sys_futex.c revision 1.11.6.1 1 /* $NetBSD: sys_futex.c,v 1.11.6.1 2021/08/01 22:42:38 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2018, 2019, 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Taylor R. Campbell and Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: sys_futex.c,v 1.11.6.1 2021/08/01 22:42:38 thorpej Exp $");
34
35 /*
36 * Futexes
37 *
38 * The futex system call coordinates notifying threads waiting for
39 * changes on a 32-bit word of memory. The word can be managed by
40 * CPU atomic operations in userland, without system calls, as long
41 * as there is no contention.
42 *
43 * The simplest use case demonstrating the utility is:
44 *
45 * // 32-bit word of memory shared among threads or
46 * // processes in userland. lock & 1 means owned;
47 * // lock & 2 means there are waiters waiting.
48 * volatile int lock = 0;
49 *
50 * int v;
51 *
52 * // Acquire a lock.
53 * do {
54 * v = lock;
55 * if (v & 1) {
56 * // Lock is held. Set a bit to say that
57 * // there are waiters, and wait for lock
58 * // to change to anything other than v;
59 * // then retry.
60 * if (atomic_cas_uint(&lock, v, v | 2) != v)
61 * continue;
62 * futex(FUTEX_WAIT, &lock, v | 2, NULL, NULL, 0);
63 * continue;
64 * }
65 * } while (atomic_cas_uint(&lock, v, v & ~1) != v);
66 * membar_enter();
67 *
68 * ...
69 *
70 * // Release the lock. Optimistically assume there are
71 * // no waiters first until demonstrated otherwise.
72 * membar_exit();
73 * if (atomic_cas_uint(&lock, 1, 0) != 1) {
74 * // There may be waiters.
75 * v = atomic_swap_uint(&lock, 0);
76 * // If there are still waiters, wake one.
77 * if (v & 2)
78 * futex(FUTEX_WAKE, &lock, 1, NULL, NULL, 0);
79 * }
80 *
81 * The goal is to avoid the futex system call unless there is
82 * contention; then if there is contention, to guarantee no missed
83 * wakeups.
84 *
85 * For a simple implementation, futex(FUTEX_WAIT) could queue
86 * itself to be woken, double-check the lock word, and then sleep;
87 * spurious wakeups are generally a fact of life, so any
88 * FUTEX_WAKE could just wake every FUTEX_WAIT in the system.
89 *
90 * If this were all there is to it, we could then increase
91 * parallelism by refining the approximation: partition the
92 * waiters into buckets by hashing the lock addresses to reduce
93 * the incidence of spurious wakeups. But this is not all.
94 *
95 * The futex(FUTEX_CMP_REQUEUE, &lock, n, &lock2, m, val)
96 * operation not only wakes n waiters on lock if lock == val, but
97 * also _transfers_ m additional waiters to lock2. Unless wakeups
98 * on lock2 also trigger wakeups on lock, we cannot move waiters
99 * to lock2 if they merely share the same hash as waiters on lock.
100 * Thus, we can't approximately distribute waiters into queues by
101 * a hash function; we must distinguish futex queues exactly by
102 * lock address.
103 *
104 * For now, we use a global red/black tree to index futexes. This
105 * should be replaced by a lockless radix tree with a thread to
106 * free entries no longer in use once all lookups on all CPUs have
107 * completed.
108 *
109 * Specifically, we maintain two maps:
110 *
111 * futex_tab.va[vmspace, va] for private futexes
112 * futex_tab.oa[uvm_voaddr] for shared futexes
113 *
114 * This implementation does not support priority inheritance.
115 */
116
117 #include <sys/param.h>
118 #include <sys/types.h>
119 #include <sys/atomic.h>
120 #include <sys/condvar.h>
121 #include <sys/futex.h>
122 #include <sys/mutex.h>
123 #include <sys/rbtree.h>
124 #include <sys/queue.h>
125
126 #include <sys/syscall.h>
127 #include <sys/syscallargs.h>
128 #include <sys/syscallvar.h>
129
130 #include <uvm/uvm_extern.h>
131
132 /*
133 * Lock order:
134 *
135 * futex_tab.lock
136 * futex::fx_qlock ordered by kva of struct futex
137 * -> futex_wait::fw_lock only one at a time
138 * futex_wait::fw_lock only one at a time
139 * -> futex::fx_abortlock only one at a time
140 */
141
142 /*
143 * union futex_key
144 *
145 * A futex is addressed either by a vmspace+va (private) or by
146 * a uvm_voaddr (shared).
147 */
148 union futex_key {
149 struct {
150 struct vmspace *vmspace;
151 vaddr_t va;
152 } fk_private;
153 struct uvm_voaddr fk_shared;
154 };
155
156 /*
157 * struct futex
158 *
159 * Kernel state for a futex located at a particular address in a
160 * particular virtual address space.
161 *
162 * N.B. fx_refcnt is an unsigned long because we need to be able
163 * to operate on it atomically on all systems while at the same
164 * time rendering practically impossible the chance of it reaching
165 * its max value. In practice, we're limited by the number of LWPs
166 * that can be present on the system at any given time, and the
167 * assumption is that limit will be good enough on a 32-bit platform.
168 * See futex_wake() for why overflow needs to be avoided.
169 */
170 struct futex {
171 union futex_key fx_key;
172 unsigned long fx_refcnt;
173 bool fx_shared;
174 bool fx_on_tree;
175 struct rb_node fx_node;
176
177 kmutex_t fx_qlock;
178 TAILQ_HEAD(, futex_wait) fx_queue;
179
180 kmutex_t fx_abortlock;
181 LIST_HEAD(, futex_wait) fx_abortlist;
182 kcondvar_t fx_abortcv;
183 };
184
185 /*
186 * struct futex_wait
187 *
188 * State for a thread to wait on a futex. Threads wait on fw_cv
189 * for fw_bitset to be set to zero. The thread may transition to
190 * a different futex queue at any time under the futex's lock.
191 */
192 struct futex_wait {
193 kmutex_t fw_lock;
194 kcondvar_t fw_cv;
195 struct futex *fw_futex;
196 TAILQ_ENTRY(futex_wait) fw_entry; /* queue lock */
197 LIST_ENTRY(futex_wait) fw_abort; /* queue abortlock */
198 int fw_bitset;
199 bool fw_aborting; /* fw_lock */
200 };
201
202 /*
203 * futex_tab
204 *
205 * Global trees of futexes by vmspace/va and VM object address.
206 *
207 * XXX This obviously doesn't scale in parallel. We could use a
208 * pserialize-safe data structure, but there may be a high cost to
209 * frequent deletion since we don't cache futexes after we're done
210 * with them. We could use hashed locks. But for now, just make
211 * sure userland can't DoS the serial performance, by using a
212 * balanced binary tree for lookup.
213 *
214 * XXX We could use a per-process tree for the table indexed by
215 * virtual address to reduce contention between processes.
