Home | History | Annotate | Line # | Download | only in kern
sys_futex.c revision 1.6
      1  1.6  riastrad /*	$NetBSD: sys_futex.c,v 1.6 2020/04/28 16:22:25 riastradh Exp $	*/
      2  1.1   thorpej 
      3  1.1   thorpej /*-
      4  1.1   thorpej  * Copyright (c) 2018, 2019, 2020 The NetBSD Foundation, Inc.
      5  1.1   thorpej  * All rights reserved.
      6  1.1   thorpej  *
      7  1.1   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8  1.1   thorpej  * by Taylor R. Campbell and Jason R. Thorpe.
      9  1.1   thorpej  *
     10  1.1   thorpej  * Redistribution and use in source and binary forms, with or without
     11  1.1   thorpej  * modification, are permitted provided that the following conditions
     12  1.1   thorpej  * are met:
     13  1.1   thorpej  * 1. Redistributions of source code must retain the above copyright
     14  1.1   thorpej  *    notice, this list of conditions and the following disclaimer.
     15  1.1   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.1   thorpej  *    notice, this list of conditions and the following disclaimer in the
     17  1.1   thorpej  *    documentation and/or other materials provided with the distribution.
     18  1.1   thorpej  *
     19  1.1   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  1.1   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  1.1   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  1.1   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  1.1   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  1.1   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  1.1   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  1.1   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  1.1   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  1.1   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  1.1   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     30  1.1   thorpej  */
     31  1.1   thorpej 
     32  1.1   thorpej #include <sys/cdefs.h>
     33  1.6  riastrad __KERNEL_RCSID(0, "$NetBSD: sys_futex.c,v 1.6 2020/04/28 16:22:25 riastradh Exp $");
     34  1.1   thorpej 
     35  1.1   thorpej /*
     36  1.1   thorpej  * Futexes
     37  1.1   thorpej  *
     38  1.1   thorpej  *	The futex system call coordinates notifying threads waiting for
     39  1.1   thorpej  *	changes on a 32-bit word of memory.  The word can be managed by
     40  1.1   thorpej  *	CPU atomic operations in userland, without system calls, as long
     41  1.1   thorpej  *	as there is no contention.
     42  1.1   thorpej  *
     43  1.1   thorpej  *	The simplest use case demonstrating the utility is:
     44  1.1   thorpej  *
     45  1.1   thorpej  *		// 32-bit word of memory shared among threads or
     46  1.1   thorpej  *		// processes in userland.  lock & 1 means owned;
     47  1.1   thorpej  *		// lock & 2 means there are waiters waiting.
     48  1.1   thorpej  *		volatile int lock = 0;
     49  1.1   thorpej  *
     50  1.1   thorpej  *		int v;
     51  1.1   thorpej  *
     52  1.1   thorpej  *		// Acquire a lock.
     53  1.1   thorpej  *		do {
     54  1.1   thorpej  *			v = lock;
     55  1.1   thorpej  *			if (v & 1) {
     56  1.1   thorpej  *				// Lock is held.  Set a bit to say that
     57  1.1   thorpej  *				// there are waiters, and wait for lock
     58  1.1   thorpej  *				// to change to anything other than v;
     59  1.1   thorpej  *				// then retry.
     60  1.1   thorpej  *				if (atomic_cas_uint(&lock, v, v | 2) != v)
     61  1.1   thorpej  *					continue;
     62  1.1   thorpej  *				futex(FUTEX_WAIT, &lock, v | 2, NULL, NULL, 0);
     63  1.1   thorpej  *				continue;
     64  1.1   thorpej  *			}
     65  1.1   thorpej  *		} while (atomic_cas_uint(&lock, v, v & ~1) != v);
     66  1.1   thorpej  *		membar_enter();
     67  1.1   thorpej  *
     68  1.1   thorpej  *		...
     69  1.1   thorpej  *
     70  1.1   thorpej  *		// Release the lock.  Optimistically assume there are
     71  1.1   thorpej  *		// no waiters first until demonstrated otherwise.
     72  1.1   thorpej  *		membar_exit();
     73  1.1   thorpej  *		if (atomic_cas_uint(&lock, 1, 0) != 1) {
     74  1.1   thorpej  *			// There may be waiters.
     75  1.1   thorpej  *			v = atomic_swap_uint(&lock, 0);
     76  1.1   thorpej  *			// If there are still waiters, wake one.
     77  1.1   thorpej  *			if (v & 2)
     78  1.1   thorpej  *				futex(FUTEX_WAKE, &lock, 1, NULL, NULL, 0);
     79  1.1   thorpej  *		}
     80  1.1   thorpej  *
     81  1.1   thorpej  *	The goal is to avoid the futex system call unless there is
     82  1.1   thorpej  *	contention; then if there is contention, to guarantee no missed
     83  1.1   thorpej  *	wakeups.
     84  1.1   thorpej  *
     85  1.1   thorpej  *	For a simple implementation, futex(FUTEX_WAIT) could queue
     86  1.1   thorpej  *	itself to be woken, double-check the lock word, and then sleep;
     87  1.1   thorpej  *	spurious wakeups are generally a fact of life, so any
     88  1.1   thorpej  *	FUTEX_WAKE could just wake every FUTEX_WAIT in the system.
     89  1.1   thorpej  *
     90  1.1   thorpej  *	If this were all there is to it, we could then increase
     91  1.1   thorpej  *	parallelism by refining the approximation: partition the
     92  1.1   thorpej  *	waiters into buckets by hashing the lock addresses to reduce
     93  1.1   thorpej  *	the incidence of spurious wakeups.  But this is not all.
     94  1.1   thorpej  *
     95  1.1   thorpej  *	The futex(FUTEX_CMP_REQUEUE, &lock, n, &lock2, m, val)
     96  1.1   thorpej  *	operation not only wakes n waiters on lock if lock == val, but
     97  1.1   thorpej  *	also _transfers_ m additional waiters to lock2.  Unless wakeups
     98  1.1   thorpej  *	on lock2 also trigger wakeups on lock, we cannot move waiters
     99  1.1   thorpej  *	to lock2 if they merely share the same hash as waiters on lock.
    100  1.1   thorpej  *	Thus, we can't approximately distribute waiters into queues by
    101  1.1   thorpej  *	a hash function; we must distinguish futex queues exactly by
    102  1.1   thorpej  *	lock address.
    103  1.1   thorpej  *
    104  1.1   thorpej  *	For now, we use a global red/black tree to index futexes.  This
    105  1.1   thorpej  *	should be replaced by a lockless radix tree with a thread to
    106  1.1   thorpej  *	free entries no longer in use once all lookups on all CPUs have
    107  1.1   thorpej  *	completed.
    108  1.1   thorpej  *
    109  1.1   thorpej  *	Specifically, we maintain two maps:
    110  1.1   thorpej  *
    111  1.1   thorpej  *	futex_tab.va[vmspace, va] for private futexes
    112  1.1   thorpej  *	futex_tab.oa[uvm_voaddr] for shared futexes
    113  1.1   thorpej  *
    114  1.1   thorpej  *	This implementation does not support priority inheritance.
    115  1.1   thorpej  */
    116  1.1   thorpej 
    117  1.1   thorpej #include <sys/types.h>
    118  1.1   thorpej #include <sys/atomic.h>
    119  1.1   thorpej #include <sys/condvar.h>
    120  1.1   thorpej #include <sys/futex.h>
    121  1.1   thorpej #include <sys/mutex.h>
    122  1.1   thorpej #include <sys/rbtree.h>
    123  1.1   thorpej #include <sys/queue.h>
    124  1.1   thorpej 
    125  1.1   thorpej #include <sys/syscall.h>
    126  1.1   thorpej #include <sys/syscallargs.h>
    127  1.1   thorpej #include <sys/syscallvar.h>
    128  1.1   thorpej 
    129  1.1   thorpej #include <uvm/uvm_extern.h>
    130  1.1   thorpej 
    131  1.1   thorpej /*
    132  1.1   thorpej  * Lock order:
    133  1.1   thorpej  *
    134  1.1   thorpej  *	futex_tab.lock
    135  1.1   thorpej  *	futex::fx_qlock			ordered by kva of struct futex
    136  1.1   thorpej  *	 -> futex_wait::fw_lock		only one at a time
    137  1.1   thorpej  *	futex_wait::fw_lock		only one at a time
    138  1.1   thorpej  *	 -> futex::fx_abortlock		only one at a time
    139  1.1   thorpej  */
    140  1.1   thorpej 
    141  1.1   thorpej /*
    142  1.1   thorpej  * union futex_key
    143  1.1   thorpej  *
    144  1.1   thorpej  *	A futex is addressed either by a vmspace+va (private) or by
    145  1.1   thorpej  *	a uvm_voaddr (shared).
    146  1.1   thorpej  */
    147  1.1   thorpej union futex_key {
    148  1.1   thorpej 	struct {
    149  1.1   thorpej 		struct vmspace			*vmspace;
    150  1.1   thorpej 		vaddr_t				va;
    151  1.1   thorpej 	}			fk_private;
    152  1.1   thorpej 	struct uvm_voaddr	fk_shared;
    153  1.1   thorpej };
    154  1.1   thorpej 
    155  1.1   thorpej /*
    156  1.1   thorpej  * struct futex
    157  1.1   thorpej  *
    158  1.1   thorpej  *	Kernel state for a futex located at a particular address in a
    159  1.1   thorpej  *	particular virtual address space.
    160  1.1   thorpej  *
    161  1.1   thorpej  *	N.B. fx_refcnt is an unsigned long because we need to be able
    162  1.1   thorpej  *	to operate on it atomically on all systems while at the same
    163  1.1   thorpej  *	time rendering practically impossible the chance of it reaching
    164  1.1   thorpej  *	its max value.  In practice, we're limited by the number of LWPs
    165  1.1   thorpej  *	that can be present on the system at any given time, and the
    166  1.1   thorpej  *	assumption is that limit will be good enough on a 32-bit platform.
    167  1.1   thorpej  *	See futex_wake() for why overflow needs to be avoided.
    168  1.1   thorpej  */
    169  1.1   thorpej struct futex {
    170  1.1   thorpej 	union futex_key		fx_key;
    171  1.1   thorpej 	unsigned long		fx_refcnt;
    172  1.1   thorpej 	bool			fx_shared;
    173  1.1   thorpej 	bool			fx_on_tree;
    174  1.1   thorpej 	struct rb_node		fx_node;
    175  1.1   thorpej 
    176  1.1   thorpej 	kmutex_t			fx_qlock;
    177  1.1   thorpej 	TAILQ_HEAD(, futex_wait)	fx_queue;
    178  1.1   thorpej 
    179  1.1   thorpej 	kmutex_t			fx_abortlock;
    180  1.1   thorpej 	LIST_HEAD(, futex_wait)		fx_abortlist;
    181  1.1   thorpej 	kcondvar_t			fx_abortcv;
    182  1.1   thorpej };
    183  1.1   thorpej 
    184  1.1   thorpej /*
    185  1.1   thorpej  * struct futex_wait
    186  1.1   thorpej  *
    187  1.1   thorpej  *	State for a thread to wait on a futex.  Threads wait on fw_cv
    188  1.1   thorpej  *	for fw_bitset to be set to zero.  The thread may transition to
    189  1.1   thorpej  *	a different futex queue at any time under the futex's lock.
    190  1.1   thorpej  */
    191  1.1   thorpej struct futex_wait {
    192  1.1   thorpej 	kmutex_t		fw_lock;
    193  1.1   thorpej 	kcondvar_t		fw_cv;
    194  1.1   thorpej 	struct futex		*fw_futex;
    195  1.1   thorpej 	TAILQ_ENTRY(futex_wait)	fw_entry;	/* queue lock */
    196  1.1   thorpej 	LIST_ENTRY(futex_wait)	fw_abort;	/* queue abortlock */
    197  1.1   thorpej 	int			fw_bitset;
    198  1.4  riastrad 	bool			fw_aborting;	/* fw_lock */
    199  1.1   thorpej };
    200  1.1   thorpej 
    201  1.1   thorpej /*
    202  1.1   thorpej  * futex_tab
    203  1.1   thorpej  *
    204  1.1   thorpej  *	Global trees of futexes by vmspace/va and VM object address.
    205  1.1   thorpej  *
    206  1.1   thorpej  *	XXX This obviously doesn't scale in parallel.  We could use a
    207  1.1   thorpej  *	pserialize-safe data structure, but there may be a high cost to
    208  1.1   thorpej  *	frequent deletion since we don't cache futexes after we're done
    209  1.1   thorpej  *	with them.  We could use hashed locks.  But for now, just make
    210  1.1   thorpej  *	sure userland can't DoS the serial performance, by using a
    211  1.1   thorpej  *	balanced binary tree for lookup.
    212  1.1   thorpej  *
    213  1.1   thorpej  *	XXX We could use a per-process tree for the table indexed by
    214  1.1   thorpej  *	virtual address to reduce contention between processes.
