto out_unlock;
1560 1.1 thorpej } while (actual != oldval);
1561 1.1 thorpej nwoken = (f ? futex_wake(f, val, NULL, 0, FUTEX_BITSET_MATCH_ANY) : 0);
1562 1.1 thorpej if (f2 && futex_compute_cmp(oldval, val3))
1563 1.1 thorpej nwoken += futex_wake(f2, val2, NULL, 0,
1564 1.1 thorpej FUTEX_BITSET_MATCH_ANY);
1565 1.1 thorpej
1566 1.1 thorpej /* Success! */
1567 1.1 thorpej error = 0;
1568 1.1 thorpej out_unlock:
1569 1.1 thorpej futex_queue_unlock2(f, f2);
1570 1.1 thorpej
1571 1.1 thorpej out:
1572 1.1 thorpej /* Return the number of waiters woken. */
1573 1.1 thorpej *retval = nwoken;
1574 1.1 thorpej
1575 1.1 thorpej /* Release the futexes, if we got them. */
1576 1.1 thorpej if (f2)
1577 1.5 riastrad futex_rele(f2);
1578 1.1 thorpej if (f)
1579 1.5 riastrad futex_rele(f);
1580 1.1 thorpej return error;
1581 1.1 thorpej }
1582 1.1 thorpej
1583 1.1 thorpej /*
1584 1.1 thorpej * do_futex(uaddr, op, val, timeout, uaddr2, val2, val3)
1585 1.1 thorpej *
1586 1.1 thorpej * Implement the futex system call with all the parameters
1587 1.1 thorpej * parsed out.
1588 1.1 thorpej */
1589 1.1 thorpej int
1590 1.11 riastrad do_futex(int *uaddr, int op, int val, const struct timespec *timeout,
1591 1.11 riastrad int *uaddr2, int val2, int val3, register_t *retval)
1592 1.1 thorpej {
1593 1.1 thorpej const bool shared = (op & FUTEX_PRIVATE_FLAG) ? false : true;
1594 1.1 thorpej const clockid_t clkid = (op & FUTEX_CLOCK_REALTIME) ? CLOCK_REALTIME
1595 1.1 thorpej : CLOCK_MONOTONIC;
1596 1.1 thorpej
1597 1.1 thorpej op &= FUTEX_CMD_MASK;
1598 1.1 thorpej
1599 1.1 thorpej switch (op) {
1600 1.1 thorpej case FUTEX_WAIT:
1601 1.1 thorpej return futex_func_wait(shared, uaddr, val,
1602 1.1 thorpej FUTEX_BITSET_MATCH_ANY, timeout, clkid, TIMER_RELTIME,
1603 1.1 thorpej retval);
1604 1.1 thorpej
1605 1.1 thorpej case FUTEX_WAKE:
1606 1.1 thorpej val3 = FUTEX_BITSET_MATCH_ANY;
1607 1.1 thorpej /* FALLTHROUGH */
1608 1.1 thorpej case FUTEX_WAKE_BITSET:
1609 1.1 thorpej return futex_func_wake(shared, uaddr, val, val3, retval);
1610 1.1 thorpej
1611 1.1 thorpej case FUTEX_REQUEUE:
1612 1.1 thorpej case FUTEX_CMP_REQUEUE:
1613 1.1 thorpej return futex_func_requeue(shared, op, uaddr, val, uaddr2,
1614 1.1 thorpej val2, val3, retval);
1615 1.1 thorpej
1616 1.1 thorpej case FUTEX_WAIT_BITSET:
1617 1.1 thorpej return futex_func_wait(shared, uaddr, val, val3, timeout,
1618 1.1 thorpej clkid, TIMER_ABSTIME, retval);
1619 1.1 thorpej
1620 1.1 thorpej case FUTEX_WAKE_OP:
1621 1.1 thorpej return futex_func_wake_op(shared, uaddr, val, uaddr2, val2,
1622 1.1 thorpej val3, retval);
1623 1.1 thorpej
1624 1.1 thorpej case FUTEX_FD:
1625 1.1 thorpej default:
1626 1.1 thorpej return ENOSYS;
1627 1.1 thorpej }
1628 1.1 thorpej }
1629 1.1 thorpej
1630 1.1 thorpej /*
1631 1.1 thorpej * sys___futex(l, uap, retval)
1632 1.1 thorpej *
1633 1.1 thorpej * __futex(2) system call: generic futex operations.
