Home | History | Annotate | Line # | Download | only in kern
sys_futex.c revision 1.1
      1 /*	$NetBSD: sys_futex.c,v 1.1 2020/04/26 18:53:33 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2018, 2019, 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Taylor R. Campbell and Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: sys_futex.c,v 1.1 2020/04/26 18:53:33 thorpej Exp $");
     34 
     35 /*
     36  * Futexes
     37  *
     38  *	The futex system call coordinates notifying threads waiting for
     39  *	changes on a 32-bit word of memory.  The word can be managed by
     40  *	CPU atomic operations in userland, without system calls, as long
     41  *	as there is no contention.
     42  *
     43  *	The simplest use case demonstrating the utility is:
     44  *
     45  *		// 32-bit word of memory shared among threads or
     46  *		// processes in userland.  lock & 1 means owned;
     47  *		// lock & 2 means there are waiters waiting.
     48  *		volatile int lock = 0;
     49  *
     50  *		int v;
     51  *
     52  *		// Acquire a lock.
     53  *		do {
     54  *			v = lock;
     55  *			if (v & 1) {
     56  *				// Lock is held.  Set a bit to say that
     57  *				// there are waiters, and wait for lock
     58  *				// to change to anything other than v;
     59  *				// then retry.
     60  *				if (atomic_cas_uint(&lock, v, v | 2) != v)
     61  *					continue;
     62  *				futex(FUTEX_WAIT, &lock, v | 2, NULL, NULL, 0);
     63  *				continue;
     64  *			}
     65  *		} while (atomic_cas_uint(&lock, v, v & ~1) != v);
     66  *		membar_enter();
     67  *
     68  *		...
     69  *
     70  *		// Release the lock.  Optimistically assume there are
     71  *		// no waiters first until demonstrated otherwise.
     72  *		membar_exit();
     73  *		if (atomic_cas_uint(&lock, 1, 0) != 1) {
     74  *			// There may be waiters.
     75  *			v = atomic_swap_uint(&lock, 0);
     76  *			// If there are still waiters, wake one.
     77  *			if (v & 2)
     78  *				futex(FUTEX_WAKE, &lock, 1, NULL, NULL, 0);
     79  *		}
     80  *
     81  *	The goal is to avoid the futex system call unless there is
     82  *	contention; then if there is contention, to guarantee no missed
     83  *	wakeups.
     84  *
     85  *	For a simple implementation, futex(FUTEX_WAIT) could queue
     86  *	itself to be woken, double-check the lock word, and then sleep;
     87  *	spurious wakeups are generally a fact of life, so any
     88  *	FUTEX_WAKE could just wake every FUTEX_WAIT in the system.
     89  *
     90  *	If this were all there is to it, we could then increase
     91  *	parallelism by refining the approximation: partition the
     92  *	waiters into buckets by hashing the lock addresses to reduce
     93  *	the incidence of spurious wakeups.  But this is not all.
     94  *
     95  *	The futex(FUTEX_CMP_REQUEUE, &lock, n, &lock2, m, val)
     96  *	operation not only wakes n waiters on lock if lock == val, but
     97  *	also _transfers_ m additional waiters to lock2.  Unless wakeups
     98  *	on lock2 also trigger wakeups on lock, we cannot move waiters
     99  *	to lock2 if they merely share the same hash as waiters on lock.
    100  *	Thus, we can't approximately distribute waiters into queues by
    101  *	a hash function; we must distinguish futex queues exactly by
    102  *	lock address.
    103  *
    104  *	For now, we use a global red/black tree to index futexes.  This
    105  *	should be replaced by a lockless radix tree with a thread to
    106  *	free entries no longer in use once all lookups on all CPUs have
    107  *	completed.
    108  *
    109  *	Specifically, we maintain two maps:
    110  *
    111  *	futex_tab.va[vmspace, va] for private futexes
    112  *	futex_tab.oa[uvm_voaddr] for shared futexes
    113  *
    114  *	This implementation does not support priority inheritance.
    115  */
    116 
    117 #include <sys/types.h>
    118 #include <sys/atomic.h>
    119 #include <sys/condvar.h>
    120 #include <sys/futex.h>
    121 #include <sys/mutex.h>
    122 #include <sys/rbtree.h>
    123 #include <sys/queue.h>
    124 
    125 #include <sys/syscall.h>
    126 #include <sys/syscallargs.h>
    127 #include <sys/syscallvar.h>
    128 
    129 #include <uvm/uvm_extern.h>
    130 
    131 /*
    132  * Lock order:
    133  *
    134  *	futex_tab.lock
    135  *	futex::fx_qlock			ordered by kva of struct futex
    136  *	 -> futex_wait::fw_lock		only one at a time
    137  *	futex_wait::fw_lock		only one at a time
    138  *	 -> futex::fx_abortlock		only one at a time
    139  */
    140 
    141 /*
    142  * union futex_key
    143  *
    144  *	A futex is addressed either by a vmspace+va (private) or by
    145  *	a uvm_voaddr (shared).
    146  */
    147 union futex_key {
    148 	struct {
    149 		struct vmspace			*vmspace;
    150 		vaddr_t				va;
    151 	}			fk_private;
    152 	struct uvm_voaddr	fk_shared;
    153 };
    154 
    155 /*
    156  * struct futex
    157  *
    158  *	Kernel state for a futex located at a particular address in a
    159  *	particular virtual address space.
    160  *
    161  *	N.B. fx_refcnt is an unsigned long because we need to be able
    162  *	to operate on it atomically on all systems while at the same
    163  *	time rendering practically impossible the chance of it reaching
    164  *	its max value.  In practice, we're limited by the number of LWPs
    165  *	that can be present on the system at any given time, and the
    166  *	assumption is that limit will be good enough on a 32-bit platform.
    167  *	See futex_wake() for why overflow needs to be avoided.
    168  */
    169 struct futex {
    170 	union futex_key		fx_key;
    171 	unsigned long		fx_refcnt;
    172 	bool			fx_shared;
    173 	bool			fx_on_tree;
    174 	struct rb_node		fx_node;
    175 
    176 	kmutex_t			fx_qlock;
    177 	TAILQ_HEAD(, futex_wait)	fx_queue;
    178 
    179 	kmutex_t			fx_abortlock;
    180 	LIST_HEAD(, futex_wait)		fx_abortlist;
    181 	kcondvar_t			fx_abortcv;
    182 };
    183 
    184 /*
    185  * struct futex_wait
    186  *
    187  *	State for a thread to wait on a futex.  Threads wait on fw_cv
    188  *	for fw_bitset to be set to zero.  The thread may transition to
    189  *	a different futex queue at any time under the futex's lock.
    190  */
    191 struct futex_wait {
    192 	kmutex_t		fw_lock;
    193 	kcondvar_t		fw_cv;
    194 	struct futex		*fw_futex;
    195 	TAILQ_ENTRY(futex_wait)	fw_entry;	/* queue lock */
    196 	LIST_ENTRY(futex_wait)	fw_abort;	/* queue abortlock */
    197 	int			fw_bitset;
    198 };
    199 
    200 /*
    201  * futex_tab
    202  *
    203  *	Global trees of futexes by vmspace/va and VM object address.
    204  *
    205  *	XXX This obviously doesn't scale in parallel.  We could use a
    206  *	pserialize-safe data structure, but there may be a high cost to
    207  *	frequent deletion since we don't cache futexes after we're done
    208  *	with them.  We could use hashed locks.  But for now, just make
    209  *	sure userland can't DoS the serial performance, by using a
    210  *	balanced binary tree for lookup.
    211  *
    212  *	XXX We could use a per-process tree for the table indexed by
    213  *	virtual address to reduce contention between processes.
    214  */
    215 static struct {
    216 	kmutex_t	lock;
    217 	struct rb_tree	va;
    218 	struct rb_tree	oa;
    219 } futex_tab __cacheline_aligned;
    220 
    221 static int
    222 compare_futex_key(void *cookie, const void *n, const void *k)
    223 {
    224 	const struct futex *fa = n;
    225 	const union futex_key *fka = &fa->fx_key;
    226 	const union futex_key *fkb = k;
    227 
    228 	if ((uintptr_t)fka->fk_private.vmspace <
    229 	    (uintptr_t)fkb->fk_private.vmspace)
    230 		return -1;
    231 	if ((uintptr_t)fka->fk_private.vmspace >
    232 	    (uintptr_t)fkb->fk_private.vmspace)
    233 		return +1;
    234 	if (fka->fk_private.va < fkb->fk_private.va)
    235 		return -1;
    236 	if (fka->fk_private.va > fkb->fk_private.va)
    237 		return -1;
    238 	return 0;
    239 }
    240 
    241 static int
    242 compare_futex(void *cookie, const void *na, const void *nb)
    243 {
    244 	const struct futex *fa = na;
    245 	const struct futex *fb = nb;
    246 
    247 	return compare_futex_key(cookie, fa, &fb->fx_key);
    248 }
    249 
    250 static const rb_tree_ops_t futex_rb_ops = {
    251 	.rbto_compare_nodes = compare_futex,
    252 	.rbto_compare_key = compare_futex_key,
    253 	.rbto_node_offset = offsetof(struct futex, fx_node),
    254 };
    255 
    256 static int
    257 compare_futex_shared_key(void *cookie, const void *n, const void *k)
    258 {
    259 	const struct futex *fa = n;
    260 	const union futex_key *fka = &fa->fx_key;
    261 	const union futex_key *fkb = k;
    262 
    263 	return uvm_voaddr_compare(&fka->fk_shared, &fkb->fk_shared);
    264 }
    265 
    266 static int
    267 compare_futex_shared(void *cookie, const void *na, const void *nb)
    268 {
    269 	const struct futex *fa = na;
    270 	const struct futex *fb = nb;
    271 
    272 	return compare_futex_shared_key(cookie, fa, &fb->fx_key);
    273 }
    274 
    275 static const rb_tree_ops_t futex_shared_rb_ops = {
    276 	.rbto_compare_nodes = compare_futex_shared,
    277 	.rbto_compare_key = compare_futex_shared_key,
    278 	.rbto_node_offset = offsetof(struct futex, fx_node),
    279 };
    280 
    281 static void	futex_wait_dequeue(struct futex_wait *, struct futex *);
    282 
    283 /*
    284  * futex_load(uaddr, kaddr)
    285  *
    286  *	Perform a single atomic load to read *uaddr, and return the
    287  *	result in *kaddr.  Return 0 on success, EFAULT if uaddr is not
    288  *	mapped.