    215  1.1   thorpej  */
    216  1.1   thorpej static struct {
    217  1.1   thorpej 	kmutex_t	lock;
    218  1.1   thorpej 	struct rb_tree	va;
    219  1.1   thorpej 	struct rb_tree	oa;
    220  1.1   thorpej } futex_tab __cacheline_aligned;
    221  1.1   thorpej 
    222  1.1   thorpej static int
    223  1.1   thorpej compare_futex_key(void *cookie, const void *n, const void *k)
    224  1.1   thorpej {
    225  1.1   thorpej 	const struct futex *fa = n;
    226  1.1   thorpej 	const union futex_key *fka = &fa->fx_key;
    227  1.1   thorpej 	const union futex_key *fkb = k;
    228  1.1   thorpej 
    229  1.1   thorpej 	if ((uintptr_t)fka->fk_private.vmspace <
    230  1.1   thorpej 	    (uintptr_t)fkb->fk_private.vmspace)
    231  1.1   thorpej 		return -1;
    232  1.1   thorpej 	if ((uintptr_t)fka->fk_private.vmspace >
    233  1.1   thorpej 	    (uintptr_t)fkb->fk_private.vmspace)
    234  1.1   thorpej 		return +1;
    235  1.1   thorpej 	if (fka->fk_private.va < fkb->fk_private.va)
    236  1.1   thorpej 		return -1;
    237  1.1   thorpej 	if (fka->fk_private.va > fkb->fk_private.va)
    238  1.1   thorpej 		return -1;
    239  1.1   thorpej 	return 0;
    240  1.1   thorpej }
    241  1.1   thorpej 
    242  1.1   thorpej static int
    243  1.1   thorpej compare_futex(void *cookie, const void *na, const void *nb)
    244  1.1   thorpej {
    245  1.1   thorpej 	const struct futex *fa = na;
    246  1.1   thorpej 	const struct futex *fb = nb;
    247  1.1   thorpej 
    248  1.1   thorpej 	return compare_futex_key(cookie, fa, &fb->fx_key);
    249  1.1   thorpej }
    250  1.1   thorpej 
    251  1.1   thorpej static const rb_tree_ops_t futex_rb_ops = {
    252  1.1   thorpej 	.rbto_compare_nodes = compare_futex,
    253  1.1   thorpej 	.rbto_compare_key = compare_futex_key,
    254  1.1   thorpej 	.rbto_node_offset = offsetof(struct futex, fx_node),
    255  1.1   thorpej };
    256  1.1   thorpej 
    257  1.1   thorpej static int
    258  1.1   thorpej compare_futex_shared_key(void *cookie, const void *n, const void *k)
    259  1.1   thorpej {
    260  1.1   thorpej 	const struct futex *fa = n;
    261  1.1   thorpej 	const union futex_key *fka = &fa->fx_key;
    262  1.1   thorpej 	const union futex_key *fkb = k;
    263  1.1   thorpej 
    264  1.1   thorpej 	return uvm_voaddr_compare(&fka->fk_shared, &fkb->fk_shared);
    265  1.1   thorpej }
    266  1.1   thorpej 
    267  1.1   thorpej static int
    268  1.1   thorpej compare_futex_shared(void *cookie, const void *na, const void *nb)
    269  1.1   thorpej {
    270  1.1   thorpej 	const struct futex *fa = na;
    271  1.1   thorpej 	const struct futex *fb = nb;
    272  1.1   thorpej 
    273  1.1   thorpej 	return compare_futex_shared_key(cookie, fa, &fb->fx_key);
    274  1.1   thorpej }
    275  1.1   thorpej 
    276  1.1   thorpej static const rb_tree_ops_t futex_shared_rb_ops = {
    277  1.1   thorpej 	.rbto_compare_nodes = compare_futex_shared,
    278  1.1   thorpej 	.rbto_compare_key = compare_futex_shared_key,
    279  1.1   thorpej 	.rbto_node_offset = offsetof(struct futex, fx_node),
    280  1.1   thorpej };
    281  1.1   thorpej 
    282  1.1   thorpej static void	futex_wait_dequeue(struct futex_wait *, struct futex *);
    283  1.1   thorpej 
    284  1.1   thorpej /*
    285  1.1   thorpej  * futex_load(uaddr, kaddr)
    286  1.1   thorpej  *
    287  1.1   thorpej  *	Perform a single atomic load to read *uaddr, and return the
    288  1.1   thorpej  *	result in *kaddr.  Return 0 on success, EFAULT if uaddr is not
    289  1.1   thorpej  *	mapped.
    290  1.1   thorpej  */
    291  1.1   thorpej static inline int
    292  1.1   thorpej futex_load(int *uaddr, int *kaddr)
    293  1.1   thorpej {
    294  1.1   thorpej 	return ufetch_int((u_int *)uaddr, (u_int *)kaddr);
    295  1.1   thorpej }
    296  1.1   thorpej 
    297  1.1   thorpej /*
    298  1.1   thorpej  * futex_test(uaddr, expected)
    299  1.1   thorpej  *
    300  1.1   thorpej  *	True if *uaddr == expected.  False if *uaddr != expected, or if
    301  1.1   thorpej  *	uaddr is not mapped.
    302  1.1   thorpej  */
    303  1.1   thorpej static bool
    304  1.1   thorpej futex_test(int *uaddr, int expected)
    305  1.1   thorpej {
    306  1.1   thorpej 	int val;
    307  1.1   thorpej 	int error;
    308  1.1   thorpej 
    309  1.1   thorpej 	error = futex_load(uaddr, &val);
    310  1.1   thorpej 	if (error)
    311  1.1   thorpej 		return false;
    312  1.1   thorpej 	return val == expected;
    313  1.1   thorpej }
    314  1.1   thorpej 
    315  1.1   thorpej /*
    316  1.1   thorpej  * futex_sys_init()
    317  1.1   thorpej  *
    318  1.1   thorpej  *	Initialize the futex subsystem.
    319  1.1   thorpej  */
    320  1.1   thorpej void
    321  1.1   thorpej futex_sys_init(void)
    322  1.1   thorpej {
    323  1.1   thorpej 
    324  1.1   thorpej 	mutex_init(&futex_tab.lock, MUTEX_DEFAULT, IPL_NONE);
    325  1.1   thorpej 	rb_tree_init(&futex_tab.va, &futex_rb_ops);
    326  1.1   thorpej 	rb_tree_init(&futex_tab.oa, &futex_shared_rb_ops);
    327  1.1   thorpej }
    328  1.1   thorpej 
    329  1.1   thorpej /*
    330  1.1   thorpej  * futex_sys_fini()
    331  1.1   thorpej  *
    332  1.1   thorpej  *	Finalize the futex subsystem.
    333  1.1   thorpej  */
    334  1.1   thorpej void
    335  1.1   thorpej futex_sys_fini(void)
    336  1.1   thorpej {
    337  1.1   thorpej 
    338  1.1   thorpej 	KASSERT(RB_TREE_MIN(&futex_tab.oa) == NULL);
    339  1.1   thorpej 	KASSERT(RB_TREE_MIN(&futex_tab.va) == NULL);
    340  1.1   thorpej 	mutex_destroy(&futex_tab.lock);
    341  1.1   thorpej }
    342  1.1   thorpej 
    343  1.1   thorpej /*
    344  1.1   thorpej  * futex_queue_init(f)
    345  1.1   thorpej  *
    346  1.1   thorpej  *	Initialize the futex queue.  Caller must call futex_queue_fini
    347  1.1   thorpej  *	when done.
    348  1.1   thorpej  *
    349  1.1   thorpej  *	Never sleeps.
    350  1.1   thorpej  */
    351  1.1   thorpej static void
    352  1.1   thorpej futex_queue_init(struct futex *f)
    353  1.1   thorpej {
    354  1.1   thorpej 
    355  1.1   thorpej 	mutex_init(&f->fx_qlock, MUTEX_DEFAULT, IPL_NONE);
    356  1.1   thorpej 	mutex_init(&f->fx_abortlock, MUTEX_DEFAULT, IPL_NONE);
    357  1.1   thorpej 	cv_init(&f->fx_abortcv, "fqabort");
    358  1.1   thorpej 	LIST_INIT(&f->fx_abortlist);
    359  1.1   thorpej 	TAILQ_INIT(&f->fx_queue);
    360  1.1   thorpej }
    361  1.1   thorpej 
    362  1.1   thorpej /*
    363  1.1   thorpej  * futex_queue_drain(f)
    364  1.1   thorpej  *
    365  1.1   thorpej  *	Wait for any aborting waiters in f; then empty the queue of
    366  1.1   thorpej  *	any stragglers and wake them.  Caller must guarantee no new
    367  1.1   thorpej  *	references to f.
    368  1.1   thorpej  *
    369  1.1   thorpej  *	May sleep.
    370  1.1   thorpej  */
    371  1.1   thorpej static void
    372  1.1   thorpej futex_queue_drain(struct futex *f)
    373  1.1   thorpej {
    374  1.1   thorpej 	struct futex_wait *fw, *fw_next;
    375  1.1   thorpej 
    376  1.1   thorpej 	mutex_enter(&f->fx_abortlock);
    377  1.1   thorpej 	while (!LIST_EMPTY(&f->fx_abortlist))
    378  1.1   thorpej 		cv_wait(&f->fx_abortcv, &f->fx_abortlock);
    379  1.1   thorpej 	mutex_exit(&f->fx_abortlock);
    380  1.1   thorpej 
    381  1.1   thorpej 	mutex_enter(&f->fx_qlock);
    382  1.1   thorpej 	TAILQ_FOREACH_SAFE(fw, &f->fx_queue, fw_entry, fw_next) {
    383  1.1   thorpej 		mutex_enter(&fw->fw_lock);
    384  1.1   thorpej 		futex_wait_dequeue(fw, f);
    385  1.1   thorpej 		cv_broadcast(&fw->fw_cv);
    386  1.1   thorpej 		mutex_exit(&fw->fw_lock);
    387  1.1   thorpej 	}
    388  1.1   thorpej 	mutex_exit(&f->fx_qlock);
    389  1.1   thorpej }
    390  1.1   thorpej 
    391  1.1   thorpej /*
    392  1.1   thorpej  * futex_queue_fini(fq)
    393  1.1   thorpej  *
    394  1.1   thorpej  *	Finalize the futex queue initialized by futex_queue_init.  Queue
    395  1.1   thorpej  *	must be empty.  Caller must not use f again until a subsequent
    396  1.1   thorpej  *	futex_queue_init.
    397  1.1   thorpej  */
    398  1.1   thorpej static void
    399  1.1   thorpej futex_queue_fini(struct futex *f)
    400  1.1   thorpej {
    401  1.1   thorpej 
    402  1.1   thorpej 	KASSERT(TAILQ_EMPTY(&f->fx_queue));
    403  1.1   thorpej 	KASSERT(LIST_EMPTY(&f->fx_abortlist));
    404  1.1   thorpej 	mutex_destroy(&f->fx_qlock);
    405  1.1   thorpej 	mutex_destroy(&f->fx_abortlock);
    406  1.1   thorpej 	cv_destroy(&f->fx_abortcv);
    407  1.1   thorpej }
    408  1.1   thorpej 
    409  1.1   thorpej /*
    410  1.1   thorpej  * futex_key_init(key, vm, va, shared)
    411  1.1   thorpej  *
    412  1.1   thorpej  *	Initialize a futex key for lookup, etc.
    413  1.1   thorpej  */
    414  1.1   thorpej static int
    415  1.1   thorpej futex_key_init(union futex_key *fk, struct vmspace *vm, vaddr_t va, bool shared)
    416  1.1   thorpej {
    417  1.1   thorpej 	int error = 0;
    418  1.1   thorpej 
    419  1.1   thorpej 	if (__predict_false(shared)) {
    420  1.1   thorpej 		if (!uvm_voaddr_acquire(&vm->vm_map, va, &fk->fk_shared))
    421  1.1   thorpej 			error = EFAULT;
    422  1.1   thorpej 	} else {
    423  1.1   thorpej 		fk->fk_private.vmspace = vm;
    424  1.1   thorpej 		fk->fk_private.va = va;
    425  1.1   thorpej 	}
    426  1.1   thorpej 
    427  1.1   thorpej 	return error;
    428  1.1   thorpej }
    429  1.1   thorpej 
    430  1.1   thorpej /*
    431  1.1   thorpej  * futex_key_fini(key, shared)
    432  1.1   thorpej  *
    433  1.1   thorpej  *	Release a futex key.
    434  1.1   thorpej  */
    435  1.1   thorpej static void
    436  1.1   thorpej futex_key_fini(union futex_key *fk, bool shared)
    437  1.1   thorpej {
    438  1.1   thorpej 	if (__predict_false(shared))
    439  1.1   thorpej 		uvm_voaddr_release(&fk->fk_shared);
    440  1.1   thorpej 	memset(fk, 0, sizeof(*fk));
    441  1.1   thorpej }
    442  1.1   thorpej 
    443  1.1   thorpej /*
    444  1.1   thorpej  * futex_create(fk, shared)
    445  1.1   thorpej  *
    446  1.1   thorpej  *	Create a futex.  Initial reference count is 1, representing the
    447  1.1   thorpej  *	caller.  Returns NULL on failure.  Always takes ownership of the
    448  1.1   thorpej  *	key, either transferring it to the newly-created futex, or releasing
    449  1.1   thorpej  *	the key if creation fails.
    450  1.1   thorpej  *
    451  1.1   thorpej  *	Never sleeps for memory, but may sleep to acquire a lock.
    452  1.1   thorpej  */
    453  1.1   thorpej static struct futex *
    454  1.1   thorpej futex_create(union futex_key *fk, bool shared)
    455  1.1   thorpej {
    456  1.1   thorpej 	struct futex *f;
    457  1.1   thorpej 
    458  1.1   thorpej 	f = kmem_alloc(sizeof(*f), KM_NOSLEEP);
    459  1.1   thorpej 	if (f == NULL) {
    460  1.1   thorpej 		futex_key_fini(fk, shared);
    461  1.1   thorpej 		return NULL;
    462  1.1   thorpej 	}
    463  1.1   thorpej 	f->fx_key = *fk;
    464  1.1   thorpej 	f->fx_refcnt = 1;
    465  1.1   thorpej 	f->fx_shared = shared;
    466  1.1   thorpej 	f->fx_on_tree = false;
    467  1.1   thorpej 	futex_queue_init(f);
    468  1.1   thorpej 
    469  1.1   thorpej 	return f;
    470  1.1   thorpej }
    471  1.1   thorpej 
    472  1.1   thorpej /*
    473  1.1   thorpej  * futex_destroy(f)
    474  1.1   thorpej  *
    475  1.1   thorpej  *	Destroy a futex created with futex_create.  Reference count
    476  1.1   thorpej  *	must be zero.
    477  1.1   thorpej  *
    478  1.1   thorpej  *	May sleep.
    479  1.1   thorpej  */
    480  1.1   thorpej static void
    481  1.1   thorpej futex_destroy(struct futex *f)
    482  1.1   thorpej {
    483  1.1   thorpej 
    484  1.1   thorpej 	ASSERT_SLEEPABLE();
    485  1.1   thorpej 
    486  1.1   thorpej 	KASSERT(atomic_load_relaxed(&f->fx_refcnt) == 0);
    487  1.1   thorpej 	KASSERT(!f->fx_on_tree);
    488  1.1   thorpej 
    489  1.1   thorpej 	/* Drain and destroy the private queue.  */
    490  1.1   thorpej 	futex_queue_drain(f);
    491  1.1   thorpej 	futex_queue_fini(f);
    492  1.1   thorpej 
    493  1.1   thorpej 	futex_key_fini(&f->fx_key, f->fx_shared);
    494  1.1   thorpej 
    495  1.1   thorpej 	kmem_free(f, sizeof(*f));
    496  1.1   thorpej }
    497  1.1   thorpej 
    498  1.1   thorpej /*
    499  1.1   thorpej  * futex_hold(f)
    500  1.1   thorpej  *
    501  1.1   thorpej  *	Attempt to acquire a reference to f.  Return 0 on success,
    502  1.1   thorpej  *	ENFILE on too many references.
    503  1.1   thorpej  *
    504  1.1   thorpej  *	Never sleeps.
    505  1.1   thorpej  */
    506  1.1   thorpej static int
    507  1.1   thorpej futex_hold(struct futex *f)
    508  1.1   thorpej {
    509  1.1   thorpej 	unsigned long refcnt;
    510  1.1   thorpej 
    511  1.1   thorpej 	do {
    512  1.1   thorpej 		refcnt = atomic_load_relaxed(&f->fx_refcnt);
    513  1.1   thorpej 		if (refcnt == ULONG_MAX)
    514  1.1   thorpej 			return ENFILE;
    515  1.1   thorpej 	} while (atomic_cas_ulong(&f->fx_refcnt, refcnt, refcnt + 1) != refcnt);
    516  1.1   thorpej 
    517  1.1   thorpej 	return 0;
    518  1.1   thorpej }
    519  1.1   thorpej 
    520  1.1   thorpej /*
    521  1.1   thorpej  * futex_rele(f)
    522  1.1   thorpej  *
    523  1.1   thorpej  *	Release a reference to f acquired with futex_create or
    524  1.1   thorpej  *	futex_hold.