1634 1.1 thorpej */
1635 1.1 thorpej int
1636 1.1 thorpej sys___futex(struct lwp *l, const struct sys___futex_args *uap,
1637 1.1 thorpej register_t *retval)
1638 1.1 thorpej {
1639 1.1 thorpej /* {
1640 1.1 thorpej syscallarg(int *) uaddr;
1641 1.1 thorpej syscallarg(int) op;
1642 1.1 thorpej syscallarg(int) val;
1643 1.1 thorpej syscallarg(const struct timespec *) timeout;
1644 1.1 thorpej syscallarg(int *) uaddr2;
1645 1.1 thorpej syscallarg(int) val2;
1646 1.1 thorpej syscallarg(int) val3;
1647 1.1 thorpej } */
1648 1.1 thorpej struct timespec ts, *tsp;
1649 1.1 thorpej int error;
1650 1.1 thorpej
1651 1.1 thorpej /*
1652 1.1 thorpej * Copy in the timeout argument, if specified.
1653 1.1 thorpej */
1654 1.1 thorpej if (SCARG(uap, timeout)) {
1655 1.1 thorpej error = copyin(SCARG(uap, timeout), &ts, sizeof(ts));
1656 1.1 thorpej if (error)
1657 1.1 thorpej return error;
1658 1.1 thorpej tsp = &ts;
1659 1.1 thorpej } else {
1660 1.1 thorpej tsp = NULL;
1661 1.1 thorpej }
1662 1.1 thorpej
1663 1.1 thorpej return do_futex(SCARG(uap, uaddr), SCARG(uap, op), SCARG(uap, val),
1664 1.1 thorpej tsp, SCARG(uap, uaddr2), SCARG(uap, val2), SCARG(uap, val3),
1665 1.1 thorpej retval);
1666 1.1 thorpej }
1667 1.1 thorpej
1668 1.1 thorpej /*
1669 1.1 thorpej * sys___futex_set_robust_list(l, uap, retval)
1670 1.1 thorpej *
1671 1.1 thorpej * __futex_set_robust_list(2) system call for robust futexes.
1672 1.1 thorpej */
1673 1.1 thorpej int
1674 1.1 thorpej sys___futex_set_robust_list(struct lwp *l,
1675 1.1 thorpej const struct sys___futex_set_robust_list_args *uap, register_t *retval)
1676 1.1 thorpej {
1677 1.1 thorpej /* {
1678 1.1 thorpej syscallarg(void *) head;
1679 1.1 thorpej syscallarg(size_t) len;
1680 1.1 thorpej } */
1681 1.1 thorpej void *head = SCARG(uap, head);
1682 1.1 thorpej
1683 1.1 thorpej if (SCARG(uap, len) != _FUTEX_ROBUST_HEAD_SIZE)
1684 1.1 thorpej return EINVAL;
1685 1.1 thorpej if ((uintptr_t)head % sizeof(u_long))
1686 1.1 thorpej return EINVAL;
1687 1.1 thorpej
1688 1.1 thorpej l->l_robust_head = (uintptr_t)head;
1689 1.1 thorpej
1690 1.1 thorpej return 0;
1691 1.1 thorpej }
1692 1.1 thorpej
1693 1.1 thorpej /*
1694 1.1 thorpej * sys___futex_get_robust_list(l, uap, retval)
1695 1.1 thorpej *
1696 1.1 thorpej * __futex_get_robust_list(2) system call for robust futexes.
1697 1.1 thorpej */
1698 1.1 thorpej int
1699 1.1 thorpej sys___futex_get_robust_list(struct lwp *l,
1700 1.1 thorpej const struct sys___futex_get_robust_list_args *uap, register_t *retval)
1701 1.1 thorpej {
1702 1.1 thorpej /* {
1703 1.1 thorpej syscallarg(lwpid_t) lwpid;
1704 1.1 thorpej syscallarg(void **) headp;
1705 1.1 thorpej syscallarg(size_t *) lenp;
1706 1.1 thorpej } */
1707 1.1 thorpej void *head;
1708 1.1 thorpej const size_t len = _FUTEX_ROBUST_HEAD_SIZE;
1709 1.1 thorpej int error;
1710 1.1 thorpej
1711 1.1 thorpej error = futex_robust_head_lookup(l, SCARG(uap, lwpid), &head);
1712 1.1 thorpej if (error)
1713 1.1 thorpej return error;
1714 1.1 thorpej
1715 1.1 thorpej /* Copy out the head pointer and the head structure length. */
1716 1.1 thorpej error = copyout(&head, SCARG(uap, headp), sizeof(head));
1717 1.1 thorpej if (__predict_true(error == 0)) {
1718 1.1 thorpej error = copyout(&len, SCARG(uap, lenp), sizeof(len));
1719 1.1 thorpej }
1720 1.1 thorpej
1721 1.1 thorpej return error;
1722 1.1 thorpej }
1723 1.1 thorpej
1724 1.1 thorpej /*
1725 1.1 thorpej * release_futex(uva, tid)
1726 1.1 thorpej *
1727 1.1 thorpej * Try to release the robust futex at uva in the current process
1728 1.1 thorpej * on lwp exit. If anything goes wrong, silently fail. It is the
1729 1.1 thorpej * userland program's obligation to arrange correct behaviour.