216 */
217 static struct {
218 kmutex_t lock;
219 struct rb_tree va;
220 struct rb_tree oa;
221 } futex_tab __cacheline_aligned;
222
223 static int
224 compare_futex_key(void *cookie, const void *n, const void *k)
225 {
226 const struct futex *fa = n;
227 const union futex_key *fka = &fa->fx_key;
228 const union futex_key *fkb = k;
229
230 if ((uintptr_t)fka->fk_private.vmspace <
231 (uintptr_t)fkb->fk_private.vmspace)
232 return -1;
233 if ((uintptr_t)fka->fk_private.vmspace >
234 (uintptr_t)fkb->fk_private.vmspace)
235 return +1;
236 if (fka->fk_private.va < fkb->fk_private.va)
237 return -1;
238 if (fka->fk_private.va > fkb->fk_private.va)
239 return -1;
240 return 0;
241 }
242
243 static int
244 compare_futex(void *cookie, const void *na, const void *nb)
245 {
246 const struct futex *fa = na;
247 const struct futex *fb = nb;
248
249 return compare_futex_key(cookie, fa, &fb->fx_key);
250 }
251
252 static const rb_tree_ops_t futex_rb_ops = {
253 .rbto_compare_nodes = compare_futex,
254 .rbto_compare_key = compare_futex_key,
255 .rbto_node_offset = offsetof(struct futex, fx_node),
256 };
257
258 static int
259 compare_futex_shared_key(void *cookie, const void *n, const void *k)
260 {
261 const struct futex *fa = n;
262 const union futex_key *fka = &fa->fx_key;
263 const union futex_key *fkb = k;
264
265 return uvm_voaddr_compare(&fka->fk_shared, &fkb->fk_shared);
266 }
267
268 static int
269 compare_futex_shared(void *cookie, const void *na, const void *nb)
270 {
271 const struct futex *fa = na;
272 const struct futex *fb = nb;
273
274 return compare_futex_shared_key(cookie, fa, &fb->fx_key);
275 }
276
277 static const rb_tree_ops_t futex_shared_rb_ops = {
278 .rbto_compare_nodes = compare_futex_shared,
279 .rbto_compare_key = compare_futex_shared_key,
280 .rbto_node_offset = offsetof(struct futex, fx_node),
281 };
282
283 static void futex_wait_dequeue(struct futex_wait *, struct futex *);
284
285 /*
286 * futex_load(uaddr, kaddr)
287 *
288 * Perform a single atomic load to read *uaddr, and return the
289 * result in *kaddr. Return 0 on success, EFAULT if uaddr is not
290 * mapped.
291 */
292 static inline int
293 futex_load(int *uaddr, int *kaddr)
294 {
295 return ufetch_int((u_int *)uaddr, (u_int *)kaddr);
296 }
297
298 /*
299 * futex_test(uaddr, expected)
300 *
301 * True if *uaddr == expected. False if *uaddr != expected, or if
302 * uaddr is not mapped.
303 */
304 static bool
305 futex_test(int *uaddr, int expected)
306 {
307 int val;
308 int error;
309
310 error = futex_load(uaddr, &val);
311 if (error)
312 return false;
313 return val == expected;
314 }
315
316 /*
317 * futex_sys_init()
318 *
319 * Initialize the futex subsystem.
320 */
321 void
322 futex_sys_init(void)
323 {
324
325 mutex_init(&futex_tab.lock, MUTEX_DEFAULT, IPL_NONE);
326 rb_tree_init(&futex_tab.va, &futex_rb_ops);
327 rb_tree_init(&futex_tab.oa, &futex_shared_rb_ops);
328 }
329
330 /*
331 * futex_sys_fini()
332 *
333 * Finalize the futex subsystem.
334 */
335 void
336 futex_sys_fini(void)
337 {
338
339 KASSERT(RB_TREE_MIN(&futex_tab.oa) == NULL);
340 KASSERT(RB_TREE_MIN(&futex_tab.va) == NULL);
341 mutex_destroy(&futex_tab.lock);
342 }
343
344 /*
345 * futex_queue_init(f)
346 *
347 * Initialize the futex queue. Caller must call futex_queue_fini
348 * when done.
349 *
350 * Never sleeps.
351 */
352 static void
353 futex_queue_init(struct futex *f)
354 {
355
356 mutex_init(&f->fx_qlock, MUTEX_DEFAULT, IPL_NONE);
357 mutex_init(&f->fx_abortlock, MUTEX_DEFAULT, IPL_NONE);
358 cv_init(&f->fx_abortcv, "fqabort");
359 LIST_INIT(&f->fx_abortlist);
360 TAILQ_INIT(&f->fx_queue);
361 }
362
363 /*
364 * futex_queue_drain(f)
365 *
366 * Wait for any aborting waiters in f; then empty the queue of
367 * any stragglers and wake them. Caller must guarantee no new
368 * references to f.
369 *
370 * May sleep.
371 */
372 static void
373 futex_queue_drain(struct futex *f)
374 {
375 struct futex_wait *fw, *fw_next;
376
377 mutex_enter(&f->fx_abortlock);
378 while (!LIST_EMPTY(&f->fx_abortlist))
379 cv_wait(&f->fx_abortcv, &f->fx_abortlock);
380 mutex_exit(&f->fx_abortlock);
381
382 mutex_enter(&f->fx_qlock);
383 TAILQ_FOREACH_SAFE(fw, &f->fx_queue, fw_entry, fw_next) {
384 mutex_enter(&fw->fw_lock);
385 futex_wait_dequeue(fw, f);
386 cv_broadcast(&fw->fw_cv);
387 mutex_exit(&fw->fw_lock);
388 }
389 mutex_exit(&f->fx_qlock);
390 }
391
392 /*
393 * futex_queue_fini(fq)
394 *
395 * Finalize the futex queue initialized by futex_queue_init. Queue
396 * must be empty. Caller must not use f again until a subsequent
397 * futex_queue_init.
398 */
399 static void
400 futex_queue_fini(struct futex *f)
401 {
402
403 KASSERT(TAILQ_EMPTY(&f->fx_queue));
404 KASSERT(LIST_EMPTY(&f->fx_abortlist));
405 mutex_destroy(&f->fx_qlock);
406 mutex_destroy(&f->fx_abortlock);
407 cv_destroy(&f->fx_abortcv);
408 }
409
410 /*
411 * futex_key_init(key, vm, va, shared)
412 *
413 * Initialize a futex key for lookup, etc.
414 */
415 static int
416 futex_key_init(union futex_key *fk, struct vmspace *vm, vaddr_t va, bool shared)
417 {
418 int error = 0;
419
420 if (__predict_false(shared)) {
421 if (!uvm_voaddr_acquire(&vm->vm_map, va, &fk->fk_shared))
422 error = EFAULT;
423 } else {
424 fk->fk_private.vmspace = vm;
425 fk->fk_private.va = va;
426 }
427
428 return error;
429 }
430
431 /*
432 * futex_key_fini(key, shared)
433 *
434 * Release a futex key.
435 */
436 static void
437 futex_key_fini(union futex_key *fk, bool shared)
438 {
439 if (__predict_false(shared))
440 uvm_voaddr_release(&fk->fk_shared);
441 memset(fk, 0, sizeof(*fk));
442 }
443
444 /*
445 * futex_create(fk, shared)
446 *
447 * Create a futex. Initial reference count is 1, representing the
448 * caller. Returns NULL on failure. Always takes ownership of the
449 * key, either transferring it to the newly-created futex, or releasing
450 * the key if creation fails.