    525  1.1   thorpej  *
    526  1.1   thorpej  *	May sleep to free f.
    527  1.1   thorpej  */
    528  1.1   thorpej static void
    529  1.1   thorpej futex_rele(struct futex *f)
    530  1.1   thorpej {
    531  1.1   thorpej 	unsigned long refcnt;
    532  1.1   thorpej 
    533  1.1   thorpej 	ASSERT_SLEEPABLE();
    534  1.1   thorpej 
    535  1.1   thorpej 	do {
    536  1.1   thorpej 		refcnt = atomic_load_relaxed(&f->fx_refcnt);
    537  1.1   thorpej 		if (refcnt == 1)
    538  1.1   thorpej 			goto trylast;
    539  1.1   thorpej 	} while (atomic_cas_ulong(&f->fx_refcnt, refcnt, refcnt - 1) != refcnt);
    540  1.1   thorpej 	return;
    541  1.1   thorpej 
    542  1.1   thorpej trylast:
    543  1.1   thorpej 	mutex_enter(&futex_tab.lock);
    544  1.1   thorpej 	if (atomic_dec_ulong_nv(&f->fx_refcnt) == 0) {
    545  1.1   thorpej 		if (f->fx_on_tree) {
    546  1.1   thorpej 			if (__predict_false(f->fx_shared))
    547  1.1   thorpej 				rb_tree_remove_node(&futex_tab.oa, f);
    548  1.1   thorpej 			else
    549  1.1   thorpej 				rb_tree_remove_node(&futex_tab.va, f);
    550  1.1   thorpej 			f->fx_on_tree = false;
    551  1.1   thorpej 		}
    552  1.1   thorpej 	} else {
    553  1.1   thorpej 		/* References remain -- don't destroy it.  */
    554  1.1   thorpej 		f = NULL;
    555  1.1   thorpej 	}
    556  1.1   thorpej 	mutex_exit(&futex_tab.lock);
    557  1.1   thorpej 	if (f != NULL)
    558  1.1   thorpej 		futex_destroy(f);
    559  1.1   thorpej }
    560  1.1   thorpej 
    561  1.1   thorpej /*
    562  1.1   thorpej  * futex_rele_not_last(f)
    563  1.1   thorpej  *
    564  1.1   thorpej  *	Release a reference to f acquired with futex_create or
    565  1.1   thorpej  *	futex_hold.
    566  1.1   thorpej  *
    567  1.1   thorpej  *	This version asserts that we are not dropping the last
    568  1.1   thorpej  *	reference to f.
    569  1.1   thorpej  */
    570  1.1   thorpej static void
    571  1.1   thorpej futex_rele_not_last(struct futex *f)
    572  1.1   thorpej {
    573  1.1   thorpej 	unsigned long refcnt;
    574  1.1   thorpej 
    575  1.1   thorpej 	do {
    576  1.1   thorpej 		refcnt = atomic_load_relaxed(&f->fx_refcnt);
    577  1.1   thorpej 		KASSERT(refcnt > 1);
    578  1.1   thorpej 	} while (atomic_cas_ulong(&f->fx_refcnt, refcnt, refcnt - 1) != refcnt);
    579  1.1   thorpej }
    580  1.1   thorpej 
    581  1.1   thorpej /*
    582  1.1   thorpej  * futex_lookup_by_key(key, shared, &f)
    583  1.1   thorpej  *
    584  1.1   thorpej  *	Try to find an existing futex va reference in the specified key
    585  1.1   thorpej  *	On success, return 0, set f to found futex or to NULL if not found,
    586  1.1   thorpej  *	and increment f's reference count if found.
    587  1.1   thorpej  *
    588  1.1   thorpej  *	Return ENFILE if reference count too high.
    589  1.1   thorpej  *
    590  1.1   thorpej  *	Internal lookup routine shared by futex_lookup() and
    591  1.5  riastrad  *	futex_lookup_create().
    592  1.1   thorpej  */
    593  1.1   thorpej static int
    594  1.1   thorpej futex_lookup_by_key(union futex_key *fk, bool shared, struct futex **fp)
    595  1.1   thorpej {
    596  1.1   thorpej 	struct futex *f;
    597  1.1   thorpej 	int error = 0;
    598  1.1   thorpej 
    599  1.1   thorpej 	mutex_enter(&futex_tab.lock);
    600  1.1   thorpej 	if (__predict_false(shared)) {
    601  1.1   thorpej 		f = rb_tree_find_node(&futex_tab.oa, fk);
    602  1.1   thorpej 	} else {
    603  1.1   thorpej 		f = rb_tree_find_node(&futex_tab.va, fk);
    604  1.1   thorpej 	}
    605  1.1   thorpej 	if (f) {
    606  1.1   thorpej 		error = futex_hold(f);
    607  1.1   thorpej 		if (error)
    608  1.1   thorpej 			f = NULL;
    609  1.1   thorpej 	}
    610  1.1   thorpej  	*fp = f;
    611  1.1   thorpej 	mutex_exit(&futex_tab.lock);
    612  1.1   thorpej 
    613  1.1   thorpej 	return error;
    614  1.1   thorpej }
    615  1.1   thorpej 
    616  1.1   thorpej /*
    617  1.1   thorpej  * futex_insert(f, fp)
    618  1.1   thorpej  *
    619  1.1   thorpej  *	Try to insert the futex f into the tree by va.  If there
    620  1.1   thorpej  *	already is a futex for its va, acquire a reference to it, and
    621  1.1   thorpej  *	store it in *fp; otherwise store f in *fp.
    622  1.1   thorpej  *
    623  1.1   thorpej  *	Return 0 on success, ENFILE if there already is a futex but its
    624  1.1   thorpej  *	reference count is too high.
    625  1.1   thorpej  */
    626  1.1   thorpej static int
    627  1.1   thorpej futex_insert(struct futex *f, struct futex **fp)
    628  1.1   thorpej {
    629  1.1   thorpej 	struct futex *f0;
    630  1.1   thorpej 	int error;
    631  1.1   thorpej 
    632  1.1   thorpej 	KASSERT(atomic_load_relaxed(&f->fx_refcnt) != 0);
    633  1.1   thorpej 	KASSERT(!f->fx_on_tree);
    634  1.1   thorpej 
    635  1.1   thorpej 	mutex_enter(&futex_tab.lock);
    636  1.1   thorpej 	if (__predict_false(f->fx_shared))
    637  1.1   thorpej 		f0 = rb_tree_insert_node(&futex_tab.oa, f);
    638  1.1   thorpej 	else
    639  1.1   thorpej 		f0 = rb_tree_insert_node(&futex_tab.va, f);
    640  1.1   thorpej 	if (f0 == f) {
    641  1.1   thorpej 		f->fx_on_tree = true;
    642  1.1   thorpej 		error = 0;
    643  1.1   thorpej 	} else {
    644  1.1   thorpej 		KASSERT(atomic_load_relaxed(&f0->fx_refcnt) != 0);
    645  1.1   thorpej 		KASSERT(f0->fx_on_tree);
    646  1.1   thorpej 		error = futex_hold(f0);
    647  1.1   thorpej 		if (error)
    648  1.1   thorpej 			goto out;
    649  1.1   thorpej 	}
    650  1.1   thorpej 	*fp = f0;
    651  1.1   thorpej out:	mutex_exit(&futex_tab.lock);
    652  1.1   thorpej 
    653  1.1   thorpej 	return error;
    654  1.1   thorpej }
    655  1.1   thorpej 
    656  1.1   thorpej /*
    657  1.1   thorpej  * futex_lookup(uaddr, shared, &f)
    658  1.1   thorpej  *
    659  1.1   thorpej  *	Find a futex at the userland pointer uaddr in the current
    660  1.1   thorpej  *	process's VM space.  On success, return the futex in f and
    661  1.1   thorpej  *	increment its reference count.
    662  1.1   thorpej  *
    663  1.5  riastrad  *	Caller must call futex_rele when done.
    664  1.1   thorpej  */
    665  1.1   thorpej static int
    666  1.1   thorpej futex_lookup(int *uaddr, bool shared, struct futex **fp)
    667  1.1   thorpej {
    668  1.1   thorpej 	union futex_key fk;
    669  1.1   thorpej 	struct vmspace *vm = curproc->p_vmspace;
    670  1.1   thorpej 	vaddr_t va = (vaddr_t)uaddr;
    671  1.1   thorpej 	int error;
    672  1.1   thorpej 
    673  1.1   thorpej 	/*
    674  1.1   thorpej 	 * Reject unaligned user pointers so we don't cross page
    675  1.1   thorpej 	 * boundaries and so atomics will work.
    676  1.1   thorpej 	 */
    677  1.1   thorpej 	if ((va & 3) != 0)
    678  1.1   thorpej 		return EINVAL;
    679  1.1   thorpej 
    680  1.1   thorpej 	/* Look it up. */
    681  1.1   thorpej 	error = futex_key_init(&fk, vm, va, shared);
    682  1.1   thorpej 	if (error)
    683  1.1   thorpej 		return error;
    684  1.1   thorpej 
    685  1.1   thorpej 	error = futex_lookup_by_key(&fk, shared, fp);
    686  1.1   thorpej 	futex_key_fini(&fk, shared);
    687  1.1   thorpej 	if (error)
    688  1.1   thorpej 		return error;
    689  1.1   thorpej 
    690  1.1   thorpej 	KASSERT(*fp == NULL || (*fp)->fx_shared == shared);
    691  1.1   thorpej 	KASSERT(*fp == NULL || atomic_load_relaxed(&(*fp)->fx_refcnt) != 0);
    692  1.1   thorpej 
    693  1.1   thorpej 	/*
    694  1.1   thorpej 	 * Success!  (Caller must still check whether we found
    695  1.1   thorpej 	 * anything, but nothing went _wrong_ like trying to use
    696  1.1   thorpej 	 * unmapped memory.)
    697  1.1   thorpej 	 */
    698  1.1   thorpej 	KASSERT(error == 0);
    699  1.1   thorpej 
    700  1.1   thorpej 	return error;
    701  1.1   thorpej }
    702  1.1   thorpej 
    703  1.1   thorpej /*
    704  1.5  riastrad  * futex_lookup_create(uaddr, shared, &f)
    705  1.1   thorpej  *
    706  1.1   thorpej  *	Find or create a futex at the userland pointer uaddr in the
    707  1.1   thorpej  *	current process's VM space.  On success, return the futex in f
    708  1.1   thorpej  *	and increment its reference count.
    709  1.1   thorpej  *
    710  1.5  riastrad  *	Caller must call futex_rele when done.
    711  1.1   thorpej  */
    712  1.1   thorpej static int
    713  1.5  riastrad futex_lookup_create(int *uaddr, bool shared, struct futex **fp)
    714  1.1   thorpej {
    715  1.1   thorpej 	union futex_key fk;
    716  1.1   thorpej 	struct vmspace *vm = curproc->p_vmspace;
    717  1.1   thorpej 	struct futex *f = NULL;
    718  1.1   thorpej 	vaddr_t va = (vaddr_t)uaddr;
    719  1.1   thorpej 	int error;
    720  1.1   thorpej 
    721  1.1   thorpej 	/*
    722  1.1   thorpej 	 * Reject unaligned user pointers so we don't cross page
    723  1.1   thorpej 	 * boundaries and so atomics will work.
    724  1.1   thorpej 	 */
    725  1.1   thorpej 	if ((va & 3) != 0)
    726  1.1   thorpej 		return EINVAL;
    727  1.1   thorpej 
    728  1.1   thorpej 	error = futex_key_init(&fk, vm, va, shared);
    729  1.1   thorpej 	if (error)
    730  1.1   thorpej 		return error;
    731  1.1   thorpej 
    732  1.1   thorpej 	/*
    733  1.1   thorpej 	 * Optimistically assume there already is one, and try to find
    734  1.1   thorpej 	 * it.
    735  1.1   thorpej 	 */
    736  1.1   thorpej 	error = futex_lookup_by_key(&fk, shared, fp);
    737  1.1   thorpej 	if (error || *fp != NULL) {
    738  1.1   thorpej 		/*
    739  1.1   thorpej 		 * We either found one, or there was an error.
    740  1.1   thorpej 		 * In either case, we are done with the key.
    741  1.1   thorpej 		 */
    742  1.1   thorpej 		futex_key_fini(&fk, shared);
    743  1.1   thorpej 		goto out;
    744  1.1   thorpej 	}
    745  1.1   thorpej 
    746  1.1   thorpej 	/*
    747  1.1   thorpej 	 * Create a futex recoard.  This tranfers ownership of the key
    748  1.1   thorpej 	 * in all cases.
    749  1.1   thorpej 	 */
    750  1.1   thorpej 	f = futex_create(&fk, shared);
    751  1.1   thorpej 	if (f == NULL) {
    752  1.1   thorpej 		error = ENOMEM;
    753  1.1   thorpej 		goto out;
    754  1.1   thorpej 	}
    755  1.1   thorpej 
    756  1.1   thorpej 	/*
    757  1.1   thorpej 	 * Insert our new futex, or use existing if someone else beat
    758  1.1   thorpej 	 * us to it.
    759  1.1   thorpej 	 */
    760  1.1   thorpej 	error = futex_insert(f, fp);
    761  1.1   thorpej 	if (error)
    762  1.1   thorpej 		goto out;
    763  1.1   thorpej 	if (*fp == f)
    764  1.1   thorpej 		f = NULL;	/* don't release on exit */
    765  1.1   thorpej 
    766  1.1   thorpej 	/* Success!  */
    767  1.1   thorpej 	KASSERT(error == 0);
    768  1.1   thorpej 
    769  1.1   thorpej out:	if (f != NULL)
    770  1.1   thorpej 		futex_rele(f);
    771  1.1   thorpej 	KASSERT(error || *fp != NULL);
    772  1.1   thorpej 	KASSERT(error || atomic_load_relaxed(&(*fp)->fx_refcnt) != 0);
    773  1.1   thorpej 	return error;
    774  1.1   thorpej }
    775  1.1   thorpej 
    776  1.1   thorpej /*
    777  1.1   thorpej  * futex_wait_init(fw, bitset)
    778  1.1   thorpej  *
    779  1.1   thorpej  *	Initialize a record for a thread to wait on a futex matching
    780  1.1   thorpej  *	the specified bit set.  Should be passed to futex_wait_enqueue
    781  1.1   thorpej  *	before futex_wait, and should be passed to futex_wait_fini when
    782  1.1   thorpej  *	done.