    289  */
    290 static inline int
    291 futex_load(int *uaddr, int *kaddr)
    292 {
    293 	return ufetch_int((u_int *)uaddr, (u_int *)kaddr);
    294 }
    295 
    296 /*
    297  * futex_test(uaddr, expected)
    298  *
    299  *	True if *uaddr == expected.  False if *uaddr != expected, or if
    300  *	uaddr is not mapped.
    301  */
    302 static bool
    303 futex_test(int *uaddr, int expected)
    304 {
    305 	int val;
    306 	int error;
    307 
    308 	error = futex_load(uaddr, &val);
    309 	if (error)
    310 		return false;
    311 	return val == expected;
    312 }
    313 
    314 /*
    315  * futex_sys_init()
    316  *
    317  *	Initialize the futex subsystem.
    318  */
    319 void
    320 futex_sys_init(void)
    321 {
    322 
    323 	mutex_init(&futex_tab.lock, MUTEX_DEFAULT, IPL_NONE);
    324 	rb_tree_init(&futex_tab.va, &futex_rb_ops);
    325 	rb_tree_init(&futex_tab.oa, &futex_shared_rb_ops);
    326 }
    327 
    328 /*
    329  * futex_sys_fini()
    330  *
    331  *	Finalize the futex subsystem.
    332  */
    333 void
    334 futex_sys_fini(void)
    335 {
    336 
    337 	KASSERT(RB_TREE_MIN(&futex_tab.oa) == NULL);
    338 	KASSERT(RB_TREE_MIN(&futex_tab.va) == NULL);
    339 	mutex_destroy(&futex_tab.lock);
    340 }
    341 
    342 /*
    343  * futex_queue_init(f)
    344  *
    345  *	Initialize the futex queue.  Caller must call futex_queue_fini
    346  *	when done.
    347  *
    348  *	Never sleeps.
    349  */
    350 static void
    351 futex_queue_init(struct futex *f)
    352 {
    353 
    354 	mutex_init(&f->fx_qlock, MUTEX_DEFAULT, IPL_NONE);
    355 	mutex_init(&f->fx_abortlock, MUTEX_DEFAULT, IPL_NONE);
    356 	cv_init(&f->fx_abortcv, "fqabort");
    357 	LIST_INIT(&f->fx_abortlist);
    358 	TAILQ_INIT(&f->fx_queue);
    359 }
    360 
    361 /*
    362  * futex_queue_drain(f)
    363  *
    364  *	Wait for any aborting waiters in f; then empty the queue of
    365  *	any stragglers and wake them.  Caller must guarantee no new
    366  *	references to f.
    367  *
    368  *	May sleep.
    369  */
    370 static void
    371 futex_queue_drain(struct futex *f)
    372 {
    373 	struct futex_wait *fw, *fw_next;
    374 
    375 	mutex_enter(&f->fx_abortlock);
    376 	while (!LIST_EMPTY(&f->fx_abortlist))
    377 		cv_wait(&f->fx_abortcv, &f->fx_abortlock);
    378 	mutex_exit(&f->fx_abortlock);
    379 
    380 	mutex_enter(&f->fx_qlock);
    381 	TAILQ_FOREACH_SAFE(fw, &f->fx_queue, fw_entry, fw_next) {
    382 		mutex_enter(&fw->fw_lock);
    383 		futex_wait_dequeue(fw, f);
    384 		cv_broadcast(&fw->fw_cv);
    385 		mutex_exit(&fw->fw_lock);
    386 	}
    387 	mutex_exit(&f->fx_qlock);
    388 }
    389 
    390 /*
    391  * futex_queue_fini(fq)
    392  *
    393  *	Finalize the futex queue initialized by futex_queue_init.  Queue
    394  *	must be empty.  Caller must not use f again until a subsequent
    395  *	futex_queue_init.
    396  */
    397 static void
    398 futex_queue_fini(struct futex *f)
    399 {
    400 
    401 	KASSERT(TAILQ_EMPTY(&f->fx_queue));
    402 	KASSERT(LIST_EMPTY(&f->fx_abortlist));
    403 	mutex_destroy(&f->fx_qlock);
    404 	mutex_destroy(&f->fx_abortlock);
    405 	cv_destroy(&f->fx_abortcv);
    406 }
    407 
    408 /*
    409  * futex_key_init(key, vm, va, shared)
    410  *
    411  *	Initialize a futex key for lookup, etc.
    412  */
    413 static int
    414 futex_key_init(union futex_key *fk, struct vmspace *vm, vaddr_t va, bool shared)
    415 {
    416 	int error = 0;
    417 
    418 	if (__predict_false(shared)) {
    419 		if (!uvm_voaddr_acquire(&vm->vm_map, va, &fk->fk_shared))
    420 			error = EFAULT;
    421 	} else {
    422 		fk->fk_private.vmspace = vm;
    423 		fk->fk_private.va = va;
    424 	}
    425 
    426 	return error;
    427 }
    428 
    429 /*
    430  * futex_key_fini(key, shared)
    431  *
    432  *	Release a futex key.
    433  */
    434 static void
    435 futex_key_fini(union futex_key *fk, bool shared)
    436 {
    437 	if (__predict_false(shared))
    438 		uvm_voaddr_release(&fk->fk_shared);
    439 	memset(fk, 0, sizeof(*fk));
    440 }
    441 
    442 /*
    443  * futex_create(fk, shared)
    444  *
    445  *	Create a futex.  Initial reference count is 1, representing the
    446  *	caller.  Returns NULL on failure.  Always takes ownership of the
    447  *	key, either transferring it to the newly-created futex, or releasing
    448  *	the key if creation fails.
    449  *
    450  *	Never sleeps for memory, but may sleep to acquire a lock.
    451  */
    452 static struct futex *
    453 futex_create(union futex_key *fk, bool shared)
    454 {
    455 	struct futex *f;
    456 
    457 	f = kmem_alloc(sizeof(*f), KM_NOSLEEP);
    458 	if (f == NULL) {
    459 		futex_key_fini(fk, shared);
    460 		return NULL;
    461 	}
    462 	f->fx_key = *fk;
    463 	f->fx_refcnt = 1;
    464 	f->fx_shared = shared;
    465 	f->fx_on_tree = false;
    466 	futex_queue_init(f);
    467 
    468 	return f;
    469 }
    470 
    471 /*
    472  * futex_destroy(f)
    473  *
    474  *	Destroy a futex created with futex_create.  Reference count
    475  *	must be zero.
    476  *
    477  *	May sleep.
    478  */
    479 static void
    480 futex_destroy(struct futex *f)
    481 {
    482 
    483 	ASSERT_SLEEPABLE();
    484 
    485 	KASSERT(atomic_load_relaxed(&f->fx_refcnt) == 0);
    486 	KASSERT(!f->fx_on_tree);
    487 
    488 	/* Drain and destroy the private queue.  */
    489 	futex_queue_drain(f);
    490 	futex_queue_fini(f);
    491 
    492 	futex_key_fini(&f->fx_key, f->fx_shared);
    493 
    494 	kmem_free(f, sizeof(*f));
    495 }
    496 
    497 /*
    498  * futex_hold(f)
    499  *
    500  *	Attempt to acquire a reference to f.  Return 0 on success,
    501  *	ENFILE on too many references.
    502  *
    503  *	Never sleeps.
    504  */
    505 static int
    506 futex_hold(struct futex *f)
    507 {
    508 	unsigned long refcnt;
    509 
    510 	do {
    511 		refcnt = atomic_load_relaxed(&f->fx_refcnt);
    512 		if (refcnt == ULONG_MAX)
    513 			return ENFILE;
    514 	} while (atomic_cas_ulong(&f->fx_refcnt, refcnt, refcnt + 1) != refcnt);
    515 
    516 	return 0;
    517 }
    518 
    519 /*
    520  * futex_rele(f)
    521  *
    522  *	Release a reference to f acquired with futex_create or
    523  *	futex_hold.
    524  *
    525  *	May sleep to free f.