451 *
452 * Never sleeps for memory, but may sleep to acquire a lock.
453 */
454 static struct futex *
455 futex_create(union futex_key *fk, bool shared)
456 {
457 struct futex *f;
458
459 f = kmem_alloc(sizeof(*f), KM_NOSLEEP);
460 if (f == NULL) {
461 futex_key_fini(fk, shared);
462 return NULL;
463 }
464 f->fx_key = *fk;
465 f->fx_refcnt = 1;
466 f->fx_shared = shared;
467 f->fx_on_tree = false;
468 futex_queue_init(f);
469
470 return f;
471 }
472
473 /*
474 * futex_destroy(f)
475 *
476 * Destroy a futex created with futex_create. Reference count
477 * must be zero.
478 *
479 * May sleep.
480 */
481 static void
482 futex_destroy(struct futex *f)
483 {
484
485 ASSERT_SLEEPABLE();
486
487 KASSERT(atomic_load_relaxed(&f->fx_refcnt) == 0);
488 KASSERT(!f->fx_on_tree);
489
490 /* Drain and destroy the private queue. */
491 futex_queue_drain(f);
492 futex_queue_fini(f);
493
494 futex_key_fini(&f->fx_key, f->fx_shared);
495
496 kmem_free(f, sizeof(*f));
497 }
498
499 /*
500 * futex_hold(f)
501 *
502 * Attempt to acquire a reference to f. Return 0 on success,
503 * ENFILE on too many references.
504 *
505 * Never sleeps.
506 */
507 static int
508 futex_hold(struct futex *f)
509 {
510 unsigned long refcnt;
511
512 do {
513 refcnt = atomic_load_relaxed(&f->fx_refcnt);
514 if (refcnt == ULONG_MAX)
515 return ENFILE;
516 } while (atomic_cas_ulong(&f->fx_refcnt, refcnt, refcnt + 1) != refcnt);
517
518 return 0;
519 }
520
521 /*
522 * futex_rele(f)
523 *
524 * Release a reference to f acquired with futex_create or
525 * futex_hold.
526 *
527 * May sleep to free f.
528 */
529 static void
530 futex_rele(struct futex *f)
531 {
532 unsigned long refcnt;
533
534 ASSERT_SLEEPABLE();
535
536 do {
537 refcnt = atomic_load_relaxed(&f->fx_refcnt);
538 if (refcnt == 1)
539 goto trylast;
540 } while (atomic_cas_ulong(&f->fx_refcnt, refcnt, refcnt - 1) != refcnt);
541 return;
542
543 trylast:
544 mutex_enter(&futex_tab.lock);
545 if (atomic_dec_ulong_nv(&f->fx_refcnt) == 0) {
546 if (f->fx_on_tree) {
547 if (__predict_false(f->fx_shared))
548 rb_tree_remove_node(&futex_tab.oa, f);
549 else
550 rb_tree_remove_node(&futex_tab.va, f);
551 f->fx_on_tree = false;
552 }
553 } else {
554 /* References remain -- don't destroy it. */
555 f = NULL;
556 }
557 mutex_exit(&futex_tab.lock);
558 if (f != NULL)
559 futex_destroy(f);
560 }
561
562 /*
563 * futex_rele_not_last(f)
564 *
565 * Release a reference to f acquired with futex_create or
566 * futex_hold.
567 *
568 * This version asserts that we are not dropping the last
569 * reference to f.
570 */
571 static void
572 futex_rele_not_last(struct futex *f)
573 {
574 unsigned long refcnt;
575
576 do {
577 refcnt = atomic_load_relaxed(&f->fx_refcnt);
578 KASSERT(refcnt > 1);
579 } while (atomic_cas_ulong(&f->fx_refcnt, refcnt, refcnt - 1) != refcnt);
580 }
581
582 /*
583 * futex_lookup_by_key(key, shared, &f)
584 *
585 * Try to find an existing futex va reference in the specified key
586 * On success, return 0, set f to found futex or to NULL if not found,
587 * and increment f's reference count if found.
588 *
589 * Return ENFILE if reference count too high.
590 *
591 * Internal lookup routine shared by futex_lookup() and
592 * futex_lookup_create().
593 */
594 static int
595 futex_lookup_by_key(union futex_key *fk, bool shared, struct futex **fp)
596 {
597 struct futex *f;
598 int error = 0;
599
600 mutex_enter(&futex_tab.lock);
601 if (__predict_false(shared)) {
602 f = rb_tree_find_node(&futex_tab.oa, fk);
603 } else {
604 f = rb_tree_find_node(&futex_tab.va, fk);
605 }
606 if (f) {
607 error = futex_hold(f);
608 if (error)
609 f = NULL;
610 }
611 *fp = f;
612 mutex_exit(&futex_tab.lock);
613
614 return error;
615 }
616
617 /*
618 * futex_insert(f, fp)
619 *
620 * Try to insert the futex f into the tree by va. If there
621 * already is a futex for its va, acquire a reference to it, and
622 * store it in *fp; otherwise store f in *fp.
623 *
624 * Return 0 on success, ENFILE if there already is a futex but its
625 * reference count is too high.
626 */
627 static int
628 futex_insert(struct futex *f, struct futex **fp)
629 {
630 struct futex *f0;
631 int error;
632
633 KASSERT(atomic_load_relaxed(&f->fx_refcnt) != 0);
634 KASSERT(!f->fx_on_tree);
635
636 mutex_enter(&futex_tab.lock);
637 if (__predict_false(f->fx_shared))
638 f0 = rb_tree_insert_node(&futex_tab.oa, f);
639 else
640 f0 = rb_tree_insert_node(&futex_tab.va, f);
641 if (f0 == f) {
642 f->fx_on_tree = true;
643 error = 0;
644 } else {
645 KASSERT(atomic_load_relaxed(&f0->fx_refcnt) != 0);
646 KASSERT(f0->fx_on_tree);
647 error = futex_hold(f0);
648 if (error)
649 goto out;
650 }
651 *fp = f0;
652 out: mutex_exit(&futex_tab.lock);
653
654 return error;
655 }
656
657 /*
658 * futex_lookup(uaddr, shared, &f)
659 *
660 * Find a futex at the userland pointer uaddr in the current
661 * process's VM space. On success, return the futex in f and
662 * increment its reference count.
663 *
664 * Caller must call futex_rele when done.
665 */
666 static int
667 futex_lookup(int *uaddr, bool shared, struct futex **fp)
668 {
669 union futex_key fk;
670 struct vmspace *vm = curproc->p_vmspace;
671 vaddr_t va = (vaddr_t)uaddr;
672 int error;
673
674 /*
675 * Reject unaligned user pointers so we don't cross page
676 * boundaries and so atomics will work.