    783  1.1   thorpej  */
    784  1.1   thorpej static void
    785  1.1   thorpej futex_wait_init(struct futex_wait *fw, int bitset)
    786  1.1   thorpej {
    787  1.1   thorpej 
    788  1.6  riastrad 	KASSERT(bitset);
    789  1.6  riastrad 
    790  1.1   thorpej 	mutex_init(&fw->fw_lock, MUTEX_DEFAULT, IPL_NONE);
    791  1.1   thorpej 	cv_init(&fw->fw_cv, "futex");
    792  1.1   thorpej 	fw->fw_futex = NULL;
    793  1.1   thorpej 	fw->fw_bitset = bitset;
    794  1.4  riastrad 	fw->fw_aborting = false;
    795  1.1   thorpej }
    796  1.1   thorpej 
    797  1.1   thorpej /*
    798  1.1   thorpej  * futex_wait_fini(fw)
    799  1.1   thorpej  *
    800  1.1   thorpej  *	Finalize a record for a futex waiter.  Must not be on any
    801  1.1   thorpej  *	futex's queue.
    802  1.1   thorpej  */
    803  1.1   thorpej static void
    804  1.1   thorpej futex_wait_fini(struct futex_wait *fw)
    805  1.1   thorpej {
    806  1.1   thorpej 
    807  1.6  riastrad 	KASSERT(fw->fw_futex == NULL);
    808  1.6  riastrad 
    809  1.1   thorpej 	cv_destroy(&fw->fw_cv);
    810  1.1   thorpej 	mutex_destroy(&fw->fw_lock);
    811  1.1   thorpej }
    812  1.1   thorpej 
    813  1.1   thorpej /*
    814  1.1   thorpej  * futex_wait_enqueue(fw, f)
    815  1.1   thorpej  *
    816  1.1   thorpej  *	Put fw on the futex queue.  Must be done before futex_wait.
    817  1.1   thorpej  *	Caller must hold fw's lock and f's lock, and fw must not be on
    818  1.1   thorpej  *	any existing futex's waiter list.
    819  1.1   thorpej  */
    820  1.1   thorpej static void
    821  1.1   thorpej futex_wait_enqueue(struct futex_wait *fw, struct futex *f)
    822  1.1   thorpej {
    823  1.1   thorpej 
    824  1.1   thorpej 	KASSERT(mutex_owned(&f->fx_qlock));
    825  1.1   thorpej 	KASSERT(mutex_owned(&fw->fw_lock));
    826  1.1   thorpej 	KASSERT(fw->fw_futex == NULL);
    827  1.4  riastrad 	KASSERT(!fw->fw_aborting);
    828  1.1   thorpej 
    829  1.1   thorpej 	fw->fw_futex = f;
    830  1.1   thorpej 	TAILQ_INSERT_TAIL(&f->fx_queue, fw, fw_entry);
    831  1.1   thorpej }
    832  1.1   thorpej 
    833  1.1   thorpej /*
    834  1.1   thorpej  * futex_wait_dequeue(fw, f)
    835  1.1   thorpej  *
    836  1.1   thorpej  *	Remove fw from the futex queue.  Precludes subsequent
    837  1.1   thorpej  *	futex_wait until a futex_wait_enqueue.  Caller must hold fw's
    838  1.1   thorpej  *	lock and f's lock, and fw must be on f.
    839  1.1   thorpej  */
    840  1.1   thorpej static void
    841  1.1   thorpej futex_wait_dequeue(struct futex_wait *fw, struct futex *f)
    842  1.1   thorpej {
    843  1.1   thorpej 
    844  1.1   thorpej 	KASSERT(mutex_owned(&f->fx_qlock));
    845  1.1   thorpej 	KASSERT(mutex_owned(&fw->fw_lock));
    846  1.1   thorpej 	KASSERT(fw->fw_futex == f);
    847  1.1   thorpej 
    848  1.1   thorpej 	TAILQ_REMOVE(&f->fx_queue, fw, fw_entry);
    849  1.1   thorpej 	fw->fw_futex = NULL;
    850  1.1   thorpej }
    851  1.1   thorpej 
    852  1.1   thorpej /*
    853  1.1   thorpej  * futex_wait_abort(fw)
    854  1.1   thorpej  *
    855  1.1   thorpej  *	Caller is no longer waiting for fw.  Remove it from any queue
    856  1.4  riastrad  *	if it was on one.  Caller must hold fw->fw_lock.
    857  1.1   thorpej  */
    858  1.1   thorpej static void
    859  1.1   thorpej futex_wait_abort(struct futex_wait *fw)
    860  1.1   thorpej {
    861  1.1   thorpej 	struct futex *f;
    862  1.1   thorpej 
    863  1.4  riastrad 	KASSERT(mutex_owned(&fw->fw_lock));
    864  1.1   thorpej 
    865  1.1   thorpej 	/*
    866  1.1   thorpej 	 * Grab the futex queue.  It can't go away as long as we hold
    867  1.1   thorpej 	 * fw_lock.  However, we can't take the queue lock because
    868  1.1   thorpej 	 * that's a lock order reversal.
    869  1.1   thorpej 	 */
    870  1.1   thorpej 	f = fw->fw_futex;
    871  1.1   thorpej 
    872  1.1   thorpej 	/* Put us on the abort list so that fq won't go away.  */
    873  1.1   thorpej 	mutex_enter(&f->fx_abortlock);
    874  1.1   thorpej 	LIST_INSERT_HEAD(&f->fx_abortlist, fw, fw_abort);
    875  1.1   thorpej 	mutex_exit(&f->fx_abortlock);
    876  1.1   thorpej 
    877  1.4  riastrad 	/*
    878  1.4  riastrad 	 * Mark fw as aborting so it won't lose wakeups and won't be
    879  1.4  riastrad 	 * transferred to any other queue.
    880  1.4  riastrad 	 */
    881  1.4  riastrad 	fw->fw_aborting = true;
    882  1.4  riastrad 
    883  1.1   thorpej 	/* f is now stable, so we can release fw_lock.  */
    884  1.1   thorpej 	mutex_exit(&fw->fw_lock);
    885  1.1   thorpej 
    886  1.1   thorpej 	/* Now we can remove fw under the queue lock.  */
    887  1.1   thorpej 	mutex_enter(&f->fx_qlock);
    888  1.4  riastrad 	mutex_enter(&fw->fw_lock);
    889  1.4  riastrad 	futex_wait_dequeue(fw, f);
    890  1.4  riastrad 	mutex_exit(&fw->fw_lock);
    891  1.1   thorpej 	mutex_exit(&f->fx_qlock);
    892  1.1   thorpej 
    893  1.1   thorpej 	/*
    894  1.1   thorpej 	 * Finally, remove us from the abort list and notify anyone
    895  1.1   thorpej 	 * waiting for the abort to complete if we were the last to go.
    896  1.1   thorpej 	 */
    897  1.1   thorpej 	mutex_enter(&f->fx_abortlock);
    898  1.1   thorpej 	LIST_REMOVE(fw, fw_abort);
    899  1.1   thorpej 	if (LIST_EMPTY(&f->fx_abortlist))
    900  1.1   thorpej 		cv_broadcast(&f->fx_abortcv);
    901  1.1   thorpej 	mutex_exit(&f->fx_abortlock);
    902  1.4  riastrad 
    903  1.4  riastrad 	/*
    904  1.4  riastrad 	 * Release our reference to the futex now that we are not
    905  1.4  riastrad 	 * waiting for it.
    906  1.4  riastrad 	 */
    907  1.4  riastrad 	futex_rele(f);
    908  1.4  riastrad 
    909  1.4  riastrad 	/*
    910  1.4  riastrad 	 * Reacquire the fw lock as caller expects.  Verify that we're
    911  1.4  riastrad 	 * aborting and no longer associated with a futex.
    912  1.4  riastrad 	 */
    913  1.4  riastrad 	mutex_enter(&fw->fw_lock);
    914  1.4  riastrad 	KASSERT(fw->fw_aborting);
    915  1.4  riastrad 	KASSERT(fw->fw_futex == NULL);
    916  1.1   thorpej }
    917  1.1   thorpej 
    918  1.1   thorpej /*
    919  1.1   thorpej  * futex_wait(fw, deadline, clkid)
    920  1.1   thorpej  *
    921  1.1   thorpej  *	fw must be a waiter on a futex's queue.  Wait until deadline on
    922  1.1   thorpej  *	the clock clkid, or forever if deadline is NULL, for a futex
    923  1.1   thorpej  *	wakeup.  Return 0 on explicit wakeup or destruction of futex,
    924  1.4  riastrad  *	ETIMEDOUT on timeout, EINTR/ERESTART on signal.  Either way, fw
    925  1.4  riastrad  *	will no longer be on a futex queue on return.
    926  1.1   thorpej  */
    927  1.1   thorpej static int
    928  1.1   thorpej futex_wait(struct futex_wait *fw, const struct timespec *deadline,
    929  1.1   thorpej     clockid_t clkid)
    930  1.1   thorpej {
    931  1.1   thorpej 	int error = 0;
    932  1.1   thorpej 
    933  1.1   thorpej 	/* Test and wait under the wait lock.  */
    934  1.1   thorpej 	mutex_enter(&fw->fw_lock);
    935  1.4  riastrad 
    936  1.4  riastrad 	for (;;) {
    937  1.4  riastrad 		/* If we're done yet, stop and report success.  */
    938  1.4  riastrad 		if (fw->fw_bitset == 0 || fw->fw_futex == NULL) {
    939  1.4  riastrad 			error = 0;
    940  1.4  riastrad 			break;
    941  1.4  riastrad 		}
    942  1.4  riastrad 
    943  1.4  riastrad 		/* If anything went wrong in the last iteration, stop.  */
    944  1.4  riastrad 		if (error)
    945  1.4  riastrad 			break;
    946  1.4  riastrad 
    947  1.1   thorpej 		/* Not done yet.  Wait.  */
    948  1.1   thorpej 		if (deadline) {
    949  1.1   thorpej 			struct timespec ts;
    950  1.1   thorpej 
    951  1.1   thorpej 			/* Check our watch.  */
    952  1.1   thorpej 			error = clock_gettime1(clkid, &ts);
    953  1.1   thorpej 			if (error)
    954  1.1   thorpej 				break;
    955  1.1   thorpej 
    956  1.1   thorpej 			/* If we're past the deadline, ETIMEDOUT.  */
    957  1.1   thorpej 			if (timespeccmp(deadline, &ts, <=)) {
    958  1.1   thorpej 				error = ETIMEDOUT;
    959  1.1   thorpej 				break;
    960  1.1   thorpej 			}
    961  1.1   thorpej 
    962  1.1   thorpej 			/* Count how much time is left.  */
    963  1.1   thorpej 			timespecsub(deadline, &ts, &ts);
    964  1.1   thorpej 
    965  1.1   thorpej 			/* Wait for that much time, allowing signals.  */
    966  1.1   thorpej 			error = cv_timedwait_sig(&fw->fw_cv, &fw->fw_lock,
    967  1.1   thorpej 			    tstohz(&ts));
    968  1.1   thorpej 		} else {
    969  1.1   thorpej 			/* Wait indefinitely, allowing signals. */
    970  1.1   thorpej 			error = cv_wait_sig(&fw->fw_cv, &fw->fw_lock);
    971  1.1   thorpej 		}
    972  1.1   thorpej 	}
    973  1.4  riastrad 
    974  1.4  riastrad 	/*
    975  1.4  riastrad 	 * If we were woken up, the waker will have removed fw from the
    976  1.4  riastrad 	 * queue.  But if anything went wrong, we must remove fw from
    977  1.4  riastrad 	 * the queue ourselves.  While here, convert EWOULDBLOCK to
    978  1.4  riastrad 	 * ETIMEDOUT.
    979  1.4  riastrad 	 */
    980  1.4  riastrad 	if (error) {
    981  1.4  riastrad 		futex_wait_abort(fw);
    982  1.4  riastrad 		if (error == EWOULDBLOCK)
    983  1.4  riastrad 			error = ETIMEDOUT;
    984  1.4  riastrad 	}
    985  1.4  riastrad 
    986  1.1   thorpej 	mutex_exit(&fw->fw_lock);
    987  1.1   thorpej 
    988  1.1   thorpej 	return error;
    989  1.1   thorpej }
    990  1.1   thorpej 
    991  1.1   thorpej /*
    992  1.1   thorpej  * futex_wake(f, nwake, f2, nrequeue, bitset)
    993  1.1   thorpej  *
    994  1.1   thorpej  *	Wake up to nwake waiters on f matching bitset; then, if f2 is
    995  1.1   thorpej  *	provided, move up to nrequeue remaining waiters on f matching
    996  1.1   thorpej  *	bitset to f2.  Return the number of waiters actually woken.
    997  1.1   thorpej  *	Caller must hold the locks of f and f2, if provided.
    998  1.1   thorpej  */
    999  1.1   thorpej static unsigned
   1000  1.1   thorpej futex_wake(struct futex *f, unsigned nwake, struct futex *f2,
   1001  1.1   thorpej     unsigned nrequeue, int bitset)
   1002  1.1   thorpej {
   1003  1.1   thorpej 	struct futex_wait *fw, *fw_next;
   1004  1.1   thorpej 	unsigned nwoken = 0;
   1005  1.2   mlelstv 	int hold_error __diagused;
   1006  1.1   thorpej 
   1007  1.1   thorpej 	KASSERT(mutex_owned(&f->fx_qlock));
   1008  1.1   thorpej 	KASSERT(f2 == NULL || mutex_owned(&f2->fx_qlock));
   1009  1.1   thorpej 
   1010  1.1   thorpej 	/* Wake up to nwake waiters, and count the number woken.  */
   1011  1.1   thorpej 	TAILQ_FOREACH_SAFE(fw, &f->fx_queue, fw_entry, fw_next) {
   1012  1.1   thorpej 		if ((fw->fw_bitset & bitset) == 0)
   1013  1.1   thorpej 			continue;
   1014  1.4  riastrad 		if (nwake > 0) {
   1015  1.1   thorpej 			mutex_enter(&fw->fw_lock);
   1016  1.4  riastrad 			if (__predict_false(fw->fw_aborting)) {
   1017  1.4  riastrad 				mutex_exit(&fw->fw_lock);
   1018  1.4  riastrad 				continue;
   1019  1.4  riastrad 			}
   1020  1.1   thorpej 			futex_wait_dequeue(fw, f);
   1021  1.1   thorpej 			fw->fw_bitset = 0;
   1022  1.1   thorpej 			cv_broadcast(&fw->fw_cv);
   1023  1.1   thorpej 			mutex_exit(&fw->fw_lock);
   1024  1.4  riastrad 			nwake--;
   1025  1.1   thorpej 			nwoken++;
   1026  1.1   thorpej 			/*
   1027  1.1   thorpej 			 * Drop the futex reference on behalf of the
   1028  1.1   thorpej 			 * waiter.  We assert this is not the last
   1029  1.1   thorpej 			 * reference on the futex (our caller should
   1030  1.1   thorpej 			 * also have one).