1730 1.1 thorpej */
1731 1.1 thorpej static void
1732 1.1 thorpej release_futex(uintptr_t const uptr, lwpid_t const tid, bool const is_pi,
1733 1.1 thorpej bool const is_pending)
1734 1.1 thorpej {
1735 1.1 thorpej int *uaddr;
1736 1.1 thorpej struct futex *f;
1737 1.1 thorpej int oldval, newval, actual;
1738 1.1 thorpej int error;
1739 1.1 thorpej
1740 1.1 thorpej /* If it's misaligned, tough. */
1741 1.1 thorpej if (__predict_false(uptr & 3))
1742 1.1 thorpej return;
1743 1.1 thorpej uaddr = (int *)uptr;
1744 1.1 thorpej
1745 1.1 thorpej error = futex_load(uaddr, &oldval);
1746 1.1 thorpej if (__predict_false(error))
1747 1.1 thorpej return;
1748 1.1 thorpej
1749 1.1 thorpej /*
1750 1.1 thorpej * There are two race conditions we need to handle here:
1751 1.1 thorpej *
1752 1.1 thorpej * 1. User space cleared the futex word but died before
1753 1.1 thorpej * being able to issue the wakeup. No wakeups will
1754 1.1 thorpej * ever be issued, oops!
1755 1.1 thorpej *
1756 1.1 thorpej * 2. Awakened waiter died before being able to acquire
1757 1.1 thorpej * the futex in user space. Any other waiters are
1758 1.1 thorpej * now stuck, oops!
1759 1.1 thorpej *
1760 1.1 thorpej * In both of these cases, the futex word will be 0 (because
1761 1.1 thorpej * it's updated before the wake is issued). The best we can
1762 1.1 thorpej * do is detect this situation if it's the pending futex and
1763 1.1 thorpej * issue a wake without modifying the futex word.
1764 1.1 thorpej *
1765 1.1 thorpej * XXX eventual PI handling?
1766 1.1 thorpej */
1767 1.1 thorpej if (__predict_false(is_pending && (oldval & ~FUTEX_WAITERS) == 0)) {
1768 1.1 thorpej register_t retval;
1769 1.1 thorpej (void) futex_func_wake(/*shared*/true, uaddr, 1,
1770 1.1 thorpej FUTEX_BITSET_MATCH_ANY, &retval);
1771 1.1 thorpej return;
1772 1.1 thorpej }
1773 1.1 thorpej
1774 1.1 thorpej /* Optimistically test whether we need to do anything at all. */
1775 1.1 thorpej if ((oldval & FUTEX_TID_MASK) != tid)
1776 1.1 thorpej return;
1777 1.1 thorpej
1778 1.1 thorpej /*
1779 1.1 thorpej * We need to handle the case where this thread owned the futex,
1780 1.1 thorpej * but it was uncontended. In this case, there won't be any
1781 1.1 thorpej * kernel state to look up. All we can do is mark the futex
1782 1.1 thorpej * as a zombie to be mopped up the next time another thread
1783 1.1 thorpej * attempts to acquire it.
1784 1.1 thorpej *
1785 1.1 thorpej * N.B. It's important to ensure to set FUTEX_OWNER_DIED in
1786 1.1 thorpej * this loop, even if waiters appear while we're are doing
1787 1.1 thorpej * so. This is beause FUTEX_WAITERS is set by user space
1788 1.1 thorpej * before calling __futex() to wait, and the futex needs
1789 1.1 thorpej * to be marked as a zombie when the new waiter gets into
1790 1.1 thorpej * the kernel.