    526  */
    527 static void
    528 futex_rele(struct futex *f)
    529 {
    530 	unsigned long refcnt;
    531 
    532 	ASSERT_SLEEPABLE();
    533 
    534 	do {
    535 		refcnt = atomic_load_relaxed(&f->fx_refcnt);
    536 		if (refcnt == 1)
    537 			goto trylast;
    538 	} while (atomic_cas_ulong(&f->fx_refcnt, refcnt, refcnt - 1) != refcnt);
    539 	return;
    540 
    541 trylast:
    542 	mutex_enter(&futex_tab.lock);
    543 	if (atomic_dec_ulong_nv(&f->fx_refcnt) == 0) {
    544 		if (f->fx_on_tree) {
    545 			if (__predict_false(f->fx_shared))
    546 				rb_tree_remove_node(&futex_tab.oa, f);
    547 			else
    548 				rb_tree_remove_node(&futex_tab.va, f);
    549 			f->fx_on_tree = false;
    550 		}
    551 	} else {
    552 		/* References remain -- don't destroy it.  */
    553 		f = NULL;
    554 	}
    555 	mutex_exit(&futex_tab.lock);
    556 	if (f != NULL)
    557 		futex_destroy(f);
    558 }
    559 
    560 /*
    561  * futex_rele_not_last(f)
    562  *
    563  *	Release a reference to f acquired with futex_create or
    564  *	futex_hold.
    565  *
    566  *	This version asserts that we are not dropping the last
    567  *	reference to f.
    568  */
    569 static void
    570 futex_rele_not_last(struct futex *f)
    571 {
    572 	unsigned long refcnt;
    573 
    574 	do {
    575 		refcnt = atomic_load_relaxed(&f->fx_refcnt);
    576 		KASSERT(refcnt > 1);
    577 	} while (atomic_cas_ulong(&f->fx_refcnt, refcnt, refcnt - 1) != refcnt);
    578 }
    579 
    580 /*
    581  * futex_lookup_by_key(key, shared, &f)
    582  *
    583  *	Try to find an existing futex va reference in the specified key
    584  *	On success, return 0, set f to found futex or to NULL if not found,
    585  *	and increment f's reference count if found.
    586  *
    587  *	Return ENFILE if reference count too high.
    588  *
    589  *	Internal lookup routine shared by futex_lookup() and
    590  *	futex_get().
    591  */
    592 static int
    593 futex_lookup_by_key(union futex_key *fk, bool shared, struct futex **fp)
    594 {
    595 	struct futex *f;
    596 	int error = 0;
    597 
    598 	mutex_enter(&futex_tab.lock);
    599 	if (__predict_false(shared)) {
    600 		f = rb_tree_find_node(&futex_tab.oa, fk);
    601 	} else {
    602 		f = rb_tree_find_node(&futex_tab.va, fk);
    603 	}
    604 	if (f) {
    605 		error = futex_hold(f);
    606 		if (error)
    607 			f = NULL;
    608 	}
    609  	*fp = f;
    610 	mutex_exit(&futex_tab.lock);
    611 
    612 	return error;
    613 }
    614 
    615 /*
    616  * futex_insert(f, fp)
    617  *
    618  *	Try to insert the futex f into the tree by va.  If there
    619  *	already is a futex for its va, acquire a reference to it, and
    620  *	store it in *fp; otherwise store f in *fp.
    621  *
    622  *	Return 0 on success, ENFILE if there already is a futex but its
    623  *	reference count is too high.
    624  */
    625 static int
    626 futex_insert(struct futex *f, struct futex **fp)
    627 {
    628 	struct futex *f0;
    629 	int error;
    630 
    631 	KASSERT(atomic_load_relaxed(&f->fx_refcnt) != 0);
    632 	KASSERT(!f->fx_on_tree);
    633 
    634 	mutex_enter(&futex_tab.lock);
    635 	if (__predict_false(f->fx_shared))
    636 		f0 = rb_tree_insert_node(&futex_tab.oa, f);
    637 	else
    638 		f0 = rb_tree_insert_node(&futex_tab.va, f);
    639 	if (f0 == f) {
    640 		f->fx_on_tree = true;
    641 		error = 0;
    642 	} else {
    643 		KASSERT(atomic_load_relaxed(&f0->fx_refcnt) != 0);
    644 		KASSERT(f0->fx_on_tree);
    645 		error = futex_hold(f0);
    646 		if (error)
    647 			goto out;
    648 	}
    649 	*fp = f0;
    650 out:	mutex_exit(&futex_tab.lock);
    651 
    652 	return error;
    653 }
    654 
    655 /*
    656  * futex_lookup(uaddr, shared, &f)
    657  *
    658  *	Find a futex at the userland pointer uaddr in the current
    659  *	process's VM space.  On success, return the futex in f and
    660  *	increment its reference count.
    661  *
    662  *	Caller must call futex_put when done.
    663  */
    664 static int
    665 futex_lookup(int *uaddr, bool shared, struct futex **fp)
    666 {
    667 	union futex_key fk;
    668 	struct vmspace *vm = curproc->p_vmspace;
    669 	vaddr_t va = (vaddr_t)uaddr;
    670 	int error;
    671 
    672 	/*
    673 	 * Reject unaligned user pointers so we don't cross page
    674 	 * boundaries and so atomics will work.
    675 	 */
    676 	if ((va & 3) != 0)
    677 		return EINVAL;
    678 
    679 	CTASSERT((PAGE_SIZE & 3) == 0);
    680 
    681 	/* Look it up. */
    682 	error = futex_key_init(&fk, vm, va, shared);
    683 	if (error)
    684 		return error;
    685 
    686 	error = futex_lookup_by_key(&fk, shared, fp);
    687 	futex_key_fini(&fk, shared);
    688 	if (error)
    689 		return error;
    690 
    691 	KASSERT(*fp == NULL || (*fp)->fx_shared == shared);
    692 	KASSERT(*fp == NULL || atomic_load_relaxed(&(*fp)->fx_refcnt) != 0);
    693 
    694 	/*
    695 	 * Success!  (Caller must still check whether we found
    696 	 * anything, but nothing went _wrong_ like trying to use
    697 	 * unmapped memory.)
    698 	 */
    699 	KASSERT(error == 0);
    700 
    701 	return error;
    702 }
    703 
    704 /*
    705  * futex_get(uaddr, shared, &f)
    706  *
    707  *	Find or create a futex at the userland pointer uaddr in the
    708  *	current process's VM space.  On success, return the futex in f
    709  *	and increment its reference count.
    710  *
    711  *	Caller must call futex_put when done.
    712  */
    713 static int
    714 futex_get(int *uaddr, bool shared, struct futex **fp)
    715 {
    716 	union futex_key fk;
    717 	struct vmspace *vm = curproc->p_vmspace;
    718 	struct futex *f = NULL;
    719 	vaddr_t va = (vaddr_t)uaddr;
    720 	int error;
    721 
    722 	/*
    723 	 * Reject unaligned user pointers so we don't cross page
    724 	 * boundaries and so atomics will work.
    725 	 */
    726 	if ((va & 3) != 0)
    727 		return EINVAL;
    728 
    729 	CTASSERT((PAGE_SIZE & 3) == 0);
    730 
    731 	error = futex_key_init(&fk, vm, va, shared);
    732 	if (error)
    733 		return error;
    734 
    735 	/*
    736 	 * Optimistically assume there already is one, and try to find
    737 	 * it.
    738 	 */
    739 	error = futex_lookup_by_key(&fk, shared, fp);
    740 	if (error || *fp != NULL) {
    741 		/*
    742 		 * We either found one, or there was an error.
    743 		 * In either case, we are done with the key.
    744 		 */
    745 		futex_key_fini(&fk, shared);
    746 		goto out;
    747 	}
    748 
    749 	/*
    750 	 * Create a futex recoard.  This tranfers ownership of the key
    751 	 * in all cases.
    752 	 */
    753 	f = futex_create(&fk, shared);
    754 	if (f == NULL) {
    755 		error = ENOMEM;
    756 		goto out;
    757 	}
    758 
    759 	/*
    760 	 * Insert our new futex, or use existing if someone else beat
    761 	 * us to it.
    762 	 */
    763 	error = futex_insert(f, fp);
    764 	if (error)
    765 		goto out;
    766 	if (*fp == f)
    767 		f = NULL;	/* don't release on exit */
    768 
    769 	/* Success!  */
    770 	KASSERT(error == 0);
    771 
    772 out:	if (f != NULL)
    773 		futex_rele(f);
    774 	KASSERT(error || *fp != NULL);
    775 	KASSERT(error || atomic_load_relaxed(&(*fp)->fx_refcnt) != 0);
    776 	return error;
    777 }
    778 
    779 /*
    780  * futex_put(f)
    781  *
    782  *	Release a futex acquired with futex_get or futex_lookup.
    783  */
    784 static void
    785 futex_put(struct futex *f)
    786 {
    787 
    788 	futex_rele(f);
    789 }
    790 
    791 /*
    792  * futex_wait_init(fw, bitset)
    793  *
    794  *	Initialize a record for a thread to wait on a futex matching
    795  *	the specified bit set.  Should be passed to futex_wait_enqueue
    796  *	before futex_wait, and should be passed to futex_wait_fini when
    797  *	done.