   1031  1.1   thorpej 			 */
   1032  1.1   thorpej 			futex_rele_not_last(f);
   1033  1.1   thorpej 		} else {
   1034  1.1   thorpej 			break;
   1035  1.1   thorpej 		}
   1036  1.1   thorpej 	}
   1037  1.1   thorpej 
   1038  1.1   thorpej 	if (f2) {
   1039  1.1   thorpej 		/* Move up to nrequeue waiters from f's queue to f2's queue. */
   1040  1.1   thorpej 		TAILQ_FOREACH_SAFE(fw, &f->fx_queue, fw_entry, fw_next) {
   1041  1.1   thorpej 			if ((fw->fw_bitset & bitset) == 0)
   1042  1.1   thorpej 				continue;
   1043  1.4  riastrad 			if (nrequeue > 0) {
   1044  1.1   thorpej 				mutex_enter(&fw->fw_lock);
   1045  1.4  riastrad 				if (__predict_false(fw->fw_aborting)) {
   1046  1.4  riastrad 					mutex_exit(&fw->fw_lock);
   1047  1.4  riastrad 					continue;
   1048  1.4  riastrad 				}
   1049  1.1   thorpej 				futex_wait_dequeue(fw, f);
   1050  1.1   thorpej 				futex_wait_enqueue(fw, f2);
   1051  1.1   thorpej 				mutex_exit(&fw->fw_lock);
   1052  1.4  riastrad 				nrequeue--;
   1053  1.1   thorpej 				/*
   1054  1.1   thorpej 				 * Transfer the reference from f to f2.
   1055  1.1   thorpej 				 * As above, we assert that we are not
   1056  1.1   thorpej 				 * dropping the last reference to f here.
   1057  1.1   thorpej 				 *
   1058  1.1   thorpej 				 * XXX futex_hold() could theoretically
   1059  1.1   thorpej 				 * XXX fail here.
   1060  1.1   thorpej 				 */
   1061  1.1   thorpej 				futex_rele_not_last(f);
   1062  1.1   thorpej 				hold_error = futex_hold(f2);
   1063  1.1   thorpej 				KASSERT(hold_error == 0);
   1064  1.1   thorpej 			} else {
   1065  1.1   thorpej 				break;
   1066  1.1   thorpej 			}
   1067  1.1   thorpej 		}
   1068  1.1   thorpej 	} else {
   1069  1.1   thorpej 		KASSERT(nrequeue == 0);
   1070  1.1   thorpej 	}
   1071  1.1   thorpej 
   1072  1.1   thorpej 	/* Return the number of waiters woken.  */
   1073  1.1   thorpej 	return nwoken;
   1074  1.1   thorpej }
   1075  1.1   thorpej 
   1076  1.1   thorpej /*
   1077  1.1   thorpej  * futex_queue_lock(f)
   1078  1.1   thorpej  *
   1079  1.1   thorpej  *	Acquire the queue lock of f.  Pair with futex_queue_unlock.  Do
   1080  1.1   thorpej  *	not use if caller needs to acquire two locks; use
   1081  1.1   thorpej  *	futex_queue_lock2 instead.
   1082  1.1   thorpej  */
   1083  1.1   thorpej static void
   1084  1.1   thorpej futex_queue_lock(struct futex *f)
   1085  1.1   thorpej {
   1086  1.1   thorpej 	mutex_enter(&f->fx_qlock);
   1087  1.1   thorpej }
   1088  1.1   thorpej 
   1089  1.1   thorpej /*
   1090  1.1   thorpej  * futex_queue_unlock(f)
   1091  1.1   thorpej  *
   1092  1.1   thorpej  *	Release the queue lock of f.
   1093  1.1   thorpej  */
   1094  1.1   thorpej static void
   1095  1.1   thorpej futex_queue_unlock(struct futex *f)
   1096  1.1   thorpej {
   1097  1.1   thorpej 	mutex_exit(&f->fx_qlock);
   1098  1.1   thorpej }
   1099  1.1   thorpej 
   1100  1.1   thorpej /*
   1101  1.1   thorpej  * futex_queue_lock2(f, f2)
   1102  1.1   thorpej  *
   1103  1.1   thorpej  *	Acquire the queue locks of both f and f2, which may be null, or
   1104  1.1   thorpej  *	which may have the same underlying queue.  If they are
   1105  1.1   thorpej  *	distinct, an arbitrary total order is chosen on the locks.
   1106  1.1   thorpej  *
   1107  1.1   thorpej  *	Callers should only ever acquire multiple queue locks
   1108  1.1   thorpej  *	simultaneously using futex_queue_lock2.
   1109  1.1   thorpej  */
   1110  1.1   thorpej static void
   1111  1.1   thorpej futex_queue_lock2(struct futex *f, struct futex *f2)
   1112  1.1   thorpej {
   1113  1.1   thorpej 
   1114  1.1   thorpej 	/*
   1115  1.1   thorpej 	 * If both are null, do nothing; if one is null and the other
   1116  1.1   thorpej 	 * is not, lock the other and be done with it.
   1117  1.1   thorpej 	 */
   1118  1.1   thorpej 	if (f == NULL && f2 == NULL) {
   1119  1.1   thorpej 		return;
   1120  1.1   thorpej 	} else if (f == NULL) {
   1121  1.1   thorpej 		mutex_enter(&f2->fx_qlock);
   1122  1.1   thorpej 		return;
   1123  1.1   thorpej 	} else if (f2 == NULL) {
   1124  1.1   thorpej 		mutex_enter(&f->fx_qlock);
   1125  1.1   thorpej 		return;
   1126  1.1   thorpej 	}
   1127  1.1   thorpej 
   1128  1.1   thorpej 	/* If both futexes are the same, acquire only one. */
   1129  1.1   thorpej 	if (f == f2) {
   1130  1.1   thorpej 		mutex_enter(&f->fx_qlock);
   1131  1.1   thorpej 		return;
   1132  1.1   thorpej 	}
   1133  1.1   thorpej 
   1134  1.1   thorpej 	/* Otherwise, use the ordering on the kva of the futex pointer.  */
   1135  1.1   thorpej 	if ((uintptr_t)f < (uintptr_t)f2) {
   1136  1.1   thorpej 		mutex_enter(&f->fx_qlock);
   1137  1.1   thorpej 		mutex_enter(&f2->fx_qlock);
   1138  1.1   thorpej 	} else {
   1139  1.1   thorpej 		mutex_enter(&f2->fx_qlock);
   1140  1.1   thorpej 		mutex_enter(&f->fx_qlock);
   1141  1.1   thorpej 	}
   1142  1.1   thorpej }
   1143  1.1   thorpej 
   1144  1.1   thorpej /*
   1145  1.1   thorpej  * futex_queue_unlock2(f, f2)
   1146  1.1   thorpej  *
   1147  1.1   thorpej  *	Release the queue locks of both f and f2, which may be null, or
   1148  1.1   thorpej  *	which may have the same underlying queue.
   1149  1.1   thorpej  */
   1150  1.1   thorpej static void
   1151  1.1   thorpej futex_queue_unlock2(struct futex *f, struct futex *f2)
   1152  1.1   thorpej {
   1153  1.1   thorpej 
   1154  1.1   thorpej 	/*
   1155  1.1   thorpej 	 * If both are null, do nothing; if one is null and the other
   1156  1.1   thorpej 	 * is not, unlock the other and be done with it.
   1157  1.1   thorpej 	 */
   1158  1.1   thorpej 	if (f == NULL && f2 == NULL) {
   1159  1.1   thorpej 		return;
   1160  1.1   thorpej 	} else if (f == NULL) {
   1161  1.1   thorpej 		mutex_exit(&f2->fx_qlock);
   1162  1.1   thorpej 		return;
   1163  1.1   thorpej 	} else if (f2 == NULL) {
   1164  1.1   thorpej 		mutex_exit(&f->fx_qlock);
   1165  1.1   thorpej 		return;
   1166  1.1   thorpej 	}
   1167  1.1   thorpej 
   1168  1.1   thorpej 	/* If both futexes are the same, release only one. */
   1169  1.1   thorpej 	if (f == f2) {
   1170  1.1   thorpej 		mutex_exit(&f->fx_qlock);
   1171  1.1   thorpej 		return;
   1172  1.1   thorpej 	}
   1173  1.1   thorpej 
   1174  1.1   thorpej 	/* Otherwise, use the ordering on the kva of the futex pointer.  */
   1175  1.1   thorpej 	if ((uintptr_t)f < (uintptr_t)f2) {
   1176  1.1   thorpej 		mutex_exit(&f2->fx_qlock);
   1177  1.1   thorpej 		mutex_exit(&f->fx_qlock);
   1178  1.1   thorpej 	} else {
   1179  1.1   thorpej 		mutex_exit(&f->fx_qlock);
   1180  1.1   thorpej 		mutex_exit(&f2->fx_qlock);
   1181  1.1   thorpej 	}
   1182  1.1   thorpej }
   1183  1.1   thorpej 
   1184  1.1   thorpej /*
   1185  1.1   thorpej  * futex_func_wait(uaddr, val, val3, timeout, clkid, clkflags, retval)
   1186  1.1   thorpej  *
   1187  1.1   thorpej  *	Implement futex(FUTEX_WAIT).
   1188  1.1   thorpej  */
   1189  1.1   thorpej static int
   1190  1.1   thorpej futex_func_wait(bool shared, int *uaddr, int val, int val3,
   1191  1.1   thorpej     const struct timespec *timeout, clockid_t clkid, int clkflags,
   1192  1.1   thorpej     register_t *retval)
   1193  1.1   thorpej {
   1194  1.1   thorpej 	struct futex *f;
   1195  1.1   thorpej 	struct futex_wait wait, *fw = &wait;
   1196  1.1   thorpej 	struct timespec ts;
   1197  1.1   thorpej 	const struct timespec *deadline;
   1198  1.1   thorpej 	int error;
   1199  1.1   thorpej 
   1200  1.6  riastrad 	/*
   1201  1.6  riastrad 	 * If there's nothing to wait for, and nobody will ever wake
   1202  1.6  riastrad 	 * us, then don't set anything up to wait -- just stop here.
   1203  1.6  riastrad 	 */
   1204  1.6  riastrad 	if (val3 == 0)
   1205  1.6  riastrad 		return 0;
   1206  1.6  riastrad 
   1207  1.1   thorpej 	/* Optimistically test before anything else.  */
   1208  1.1   thorpej 	if (!futex_test(uaddr, val))
   1209  1.1   thorpej 		return EAGAIN;
   1210  1.1   thorpej 
   1211  1.1   thorpej 	/* Determine a deadline on the specified clock.  */
   1212  1.1   thorpej 	if (timeout == NULL || (clkflags & TIMER_ABSTIME) == TIMER_ABSTIME) {
   1213  1.1   thorpej 		deadline = timeout;
   1214  1.1   thorpej 	} else {
   1215  1.1   thorpej 		error = clock_gettime1(clkid, &ts);
   1216  1.1   thorpej 		if (error)
   1217  1.1   thorpej 			return error;
   1218  1.1   thorpej 		timespecadd(&ts, timeout, &ts);
   1219  1.1   thorpej 		deadline = &ts;
   1220  1.1   thorpej 	}
   1221  1.1   thorpej 
   1222  1.1   thorpej 	/* Get the futex, creating it if necessary.  */
   1223  1.5  riastrad 	error = futex_lookup_create(uaddr, shared, &f);
   1224  1.1   thorpej 	if (error)
   1225  1.1   thorpej 		return error;
   1226  1.1   thorpej 	KASSERT(f);
   1227  1.1   thorpej 
   1228  1.1   thorpej 	/* Get ready to wait.  */
   1229  1.1   thorpej 	futex_wait_init(fw, val3);
   1230  1.1   thorpej 
   1231  1.1   thorpej 	/*
   1232  1.1   thorpej 	 * Under the queue lock, check the value again: if it has
   1233  1.1   thorpej 	 * already changed, EAGAIN; otherwise enqueue the waiter.
   1234  1.1   thorpej 	 * Since FUTEX_WAKE will use the same lock and be done after
   1235  1.1   thorpej 	 * modifying the value, the order in which we check and enqueue
   1236  1.1   thorpej 	 * is immaterial.
   1237  1.1   thorpej 	 */
   1238  1.1   thorpej 	futex_queue_lock(f);
   1239  1.1   thorpej 	if (!futex_test(uaddr, val)) {
   1240  1.1   thorpej 		futex_queue_unlock(f);
   1241  1.1   thorpej 		error = EAGAIN;
   1242  1.1   thorpej 		goto out;
   1243  1.1   thorpej 	}
   1244  1.1   thorpej 	mutex_enter(&fw->fw_lock);
   1245  1.1   thorpej 	futex_wait_enqueue(fw, f);
   1246  1.1   thorpej 	mutex_exit(&fw->fw_lock);
   1247  1.1   thorpej 	futex_queue_unlock(f);
   1248  1.1   thorpej 
   1249  1.1   thorpej 	/*
   1250  1.1   thorpej 	 * We cannot drop our reference to the futex here, because
   1251  1.1   thorpej 	 * we might be enqueued on a different one when we are awakened.
   1252  1.1   thorpej 	 * The references will be managed on our behalf in the requeue
   1253  1.1   thorpej 	 * and wake cases.
   1254  1.1   thorpej 	 */
   1255  1.1   thorpej 	f = NULL;
   1256  1.1   thorpej 
   1257  1.1   thorpej 	/* Wait. */
   1258  1.1   thorpej 	error = futex_wait(fw, deadline, clkid);
   1259  1.4  riastrad 	if (error)
   1260  1.1   thorpej 		goto out;
   1261  1.1   thorpej 
   1262  1.1   thorpej 	/* Return 0 on success, error on failure. */
   1263  1.1   thorpej 	*retval = 0;
   1264  1.1   thorpej 
   1265  1.1   thorpej out:	if (f != NULL)
   1266  1.5  riastrad 		futex_rele(f);
   1267  1.1   thorpej 	futex_wait_fini(fw);
   1268  1.1   thorpej 	return error;
   1269  1.1   thorpej }
   1270  1.1   thorpej 
   1271  1.1   thorpej /*
   1272  1.1   thorpej  * futex_func_wake(uaddr, val, val3, retval)
   1273  1.1   thorpej  *
   1274  1.1   thorpej  *	Implement futex(FUTEX_WAKE) and futex(FUTEX_WAKE_BITSET).
   1275  1.1   thorpej  */
   1276  1.1   thorpej static int
   1277  1.1   thorpej futex_func_wake(bool shared, int *uaddr, int val, int val3, register_t *retval)
   1278  1.1   thorpej {
   1279  1.1   thorpej 	struct futex *f;
   1280  1.1   thorpej 	unsigned int nwoken = 0;
   1281  1.1   thorpej 	int error = 0;
   1282  1.1   thorpej 
   1283  1.1   thorpej 	/* Reject negative number of wakeups.  */
   1284  1.1   thorpej 	if (val < 0) {
   1285  1.1   thorpej 		error = EINVAL;
   1286  1.1   thorpej 		goto out;
   1287  1.1   thorpej 	}
   1288  1.1   thorpej 
   1289  1.1   thorpej 	/* Look up the futex, if any.  */
   1290  1.1   thorpej 	error = futex_lookup(uaddr, shared, &f);
   1291  1.1   thorpej 	if (error)
   1292  1.1   thorpej 		goto out;
   1293  1.1   thorpej 
   1294  1.1   thorpej 	/* If there's no futex, there are no waiters to wake.  */
   1295  1.1   thorpej 	if (f == NULL)
   1296  1.1   thorpej 		goto out;
   1297  1.1   thorpej 
   1298  1.1   thorpej 	/*
   1299  1.1   thorpej 	 * Under f's queue lock, wake the waiters and remember the
   1300  1.1   thorpej 	 * number woken.