1791 1.1 thorpej */
1792 1.1 thorpej if ((oldval & FUTEX_WAITERS) == 0) {
1793 1.1 thorpej do {
1794 1.1 thorpej error = futex_load(uaddr, &oldval);
1795 1.1 thorpej if (error)
1796 1.1 thorpej return;
1797 1.1 thorpej if ((oldval & FUTEX_TID_MASK) != tid)
1798 1.1 thorpej return;
1799 1.1 thorpej newval = oldval | FUTEX_OWNER_DIED;
1800 1.1 thorpej error = ucas_int(uaddr, oldval, newval, &actual);
1801 1.1 thorpej if (error)
1802 1.1 thorpej return;
1803 1.1 thorpej } while (actual != oldval);
1804 1.1 thorpej
1805 1.1 thorpej /*
1806 1.1 thorpej * If where is still no indication of waiters, then there is
1807 1.1 thorpej * no more work for us to do.
1808 1.1 thorpej */
1809 1.1 thorpej if ((oldval & FUTEX_WAITERS) == 0)
1810 1.1 thorpej return;
1811 1.1 thorpej }
1812 1.1 thorpej
1813 1.1 thorpej /*
1814 1.1 thorpej * Look for a shared futex since we have no positive indication
1815 1.1 thorpej * it is private. If we can't, tough.
1816 1.1 thorpej */
1817 1.1 thorpej error = futex_lookup(uaddr, /*shared*/true, &f);
1818 1.1 thorpej if (error)
1819 1.1 thorpej return;
1820 1.1 thorpej
1821 1.1 thorpej /*
1822 1.1 thorpej * If there's no kernel state for this futex, there's nothing to
1823 1.1 thorpej * release.
1824 1.1 thorpej */
1825 1.1 thorpej if (f == NULL)
1826 1.1 thorpej return;
1827 1.1 thorpej
1828 1.1 thorpej /* Work under the futex queue lock. */
1829 1.1 thorpej futex_queue_lock(f);
1830 1.1 thorpej
1831 1.1 thorpej /*
1832 1.1 thorpej * Fetch the word: if the tid doesn't match ours, skip;
1833 1.1 thorpej * otherwise, set the owner-died bit, atomically.
1834 1.1 thorpej */
1835 1.1 thorpej do {
1836 1.1 thorpej error = futex_load(uaddr, &oldval);
1837 1.1 thorpej if (error)
1838 1.1 thorpej goto out;
1839 1.1 thorpej if ((oldval & FUTEX_TID_MASK) != tid)
1840 1.1 thorpej goto out;
1841 1.1 thorpej newval = oldval | FUTEX_OWNER_DIED;
1842 1.1 thorpej error = ucas_int(uaddr, oldval, newval, &actual);
1843 1.1 thorpej if (error)
1844 1.1 thorpej goto out;
1845 1.1 thorpej } while (actual != oldval);
1846 1.1 thorpej
1847 1.1 thorpej /*
1848 1.1 thorpej * If there may be waiters, try to wake one. If anything goes
1849 1.1 thorpej * wrong, tough.
1850 1.1 thorpej *
1851 1.1 thorpej * XXX eventual PI handling?
1852 1.1 thorpej */
1853 1.1 thorpej if (oldval & FUTEX_WAITERS)
1854 1.1 thorpej (void)futex_wake(f, 1, NULL, 0, FUTEX_BITSET_MATCH_ANY);
1855 1.1 thorpej
1856 1.1 thorpej /* Unlock the queue and release the futex. */
1857 1.1 thorpej out: futex_queue_unlock(f);
1858 1.5 riastrad futex_rele(f);
1859 1.1 thorpej }
1860 1.1 thorpej
1861 1.1 thorpej /*
1862 1.1 thorpej * futex_robust_head_lookup(l, lwpid)
1863 1.1 thorpej *
1864 1.1 thorpej * Helper function to look up a robust head by LWP ID.