677 */
678 if ((va & 3) != 0)
679 return EINVAL;
680
681 /* Look it up. */
682 error = futex_key_init(&fk, vm, va, shared);
683 if (error)
684 return error;
685
686 error = futex_lookup_by_key(&fk, shared, fp);
687 futex_key_fini(&fk, shared);
688 if (error)
689 return error;
690
691 KASSERT(*fp == NULL || (*fp)->fx_shared == shared);
692 KASSERT(*fp == NULL || atomic_load_relaxed(&(*fp)->fx_refcnt) != 0);
693
694 /*
695 * Success! (Caller must still check whether we found
696 * anything, but nothing went _wrong_ like trying to use
697 * unmapped memory.)
698 */
699 KASSERT(error == 0);
700
701 return error;
702 }
703
704 /*
705 * futex_lookup_create(uaddr, shared, &f)
706 *
707 * Find or create a futex at the userland pointer uaddr in the
708 * current process's VM space. On success, return the futex in f
709 * and increment its reference count.
710 *
711 * Caller must call futex_rele when done.
712 */
713 static int
714 futex_lookup_create(int *uaddr, bool shared, struct futex **fp)
715 {
716 union futex_key fk;
717 struct vmspace *vm = curproc->p_vmspace;
718 struct futex *f = NULL;
719 vaddr_t va = (vaddr_t)uaddr;
720 int error;
721
722 /*
723 * Reject unaligned user pointers so we don't cross page
724 * boundaries and so atomics will work.
725 */
726 if ((va & 3) != 0)
727 return EINVAL;
728
729 error = futex_key_init(&fk, vm, va, shared);
730 if (error)
731 return error;
732
733 /*
734 * Optimistically assume there already is one, and try to find
735 * it.
736 */
737 error = futex_lookup_by_key(&fk, shared, fp);
738 if (error || *fp != NULL) {
739 /*
740 * We either found one, or there was an error.
741 * In either case, we are done with the key.
742 */
743 futex_key_fini(&fk, shared);
744 goto out;
745 }
746
747 /*
748 * Create a futex recoard. This tranfers ownership of the key
749 * in all cases.
750 */
751 f = futex_create(&fk, shared);
752 if (f == NULL) {
753 error = ENOMEM;
754 goto out;
755 }
756
757 /*
758 * Insert our new futex, or use existing if someone else beat
759 * us to it.
760 */
761 error = futex_insert(f, fp);
762 if (error)
763 goto out;
764 if (*fp == f)
765 f = NULL; /* don't release on exit */
766
767 /* Success! */
768 KASSERT(error == 0);
769
770 out: if (f != NULL)
771 futex_rele(f);
772 KASSERT(error || *fp != NULL);
773 KASSERT(error || atomic_load_relaxed(&(*fp)->fx_refcnt) != 0);
774 return error;
775 }
776
777 /*
778 * futex_wait_init(fw, bitset)
779 *
780 * Initialize a record for a thread to wait on a futex matching
781 * the specified bit set. Should be passed to futex_wait_enqueue
782 * before futex_wait, and should be passed to futex_wait_fini when
783 * done.
784 */
785 static void
786 futex_wait_init(struct futex_wait *fw, int bitset)
787 {
788
789 KASSERT(bitset);
790
791 mutex_init(&fw->fw_lock, MUTEX_DEFAULT, IPL_NONE);
792 cv_init(&fw->fw_cv, "futex");
793 fw->fw_futex = NULL;
794 fw->fw_bitset = bitset;
795 fw->fw_aborting = false;
796 }
797
798 /*
799 * futex_wait_fini(fw)
800 *
801 * Finalize a record for a futex waiter. Must not be on any
802 * futex's queue.
803 */
804 static void
805 futex_wait_fini(struct futex_wait *fw)
806 {
807
808 KASSERT(fw->fw_futex == NULL);
809
810 cv_destroy(&fw->fw_cv);
811 mutex_destroy(&fw->fw_lock);
812 }
813
814 /*
815 * futex_wait_enqueue(fw, f)
816 *
817 * Put fw on the futex queue. Must be done before futex_wait.
818 * Caller must hold fw's lock and f's lock, and fw must not be on
819 * any existing futex's waiter list.
820 */
821 static void
822 futex_wait_enqueue(struct futex_wait *fw, struct futex *f)
823 {
824
825 KASSERT(mutex_owned(&f->fx_qlock));
826 KASSERT(mutex_owned(&fw->fw_lock));
827 KASSERT(fw->fw_futex == NULL);
828 KASSERT(!fw->fw_aborting);
829
830 fw->fw_futex = f;
831 TAILQ_INSERT_TAIL(&f->fx_queue, fw, fw_entry);
832 }
833
834 /*
835 * futex_wait_dequeue(fw, f)
836 *
837 * Remove fw from the futex queue. Precludes subsequent
838 * futex_wait until a futex_wait_enqueue. Caller must hold fw's
839 * lock and f's lock, and fw must be on f.
840 */
841 static void
842 futex_wait_dequeue(struct futex_wait *fw, struct futex *f)
843 {
844
845 KASSERT(mutex_owned(&f->fx_qlock));
846 KASSERT(mutex_owned(&fw->fw_lock));
847 KASSERT(fw->fw_futex == f);
848
849 TAILQ_REMOVE(&f->fx_queue, fw, fw_entry);
850 fw->fw_futex = NULL;
851 }
852
853 /*
854 * futex_wait_abort(fw)
855 *
856 * Caller is no longer waiting for fw. Remove it from any queue
857 * if it was on one. Caller must hold fw->fw_lock.
858 */
859 static void
860 futex_wait_abort(struct futex_wait *fw)
861 {
862 struct futex *f;
863
864 KASSERT(mutex_owned(&fw->fw_lock));
865
866 /*
867 * Grab the futex queue. It can't go away as long as we hold
868 * fw_lock. However, we can't take the queue lock because
869 * that's a lock order reversal.
870 */
871 f = fw->fw_futex;
872
873 /* Put us on the abort list so that fq won't go away. */
874 mutex_enter(&f->fx_abortlock);
875 LIST_INSERT_HEAD(&f->fx_abortlist, fw, fw_abort);
876 mutex_exit(&f->fx_abortlock);
877
878 /*
879 * Mark fw as aborting so it won't lose wakeups and won't be
880 * transferred to any other queue.
881 */
882 fw->fw_aborting = true;
883
884 /* f is now stable, so we can release fw_lock. */
885 mutex_exit(&fw->fw_lock);
886
887 /* Now we can remove fw under the queue lock. */
888 mutex_enter(&f->fx_qlock);
889 mutex_enter(&fw->fw_lock);
890 futex_wait_dequeue(fw, f);
891 mutex_exit(&fw->fw_lock);
892 mutex_exit(&f->fx_qlock);
893
894 /*
895 * Finally, remove us from the abort list and notify anyone
896 * waiting for the abort to complete if we were the last to go.
897 */
898 mutex_enter(&f->fx_abortlock);
899 LIST_REMOVE(fw, fw_abort);
900 if (LIST_EMPTY(&f->fx_abortlist))
901 cv_broadcast(&f->fx_abortcv);
902 mutex_exit(&f->fx_abortlock);
903
904 /*
905 * Release our reference to the futex now that we are not
906 * waiting for it.