    798  */
    799 static void
    800 futex_wait_init(struct futex_wait *fw, int bitset)
    801 {
    802 
    803 	mutex_init(&fw->fw_lock, MUTEX_DEFAULT, IPL_NONE);
    804 	cv_init(&fw->fw_cv, "futex");
    805 	fw->fw_futex = NULL;
    806 	fw->fw_bitset = bitset;
    807 }
    808 
    809 /*
    810  * futex_wait_fini(fw)
    811  *
    812  *	Finalize a record for a futex waiter.  Must not be on any
    813  *	futex's queue.
    814  */
    815 static void
    816 futex_wait_fini(struct futex_wait *fw)
    817 {
    818 
    819 	cv_destroy(&fw->fw_cv);
    820 	mutex_destroy(&fw->fw_lock);
    821 }
    822 
    823 /*
    824  * futex_wait_enqueue(fw, f)
    825  *
    826  *	Put fw on the futex queue.  Must be done before futex_wait.
    827  *	Caller must hold fw's lock and f's lock, and fw must not be on
    828  *	any existing futex's waiter list.
    829  */
    830 static void
    831 futex_wait_enqueue(struct futex_wait *fw, struct futex *f)
    832 {
    833 
    834 	KASSERT(mutex_owned(&f->fx_qlock));
    835 	KASSERT(mutex_owned(&fw->fw_lock));
    836 	KASSERT(fw->fw_futex == NULL);
    837 
    838 	fw->fw_futex = f;
    839 	TAILQ_INSERT_TAIL(&f->fx_queue, fw, fw_entry);
    840 }
    841 
    842 /*
    843  * futex_wait_dequeue(fw, f)
    844  *
    845  *	Remove fw from the futex queue.  Precludes subsequent
    846  *	futex_wait until a futex_wait_enqueue.  Caller must hold fw's
    847  *	lock and f's lock, and fw must be on f.
    848  */
    849 static void
    850 futex_wait_dequeue(struct futex_wait *fw, struct futex *f)
    851 {
    852 
    853 	KASSERT(mutex_owned(&f->fx_qlock));
    854 	KASSERT(mutex_owned(&fw->fw_lock));
    855 	KASSERT(fw->fw_futex == f);
    856 
    857 	TAILQ_REMOVE(&f->fx_queue, fw, fw_entry);
    858 	fw->fw_futex = NULL;
    859 }
    860 
    861 /*
    862  * futex_wait_abort(fw)
    863  *
    864  *	Caller is no longer waiting for fw.  Remove it from any queue
    865  *	if it was on one.
    866  */
    867 static void
    868 futex_wait_abort(struct futex_wait *fw)
    869 {
    870 	struct futex *f;
    871 
    872 	/* Acquire fw_lock so that the content of fw won't change.  */
    873 	mutex_enter(&fw->fw_lock);
    874 
    875 	/*
    876 	 * Grab the futex queue.  It can't go away as long as we hold
    877 	 * fw_lock.  However, we can't take the queue lock because
    878 	 * that's a lock order reversal.
    879 	 */
    880 	f = fw->fw_futex;
    881 
    882 	/* Put us on the abort list so that fq won't go away.  */
    883 	mutex_enter(&f->fx_abortlock);
    884 	LIST_INSERT_HEAD(&f->fx_abortlist, fw, fw_abort);
    885 	mutex_exit(&f->fx_abortlock);
    886 
    887 	/* f is now stable, so we can release fw_lock.  */
    888 	mutex_exit(&fw->fw_lock);
    889 
    890 	/* Now we can remove fw under the queue lock.  */
    891 	mutex_enter(&f->fx_qlock);
    892 	TAILQ_REMOVE(&f->fx_queue, fw, fw_entry);
    893 	mutex_exit(&f->fx_qlock);
    894 
    895 	/*
    896 	 * Finally, remove us from the abort list and notify anyone
    897 	 * waiting for the abort to complete if we were the last to go.
    898 	 */
    899 	mutex_enter(&f->fx_abortlock);
    900 	LIST_REMOVE(fw, fw_abort);
    901 	if (LIST_EMPTY(&f->fx_abortlist))
    902 		cv_broadcast(&f->fx_abortcv);
    903 	mutex_exit(&f->fx_abortlock);
    904 }
    905 
    906 /*
    907  * futex_wait(fw, deadline, clkid)
    908  *
    909  *	fw must be a waiter on a futex's queue.  Wait until deadline on
    910  *	the clock clkid, or forever if deadline is NULL, for a futex
    911  *	wakeup.  Return 0 on explicit wakeup or destruction of futex,
    912  *	ETIMEDOUT on timeout, EINTR/ERESTART on signal.
    913  */
    914 static int
    915 futex_wait(struct futex_wait *fw, const struct timespec *deadline,
    916     clockid_t clkid)
    917 {
    918 	int error = 0;
    919 
    920 	/* Test and wait under the wait lock.  */
    921 	mutex_enter(&fw->fw_lock);
    922 	while (fw->fw_bitset && fw->fw_futex != NULL) {
    923 		/* Not done yet.  Wait.  */
    924 		if (deadline) {
    925 			struct timespec ts;
    926 
    927 			/* Check our watch.  */
    928 			error = clock_gettime1(clkid, &ts);
    929 			if (error)
    930 				break;
    931 
    932 			/* If we're past the deadline, ETIMEDOUT.  */
    933 			if (timespeccmp(deadline, &ts, <=)) {
    934 				error = ETIMEDOUT;
    935 				break;
    936 			}
    937 
    938 			/* Count how much time is left.  */
    939 			timespecsub(deadline, &ts, &ts);
    940 
    941 			/* Wait for that much time, allowing signals.  */
    942 			error = cv_timedwait_sig(&fw->fw_cv, &fw->fw_lock,
    943 			    tstohz(&ts));
    944 		} else {
    945 			/* Wait indefinitely, allowing signals. */
    946 			error = cv_wait_sig(&fw->fw_cv, &fw->fw_lock);
    947 		}
    948 		if (error) {
    949 			/* Convert EWOULDBLOCK to ETIMEDOUT.  */
    950 			if (error == EWOULDBLOCK)
    951 				error = ETIMEDOUT;
    952 			break;
    953 		}
    954 	}
    955 	mutex_exit(&fw->fw_lock);
    956 
    957 	return error;
    958 }
    959 
    960 /*
    961  * futex_wake(f, nwake, f2, nrequeue, bitset)
    962  *
    963  *	Wake up to nwake waiters on f matching bitset; then, if f2 is
    964  *	provided, move up to nrequeue remaining waiters on f matching
    965  *	bitset to f2.  Return the number of waiters actually woken.
    966  *	Caller must hold the locks of f and f2, if provided.
    967  */
    968 static unsigned
    969 futex_wake(struct futex *f, unsigned nwake, struct futex *f2,
    970     unsigned nrequeue, int bitset)
    971 {
    972 	struct futex_wait *fw, *fw_next;
    973 	unsigned nwoken = 0;
    974 	int hold_error;
    975 
    976 	KASSERT(mutex_owned(&f->fx_qlock));
    977 	KASSERT(f2 == NULL || mutex_owned(&f2->fx_qlock));
    978 
    979 	/* Wake up to nwake waiters, and count the number woken.  */
    980 	TAILQ_FOREACH_SAFE(fw, &f->fx_queue, fw_entry, fw_next) {
    981 		if ((fw->fw_bitset & bitset) == 0)
    982 			continue;
    983 		if (nwake-- > 0) {
    984 			mutex_enter(&fw->fw_lock);
    985 			futex_wait_dequeue(fw, f);
    986 			fw->fw_bitset = 0;
    987 			cv_broadcast(&fw->fw_cv);
    988 			mutex_exit(&fw->fw_lock);
    989 			nwoken++;
    990 			/*
    991 			 * Drop the futex reference on behalf of the
    992 			 * waiter.  We assert this is not the last
    993 			 * reference on the futex (our caller should
    994 			 * also have one).
    995 			 */
    996 			futex_rele_not_last(f);
    997 		} else {
    998 			break;
    999 		}
   1000 	}
   1001 
   1002 	if (f2) {
   1003 		/* Move up to nrequeue waiters from f's queue to f2's queue. */
   1004 		TAILQ_FOREACH_SAFE(fw, &f->fx_queue, fw_entry, fw_next) {
   1005 			if ((fw->fw_bitset & bitset) == 0)
   1006 				continue;
   1007 			if (nrequeue-- > 0) {
   1008 				mutex_enter(&fw->fw_lock);
   1009 				futex_wait_dequeue(fw, f);
   1010 				futex_wait_enqueue(fw, f2);
   1011 				mutex_exit(&fw->fw_lock);
   1012 				/*
   1013 				 * Transfer the reference from f to f2.
   1014 				 * As above, we assert that we are not
   1015 				 * dropping the last reference to f here.
   1016 				 *
   1017 				 * XXX futex_hold() could theoretically
   1018 				 * XXX fail here.
   1019 				 */
   1020 				futex_rele_not_last(f);
   1021 				hold_error = futex_hold(f2);
   1022 				KASSERT(hold_error == 0);
   1023 			} else {
   1024 				break;
   1025 			}
   1026 		}
   1027 	} else {
   1028 		KASSERT(nrequeue == 0);
   1029 	}
   1030 
   1031 	/* Return the number of waiters woken.  */
   1032 	return nwoken;
   1033 }
   1034 
   1035 /*
   1036  * futex_queue_lock(f)
   1037  *
   1038  *	Acquire the queue lock of f.  Pair with futex_queue_unlock.  Do
   1039  *	not use if caller needs to acquire two locks; use
   1040  *	futex_queue_lock2 instead.