1865 1.1 thorpej */
1866 1.1 thorpej int
1867 1.1 thorpej futex_robust_head_lookup(struct lwp *l, lwpid_t lwpid, void **headp)
1868 1.1 thorpej {
1869 1.1 thorpej struct proc *p = l->l_proc;
1870 1.1 thorpej
1871 1.1 thorpej /* Find the other lwp, if requested; otherwise use our robust head. */
1872 1.1 thorpej if (lwpid) {
1873 1.1 thorpej mutex_enter(p->p_lock);
1874 1.1 thorpej l = lwp_find(p, lwpid);
1875 1.1 thorpej if (l == NULL) {
1876 1.1 thorpej mutex_exit(p->p_lock);
1877 1.1 thorpej return ESRCH;
1878 1.1 thorpej }
1879 1.1 thorpej *headp = (void *)l->l_robust_head;
1880 1.1 thorpej mutex_exit(p->p_lock);
1881 1.1 thorpej } else {
1882 1.1 thorpej *headp = (void *)l->l_robust_head;
1883 1.1 thorpej }
1884 1.1 thorpej return 0;
1885 1.1 thorpej }
1886 1.1 thorpej
1887 1.1 thorpej /*
1888 1.1 thorpej * futex_fetch_robust_head(uaddr)
1889 1.1 thorpej *
1890 1.1 thorpej * Helper routine to fetch the futex robust list head that
1891 1.1 thorpej * handles 32-bit binaries running on 64-bit kernels.
1892 1.1 thorpej */
1893 1.1 thorpej static int
1894 1.1 thorpej futex_fetch_robust_head(uintptr_t uaddr, u_long *rhead)
1895 1.1 thorpej {
1896 1.1 thorpej #ifdef _LP64
1897 1.1 thorpej if (curproc->p_flag & PK_32) {
1898 1.1 thorpej uint32_t rhead32[_FUTEX_ROBUST_HEAD_NWORDS];
1899 1.1 thorpej int error;
1900 1.1 thorpej
1901 1.1 thorpej error = copyin((void *)uaddr, rhead32, sizeof(rhead32));
1902 1.1 thorpej if (__predict_true(error == 0)) {
1903 1.1 thorpej for (int i = 0; i < _FUTEX_ROBUST_HEAD_NWORDS; i++) {
1904 1.1 thorpej if (i == _FUTEX_ROBUST_HEAD_OFFSET) {
1905 1.1 thorpej /*
1906 1.1 thorpej * Make sure the offset is sign-
1907 1.1 thorpej * extended.
1908 1.1 thorpej */
1909 1.1 thorpej rhead[i] = (int32_t)rhead32[i];
1910 1.1 thorpej } else {
1911 1.1 thorpej rhead[i] = rhead32[i];
1912 1.1 thorpej }
1913 1.1 thorpej }
1914 1.1 thorpej }
1915 1.1 thorpej return error;
1916 1.1 thorpej }
1917 1.1 thorpej #endif /* _L64 */
1918 1.1 thorpej
1919 1.1 thorpej return copyin((void *)uaddr, rhead,
1920 1.1 thorpej sizeof(*rhead) * _FUTEX_ROBUST_HEAD_NWORDS);
1921 1.1 thorpej }
1922 1.1 thorpej
1923 1.1 thorpej /*
1924 1.1 thorpej * futex_decode_robust_word(word)
1925 1.1 thorpej *
1926 1.1 thorpej * Decode a robust futex list word into the entry and entry
1927 1.1 thorpej * properties.
1928 1.1 thorpej */
1929 1.1 thorpej static inline void
1930 1.1 thorpej futex_decode_robust_word(uintptr_t const word, uintptr_t * const entry,
1931 1.1 thorpej bool * const is_pi)
1932 1.1 thorpej {
1933 1.1 thorpej *is_pi = (word & _FUTEX_ROBUST_ENTRY_PI) ? true : false;
1934 1.1 thorpej *entry = word & ~_FUTEX_ROBUST_ENTRY_PI;
1935 1.1 thorpej }
1936 1.1 thorpej
1937 1.1 thorpej /*
1938 1.1 thorpej * futex_fetch_robust_entry(uaddr)
1939 1.1 thorpej *
1940 1.1 thorpej * Helper routine to fetch and decode a robust futex entry
1941 1.1 thorpej * that handles 32-bit binaries running on 64-bit kernels.