   1301  1.1   thorpej 	 */
   1302  1.1   thorpej 	futex_queue_lock(f);
   1303  1.1   thorpej 	nwoken = futex_wake(f, val, NULL, 0, val3);
   1304  1.1   thorpej 	futex_queue_unlock(f);
   1305  1.1   thorpej 
   1306  1.1   thorpej 	/* Release the futex.  */
   1307  1.5  riastrad 	futex_rele(f);
   1308  1.1   thorpej 
   1309  1.1   thorpej out:
   1310  1.1   thorpej 	/* Return the number of waiters woken.  */
   1311  1.1   thorpej 	*retval = nwoken;
   1312  1.1   thorpej 
   1313  1.1   thorpej 	/* Success!  */
   1314  1.1   thorpej 	return error;
   1315  1.1   thorpej }
   1316  1.1   thorpej 
   1317  1.1   thorpej /*
   1318  1.1   thorpej  * futex_func_requeue(op, uaddr, val, uaddr2, val2, val3, retval)
   1319  1.1   thorpej  *
   1320  1.1   thorpej  *	Implement futex(FUTEX_REQUEUE) and futex(FUTEX_CMP_REQUEUE).
   1321  1.1   thorpej  */
   1322  1.1   thorpej static int
   1323  1.1   thorpej futex_func_requeue(bool shared, int op, int *uaddr, int val, int *uaddr2,
   1324  1.1   thorpej     int val2, int val3, register_t *retval)
   1325  1.1   thorpej {
   1326  1.1   thorpej 	struct futex *f = NULL, *f2 = NULL;
   1327  1.1   thorpej 	unsigned nwoken = 0;	/* default to zero woken on early return */
   1328  1.1   thorpej 	int error;
   1329  1.1   thorpej 
   1330  1.1   thorpej 	/* Reject negative number of wakeups or requeues. */
   1331  1.1   thorpej 	if (val < 0 || val2 < 0) {
   1332  1.1   thorpej 		error = EINVAL;
   1333  1.1   thorpej 		goto out;
   1334  1.1   thorpej 	}
   1335  1.1   thorpej 
   1336  1.1   thorpej 	/* Look up the source futex, if any. */
   1337  1.1   thorpej 	error = futex_lookup(uaddr, shared, &f);
   1338  1.1   thorpej 	if (error)
   1339  1.1   thorpej 		goto out;
   1340  1.1   thorpej 
   1341  1.1   thorpej 	/* If there is none, nothing to do. */
   1342  1.1   thorpej 	if (f == NULL)
   1343  1.1   thorpej 		goto out;
   1344  1.1   thorpej 
   1345  1.1   thorpej 	/*
   1346  1.1   thorpej 	 * We may need to create the destination futex because it's
   1347  1.1   thorpej 	 * entirely possible it does not currently have any waiters.
   1348  1.1   thorpej 	 */
   1349  1.5  riastrad 	error = futex_lookup_create(uaddr2, shared, &f2);
   1350  1.1   thorpej 	if (error)
   1351  1.1   thorpej 		goto out;
   1352  1.1   thorpej 
   1353  1.1   thorpej 	/*
   1354  1.1   thorpej 	 * Under the futexes' queue locks, check the value; if
   1355  1.1   thorpej 	 * unchanged from val3, wake the waiters.
   1356  1.1   thorpej 	 */
   1357  1.1   thorpej 	futex_queue_lock2(f, f2);
   1358  1.1   thorpej 	if (op == FUTEX_CMP_REQUEUE && !futex_test(uaddr, val3)) {
   1359  1.1   thorpej 		error = EAGAIN;
   1360  1.1   thorpej 	} else {
   1361  1.1   thorpej 		error = 0;
   1362  1.1   thorpej 		nwoken = futex_wake(f, val, f2, val2, FUTEX_BITSET_MATCH_ANY);
   1363  1.1   thorpej 	}
   1364  1.1   thorpej 	futex_queue_unlock2(f, f2);
   1365  1.1   thorpej 
   1366  1.1   thorpej out:
   1367  1.1   thorpej 	/* Return the number of waiters woken.  */
   1368  1.1   thorpej 	*retval = nwoken;
   1369  1.1   thorpej 
   1370  1.1   thorpej 	/* Release the futexes if we got them.  */
   1371  1.1   thorpej 	if (f2)
   1372  1.5  riastrad 		futex_rele(f2);
   1373  1.1   thorpej 	if (f)
   1374  1.5  riastrad 		futex_rele(f);
   1375  1.1   thorpej 	return error;
   1376  1.1   thorpej }
   1377  1.1   thorpej 
   1378  1.1   thorpej /*
   1379  1.1   thorpej  * futex_validate_op_cmp(val3)
   1380  1.1   thorpej  *
   1381  1.1   thorpej  *	Validate an op/cmp argument for FUTEX_WAKE_OP.
   1382  1.1   thorpej  */
   1383  1.1   thorpej static int
   1384  1.1   thorpej futex_validate_op_cmp(int val3)
   1385  1.1   thorpej {
   1386  1.1   thorpej 	int op = __SHIFTOUT(val3, FUTEX_OP_OP_MASK);
   1387  1.1   thorpej 	int cmp = __SHIFTOUT(val3, FUTEX_OP_CMP_MASK);
   1388  1.1   thorpej 
   1389  1.1   thorpej 	if (op & FUTEX_OP_OPARG_SHIFT) {
   1390  1.1   thorpej 		int oparg = __SHIFTOUT(val3, FUTEX_OP_OPARG_MASK);
   1391  1.1   thorpej 		if (oparg < 0)
   1392  1.1   thorpej 			return EINVAL;
   1393  1.1   thorpej 		if (oparg >= 32)
   1394  1.1   thorpej 			return EINVAL;
   1395  1.1   thorpej 		op &= ~FUTEX_OP_OPARG_SHIFT;
   1396  1.1   thorpej 	}
   1397  1.1   thorpej 
   1398  1.1   thorpej 	switch (op) {
   1399  1.1   thorpej 	case FUTEX_OP_SET:
   1400  1.1   thorpej 	case FUTEX_OP_ADD:
   1401  1.1   thorpej 	case FUTEX_OP_OR:
   1402  1.1   thorpej 	case FUTEX_OP_ANDN:
   1403  1.1   thorpej 	case FUTEX_OP_XOR:
   1404  1.1   thorpej 		break;
   1405  1.1   thorpej 	default:
   1406  1.1   thorpej 		return EINVAL;
   1407  1.1   thorpej 	}
   1408  1.1   thorpej 
   1409  1.1   thorpej 	switch (cmp) {
   1410  1.1   thorpej 	case FUTEX_OP_CMP_EQ:
   1411  1.1   thorpej 	case FUTEX_OP_CMP_NE:
   1412  1.1   thorpej 	case FUTEX_OP_CMP_LT:
   1413  1.1   thorpej 	case FUTEX_OP_CMP_LE:
   1414  1.1   thorpej 	case FUTEX_OP_CMP_GT:
   1415  1.1   thorpej 	case FUTEX_OP_CMP_GE:
   1416  1.1   thorpej 		break;
   1417  1.1   thorpej 	default:
   1418  1.1   thorpej 		return EINVAL;
   1419  1.1   thorpej 	}
   1420  1.1   thorpej 
   1421  1.1   thorpej 	return 0;
   1422  1.1   thorpej }
   1423  1.1   thorpej 
   1424  1.1   thorpej /*
   1425  1.1   thorpej  * futex_compute_op(oldval, val3)
   1426  1.1   thorpej  *
   1427  1.1   thorpej  *	Apply a FUTEX_WAIT_OP operation to oldval.
   1428  1.1   thorpej  */
   1429  1.1   thorpej static int
   1430  1.1   thorpej futex_compute_op(int oldval, int val3)
   1431  1.1   thorpej {
   1432  1.1   thorpej 	int op = __SHIFTOUT(val3, FUTEX_OP_OP_MASK);
   1433  1.1   thorpej 	int oparg = __SHIFTOUT(val3, FUTEX_OP_OPARG_MASK);
   1434  1.1   thorpej 
   1435  1.1   thorpej 	if (op & FUTEX_OP_OPARG_SHIFT) {
   1436  1.1   thorpej 		KASSERT(oparg >= 0);
   1437  1.1   thorpej 		KASSERT(oparg < 32);
   1438  1.1   thorpej 		oparg = 1u << oparg;
   1439  1.1   thorpej 		op &= ~FUTEX_OP_OPARG_SHIFT;
   1440  1.1   thorpej 	}
   1441  1.1   thorpej 
   1442  1.1   thorpej 	switch (op) {
   1443  1.1   thorpej 	case FUTEX_OP_SET:
   1444  1.1   thorpej 		return oparg;
   1445  1.1   thorpej 
   1446  1.1   thorpej 	case FUTEX_OP_ADD:
   1447  1.1   thorpej 		/*
   1448  1.1   thorpej 		 * Avoid signed arithmetic overflow by doing
   1449  1.1   thorpej 		 * arithmetic unsigned and converting back to signed
   1450  1.1   thorpej 		 * at the end.
   1451  1.1   thorpej 		 */
   1452  1.1   thorpej 		return (int)((unsigned)oldval + (unsigned)oparg);
   1453  1.1   thorpej 
   1454  1.1   thorpej 	case FUTEX_OP_OR:
   1455  1.1   thorpej 		return oldval | oparg;
   1456  1.1   thorpej 
   1457  1.1   thorpej 	case FUTEX_OP_ANDN:
   1458  1.1   thorpej 		return oldval & ~oparg;
   1459  1.1   thorpej 
   1460  1.1   thorpej 	case FUTEX_OP_XOR:
   1461  1.1   thorpej 		return oldval ^ oparg;
   1462  1.1   thorpej 
   1463  1.1   thorpej 	default:
   1464  1.1   thorpej 		panic("invalid futex op");
   1465  1.1   thorpej 	}
   1466  1.1   thorpej }
   1467  1.1   thorpej 
   1468  1.1   thorpej /*
   1469  1.1   thorpej  * futex_compute_cmp(oldval, val3)
   1470  1.1   thorpej  *
   1471  1.1   thorpej  *	Apply a FUTEX_WAIT_OP comparison to oldval.
   1472  1.1   thorpej  */
   1473  1.1   thorpej static bool
   1474  1.1   thorpej futex_compute_cmp(int oldval, int val3)
   1475  1.1   thorpej {
   1476  1.1   thorpej 	int cmp = __SHIFTOUT(val3, FUTEX_OP_CMP_MASK);
   1477  1.1   thorpej 	int cmparg = __SHIFTOUT(val3, FUTEX_OP_CMPARG_MASK);
   1478  1.1   thorpej 
   1479  1.1   thorpej 	switch (cmp) {
   1480  1.1   thorpej 	case FUTEX_OP_CMP_EQ:
   1481  1.1   thorpej 		return (oldval == cmparg);
   1482  1.1   thorpej 
   1483  1.1   thorpej 	case FUTEX_OP_CMP_NE:
   1484  1.1   thorpej 		return (oldval != cmparg);
   1485  1.1   thorpej 
   1486  1.1   thorpej 	case FUTEX_OP_CMP_LT:
   1487  1.1   thorpej 		return (oldval < cmparg);
   1488  1.1   thorpej 
   1489  1.1   thorpej 	case FUTEX_OP_CMP_LE:
   1490  1.1   thorpej 		return (oldval <= cmparg);
   1491  1.1   thorpej 
   1492  1.1   thorpej 	case FUTEX_OP_CMP_GT:
   1493  1.1   thorpej 		return (oldval > cmparg);
   1494  1.1   thorpej 
   1495  1.1   thorpej 	case FUTEX_OP_CMP_GE:
   1496  1.1   thorpej 		return (oldval >= cmparg);
   1497  1.1   thorpej 
   1498  1.1   thorpej 	default:
   1499  1.1   thorpej 		panic("invalid futex cmp operation");
   1500  1.1   thorpej 	}
   1501  1.1   thorpej }
   1502  1.1   thorpej 
   1503  1.1   thorpej /*
   1504  1.1   thorpej  * futex_func_wake_op(uaddr, val, uaddr2, val2, val3, retval)
   1505  1.1   thorpej  *
   1506  1.1   thorpej  *	Implement futex(FUTEX_WAKE_OP).
   1507  1.1   thorpej  */
   1508  1.1   thorpej static int
   1509  1.1   thorpej futex_func_wake_op(bool shared, int *uaddr, int val, int *uaddr2, int val2,
   1510  1.1   thorpej     int val3, register_t *retval)
   1511  1.1   thorpej {
   1512  1.1   thorpej 	struct futex *f = NULL, *f2 = NULL;
   1513  1.1   thorpej 	int oldval, newval, actual;
   1514  1.1   thorpej 	unsigned nwoken = 0;
   1515  1.1   thorpej 	int error;
   1516  1.1   thorpej 
   1517  1.1   thorpej 	/* Reject negative number of wakeups.  */
   1518  1.1   thorpej 	if (val < 0 || val2 < 0) {
   1519  1.1   thorpej 		error = EINVAL;
   1520  1.1   thorpej 		goto out;
   1521  1.1   thorpej 	}
   1522  1.1   thorpej 
   1523  1.1   thorpej 	/* Reject invalid operations before we start doing things.  */
   1524  1.1   thorpej 	if ((error = futex_validate_op_cmp(val3)) != 0)
   1525  1.1   thorpej 		goto out;
   1526  1.1   thorpej 
   1527  1.1   thorpej 	/* Look up the first futex, if any.  */
   1528  1.1   thorpej 	error = futex_lookup(uaddr, shared, &f);
   1529  1.1   thorpej 	if (error)
   1530  1.1   thorpej 		goto out;
   1531  1.1   thorpej 
   1532  1.1   thorpej 	/* Look up the second futex, if any.  */
   1533  1.1   thorpej 	error = futex_lookup(uaddr2, shared, &f2);
   1534  1.1   thorpej 	if (error)
   1535  1.1   thorpej 		goto out;
   1536  1.1   thorpej 
   1537  1.1   thorpej 	/*
   1538  1.1   thorpej 	 * Under the queue locks:
   1539  1.1   thorpej 	 *
   1540  1.1   thorpej 	 * 1. Read/modify/write: *uaddr2 op= oparg.
   1541  1.1   thorpej 	 * 2. Unconditionally wake uaddr.