   1041  */
   1042 static void
   1043 futex_queue_lock(struct futex *f)
   1044 {
   1045 	mutex_enter(&f->fx_qlock);
   1046 }
   1047 
   1048 /*
   1049  * futex_queue_unlock(f)
   1050  *
   1051  *	Release the queue lock of f.
   1052  */
   1053 static void
   1054 futex_queue_unlock(struct futex *f)
   1055 {
   1056 	mutex_exit(&f->fx_qlock);
   1057 }
   1058 
   1059 /*
   1060  * futex_queue_lock2(f, f2)
   1061  *
   1062  *	Acquire the queue locks of both f and f2, which may be null, or
   1063  *	which may have the same underlying queue.  If they are
   1064  *	distinct, an arbitrary total order is chosen on the locks.
   1065  *
   1066  *	Callers should only ever acquire multiple queue locks
   1067  *	simultaneously using futex_queue_lock2.
   1068  */
   1069 static void
   1070 futex_queue_lock2(struct futex *f, struct futex *f2)
   1071 {
   1072 
   1073 	/*
   1074 	 * If both are null, do nothing; if one is null and the other
   1075 	 * is not, lock the other and be done with it.
   1076 	 */
   1077 	if (f == NULL && f2 == NULL) {
   1078 		return;
   1079 	} else if (f == NULL) {
   1080 		mutex_enter(&f2->fx_qlock);
   1081 		return;
   1082 	} else if (f2 == NULL) {
   1083 		mutex_enter(&f->fx_qlock);
   1084 		return;
   1085 	}
   1086 
   1087 	/* If both futexes are the same, acquire only one. */
   1088 	if (f == f2) {
   1089 		mutex_enter(&f->fx_qlock);
   1090 		return;
   1091 	}
   1092 
   1093 	/* Otherwise, use the ordering on the kva of the futex pointer.  */
   1094 	if ((uintptr_t)f < (uintptr_t)f2) {
   1095 		mutex_enter(&f->fx_qlock);
   1096 		mutex_enter(&f2->fx_qlock);
   1097 	} else {
   1098 		mutex_enter(&f2->fx_qlock);
   1099 		mutex_enter(&f->fx_qlock);
   1100 	}
   1101 }
   1102 
   1103 /*
   1104  * futex_queue_unlock2(f, f2)
   1105  *
   1106  *	Release the queue locks of both f and f2, which may be null, or
   1107  *	which may have the same underlying queue.
   1108  */
   1109 static void
   1110 futex_queue_unlock2(struct futex *f, struct futex *f2)
   1111 {
   1112 
   1113 	/*
   1114 	 * If both are null, do nothing; if one is null and the other
   1115 	 * is not, unlock the other and be done with it.
   1116 	 */
   1117 	if (f == NULL && f2 == NULL) {
   1118 		return;
   1119 	} else if (f == NULL) {
   1120 		mutex_exit(&f2->fx_qlock);
   1121 		return;
   1122 	} else if (f2 == NULL) {
   1123 		mutex_exit(&f->fx_qlock);
   1124 		return;
   1125 	}
   1126 
   1127 	/* If both futexes are the same, release only one. */
   1128 	if (f == f2) {
   1129 		mutex_exit(&f->fx_qlock);
   1130 		return;
   1131 	}
   1132 
   1133 	/* Otherwise, use the ordering on the kva of the futex pointer.  */
   1134 	if ((uintptr_t)f < (uintptr_t)f2) {
   1135 		mutex_exit(&f2->fx_qlock);
   1136 		mutex_exit(&f->fx_qlock);
   1137 	} else {
   1138 		mutex_exit(&f->fx_qlock);
   1139 		mutex_exit(&f2->fx_qlock);
   1140 	}
   1141 }
   1142 
   1143 /*
   1144  * futex_func_wait(uaddr, val, val3, timeout, clkid, clkflags, retval)
   1145  *
   1146  *	Implement futex(FUTEX_WAIT).
   1147  */
   1148 static int
   1149 futex_func_wait(bool shared, int *uaddr, int val, int val3,
   1150     const struct timespec *timeout, clockid_t clkid, int clkflags,
   1151     register_t *retval)
   1152 {
   1153 	struct futex *f;
   1154 	struct futex_wait wait, *fw = &wait;
   1155 	struct timespec ts;
   1156 	const struct timespec *deadline;
   1157 	int error;
   1158 
   1159 	/* Optimistically test before anything else.  */
   1160 	if (!futex_test(uaddr, val))
   1161 		return EAGAIN;
   1162 
   1163 	/* Determine a deadline on the specified clock.  */
   1164 	if (timeout == NULL || (clkflags & TIMER_ABSTIME) == TIMER_ABSTIME) {
   1165 		deadline = timeout;
   1166 	} else {
   1167 		error = clock_gettime1(clkid, &ts);
   1168 		if (error)
   1169 			return error;
   1170 		timespecadd(&ts, timeout, &ts);
   1171 		deadline = &ts;
   1172 	}
   1173 
   1174 	/* Get the futex, creating it if necessary.  */
   1175 	error = futex_get(uaddr, shared, &f);
   1176 	if (error)
   1177 		return error;
   1178 	KASSERT(f);
   1179 
   1180 	/* Get ready to wait.  */
   1181 	futex_wait_init(fw, val3);
   1182 
   1183 	/*
   1184 	 * Under the queue lock, check the value again: if it has
   1185 	 * already changed, EAGAIN; otherwise enqueue the waiter.
   1186 	 * Since FUTEX_WAKE will use the same lock and be done after
   1187 	 * modifying the value, the order in which we check and enqueue
   1188 	 * is immaterial.
   1189 	 */
   1190 	futex_queue_lock(f);
   1191 	if (!futex_test(uaddr, val)) {
   1192 		futex_queue_unlock(f);
   1193 		error = EAGAIN;
   1194 		goto out;
   1195 	}
   1196 	mutex_enter(&fw->fw_lock);
   1197 	futex_wait_enqueue(fw, f);
   1198 	mutex_exit(&fw->fw_lock);
   1199 	futex_queue_unlock(f);
   1200 
   1201 	/*
   1202 	 * We cannot drop our reference to the futex here, because
   1203 	 * we might be enqueued on a different one when we are awakened.
   1204 	 * The references will be managed on our behalf in the requeue
   1205 	 * and wake cases.
   1206 	 */
   1207 	f = NULL;
   1208 
   1209 	/* Wait. */
   1210 	error = futex_wait(fw, deadline, clkid);
   1211 	if (error) {
   1212 		futex_wait_abort(fw);
   1213 		goto out;
   1214 	}
   1215 
   1216 	/* Return 0 on success, error on failure. */
   1217 	*retval = 0;
   1218 
   1219 out:	if (f != NULL)
   1220 		futex_put(f);
   1221 	futex_wait_fini(fw);
   1222 	return error;
   1223 }
   1224 
   1225 /*
   1226  * futex_func_wake(uaddr, val, val3, retval)
   1227  *
   1228  *	Implement futex(FUTEX_WAKE) and futex(FUTEX_WAKE_BITSET).
   1229  */
   1230 static int
   1231 futex_func_wake(bool shared, int *uaddr, int val, int val3, register_t *retval)
   1232 {
   1233 	struct futex *f;
   1234 	unsigned int nwoken = 0;
   1235 	int error = 0;
   1236 
   1237 	/* Reject negative number of wakeups.  */
   1238 	if (val < 0) {
   1239 		error = EINVAL;
   1240 		goto out;
   1241 	}
   1242 
   1243 	/* Look up the futex, if any.  */
   1244 	error = futex_lookup(uaddr, shared, &f);
   1245 	if (error)
   1246 		goto out;
   1247 
   1248 	/* If there's no futex, there are no waiters to wake.  */
   1249 	if (f == NULL)
   1250 		goto out;
   1251 
   1252 	/*
   1253 	 * Under f's queue lock, wake the waiters and remember the
   1254 	 * number woken.
   1255 	 */
   1256 	futex_queue_lock(f);
   1257 	nwoken = futex_wake(f, val, NULL, 0, val3);
   1258 	futex_queue_unlock(f);
   1259 
   1260 	/* Release the futex.  */
   1261 	futex_put(f);
   1262 
   1263 out:
   1264 	/* Return the number of waiters woken.  */
   1265 	*retval = nwoken;
   1266 
   1267 	/* Success!  */
   1268 	return error;
   1269 }
   1270 
   1271 /*
   1272  * futex_func_requeue(op, uaddr, val, uaddr2, val2, val3, retval)
   1273  *
   1274  *	Implement futex(FUTEX_REQUEUE) and futex(FUTEX_CMP_REQUEUE).