907 */
908 futex_rele(f);
909
910 /*
911 * Reacquire the fw lock as caller expects. Verify that we're
912 * aborting and no longer associated with a futex.
913 */
914 mutex_enter(&fw->fw_lock);
915 KASSERT(fw->fw_aborting);
916 KASSERT(fw->fw_futex == NULL);
917 }
918
919 /*
920 * futex_wait(fw, deadline, clkid)
921 *
922 * fw must be a waiter on a futex's queue. Wait until deadline on
923 * the clock clkid, or forever if deadline is NULL, for a futex
924 * wakeup. Return 0 on explicit wakeup or destruction of futex,
925 * ETIMEDOUT on timeout, EINTR/ERESTART on signal. Either way, fw
926 * will no longer be on a futex queue on return.
927 */
928 static int
929 futex_wait(struct futex_wait *fw, const struct timespec *deadline,
930 clockid_t clkid)
931 {
932 int error = 0;
933
934 /* Test and wait under the wait lock. */
935 mutex_enter(&fw->fw_lock);
936
937 for (;;) {
938 /* If we're done yet, stop and report success. */
939 if (fw->fw_bitset == 0 || fw->fw_futex == NULL) {
940 error = 0;
941 break;
942 }
943
944 /* If anything went wrong in the last iteration, stop. */
945 if (error)
946 break;
947
948 /* Not done yet. Wait. */
949 if (deadline) {
950 struct timespec ts;
951
952 /* Check our watch. */
953 error = clock_gettime1(clkid, &ts);
954 if (error)
955 break;
956
957 /* If we're past the deadline, ETIMEDOUT. */
958 if (timespeccmp(deadline, &ts, <=)) {
959 error = ETIMEDOUT;
960 break;
961 }
962
963 /* Count how much time is left. */
964 timespecsub(deadline, &ts, &ts);
965
966 /* Wait for that much time, allowing signals. */
967 error = cv_timedwait_sig(&fw->fw_cv, &fw->fw_lock,
968 tstohz(&ts));
969 } else {
970 /* Wait indefinitely, allowing signals. */
971 error = cv_wait_sig(&fw->fw_cv, &fw->fw_lock);
972 }
973 }
974
975 /*
976 * If we were woken up, the waker will have removed fw from the
977 * queue. But if anything went wrong, we must remove fw from
978 * the queue ourselves. While here, convert EWOULDBLOCK to
979 * ETIMEDOUT.
980 */
981 if (error) {
982 futex_wait_abort(fw);
983 if (error == EWOULDBLOCK)
984 error = ETIMEDOUT;
985 }
986
987 mutex_exit(&fw->fw_lock);
988
989 return error;
990 }
991
992 /*
993 * futex_wake(f, nwake, f2, nrequeue, bitset)
994 *
995 * Wake up to nwake waiters on f matching bitset; then, if f2 is
996 * provided, move up to nrequeue remaining waiters on f matching
997 * bitset to f2. Return the number of waiters actually woken.
998 * Caller must hold the locks of f and f2, if provided.
999 */
1000 static unsigned
1001 futex_wake(struct futex *f, unsigned nwake, struct futex *f2,
1002 unsigned nrequeue, int bitset)
1003 {
1004 struct futex_wait *fw, *fw_next;
1005 unsigned nwoken = 0;
1006 int hold_error __diagused;
1007
1008 KASSERT(mutex_owned(&f->fx_qlock));
1009 KASSERT(f2 == NULL || mutex_owned(&f2->fx_qlock));
1010
1011 /* Wake up to nwake waiters, and count the number woken. */
1012 TAILQ_FOREACH_SAFE(fw, &f->fx_queue, fw_entry, fw_next) {
1013 if ((fw->fw_bitset & bitset) == 0)
1014 continue;
1015 if (nwake > 0) {
1016 mutex_enter(&fw->fw_lock);
1017 if (__predict_false(fw->fw_aborting)) {
1018 mutex_exit(&fw->fw_lock);
1019 continue;
1020 }
1021 futex_wait_dequeue(fw, f);
1022 fw->fw_bitset = 0;
1023 cv_broadcast(&fw->fw_cv);
1024 mutex_exit(&fw->fw_lock);
1025 nwake--;
1026 nwoken++;
1027 /*
1028 * Drop the futex reference on behalf of the
1029 * waiter. We assert this is not the last
1030 * reference on the futex (our caller should
1031 * also have one).
1032 */
1033 futex_rele_not_last(f);
1034 } else {
1035 break;
1036 }
1037 }
1038
1039 if (f2) {
1040 /* Move up to nrequeue waiters from f's queue to f2's queue. */
1041 TAILQ_FOREACH_SAFE(fw, &f->fx_queue, fw_entry, fw_next) {
1042 if ((fw->fw_bitset & bitset) == 0)
1043 continue;
1044 if (nrequeue > 0) {
1045 mutex_enter(&fw->fw_lock);
1046 if (__predict_false(fw->fw_aborting)) {
1047 mutex_exit(&fw->fw_lock);
1048 continue;
1049 }
1050 futex_wait_dequeue(fw, f);
1051 futex_wait_enqueue(fw, f2);
1052 mutex_exit(&fw->fw_lock);
1053 nrequeue--;
1054 /*
1055 * Transfer the reference from f to f2.
1056 * As above, we assert that we are not
1057 * dropping the last reference to f here.
1058 *
1059 * XXX futex_hold() could theoretically
1060 * XXX fail here.
1061 */
1062 futex_rele_not_last(f);
1063 hold_error = futex_hold(f2);
1064 KASSERT(hold_error == 0);
1065 } else {
1066 break;
1067 }
1068 }
1069 } else {
1070 KASSERT(nrequeue == 0);
1071 }
1072
1073 /* Return the number of waiters woken. */
1074 return nwoken;
1075 }
1076
1077 /*
1078 * futex_queue_lock(f)
1079 *
1080 * Acquire the queue lock of f. Pair with futex_queue_unlock. Do
1081 * not use if caller needs to acquire two locks; use
1082 * futex_queue_lock2 instead.
1083 */
1084 static void
1085 futex_queue_lock(struct futex *f)
1086 {
1087 mutex_enter(&f->fx_qlock);
1088 }
1089
1090 /*
1091 * futex_queue_unlock(f)
1092 *
1093 * Release the queue lock of f.
1094 */
1095 static void
1096 futex_queue_unlock(struct futex *f)
1097 {
1098 mutex_exit(&f->fx_qlock);
1099 }
1100
1101 /*
1102 * futex_queue_lock2(f, f2)
1103 *
1104 * Acquire the queue locks of both f and f2, which may be null, or
1105 * which may have the same underlying queue. If they are
1106 * distinct, an arbitrary total order is chosen on the locks.
1107 *
1108 * Callers should only ever acquire multiple queue locks
1109 * simultaneously using futex_queue_lock2.
1110 */
1111 static void
1112 futex_queue_lock2(struct futex *f, struct futex *f2)
1113 {
1114
1115 /*
1116 * If both are null, do nothing; if one is null and the other
1117 * is not, lock the other and be done with it.