1942 1.1 thorpej */
1943 1.1 thorpej static int
1944 1.1 thorpej futex_fetch_robust_entry(uintptr_t const uaddr, uintptr_t * const valp,
1945 1.1 thorpej bool * const is_pi)
1946 1.1 thorpej {
1947 1.1 thorpej uintptr_t val = 0;
1948 1.1 thorpej int error = 0;
1949 1.1 thorpej
1950 1.1 thorpej #ifdef _LP64
1951 1.1 thorpej if (curproc->p_flag & PK_32) {
1952 1.1 thorpej uint32_t val32;
1953 1.1 thorpej
1954 1.1 thorpej error = ufetch_32((uint32_t *)uaddr, &val32);
1955 1.1 thorpej if (__predict_true(error == 0))
1956 1.1 thorpej val = val32;
1957 1.1 thorpej } else
1958 1.1 thorpej #endif /* _LP64 */
1959 1.1 thorpej error = ufetch_long((u_long *)uaddr, (u_long *)&val);
1960 1.1 thorpej if (__predict_false(error))
1961 1.1 thorpej return error;
1962 1.1 thorpej
1963 1.1 thorpej futex_decode_robust_word(val, valp, is_pi);
1964 1.1 thorpej return 0;
1965 1.1 thorpej }
1966 1.1 thorpej
1967 1.1 thorpej /*
1968 1.1 thorpej * futex_release_all_lwp(l, tid)
1969 1.1 thorpej *
1970 1.1 thorpej * Release all l's robust futexes. If anything looks funny in
1971 1.1 thorpej * the process, give up -- it's userland's responsibility to dot
1972 1.1 thorpej * the i's and cross the t's.
1973 1.1 thorpej */
1974 1.1 thorpej void
1975 1.13 thorpej futex_release_all_lwp(struct lwp * const l)
1976 1.1 thorpej {
1977 1.1 thorpej u_long rhead[_FUTEX_ROBUST_HEAD_NWORDS];
1978 1.1 thorpej int limit = 1000000;
1979 1.1 thorpej int error;
1980 1.1 thorpej
1981 1.1 thorpej /* If there's no robust list there's nothing to do. */
1982 1.1 thorpej if (l->l_robust_head == 0)
1983 1.1 thorpej return;
1984 1.1 thorpej
1985 1.13 thorpej KASSERT((l->l_lid & FUTEX_TID_MASK) == l->l_lid);
1986 1.13 thorpej
1987 1.1 thorpej /* Read the final snapshot of the robust list head. */
1988 1.1 thorpej error = futex_fetch_robust_head(l->l_robust_head, rhead);
1989 1.1 thorpej if (error) {
1990 1.13 thorpej printf("WARNING: pid %jd (%s) lwp %jd:"
1991 1.1 thorpej " unmapped robust futex list head\n",
1992 1.1 thorpej (uintmax_t)l->l_proc->p_pid, l->l_proc->p_comm,
1993 1.13 thorpej (uintmax_t)l->l_lid);
1994 1.1 thorpej return;
1995 1.1 thorpej }
1996 1.1 thorpej
1997 1.1 thorpej const long offset = (long)rhead[_FUTEX_ROBUST_HEAD_OFFSET];
1998 1.1 thorpej
1999 1.1 thorpej uintptr_t next, pending;
2000 1.1 thorpej bool is_pi, pending_is_pi;
2001 1.1 thorpej
2002 1.1 thorpej futex_decode_robust_word(rhead[_FUTEX_ROBUST_HEAD_LIST],
2003 1.1 thorpej &next, &is_pi);
2004 1.1 thorpej futex_decode_robust_word(rhead[_FUTEX_ROBUST_HEAD_PENDING],
2005 1.1 thorpej &pending, &pending_is_pi);
2006 1.1 thorpej
2007 1.1 thorpej /*
2008 1.1 thorpej * Walk down the list of locked futexes and release them, up
2009 1.1 thorpej * to one million of them before we give up.
2010 1.1 thorpej */
2011 1.1 thorpej
2012 1.1 thorpej while (next != l->l_robust_head && limit-- > 0) {
2013 1.1 thorpej /* pending handled below. */
2014 1.1 thorpej if (next != pending)
2015 1.13 thorpej release_futex(next + offset, l->l_lid, is_pi, false);
2016 1.1 thorpej error = futex_fetch_robust_entry(next, &next, &is_pi);
2017 1.1 thorpej if (error)
2018 1.1 thorpej break;
2019 1.1 thorpej preempt_point();
2020 1.1 thorpej }
2021 1.1 thorpej if (limit <= 0) {
2022 1.13 thorpej printf("WARNING: pid %jd (%s) lwp %jd:"
2023 1.1 thorpej " exhausted robust futex limit\n",
2024 1.1 thorpej (uintmax_t)l->l_proc->p_pid, l->l_proc->p_comm,
2025 1.13 thorpej (uintmax_t)l->l_lid);
2026 1.1 thorpej }
2027 1.1 thorpej
2028 1.1 thorpej /* If there's a pending futex, it may need to be released too. */
2029 1.1 thorpej if (pending != 0) {
2030 1.13 thorpej release_futex(pending + offset, l->l_lid, pending_is_pi, true);
2031 1.1 thorpej }
2032 1.1 thorpej }
2033