   1275  */
   1276 static int
   1277 futex_func_requeue(bool shared, int op, int *uaddr, int val, int *uaddr2,
   1278     int val2, int val3, register_t *retval)
   1279 {
   1280 	struct futex *f = NULL, *f2 = NULL;
   1281 	unsigned nwoken = 0;	/* default to zero woken on early return */
   1282 	int error;
   1283 
   1284 	/* Reject negative number of wakeups or requeues. */
   1285 	if (val < 0 || val2 < 0) {
   1286 		error = EINVAL;
   1287 		goto out;
   1288 	}
   1289 
   1290 	/* Look up the source futex, if any. */
   1291 	error = futex_lookup(uaddr, shared, &f);
   1292 	if (error)
   1293 		goto out;
   1294 
   1295 	/* If there is none, nothing to do. */
   1296 	if (f == NULL)
   1297 		goto out;
   1298 
   1299 	/*
   1300 	 * We may need to create the destination futex because it's
   1301 	 * entirely possible it does not currently have any waiters.
   1302 	 */
   1303 	error = futex_get(uaddr2, shared, &f2);
   1304 	if (error)
   1305 		goto out;
   1306 
   1307 	/*
   1308 	 * Under the futexes' queue locks, check the value; if
   1309 	 * unchanged from val3, wake the waiters.
   1310 	 */
   1311 	futex_queue_lock2(f, f2);
   1312 	if (op == FUTEX_CMP_REQUEUE && !futex_test(uaddr, val3)) {
   1313 		error = EAGAIN;
   1314 	} else {
   1315 		error = 0;
   1316 		nwoken = futex_wake(f, val, f2, val2, FUTEX_BITSET_MATCH_ANY);
   1317 	}
   1318 	futex_queue_unlock2(f, f2);
   1319 
   1320 out:
   1321 	/* Return the number of waiters woken.  */
   1322 	*retval = nwoken;
   1323 
   1324 	/* Release the futexes if we got them.  */
   1325 	if (f2)
   1326 		futex_put(f2);
   1327 	if (f)
   1328 		futex_put(f);
   1329 	return error;
   1330 }
   1331 
   1332 /*
   1333  * futex_validate_op_cmp(val3)
   1334  *
   1335  *	Validate an op/cmp argument for FUTEX_WAKE_OP.
   1336  */
   1337 static int
   1338 futex_validate_op_cmp(int val3)
   1339 {
   1340 	int op = __SHIFTOUT(val3, FUTEX_OP_OP_MASK);
   1341 	int cmp = __SHIFTOUT(val3, FUTEX_OP_CMP_MASK);
   1342 
   1343 	if (op & FUTEX_OP_OPARG_SHIFT) {
   1344 		int oparg = __SHIFTOUT(val3, FUTEX_OP_OPARG_MASK);
   1345 		if (oparg < 0)
   1346 			return EINVAL;
   1347 		if (oparg >= 32)
   1348 			return EINVAL;
   1349 		op &= ~FUTEX_OP_OPARG_SHIFT;
   1350 	}
   1351 
   1352 	switch (op) {
   1353 	case FUTEX_OP_SET:
   1354 	case FUTEX_OP_ADD:
   1355 	case FUTEX_OP_OR:
   1356 	case FUTEX_OP_ANDN:
   1357 	case FUTEX_OP_XOR:
   1358 		break;
   1359 	default:
   1360 		return EINVAL;
   1361 	}
   1362 
   1363 	switch (cmp) {
   1364 	case FUTEX_OP_CMP_EQ:
   1365 	case FUTEX_OP_CMP_NE:
   1366 	case FUTEX_OP_CMP_LT:
   1367 	case FUTEX_OP_CMP_LE:
   1368 	case FUTEX_OP_CMP_GT:
   1369 	case FUTEX_OP_CMP_GE:
   1370 		break;
   1371 	default:
   1372 		return EINVAL;
   1373 	}
   1374 
   1375 	return 0;
   1376 }
   1377 
   1378 /*
   1379  * futex_compute_op(oldval, val3)
   1380  *
   1381  *	Apply a FUTEX_WAIT_OP operation to oldval.
   1382  */
   1383 static int
   1384 futex_compute_op(int oldval, int val3)
   1385 {
   1386 	int op = __SHIFTOUT(val3, FUTEX_OP_OP_MASK);
   1387 	int oparg = __SHIFTOUT(val3, FUTEX_OP_OPARG_MASK);
   1388 
   1389 	if (op & FUTEX_OP_OPARG_SHIFT) {
   1390 		KASSERT(oparg >= 0);
   1391 		KASSERT(oparg < 32);
   1392 		oparg = 1u << oparg;
   1393 		op &= ~FUTEX_OP_OPARG_SHIFT;
   1394 	}
   1395 
   1396 	switch (op) {
   1397 	case FUTEX_OP_SET:
   1398 		return oparg;
   1399 
   1400 	case FUTEX_OP_ADD:
   1401 		/*
   1402 		 * Avoid signed arithmetic overflow by doing
   1403 		 * arithmetic unsigned and converting back to signed
   1404 		 * at the end.
   1405 		 */
   1406 		return (int)((unsigned)oldval + (unsigned)oparg);
   1407 
   1408 	case FUTEX_OP_OR:
   1409 		return oldval | oparg;
   1410 
   1411 	case FUTEX_OP_ANDN:
   1412 		return oldval & ~oparg;
   1413 
   1414 	case FUTEX_OP_XOR:
   1415 		return oldval ^ oparg;
   1416 
   1417 	default:
   1418 		panic("invalid futex op");
   1419 	}
   1420 }
   1421 
   1422 /*
   1423  * futex_compute_cmp(oldval, val3)
   1424  *
   1425  *	Apply a FUTEX_WAIT_OP comparison to oldval.
   1426  */
   1427 static bool
   1428 futex_compute_cmp(int oldval, int val3)
   1429 {
   1430 	int cmp = __SHIFTOUT(val3, FUTEX_OP_CMP_MASK);
   1431 	int cmparg = __SHIFTOUT(val3, FUTEX_OP_CMPARG_MASK);
   1432 
   1433 	switch (cmp) {
   1434 	case FUTEX_OP_CMP_EQ:
   1435 		return (oldval == cmparg);
   1436 
   1437 	case FUTEX_OP_CMP_NE:
   1438 		return (oldval != cmparg);
   1439 
   1440 	case FUTEX_OP_CMP_LT:
   1441 		return (oldval < cmparg);
   1442 
   1443 	case FUTEX_OP_CMP_LE:
   1444 		return (oldval <= cmparg);
   1445 
   1446 	case FUTEX_OP_CMP_GT:
   1447 		return (oldval > cmparg);
   1448 
   1449 	case FUTEX_OP_CMP_GE:
   1450 		return (oldval >= cmparg);
   1451 
   1452 	default:
   1453 		panic("invalid futex cmp operation");
   1454 	}
   1455 }
   1456 
   1457 /*
   1458  * futex_func_wake_op(uaddr, val, uaddr2, val2, val3, retval)
   1459  *
   1460  *	Implement futex(FUTEX_WAKE_OP).
   1461  */
   1462 static int
   1463 futex_func_wake_op(bool shared, int *uaddr, int val, int *uaddr2, int val2,
   1464     int val3, register_t *retval)
   1465 {
   1466 	struct futex *f = NULL, *f2 = NULL;
   1467 	int oldval, newval, actual;
   1468 	unsigned nwoken = 0;
   1469 	int error;
   1470 
   1471 	/* Reject negative number of wakeups.  */
   1472 	if (val < 0 || val2 < 0) {
   1473 		error = EINVAL;
   1474 		goto out;
   1475 	}
   1476 
   1477 	/* Reject invalid operations before we start doing things.  */
   1478 	if ((error = futex_validate_op_cmp(val3)) != 0)
   1479 		goto out;
   1480 
   1481 	/* Look up the first futex, if any.  */
   1482 	error = futex_lookup(uaddr, shared, &f);
   1483 	if (error)
   1484 		goto out;
   1485 
   1486 	/* Look up the second futex, if any.  */
   1487 	error = futex_lookup(uaddr2, shared, &f2);
   1488 	if (error)
   1489 		goto out;
   1490 
   1491 	/*
   1492 	 * Under the queue locks:
   1493 	 *
   1494 	 * 1. Read/modify/write: *uaddr2 op= oparg.
   1495 	 * 2. Unconditionally wake uaddr.
   1496 	 * 3. Conditionally wake uaddr2, if it previously matched val2.
   1497 	 */
   1498 	futex_queue_lock2(f, f2);
   1499 	do {
   1500 		error = futex_load(uaddr2, &oldval);
   1501 		if (error)
   1502 			goto out_unlock;
   1503 		newval = futex_compute_op(oldval, val3);
   1504 		error = ucas_int(uaddr2, oldval, newval, &actual);
   1505 		if (error)
   1506 			goto out_unlock;
   1507 	} while (actual != oldval);
   1508 	nwoken = (f ? futex_wake(f, val, NULL, 0, FUTEX_BITSET_MATCH_ANY) : 0);
   1509 	if (f2 && futex_compute_cmp(oldval, val3))
   1510 		nwoken += futex_wake(f2, val2, NULL, 0,
   1511 		    FUTEX_BITSET_MATCH_ANY);
   1512 
   1513 	/* Success! */
   1514 	error = 0;
   1515 out_unlock:
   1516 	futex_queue_unlock2(f, f2);
   1517 
   1518 out:
   1519 	/* Return the number of waiters woken. */
   1520 	*retval = nwoken;
   1521 
   1522 	/* Release the futexes, if we got them. */
   1523 	if (f2)
   1524 		futex_put(f2);
   1525 	if (f)
   1526 		futex_put(f);
   1527 	return error;
   1528 }
   1529 
   1530 /*
   1531  * do_futex(uaddr, op, val, timeout, uaddr2, val2, val3)
   1532  *
   1533  *	Implement the futex system call with all the parameters
   1534  *	parsed out.