1118 */
1119 if (f == NULL && f2 == NULL) {
1120 return;
1121 } else if (f == NULL) {
1122 mutex_enter(&f2->fx_qlock);
1123 return;
1124 } else if (f2 == NULL) {
1125 mutex_enter(&f->fx_qlock);
1126 return;
1127 }
1128
1129 /* If both futexes are the same, acquire only one. */
1130 if (f == f2) {
1131 mutex_enter(&f->fx_qlock);
1132 return;
1133 }
1134
1135 /* Otherwise, use the ordering on the kva of the futex pointer. */
1136 if ((uintptr_t)f < (uintptr_t)f2) {
1137 mutex_enter(&f->fx_qlock);
1138 mutex_enter(&f2->fx_qlock);
1139 } else {
1140 mutex_enter(&f2->fx_qlock);
1141 mutex_enter(&f->fx_qlock);
1142 }
1143 }
1144
1145 /*
1146 * futex_queue_unlock2(f, f2)
1147 *
1148 * Release the queue locks of both f and f2, which may be null, or
1149 * which may have the same underlying queue.
1150 */
1151 static void
1152 futex_queue_unlock2(struct futex *f, struct futex *f2)
1153 {
1154
1155 /*
1156 * If both are null, do nothing; if one is null and the other
1157 * is not, unlock the other and be done with it.
1158 */
1159 if (f == NULL && f2 == NULL) {
1160 return;
1161 } else if (f == NULL) {
1162 mutex_exit(&f2->fx_qlock);
1163 return;
1164 } else if (f2 == NULL) {
1165 mutex_exit(&f->fx_qlock);
1166 return;
1167 }
1168
1169 /* If both futexes are the same, release only one. */
1170 if (f == f2) {
1171 mutex_exit(&f->fx_qlock);
1172 return;
1173 }
1174
1175 /* Otherwise, use the ordering on the kva of the futex pointer. */
1176 if ((uintptr_t)f < (uintptr_t)f2) {
1177 mutex_exit(&f2->fx_qlock);
1178 mutex_exit(&f->fx_qlock);
1179 } else {
1180 mutex_exit(&f->fx_qlock);
1181 mutex_exit(&f2->fx_qlock);
1182 }
1183 }
1184
1185 /*
1186 * futex_func_wait(uaddr, val, val3, timeout, clkid, clkflags, retval)
1187 *
1188 * Implement futex(FUTEX_WAIT).
1189 */
1190 static int
1191 futex_func_wait(bool shared, int *uaddr, int val, int val3,
1192 const struct timespec *timeout, clockid_t clkid, int clkflags,
1193 register_t *retval)
1194 {
1195 struct futex *f;
1196 struct futex_wait wait, *fw = &wait;
1197 struct timespec ts;
1198 const struct timespec *deadline;
1199 int error;
1200
1201 /*
1202 * If there's nothing to wait for, and nobody will ever wake
1203 * us, then don't set anything up to wait -- just stop here.
1204 */
1205 if (val3 == 0)
1206 return EINVAL;
1207
1208 /* Optimistically test before anything else. */
1209 if (!futex_test(uaddr, val))
1210 return EAGAIN;
1211
1212 /* Determine a deadline on the specified clock. */
1213 if (timeout == NULL || (clkflags & TIMER_ABSTIME) == TIMER_ABSTIME) {
1214 deadline = timeout;
1215 } else {
1216 error = clock_gettime1(clkid, &ts);
1217 if (error)
1218 return error;
1219 timespecadd(&ts, timeout, &ts);
1220 deadline = &ts;
1221 }
1222
1223 /* Get the futex, creating it if necessary. */
1224 error = futex_lookup_create(uaddr, shared, &f);
1225 if (error)
1226 return error;
1227 KASSERT(f);
1228
1229 /* Get ready to wait. */
1230 futex_wait_init(fw, val3);
1231
1232 /*
1233 * Under the queue lock, check the value again: if it has
1234 * already changed, EAGAIN; otherwise enqueue the waiter.
1235 * Since FUTEX_WAKE will use the same lock and be done after
1236 * modifying the value, the order in which we check and enqueue
1237 * is immaterial.
1238 */
1239 futex_queue_lock(f);
1240 if (!futex_test(uaddr, val)) {
1241 futex_queue_unlock(f);
1242 error = EAGAIN;
1243 goto out;
1244 }
1245 mutex_enter(&fw->fw_lock);
1246 futex_wait_enqueue(fw, f);
1247 mutex_exit(&fw->fw_lock);
1248 futex_queue_unlock(f);
1249
1250 /*
1251 * We cannot drop our reference to the futex here, because
1252 * we might be enqueued on a different one when we are awakened.
1253 * The references will be managed on our behalf in the requeue
1254 * and wake cases.
1255 */
1256 f = NULL;
1257
1258 /* Wait. */
1259 error = futex_wait(fw, deadline, clkid);
1260 if (error)
1261 goto out;
1262
1263 /* Return 0 on success, error on failure. */
1264 *retval = 0;
1265
1266 out: if (f != NULL)
1267 futex_rele(f);
1268 futex_wait_fini(fw);
1269 return error;
1270 }
1271
1272 /*
1273 * futex_func_wake(uaddr, val, val3, retval)
1274 *
1275 * Implement futex(FUTEX_WAKE) and futex(FUTEX_WAKE_BITSET).
1276 */
1277 static int
1278 futex_func_wake(bool shared, int *uaddr, int val, int val3, register_t *retval)
1279 {
1280 struct futex *f;
1281 unsigned int nwoken = 0;
1282 int error = 0;
1283
1284 /* Reject negative number of wakeups. */
1285 if (val < 0) {
1286 error = EINVAL;
1287 goto out;
1288 }
1289
1290 /* Look up the futex, if any. */
1291 error = futex_lookup(uaddr, shared, &f);
1292 if (error)
1293 goto out;
1294
1295 /* If there's no futex, there are no waiters to wake. */
1296 if (f == NULL)
1297 goto out;
1298
1299 /*
1300 * Under f's queue lock, wake the waiters and remember the
1301 * number woken.
1302 */
1303 futex_queue_lock(f);
1304 nwoken = futex_wake(f, val, NULL, 0, val3);
1305 futex_queue_unlock(f);
1306
1307 /* Release the futex. */
1308 futex_rele(f);
1309
1310 out:
1311 /* Return the number of waiters woken. */
1312 *retval = nwoken;
1313
1314 /* Success! */
1315 return error;
1316 }
1317
1318 /*
1319 * futex_func_requeue(op, uaddr, val, uaddr2, val2, val3, retval)
1320 *
1321 * Implement futex(FUTEX_REQUEUE) and futex(FUTEX_CMP_REQUEUE).
1322 */
1323 static int
1324 futex_func_requeue(bool shared, int op, int *uaddr, int val, int *uaddr2,
1325 int val2, int val3, register_t *retval)
1326 {
1327 struct futex *f = NULL, *f2 = NULL;
1328 unsigned nwoken = 0; /* default to zero woken on early return */
1329 int error;
1330
1331 /* Reject negative number of wakeups or requeues. */
1332 if (val < 0 || val2 < 0) {
1333 error = EINVAL;
1334 goto out;
1335 }
1336
1337 /* Look up the source futex, if any. */
1338 error = futex_lookup(uaddr, shared, &f);
1339 if (error)
1340 goto out;
1341
1342 /* If there is none, nothing to do. */
1343 if (f == NULL)
1344 goto out;
1345
1346 /*
1347 * We may need to create the destination futex because it's
1348 * entirely possible it does not currently have any waiters.