   1542  1.1   thorpej 	 * 3. Conditionally wake uaddr2, if it previously matched val2.
   1543  1.1   thorpej 	 */
   1544  1.1   thorpej 	futex_queue_lock2(f, f2);
   1545  1.1   thorpej 	do {
   1546  1.1   thorpej 		error = futex_load(uaddr2, &oldval);
   1547  1.1   thorpej 		if (error)
   1548  1.1   thorpej 			goto out_unlock;
   1549  1.1   thorpej 		newval = futex_compute_op(oldval, val3);
   1550  1.1   thorpej 		error = ucas_int(uaddr2, oldval, newval, &actual);
   1551  1.1   thorpej 		if (error)
   1552  1.1   thorpej 			goto out_unlock;
   1553  1.1   thorpej 	} while (actual != oldval);
   1554  1.1   thorpej 	nwoken = (f ? futex_wake(f, val, NULL, 0, FUTEX_BITSET_MATCH_ANY) : 0);
   1555  1.1   thorpej 	if (f2 && futex_compute_cmp(oldval, val3))
   1556  1.1   thorpej 		nwoken += futex_wake(f2, val2, NULL, 0,
   1557  1.1   thorpej 		    FUTEX_BITSET_MATCH_ANY);
   1558  1.1   thorpej 
   1559  1.1   thorpej 	/* Success! */
   1560  1.1   thorpej 	error = 0;
   1561  1.1   thorpej out_unlock:
   1562  1.1   thorpej 	futex_queue_unlock2(f, f2);
   1563  1.1   thorpej 
   1564  1.1   thorpej out:
   1565  1.1   thorpej 	/* Return the number of waiters woken. */
   1566  1.1   thorpej 	*retval = nwoken;
   1567  1.1   thorpej 
   1568  1.1   thorpej 	/* Release the futexes, if we got them. */
   1569  1.1   thorpej 	if (f2)
   1570  1.5  riastrad 		futex_rele(f2);
   1571  1.1   thorpej 	if (f)
   1572  1.5  riastrad 		futex_rele(f);
   1573  1.1   thorpej 	return error;
   1574  1.1   thorpej }
   1575  1.1   thorpej 
   1576  1.1   thorpej /*
   1577  1.1   thorpej  * do_futex(uaddr, op, val, timeout, uaddr2, val2, val3)
   1578  1.1   thorpej  *
   1579  1.1   thorpej  *	Implement the futex system call with all the parameters
   1580  1.1   thorpej  *	parsed out.
   1581  1.1   thorpej  */
   1582  1.1   thorpej int
   1583  1.1   thorpej do_futex(int *uaddr, int op, int val, const struct timespec *timeout,
   1584  1.1   thorpej     int *uaddr2, int val2, int val3, register_t *retval)
   1585  1.1   thorpej {
   1586  1.1   thorpej 	const bool shared = (op & FUTEX_PRIVATE_FLAG) ? false : true;
   1587  1.1   thorpej 	const clockid_t clkid = (op & FUTEX_CLOCK_REALTIME) ? CLOCK_REALTIME
   1588  1.1   thorpej 							    : CLOCK_MONOTONIC;
   1589  1.1   thorpej 
   1590  1.1   thorpej 	op &= FUTEX_CMD_MASK;
   1591  1.1   thorpej 
   1592  1.1   thorpej 	switch (op) {
   1593  1.1   thorpej 	case FUTEX_WAIT:
   1594  1.1   thorpej 		return futex_func_wait(shared, uaddr, val,
   1595  1.1   thorpej 		    FUTEX_BITSET_MATCH_ANY, timeout, clkid, TIMER_RELTIME,
   1596  1.1   thorpej 		    retval);
   1597  1.1   thorpej 
   1598  1.1   thorpej 	case FUTEX_WAKE:
   1599  1.1   thorpej 		val3 = FUTEX_BITSET_MATCH_ANY;
   1600  1.1   thorpej 		/* FALLTHROUGH */
   1601  1.1   thorpej 	case FUTEX_WAKE_BITSET:
   1602  1.1   thorpej 		return futex_func_wake(shared, uaddr, val, val3, retval);
   1603  1.1   thorpej 
   1604  1.1   thorpej 	case FUTEX_REQUEUE:
   1605  1.1   thorpej 	case FUTEX_CMP_REQUEUE:
   1606  1.1   thorpej 		return futex_func_requeue(shared, op, uaddr, val, uaddr2,
   1607  1.1   thorpej 		    val2, val3, retval);
   1608  1.1   thorpej 
   1609  1.1   thorpej 	case FUTEX_WAIT_BITSET:
   1610  1.1   thorpej 		return futex_func_wait(shared, uaddr, val, val3, timeout,
   1611  1.1   thorpej 		    clkid, TIMER_ABSTIME, retval);
   1612  1.1   thorpej 
   1613  1.1   thorpej 	case FUTEX_WAKE_OP:
   1614  1.1   thorpej 		return futex_func_wake_op(shared, uaddr, val, uaddr2, val2,
   1615  1.1   thorpej 		    val3, retval);
   1616  1.1   thorpej 
   1617  1.1   thorpej 	case FUTEX_FD:
   1618  1.1   thorpej 	default:
   1619  1.1   thorpej 		return ENOSYS;
   1620  1.1   thorpej 	}
   1621  1.1   thorpej }
   1622  1.1   thorpej 
   1623  1.1   thorpej /*
   1624  1.1   thorpej  * sys___futex(l, uap, retval)
   1625  1.1   thorpej  *
   1626  1.1   thorpej  *	__futex(2) system call: generic futex operations.
   1627  1.1   thorpej  */
   1628  1.1   thorpej int
   1629  1.1   thorpej sys___futex(struct lwp *l, const struct sys___futex_args *uap,
   1630  1.1   thorpej     register_t *retval)
   1631  1.1   thorpej {
   1632  1.1   thorpej 	/* {
   1633  1.1   thorpej 		syscallarg(int *) uaddr;
   1634  1.1   thorpej 		syscallarg(int) op;
   1635  1.1   thorpej 		syscallarg(int) val;
   1636  1.1   thorpej 		syscallarg(const struct timespec *) timeout;
   1637  1.1   thorpej 		syscallarg(int *) uaddr2;
   1638  1.1   thorpej 		syscallarg(int) val2;
   1639  1.1   thorpej 		syscallarg(int) val3;
   1640  1.1   thorpej 	} */
   1641  1.1   thorpej 	struct timespec ts, *tsp;
   1642  1.1   thorpej 	int error;
   1643  1.1   thorpej 
   1644  1.1   thorpej 	/*
   1645  1.1   thorpej 	 * Copy in the timeout argument, if specified.
   1646  1.1   thorpej 	 */
   1647  1.1   thorpej 	if (SCARG(uap, timeout)) {
   1648  1.1   thorpej 		error = copyin(SCARG(uap, timeout), &ts, sizeof(ts));
   1649  1.1   thorpej 		if (error)
   1650  1.1   thorpej 			return error;
   1651  1.1   thorpej 		tsp = &ts;
   1652  1.1   thorpej 	} else {
   1653  1.1   thorpej 		tsp = NULL;
   1654  1.1   thorpej 	}
   1655  1.1   thorpej 
   1656  1.1   thorpej 	return do_futex(SCARG(uap, uaddr), SCARG(uap, op), SCARG(uap, val),
   1657  1.1   thorpej 	    tsp, SCARG(uap, uaddr2), SCARG(uap, val2), SCARG(uap, val3),
   1658  1.1   thorpej 	    retval);
   1659  1.1   thorpej }
   1660  1.1   thorpej 
   1661  1.1   thorpej /*
   1662  1.1   thorpej  * sys___futex_set_robust_list(l, uap, retval)
   1663  1.1   thorpej  *
   1664  1.1   thorpej  *	__futex_set_robust_list(2) system call for robust futexes.
   1665  1.1   thorpej  */
   1666  1.1   thorpej int
   1667  1.1   thorpej sys___futex_set_robust_list(struct lwp *l,
   1668  1.1   thorpej     const struct sys___futex_set_robust_list_args *uap, register_t *retval)
   1669  1.1   thorpej {
   1670  1.1   thorpej 	/* {
   1671  1.1   thorpej 		syscallarg(void *) head;
   1672  1.1   thorpej 		syscallarg(size_t) len;
   1673  1.1   thorpej 	} */
   1674  1.1   thorpej 	void *head = SCARG(uap, head);
   1675  1.1   thorpej 
   1676  1.1   thorpej 	if (SCARG(uap, len) != _FUTEX_ROBUST_HEAD_SIZE)
   1677  1.1   thorpej 		return EINVAL;
   1678  1.1   thorpej 	if ((uintptr_t)head % sizeof(u_long))
   1679  1.1   thorpej 		return EINVAL;
   1680  1.1   thorpej 
   1681  1.1   thorpej 	l->l_robust_head = (uintptr_t)head;
   1682  1.1   thorpej 
   1683  1.1   thorpej 	return 0;
   1684  1.1   thorpej }
   1685  1.1   thorpej 
   1686  1.1   thorpej /*
   1687  1.1   thorpej  * sys___futex_get_robust_list(l, uap, retval)
   1688  1.1   thorpej  *
   1689  1.1   thorpej  *	__futex_get_robust_list(2) system call for robust futexes.
   1690  1.1   thorpej  */
   1691  1.1   thorpej int
   1692  1.1   thorpej sys___futex_get_robust_list(struct lwp *l,
   1693  1.1   thorpej     const struct sys___futex_get_robust_list_args *uap, register_t *retval)
   1694  1.1   thorpej {
   1695  1.1   thorpej 	/* {
   1696  1.1   thorpej 		syscallarg(lwpid_t) lwpid;
   1697  1.1   thorpej 		syscallarg(void **) headp;
   1698  1.1   thorpej 		syscallarg(size_t *) lenp;
   1699  1.1   thorpej 	} */
   1700  1.1   thorpej 	void *head;
   1701  1.1   thorpej 	const size_t len = _FUTEX_ROBUST_HEAD_SIZE;
   1702  1.1   thorpej 	int error;
   1703  1.1   thorpej 
   1704  1.1   thorpej 	error = futex_robust_head_lookup(l, SCARG(uap, lwpid), &head);
   1705  1.1   thorpej 	if (error)
   1706  1.1   thorpej 		return error;
   1707  1.1   thorpej 
   1708  1.1   thorpej 	/* Copy out the head pointer and the head structure length. */
   1709  1.1   thorpej 	error = copyout(&head, SCARG(uap, headp), sizeof(head));
   1710  1.1   thorpej 	if (__predict_true(error == 0)) {
   1711  1.1   thorpej 		error = copyout(&len, SCARG(uap, lenp), sizeof(len));
   1712  1.1   thorpej 	}
   1713  1.1   thorpej 
   1714  1.1   thorpej 	return error;
   1715  1.1   thorpej }
   1716  1.1   thorpej 
   1717  1.1   thorpej /*
   1718  1.1   thorpej  * release_futex(uva, tid)
   1719  1.1   thorpej  *
   1720  1.1   thorpej  *	Try to release the robust futex at uva in the current process
   1721  1.1   thorpej  *	on lwp exit.  If anything goes wrong, silently fail.  It is the
   1722  1.1   thorpej  *	userland program's obligation to arrange correct behaviour.
   1723  1.1   thorpej  */
   1724  1.1   thorpej static void
   1725  1.1   thorpej release_futex(uintptr_t const uptr, lwpid_t const tid, bool const is_pi,
   1726  1.1   thorpej     bool const is_pending)
   1727  1.1   thorpej {
   1728  1.1   thorpej 	int *uaddr;
   1729  1.1   thorpej 	struct futex *f;
   1730  1.1   thorpej 	int oldval, newval, actual;
   1731  1.1   thorpej 	int error;
   1732  1.1   thorpej 
   1733  1.1   thorpej 	/* If it's misaligned, tough.  */
   1734  1.1   thorpej 	if (__predict_false(uptr & 3))
   1735  1.1   thorpej 		return;
   1736  1.1   thorpej 	uaddr = (int *)uptr;
   1737  1.1   thorpej 
   1738  1.1   thorpej 	error = futex_load(uaddr, &oldval);
   1739  1.1   thorpej 	if (__predict_false(error))
   1740  1.1   thorpej 		return;
   1741  1.1   thorpej 
   1742  1.1   thorpej 	/*
   1743  1.1   thorpej 	 * There are two race conditions we need to handle here:
   1744  1.1   thorpej 	 *
   1745  1.1   thorpej 	 * 1. User space cleared the futex word but died before
   1746  1.1   thorpej 	 *    being able to issue the wakeup.  No wakeups will
   1747  1.1   thorpej 	 *    ever be issued, oops!
   1748  1.1   thorpej 	 *
   1749  1.1   thorpej 	 * 2. Awakened waiter died before being able to acquire
   1750  1.1   thorpej 	 *    the futex in user space.  Any other waiters are
   1751  1.1   thorpej 	 *    now stuck, oops!
   1752  1.1   thorpej 	 *
   1753  1.1   thorpej 	 * In both of these cases, the futex word will be 0 (because
   1754  1.1   thorpej 	 * it's updated before the wake is issued).  The best we can
   1755  1.1   thorpej 	 * do is detect this situation if it's the pending futex and
   1756  1.1   thorpej 	 * issue a wake without modifying the futex word.
   1757  1.1   thorpej 	 *
   1758  1.1   thorpej 	 * XXX eventual PI handling?
   1759  1.1   thorpej 	 */
   1760  1.1   thorpej 	if (__predict_false(is_pending && (oldval & ~FUTEX_WAITERS) == 0)) {
   1761  1.1   thorpej 		register_t retval;
   1762  1.1   thorpej 		(void) futex_func_wake(/*shared*/true, uaddr, 1,
   1763  1.1   thorpej 		    FUTEX_BITSET_MATCH_ANY, &retval);
   1764  1.1   thorpej 		return;
   1765  1.1   thorpej 	}
   1766  1.1   thorpej 
   1767  1.1   thorpej 	/* Optimistically test whether we need to do anything at all.  */
   1768  1.1   thorpej 	if ((oldval & FUTEX_TID_MASK) != tid)
   1769  1.1   thorpej 		return;
   1770  1.1   thorpej 
   1771  1.1   thorpej 	/*
   1772  1.1   thorpej 	 * We need to handle the case where this thread owned the futex,
   1773  1.1   thorpej 	 * but it was uncontended.  In this case, there won't be any
   1774  1.1   thorpej 	 * kernel state to look up.  All we can do is mark the futex
   1775  1.1   thorpej 	 * as a zombie to be mopped up the next time another thread
   1776  1.1   thorpej 	 * attempts to acquire it.
   1777  1.1   thorpej 	 *
   1778  1.1   thorpej 	 * N.B. It's important to ensure to set FUTEX_OWNER_DIED in
   1779  1.1   thorpej 	 * this loop, even if waiters appear while we're are doing
   1780  1.1   thorpej 	 * so.  This is beause FUTEX_WAITERS is set by user space
   1781  1.1   thorpej 	 * before calling __futex() to wait, and the futex needs
   1782  1.1   thorpej 	 * to be marked as a zombie when the new waiter gets into
   1783  1.1   thorpej 	 * the kernel.