   1535  */
   1536 int
   1537 do_futex(int *uaddr, int op, int val, const struct timespec *timeout,
   1538     int *uaddr2, int val2, int val3, register_t *retval)
   1539 {
   1540 	const bool shared = (op & FUTEX_PRIVATE_FLAG) ? false : true;
   1541 	const clockid_t clkid = (op & FUTEX_CLOCK_REALTIME) ? CLOCK_REALTIME
   1542 							    : CLOCK_MONOTONIC;
   1543 
   1544 	op &= FUTEX_CMD_MASK;
   1545 
   1546 	switch (op) {
   1547 	case FUTEX_WAIT:
   1548 		return futex_func_wait(shared, uaddr, val,
   1549 		    FUTEX_BITSET_MATCH_ANY, timeout, clkid, TIMER_RELTIME,
   1550 		    retval);
   1551 
   1552 	case FUTEX_WAKE:
   1553 		val3 = FUTEX_BITSET_MATCH_ANY;
   1554 		/* FALLTHROUGH */
   1555 	case FUTEX_WAKE_BITSET:
   1556 		return futex_func_wake(shared, uaddr, val, val3, retval);
   1557 
   1558 	case FUTEX_REQUEUE:
   1559 	case FUTEX_CMP_REQUEUE:
   1560 		return futex_func_requeue(shared, op, uaddr, val, uaddr2,
   1561 		    val2, val3, retval);
   1562 
   1563 	case FUTEX_WAIT_BITSET:
   1564 		return futex_func_wait(shared, uaddr, val, val3, timeout,
   1565 		    clkid, TIMER_ABSTIME, retval);
   1566 
   1567 	case FUTEX_WAKE_OP:
   1568 		return futex_func_wake_op(shared, uaddr, val, uaddr2, val2,
   1569 		    val3, retval);
   1570 
   1571 	case FUTEX_FD:
   1572 	default:
   1573 		return ENOSYS;
   1574 	}
   1575 }
   1576 
   1577 /*
   1578  * sys___futex(l, uap, retval)
   1579  *
   1580  *	__futex(2) system call: generic futex operations.
   1581  */
   1582 int
   1583 sys___futex(struct lwp *l, const struct sys___futex_args *uap,
   1584     register_t *retval)
   1585 {
   1586 	/* {
   1587 		syscallarg(int *) uaddr;
   1588 		syscallarg(int) op;
   1589 		syscallarg(int) val;
   1590 		syscallarg(const struct timespec *) timeout;
   1591 		syscallarg(int *) uaddr2;
   1592 		syscallarg(int) val2;
   1593 		syscallarg(int) val3;
   1594 	} */
   1595 	struct timespec ts, *tsp;
   1596 	int error;
   1597 
   1598 	/*
   1599 	 * Copy in the timeout argument, if specified.
   1600 	 */
   1601 	if (SCARG(uap, timeout)) {
   1602 		error = copyin(SCARG(uap, timeout), &ts, sizeof(ts));
   1603 		if (error)
   1604 			return error;
   1605 		tsp = &ts;
   1606 	} else {
   1607 		tsp = NULL;
   1608 	}
   1609 
   1610 	return do_futex(SCARG(uap, uaddr), SCARG(uap, op), SCARG(uap, val),
   1611 	    tsp, SCARG(uap, uaddr2), SCARG(uap, val2), SCARG(uap, val3),
   1612 	    retval);
   1613 }
   1614 
   1615 /*
   1616  * sys___futex_set_robust_list(l, uap, retval)
   1617  *
   1618  *	__futex_set_robust_list(2) system call for robust futexes.
   1619  */
   1620 int
   1621 sys___futex_set_robust_list(struct lwp *l,
   1622     const struct sys___futex_set_robust_list_args *uap, register_t *retval)
   1623 {
   1624 	/* {
   1625 		syscallarg(void *) head;
   1626 		syscallarg(size_t) len;
   1627 	} */
   1628 	void *head = SCARG(uap, head);
   1629 
   1630 	if (SCARG(uap, len) != _FUTEX_ROBUST_HEAD_SIZE)
   1631 		return EINVAL;
   1632 	if ((uintptr_t)head % sizeof(u_long))
   1633 		return EINVAL;
   1634 
   1635 	l->l_robust_head = (uintptr_t)head;
   1636 
   1637 	return 0;
   1638 }
   1639 
   1640 /*
   1641  * sys___futex_get_robust_list(l, uap, retval)
   1642  *
   1643  *	__futex_get_robust_list(2) system call for robust futexes.
   1644  */
   1645 int
   1646 sys___futex_get_robust_list(struct lwp *l,
   1647     const struct sys___futex_get_robust_list_args *uap, register_t *retval)
   1648 {
   1649 	/* {
   1650 		syscallarg(lwpid_t) lwpid;
   1651 		syscallarg(void **) headp;
   1652 		syscallarg(size_t *) lenp;
   1653 	} */
   1654 	void *head;
   1655 	const size_t len = _FUTEX_ROBUST_HEAD_SIZE;
   1656 	int error;
   1657 
   1658 	error = futex_robust_head_lookup(l, SCARG(uap, lwpid), &head);
   1659 	if (error)
   1660 		return error;
   1661 
   1662 	/* Copy out the head pointer and the head structure length. */
   1663 	error = copyout(&head, SCARG(uap, headp), sizeof(head));
   1664 	if (__predict_true(error == 0)) {
   1665 		error = copyout(&len, SCARG(uap, lenp), sizeof(len));
   1666 	}
   1667 
   1668 	return error;
   1669 }
   1670 
   1671 /*
   1672  * release_futex(uva, tid)
   1673  *
   1674  *	Try to release the robust futex at uva in the current process
   1675  *	on lwp exit.  If anything goes wrong, silently fail.  It is the
   1676  *	userland program's obligation to arrange correct behaviour.
   1677  */
   1678 static void
   1679 release_futex(uintptr_t const uptr, lwpid_t const tid, bool const is_pi,
   1680     bool const is_pending)
   1681 {
   1682 	int *uaddr;
   1683 	struct futex *f;
   1684 	int oldval, newval, actual;
   1685 	int error;
   1686 
   1687 	/* If it's misaligned, tough.  */
   1688 	if (__predict_false(uptr & 3))
   1689 		return;
   1690 	uaddr = (int *)uptr;
   1691 
   1692 	error = futex_load(uaddr, &oldval);
   1693 	if (__predict_false(error))
   1694 		return;
   1695 
   1696 	/*
   1697 	 * There are two race conditions we need to handle here:
   1698 	 *
   1699 	 * 1. User space cleared the futex word but died before
   1700 	 *    being able to issue the wakeup.  No wakeups will
   1701 	 *    ever be issued, oops!
   1702 	 *
   1703 	 * 2. Awakened waiter died before being able to acquire
   1704 	 *    the futex in user space.  Any other waiters are
   1705 	 *    now stuck, oops!
   1706 	 *
   1707 	 * In both of these cases, the futex word will be 0 (because
   1708 	 * it's updated before the wake is issued).  The best we can
   1709 	 * do is detect this situation if it's the pending futex and
   1710 	 * issue a wake without modifying the futex word.
   1711 	 *
   1712 	 * XXX eventual PI handling?
   1713 	 */
   1714 	if (__predict_false(is_pending && (oldval & ~FUTEX_WAITERS) == 0)) {
   1715 		register_t retval;
   1716 		(void) futex_func_wake(/*shared*/true, uaddr, 1,
   1717 		    FUTEX_BITSET_MATCH_ANY, &retval);
   1718 		return;
   1719 	}
   1720 
   1721 	/* Optimistically test whether we need to do anything at all.  */
   1722 	if ((oldval & FUTEX_TID_MASK) != tid)
   1723 		return;
   1724 
   1725 	/*
   1726 	 * We need to handle the case where this thread owned the futex,
   1727 	 * but it was uncontended.  In this case, there won't be any
   1728 	 * kernel state to look up.  All we can do is mark the futex
   1729 	 * as a zombie to be mopped up the next time another thread
   1730 	 * attempts to acquire it.
   1731 	 *
   1732 	 * N.B. It's important to ensure to set FUTEX_OWNER_DIED in
   1733 	 * this loop, even if waiters appear while we're are doing
   1734 	 * so.  This is beause FUTEX_WAITERS is set by user space
   1735 	 * before calling __futex() to wait, and the futex needs
   1736 	 * to be marked as a zombie when the new waiter gets into
   1737 	 * the kernel.
   1738 	 */
   1739 	if ((oldval & FUTEX_WAITERS) == 0) {
   1740 		do {
   1741 			error = futex_load(uaddr, &oldval);
   1742 			if (error)
   1743 				return;
   1744 			if ((oldval & FUTEX_TID_MASK) != tid)
   1745 				return;
   1746 			newval = oldval | FUTEX_OWNER_DIED;
   1747 			error = ucas_int(uaddr, oldval, newval, &actual);
   1748 			if (error)
   1749 				return;
   1750 		} while (actual != oldval);
   1751 
   1752 		/*
   1753 		 * If where is still no indication of waiters, then there is
   1754 		 * no more work for us to do.