1349 */
1350 error = futex_lookup_create(uaddr2, shared, &f2);
1351 if (error)
1352 goto out;
1353
1354 /*
1355 * Under the futexes' queue locks, check the value; if
1356 * unchanged from val3, wake the waiters.
1357 */
1358 futex_queue_lock2(f, f2);
1359 if (op == FUTEX_CMP_REQUEUE && !futex_test(uaddr, val3)) {
1360 error = EAGAIN;
1361 } else {
1362 error = 0;
1363 nwoken = futex_wake(f, val, f2, val2, FUTEX_BITSET_MATCH_ANY);
1364 }
1365 futex_queue_unlock2(f, f2);
1366
1367 out:
1368 /* Return the number of waiters woken. */
1369 *retval = nwoken;
1370
1371 /* Release the futexes if we got them. */
1372 if (f2)
1373 futex_rele(f2);
1374 if (f)
1375 futex_rele(f);
1376 return error;
1377 }
1378
1379 /*
1380 * futex_validate_op_cmp(val3)
1381 *
1382 * Validate an op/cmp argument for FUTEX_WAKE_OP.
1383 */
1384 static int
1385 futex_validate_op_cmp(int val3)
1386 {
1387 int op = __SHIFTOUT(val3, FUTEX_OP_OP_MASK);
1388 int cmp = __SHIFTOUT(val3, FUTEX_OP_CMP_MASK);
1389
1390 if (op & FUTEX_OP_OPARG_SHIFT) {
1391 int oparg = __SHIFTOUT(val3, FUTEX_OP_OPARG_MASK);
1392 if (oparg < 0)
1393 return EINVAL;
1394 if (oparg >= 32)
1395 return EINVAL;
1396 op &= ~FUTEX_OP_OPARG_SHIFT;
1397 }
1398
1399 switch (op) {
1400 case FUTEX_OP_SET:
1401 case FUTEX_OP_ADD:
1402 case FUTEX_OP_OR:
1403 case FUTEX_OP_ANDN:
1404 case FUTEX_OP_XOR:
1405 break;
1406 default:
1407 return EINVAL;
1408 }
1409
1410 switch (cmp) {
1411 case FUTEX_OP_CMP_EQ:
1412 case FUTEX_OP_CMP_NE:
1413 case FUTEX_OP_CMP_LT:
1414 case FUTEX_OP_CMP_LE:
1415 case FUTEX_OP_CMP_GT:
1416 case FUTEX_OP_CMP_GE:
1417 break;
1418 default:
1419 return EINVAL;
1420 }
1421
1422 return 0;
1423 }
1424
1425 /*
1426 * futex_compute_op(oldval, val3)
1427 *
1428 * Apply a FUTEX_WAIT_OP operation to oldval.
1429 */
1430 static int
1431 futex_compute_op(int oldval, int val3)
1432 {
1433 int op = __SHIFTOUT(val3, FUTEX_OP_OP_MASK);
1434 int oparg = __SHIFTOUT(val3, FUTEX_OP_OPARG_MASK);
1435
1436 if (op & FUTEX_OP_OPARG_SHIFT) {
1437 KASSERT(oparg >= 0);
1438 KASSERT(oparg < 32);
1439 oparg = 1u << oparg;
1440 op &= ~FUTEX_OP_OPARG_SHIFT;
1441 }
1442
1443 switch (op) {
1444 case FUTEX_OP_SET:
1445 return oparg;
1446
1447 case FUTEX_OP_ADD:
1448 /*
1449 * Avoid signed arithmetic overflow by doing
1450 * arithmetic unsigned and converting back to signed
1451 * at the end.
1452 */
1453 return (int)((unsigned)oldval + (unsigned)oparg);
1454
1455 case FUTEX_OP_OR:
1456 return oldval | oparg;
1457
1458 case FUTEX_OP_ANDN:
1459 return oldval & ~oparg;
1460
1461 case FUTEX_OP_XOR:
1462 return oldval ^ oparg;
1463
1464 default:
1465 panic("invalid futex op");
1466 }
1467 }
1468
1469 /*
1470 * futex_compute_cmp(oldval, val3)
1471 *
1472 * Apply a FUTEX_WAIT_OP comparison to oldval.
1473 */
1474 static bool
1475 futex_compute_cmp(int oldval, int val3)
1476 {
1477 int cmp = __SHIFTOUT(val3, FUTEX_OP_CMP_MASK);
1478 int cmparg = __SHIFTOUT(val3, FUTEX_OP_CMPARG_MASK);
1479
1480 switch (cmp) {
1481 case FUTEX_OP_CMP_EQ:
1482 return (oldval == cmparg);
1483
1484 case FUTEX_OP_CMP_NE:
1485 return (oldval != cmparg);
1486
1487 case FUTEX_OP_CMP_LT:
1488 return (oldval < cmparg);
1489
1490 case FUTEX_OP_CMP_LE:
1491 return (oldval <= cmparg);
1492
1493 case FUTEX_OP_CMP_GT:
1494 return (oldval > cmparg);
1495
1496 case FUTEX_OP_CMP_GE:
1497 return (oldval >= cmparg);
1498
1499 default:
1500 panic("invalid futex cmp operation");
1501 }
1502 }
1503
1504 /*
1505 * futex_func_wake_op(uaddr, val, uaddr2, val2, val3, retval)
1506 *
1507 * Implement futex(FUTEX_WAKE_OP).
1508 */
1509 static int
1510 futex_func_wake_op(bool shared, int *uaddr, int val, int *uaddr2, int val2,
1511 int val3, register_t *retval)
1512 {
1513 struct futex *f = NULL, *f2 = NULL;
1514 int oldval, newval, actual;
1515 unsigned nwoken = 0;
1516 int error;
1517
1518 /* Reject negative number of wakeups. */
1519 if (val < 0 || val2 < 0) {
1520 error = EINVAL;
1521 goto out;
1522 }
1523
1524 /* Reject invalid operations before we start doing things. */
1525 if ((error = futex_validate_op_cmp(val3)) != 0)
1526 goto out;
1527
1528 /* Look up the first futex, if any. */
1529 error = futex_lookup(uaddr, shared, &f);
1530 if (error)
1531 goto out;
1532
1533 /* Look up the second futex, if any. */
1534 error = futex_lookup(uaddr2, shared, &f2);
1535 if (error)
1536 goto out;
1537
1538 /*
1539 * Under the queue locks:
1540 *
1541 * 1. Read/modify/write: *uaddr2 op= oparg.
1542 * 2. Unconditionally wake uaddr.
1543 * 3. Conditionally wake uaddr2, if it previously matched val2.