   1784  1.1   thorpej 	 */
   1785  1.1   thorpej 	if ((oldval & FUTEX_WAITERS) == 0) {
   1786  1.1   thorpej 		do {
   1787  1.1   thorpej 			error = futex_load(uaddr, &oldval);
   1788  1.1   thorpej 			if (error)
   1789  1.1   thorpej 				return;
   1790  1.1   thorpej 			if ((oldval & FUTEX_TID_MASK) != tid)
   1791  1.1   thorpej 				return;
   1792  1.1   thorpej 			newval = oldval | FUTEX_OWNER_DIED;
   1793  1.1   thorpej 			error = ucas_int(uaddr, oldval, newval, &actual);
   1794  1.1   thorpej 			if (error)
   1795  1.1   thorpej 				return;
   1796  1.1   thorpej 		} while (actual != oldval);
   1797  1.1   thorpej 
   1798  1.1   thorpej 		/*
   1799  1.1   thorpej 		 * If where is still no indication of waiters, then there is
   1800  1.1   thorpej 		 * no more work for us to do.
   1801  1.1   thorpej 		 */
   1802  1.1   thorpej 		if ((oldval & FUTEX_WAITERS) == 0)
   1803  1.1   thorpej 			return;
   1804  1.1   thorpej 	}
   1805  1.1   thorpej 
   1806  1.1   thorpej 	/*
   1807  1.1   thorpej 	 * Look for a shared futex since we have no positive indication
   1808  1.1   thorpej 	 * it is private.  If we can't, tough.
   1809  1.1   thorpej 	 */
   1810  1.1   thorpej 	error = futex_lookup(uaddr, /*shared*/true, &f);
   1811  1.1   thorpej 	if (error)
   1812  1.1   thorpej 		return;
   1813  1.1   thorpej 
   1814  1.1   thorpej 	/*
   1815  1.1   thorpej 	 * If there's no kernel state for this futex, there's nothing to
   1816  1.1   thorpej 	 * release.
   1817  1.1   thorpej 	 */
   1818  1.1   thorpej 	if (f == NULL)
   1819  1.1   thorpej 		return;
   1820  1.1   thorpej 
   1821  1.1   thorpej 	/* Work under the futex queue lock.  */
   1822  1.1   thorpej 	futex_queue_lock(f);
   1823  1.1   thorpej 
   1824  1.1   thorpej 	/*
   1825  1.1   thorpej 	 * Fetch the word: if the tid doesn't match ours, skip;
   1826  1.1   thorpej 	 * otherwise, set the owner-died bit, atomically.
   1827  1.1   thorpej 	 */
   1828  1.1   thorpej 	do {
   1829  1.1   thorpej 		error = futex_load(uaddr, &oldval);
   1830  1.1   thorpej 		if (error)
   1831  1.1   thorpej 			goto out;
   1832  1.1   thorpej 		if ((oldval & FUTEX_TID_MASK) != tid)
   1833  1.1   thorpej 			goto out;
   1834  1.1   thorpej 		newval = oldval | FUTEX_OWNER_DIED;
   1835  1.1   thorpej 		error = ucas_int(uaddr, oldval, newval, &actual);
   1836  1.1   thorpej 		if (error)
   1837  1.1   thorpej 			goto out;
   1838  1.1   thorpej 	} while (actual != oldval);
   1839  1.1   thorpej 
   1840  1.1   thorpej 	/*
   1841  1.1   thorpej 	 * If there may be waiters, try to wake one.  If anything goes
   1842  1.1   thorpej 	 * wrong, tough.
   1843  1.1   thorpej 	 *
   1844  1.1   thorpej 	 * XXX eventual PI handling?
   1845  1.1   thorpej 	 */
   1846  1.1   thorpej 	if (oldval & FUTEX_WAITERS)
   1847  1.1   thorpej 		(void)futex_wake(f, 1, NULL, 0, FUTEX_BITSET_MATCH_ANY);
   1848  1.1   thorpej 
   1849  1.1   thorpej 	/* Unlock the queue and release the futex.  */
   1850  1.1   thorpej out:	futex_queue_unlock(f);
   1851  1.5  riastrad 	futex_rele(f);
   1852  1.1   thorpej }
   1853  1.1   thorpej 
   1854  1.1   thorpej /*
   1855  1.1   thorpej  * futex_robust_head_lookup(l, lwpid)
   1856  1.1   thorpej  *
   1857  1.1   thorpej  *	Helper function to look up a robust head by LWP ID.
   1858  1.1   thorpej  */
   1859  1.1   thorpej int
   1860  1.1   thorpej futex_robust_head_lookup(struct lwp *l, lwpid_t lwpid, void **headp)
   1861  1.1   thorpej {
   1862  1.1   thorpej 	struct proc *p = l->l_proc;
   1863  1.1   thorpej 
   1864  1.1   thorpej 	/* Find the other lwp, if requested; otherwise use our robust head.  */
   1865  1.1   thorpej 	if (lwpid) {
   1866  1.1   thorpej 		mutex_enter(p->p_lock);
   1867  1.1   thorpej 		l = lwp_find(p, lwpid);
   1868  1.1   thorpej 		if (l == NULL) {
   1869  1.1   thorpej 			mutex_exit(p->p_lock);
   1870  1.1   thorpej 			return ESRCH;
   1871  1.1   thorpej 		}
   1872  1.1   thorpej 		*headp = (void *)l->l_robust_head;
   1873  1.1   thorpej 		mutex_exit(p->p_lock);
   1874  1.1   thorpej 	} else {
   1875  1.1   thorpej 		*headp = (void *)l->l_robust_head;
   1876  1.1   thorpej 	}
   1877  1.1   thorpej 	return 0;
   1878  1.1   thorpej }
   1879  1.1   thorpej 
   1880  1.1   thorpej /*
   1881  1.1   thorpej  * futex_fetch_robust_head(uaddr)
   1882  1.1   thorpej  *
   1883  1.1   thorpej  *	Helper routine to fetch the futex robust list head that
   1884  1.1   thorpej  *	handles 32-bit binaries running on 64-bit kernels.
   1885  1.1   thorpej  */
   1886  1.1   thorpej static int
   1887  1.1   thorpej futex_fetch_robust_head(uintptr_t uaddr, u_long *rhead)
   1888  1.1   thorpej {
   1889  1.1   thorpej #ifdef _LP64
   1890  1.1   thorpej 	if (curproc->p_flag & PK_32) {
   1891  1.1   thorpej 		uint32_t rhead32[_FUTEX_ROBUST_HEAD_NWORDS];
   1892  1.1   thorpej 		int error;
   1893  1.1   thorpej 
   1894  1.1   thorpej 		error = copyin((void *)uaddr, rhead32, sizeof(rhead32));
   1895  1.1   thorpej 		if (__predict_true(error == 0)) {
   1896  1.1   thorpej 			for (int i = 0; i < _FUTEX_ROBUST_HEAD_NWORDS; i++) {
   1897  1.1   thorpej 				if (i == _FUTEX_ROBUST_HEAD_OFFSET) {
   1898  1.1   thorpej 					/*
   1899  1.1   thorpej 					 * Make sure the offset is sign-
   1900  1.1   thorpej 					 * extended.
   1901  1.1   thorpej 					 */
   1902  1.1   thorpej 					rhead[i] = (int32_t)rhead32[i];
   1903  1.1   thorpej 				} else {
   1904  1.1   thorpej 					rhead[i] = rhead32[i];
   1905  1.1   thorpej 				}
   1906  1.1   thorpej 			}
   1907  1.1   thorpej 		}
   1908  1.1   thorpej 		return error;
   1909  1.1   thorpej 	}
   1910  1.1   thorpej #endif /* _L64 */
   1911  1.1   thorpej 
   1912  1.1   thorpej 	return copyin((void *)uaddr, rhead,
   1913  1.1   thorpej 	    sizeof(*rhead) * _FUTEX_ROBUST_HEAD_NWORDS);
   1914  1.1   thorpej }
   1915  1.1   thorpej 
   1916  1.1   thorpej /*
   1917  1.1   thorpej  * futex_decode_robust_word(word)
   1918  1.1   thorpej  *
   1919  1.1   thorpej  *	Decode a robust futex list word into the entry and entry
   1920  1.1   thorpej  *	properties.
   1921  1.1   thorpej  */
   1922  1.1   thorpej static inline void
   1923  1.1   thorpej futex_decode_robust_word(uintptr_t const word, uintptr_t * const entry,
   1924  1.1   thorpej     bool * const is_pi)
   1925  1.1   thorpej {
   1926  1.1   thorpej 	*is_pi = (word & _FUTEX_ROBUST_ENTRY_PI) ? true : false;
   1927  1.1   thorpej 	*entry = word & ~_FUTEX_ROBUST_ENTRY_PI;
   1928  1.1   thorpej }
   1929  1.1   thorpej 
   1930  1.1   thorpej /*
   1931  1.1   thorpej  * futex_fetch_robust_entry(uaddr)
   1932  1.1   thorpej  *
   1933  1.1   thorpej  *	Helper routine to fetch and decode a robust futex entry
   1934  1.1   thorpej  *	that handles 32-bit binaries running on 64-bit kernels.
   1935  1.1   thorpej  */
   1936  1.1   thorpej static int
   1937  1.1   thorpej futex_fetch_robust_entry(uintptr_t const uaddr, uintptr_t * const valp,
   1938  1.1   thorpej     bool * const is_pi)
   1939  1.1   thorpej {
   1940  1.1   thorpej 	uintptr_t val = 0;
   1941  1.1   thorpej 	int error = 0;
   1942  1.1   thorpej 
   1943  1.1   thorpej #ifdef _LP64
   1944  1.1   thorpej 	if (curproc->p_flag & PK_32) {
   1945  1.1   thorpej 		uint32_t val32;
   1946  1.1   thorpej 
   1947  1.1   thorpej 		error = ufetch_32((uint32_t *)uaddr, &val32);
   1948  1.1   thorpej 		if (__predict_true(error == 0))
   1949  1.1   thorpej 			val = val32;
   1950  1.1   thorpej 	} else
   1951  1.1   thorpej #endif /* _LP64 */
   1952  1.1   thorpej 		error = ufetch_long((u_long *)uaddr, (u_long *)&val);
   1953  1.1   thorpej 	if (__predict_false(error))
   1954  1.1   thorpej 		return error;
   1955  1.1   thorpej 
   1956  1.1   thorpej 	futex_decode_robust_word(val, valp, is_pi);
   1957  1.1   thorpej 	return 0;
   1958  1.1   thorpej }
   1959  1.1   thorpej 
   1960  1.1   thorpej /*
   1961  1.1   thorpej  * futex_release_all_lwp(l, tid)
   1962  1.1   thorpej  *
   1963  1.1   thorpej  *	Release all l's robust futexes.  If anything looks funny in
   1964  1.1   thorpej  *	the process, give up -- it's userland's responsibility to dot
   1965  1.1   thorpej  *	the i's and cross the t's.
   1966  1.1   thorpej  */
   1967  1.1   thorpej void
   1968  1.1   thorpej futex_release_all_lwp(struct lwp * const l, lwpid_t const tid)
   1969  1.1   thorpej {
   1970  1.1   thorpej 	u_long rhead[_FUTEX_ROBUST_HEAD_NWORDS];
   1971  1.1   thorpej 	int limit = 1000000;
   1972  1.1   thorpej 	int error;
   1973  1.1   thorpej 
   1974  1.1   thorpej 	/* If there's no robust list there's nothing to do. */
   1975  1.1   thorpej 	if (l->l_robust_head == 0)
   1976  1.1   thorpej 		return;
   1977  1.1   thorpej 
   1978  1.1   thorpej 	/* Read the final snapshot of the robust list head. */
   1979  1.1   thorpej 	error = futex_fetch_robust_head(l->l_robust_head, rhead);
   1980  1.1   thorpej 	if (error) {
   1981  1.1   thorpej 		printf("WARNING: pid %jd (%s) lwp %jd tid %jd:"
   1982  1.1   thorpej 		    " unmapped robust futex list head\n",
   1983  1.1   thorpej 		    (uintmax_t)l->l_proc->p_pid, l->l_proc->p_comm,
   1984  1.1   thorpej 		    (uintmax_t)l->l_lid, (uintmax_t)tid);
   1985  1.1   thorpej 		return;
   1986  1.1   thorpej 	}
   1987  1.1   thorpej 
   1988  1.1   thorpej 	const long offset = (long)rhead[_FUTEX_ROBUST_HEAD_OFFSET];
   1989  1.1   thorpej 
   1990  1.1   thorpej 	uintptr_t next, pending;
   1991  1.1   thorpej 	bool is_pi, pending_is_pi;
   1992  1.1   thorpej 
   1993  1.1   thorpej 	futex_decode_robust_word(rhead[_FUTEX_ROBUST_HEAD_LIST],
   1994  1.1   thorpej 	    &next, &is_pi);
   1995  1.1   thorpej 	futex_decode_robust_word(rhead[_FUTEX_ROBUST_HEAD_PENDING],
   1996  1.1   thorpej 	    &pending, &pending_is_pi);
   1997  1.1   thorpej 
   1998  1.1   thorpej 	/*
   1999  1.1   thorpej 	 * Walk down the list of locked futexes and release them, up
   2000  1.1   thorpej 	 * to one million of them before we give up.
   2001  1.1   thorpej 	 */
   2002  1.1   thorpej 
   2003  1.1   thorpej 	while (next != l->l_robust_head && limit-- > 0) {
   2004  1.1   thorpej 		/* pending handled below. */
   2005  1.1   thorpej 		if (next != pending)
   2006  1.1   thorpej 			release_futex(next + offset, tid, is_pi, false);
   2007  1.1   thorpej 		error = futex_fetch_robust_entry(next, &next, &is_pi);
   2008  1.1   thorpej 		if (error)
   2009  1.1   thorpej 			break;
   2010  1.1   thorpej 		preempt_point();
   2011  1.1   thorpej 	}
   2012  1.1   thorpej 	if (limit <= 0) {
   2013  1.1   thorpej 		printf("WARNING: pid %jd (%s) lwp %jd tid %jd:"
   2014  1.1   thorpej 		    " exhausted robust futex limit\n",
   2015  1.1   thorpej 		    (uintmax_t)l->l_proc->p_pid, l->l_proc->p_comm,
   2016  1.1   thorpej 		    (uintmax_t)l->l_lid, (uintmax_t)tid);
   2017  1.1   thorpej 	}
   2018  1.1   thorpej 
   2019  1.1   thorpej 	/* If there's a pending futex, it may need to be released too. */
   2020  1.1   thorpej 	if (pending != 0) {
   2021  1.1   thorpej 		release_futex(pending + offset, tid, pending_is_pi, true);
   2022  1.1   thorpej 	}
   2023  1.1   thorpej }
   2024