   1755 		 */
   1756 		if ((oldval & FUTEX_WAITERS) == 0)
   1757 			return;
   1758 	}
   1759 
   1760 	/*
   1761 	 * Look for a shared futex since we have no positive indication
   1762 	 * it is private.  If we can't, tough.
   1763 	 */
   1764 	error = futex_lookup(uaddr, /*shared*/true, &f);
   1765 	if (error)
   1766 		return;
   1767 
   1768 	/*
   1769 	 * If there's no kernel state for this futex, there's nothing to
   1770 	 * release.
   1771 	 */
   1772 	if (f == NULL)
   1773 		return;
   1774 
   1775 	/* Work under the futex queue lock.  */
   1776 	futex_queue_lock(f);
   1777 
   1778 	/*
   1779 	 * Fetch the word: if the tid doesn't match ours, skip;
   1780 	 * otherwise, set the owner-died bit, atomically.
   1781 	 */
   1782 	do {
   1783 		error = futex_load(uaddr, &oldval);
   1784 		if (error)
   1785 			goto out;
   1786 		if ((oldval & FUTEX_TID_MASK) != tid)
   1787 			goto out;
   1788 		newval = oldval | FUTEX_OWNER_DIED;
   1789 		error = ucas_int(uaddr, oldval, newval, &actual);
   1790 		if (error)
   1791 			goto out;
   1792 	} while (actual != oldval);
   1793 
   1794 	/*
   1795 	 * If there may be waiters, try to wake one.  If anything goes
   1796 	 * wrong, tough.
   1797 	 *
   1798 	 * XXX eventual PI handling?
   1799 	 */
   1800 	if (oldval & FUTEX_WAITERS)
   1801 		(void)futex_wake(f, 1, NULL, 0, FUTEX_BITSET_MATCH_ANY);
   1802 
   1803 	/* Unlock the queue and release the futex.  */
   1804 out:	futex_queue_unlock(f);
   1805 	futex_put(f);
   1806 }
   1807 
   1808 /*
   1809  * futex_robust_head_lookup(l, lwpid)
   1810  *
   1811  *	Helper function to look up a robust head by LWP ID.
   1812  */
   1813 int
   1814 futex_robust_head_lookup(struct lwp *l, lwpid_t lwpid, void **headp)
   1815 {
   1816 	struct proc *p = l->l_proc;
   1817 
   1818 	/* Find the other lwp, if requested; otherwise use our robust head.  */
   1819 	if (lwpid) {
   1820 		mutex_enter(p->p_lock);
   1821 		l = lwp_find(p, lwpid);
   1822 		if (l == NULL) {
   1823 			mutex_exit(p->p_lock);
   1824 			return ESRCH;
   1825 		}
   1826 		*headp = (void *)l->l_robust_head;
   1827 		mutex_exit(p->p_lock);
   1828 	} else {
   1829 		*headp = (void *)l->l_robust_head;
   1830 	}
   1831 	return 0;
   1832 }
   1833 
   1834 /*
   1835  * futex_fetch_robust_head(uaddr)
   1836  *
   1837  *	Helper routine to fetch the futex robust list head that
   1838  *	handles 32-bit binaries running on 64-bit kernels.
   1839  */
   1840 static int
   1841 futex_fetch_robust_head(uintptr_t uaddr, u_long *rhead)
   1842 {
   1843 #ifdef _LP64
   1844 	if (curproc->p_flag & PK_32) {
   1845 		uint32_t rhead32[_FUTEX_ROBUST_HEAD_NWORDS];
   1846 		int error;
   1847 
   1848 		error = copyin((void *)uaddr, rhead32, sizeof(rhead32));
   1849 		if (__predict_true(error == 0)) {
   1850 			for (int i = 0; i < _FUTEX_ROBUST_HEAD_NWORDS; i++) {
   1851 				if (i == _FUTEX_ROBUST_HEAD_OFFSET) {
   1852 					/*
   1853 					 * Make sure the offset is sign-
   1854 					 * extended.
   1855 					 */
   1856 					rhead[i] = (int32_t)rhead32[i];
   1857 				} else {
   1858 					rhead[i] = rhead32[i];
   1859 				}
   1860 			}
   1861 		}
   1862 		return error;
   1863 	}
   1864 #endif /* _L64 */
   1865 
   1866 	return copyin((void *)uaddr, rhead,
   1867 	    sizeof(*rhead) * _FUTEX_ROBUST_HEAD_NWORDS);
   1868 }
   1869 
   1870 /*
   1871  * futex_decode_robust_word(word)
   1872  *
   1873  *	Decode a robust futex list word into the entry and entry
   1874  *	properties.
   1875  */
   1876 static inline void
   1877 futex_decode_robust_word(uintptr_t const word, uintptr_t * const entry,
   1878     bool * const is_pi)
   1879 {
   1880 	*is_pi = (word & _FUTEX_ROBUST_ENTRY_PI) ? true : false;
   1881 	*entry = word & ~_FUTEX_ROBUST_ENTRY_PI;
   1882 }
   1883 
   1884 /*
   1885  * futex_fetch_robust_entry(uaddr)
   1886  *
   1887  *	Helper routine to fetch and decode a robust futex entry
   1888  *	that handles 32-bit binaries running on 64-bit kernels.
   1889  */
   1890 static int
   1891 futex_fetch_robust_entry(uintptr_t const uaddr, uintptr_t * const valp,
   1892     bool * const is_pi)
   1893 {
   1894 	uintptr_t val = 0;
   1895 	int error = 0;
   1896 
   1897 #ifdef _LP64
   1898 	if (curproc->p_flag & PK_32) {
   1899 		uint32_t val32;
   1900 
   1901 		error = ufetch_32((uint32_t *)uaddr, &val32);
   1902 		if (__predict_true(error == 0))
   1903 			val = val32;
   1904 	} else
   1905 #endif /* _LP64 */
   1906 		error = ufetch_long((u_long *)uaddr, (u_long *)&val);
   1907 	if (__predict_false(error))
   1908 		return error;
   1909 
   1910 	futex_decode_robust_word(val, valp, is_pi);
   1911 	return 0;
   1912 }
   1913 
   1914 /*
   1915  * futex_release_all_lwp(l, tid)
   1916  *
   1917  *	Release all l's robust futexes.  If anything looks funny in
   1918  *	the process, give up -- it's userland's responsibility to dot
   1919  *	the i's and cross the t's.
   1920  */
   1921 void
   1922 futex_release_all_lwp(struct lwp * const l, lwpid_t const tid)
   1923 {
   1924 	u_long rhead[_FUTEX_ROBUST_HEAD_NWORDS];
   1925 	int limit = 1000000;
   1926 	int error;
   1927 
   1928 	/* If there's no robust list there's nothing to do. */
   1929 	if (l->l_robust_head == 0)
   1930 		return;
   1931 
   1932 	/* Read the final snapshot of the robust list head. */
   1933 	error = futex_fetch_robust_head(l->l_robust_head, rhead);
   1934 	if (error) {
   1935 		printf("WARNING: pid %jd (%s) lwp %jd tid %jd:"
   1936 		    " unmapped robust futex list head\n",
   1937 		    (uintmax_t)l->l_proc->p_pid, l->l_proc->p_comm,
   1938 		    (uintmax_t)l->l_lid, (uintmax_t)tid);
   1939 		return;
   1940 	}
   1941 
   1942 	const long offset = (long)rhead[_FUTEX_ROBUST_HEAD_OFFSET];
   1943 
   1944 	uintptr_t next, pending;
   1945 	bool is_pi, pending_is_pi;
   1946 
   1947 	futex_decode_robust_word(rhead[_FUTEX_ROBUST_HEAD_LIST],
   1948 	    &next, &is_pi);
   1949 	futex_decode_robust_word(rhead[_FUTEX_ROBUST_HEAD_PENDING],
   1950 	    &pending, &pending_is_pi);
   1951 
   1952 	/*
   1953 	 * Walk down the list of locked futexes and release them, up
   1954 	 * to one million of them before we give up.
   1955 	 */
   1956 
   1957 	while (next != l->l_robust_head && limit-- > 0) {
   1958 		/* pending handled below. */
   1959 		if (next != pending)
   1960 			release_futex(next + offset, tid, is_pi, false);
   1961 		error = futex_fetch_robust_entry(next, &next, &is_pi);
   1962 		if (error)
   1963 			break;
   1964 		preempt_point();
   1965 	}
   1966 	if (limit <= 0) {
   1967 		printf("WARNING: pid %jd (%s) lwp %jd tid %jd:"
   1968 		    " exhausted robust futex limit\n",
   1969 		    (uintmax_t)l->l_proc->p_pid, l->l_proc->p_comm,
   1970 		    (uintmax_t)l->l_lid, (uintmax_t)tid);
   1971 	}
   1972 
   1973 	/* If there's a pending futex, it may need to be released too. */
   1974 	if (pending != 0) {
   1975 		release_futex(pending + offset, tid, pending_is_pi, true);
   1976 	}
   1977 }
   1978