1544 */
1545 futex_queue_lock2(f, f2);
1546 do {
1547 error = futex_load(uaddr2, &oldval);
1548 if (error)
1549 goto out_unlock;
1550 newval = futex_compute_op(oldval, val3);
1551 error = ucas_int(uaddr2, oldval, newval, &actual);
1552 if (error)
1553 goto out_unlock;
1554 } while (actual != oldval);
1555 nwoken = (f ? futex_wake(f, val, NULL, 0, FUTEX_BITSET_MATCH_ANY) : 0);
1556 if (f2 && futex_compute_cmp(oldval, val3))
1557 nwoken += futex_wake(f2, val2, NULL, 0,
1558 FUTEX_BITSET_MATCH_ANY);
1559
1560 /* Success! */
1561 error = 0;
1562 out_unlock:
1563 futex_queue_unlock2(f, f2);
1564
1565 out:
1566 /* Return the number of waiters woken. */
1567 *retval = nwoken;
1568
1569 /* Release the futexes, if we got them. */
1570 if (f2)
1571 futex_rele(f2);
1572 if (f)
1573 futex_rele(f);
1574 return error;
1575 }
1576
1577 /*
1578 * do_futex(uaddr, op, val, timeout, uaddr2, val2, val3)
1579 *
1580 * Implement the futex system call with all the parameters
1581 * parsed out.
1582 */
1583 int
1584 do_futex(int *uaddr, int op, int val, const struct timespec *timeout,
1585 int *uaddr2, int val2, int val3, register_t *retval)
1586 {
1587 const bool shared = (op & FUTEX_PRIVATE_FLAG) ? false : true;
1588 const clockid_t clkid = (op & FUTEX_CLOCK_REALTIME) ? CLOCK_REALTIME
1589 : CLOCK_MONOTONIC;
1590
1591 op &= FUTEX_CMD_MASK;
1592
1593 switch (op) {
1594 case FUTEX_WAIT:
1595 return futex_func_wait(shared, uaddr, val,
1596 FUTEX_BITSET_MATCH_ANY, timeout, clkid, TIMER_RELTIME,
1597 retval);
1598
1599 case FUTEX_WAKE:
1600 val3 = FUTEX_BITSET_MATCH_ANY;
1601 /* FALLTHROUGH */
1602 case FUTEX_WAKE_BITSET:
1603 return futex_func_wake(shared, uaddr, val, val3, retval);
1604
1605 case FUTEX_REQUEUE:
1606 case FUTEX_CMP_REQUEUE:
1607 return futex_func_requeue(shared, op, uaddr, val, uaddr2,
1608 val2, val3, retval);
1609
1610 case FUTEX_WAIT_BITSET:
1611 return futex_func_wait(shared, uaddr, val, val3, timeout,
1612 clkid, TIMER_ABSTIME, retval);
1613
1614 case FUTEX_WAKE_OP:
1615 return futex_func_wake_op(shared, uaddr, val, uaddr2, val2,
1616 val3, retval);
1617
1618 case FUTEX_FD:
1619 default:
1620 return ENOSYS;
1621 }
1622 }
1623
1624 /*
1625 * sys___futex(l, uap, retval)
1626 *
1627 * __futex(2) system call: generic futex operations.
1628 */
1629 int
1630 sys___futex(struct lwp *l, const struct sys___futex_args *uap,
1631 register_t *retval)
1632 {
1633 /* {
1634 syscallarg(int *) uaddr;
1635 syscallarg(int) op;
1636 syscallarg(int) val;
1637 syscallarg(const struct timespec *) timeout;
1638 syscallarg(int *) uaddr2;
1639 syscallarg(int) val2;
1640 syscallarg(int) val3;
1641 } */
1642 struct timespec ts, *tsp;
1643 int error;
1644
1645 /*
1646 * Copy in the timeout argument, if specified.
1647 */
1648 if (SCARG(uap, timeout)) {
1649 error = copyin(SCARG(uap, timeout), &ts, sizeof(ts));
1650 if (error)
1651 return error;
1652 tsp = &ts;
1653 } else {
1654 tsp = NULL;
1655 }
1656
1657 return do_futex(SCARG(uap, uaddr), SCARG(uap, op), SCARG(uap, val),
1658 tsp, SCARG(uap, uaddr2), SCARG(uap, val2), SCARG(uap, val3),
1659 retval);
1660 }
1661
1662 /*
1663 * sys___futex_set_robust_list(l, uap, retval)
1664 *
1665 * __futex_set_robust_list(2) system call for robust futexes.
1666 */
1667 int
1668 sys___futex_set_robust_list(struct lwp *l,
1669 const struct sys___futex_set_robust_list_args *uap, register_t *retval)
1670 {
1671 /* {
1672 syscallarg(void *) head;
1673 syscallarg(size_t) len;
1674 } */
1675 void *head = SCARG(uap, head);
1676
1677 if (SCARG(uap, len) != _FUTEX_ROBUST_HEAD_SIZE)
1678 return EINVAL;
1679 if ((uintptr_t)head % sizeof(u_long))
1680 return EINVAL;
1681
1682 l->l_robust_head = (uintptr_t)head;
1683
1684 return 0;
1685 }
1686
1687 /*
1688 * sys___futex_get_robust_list(l, uap, retval)
1689 *
1690 * __futex_get_robust_list(2) system call for robust futexes.
1691 */
1692 int
1693 sys___futex_get_robust_list(struct lwp *l,
1694 const struct sys___futex_get_robust_list_args *uap, register_t *retval)
1695 {
1696 /* {
1697 syscallarg(lwpid_t) lwpid;
1698 syscallarg(void **) headp;
1699 syscallarg(size_t *) lenp;
1700 } */
1701 void *head;
1702 const size_t len = _FUTEX_ROBUST_HEAD_SIZE;
1703 int error;
1704
1705 error = futex_robust_head_lookup(l, SCARG(uap, lwpid), &head);
1706 if (error)
1707 return error;
1708
1709 /* Copy out the head pointer and the head structure length. */
1710 error = copyout(&head, SCARG(uap, headp), sizeof(head));
1711 if (__predict_true(error == 0)) {
1712 error = copyout(&len, SCARG(uap, lenp), sizeof(len));
1713 }
1714
1715 return error;
1716 }
1717
1718 /*
1719 * release_futex(uva, tid)
1720 *
1721 * Try to release the robust futex at uva in the current process
1722 * on lwp exit. If anything goes wrong, silently fail. It is the
1723 * userland program's obligation to arrange correct behaviour.
1724 */
1725 static void
1726 release_futex(uintptr_t const uptr, lwpid_t const tid, bool const is_pi,
1727 bool const is_pending)
1728 {
1729 int *uaddr;
1730 struct futex *f;
1731 int oldval, newval, actual;
1732 int error;
1733
1734 /* If it's misaligned, tough. */
1735 if (__predict_false(uptr & 3))
1736 return;
1737 uaddr = (int *)uptr;
1738
1739 error = futex_load(uaddr, &oldval);
1740 if (__predict_false(error))
1741 return;
1742
1743 /*
1744 * There are two race conditions we need to handle here:
1745 *
1746 * 1. User space cleared the futex word but died before
1747 * being able to issue the wakeup. No wakeups will
1748 * ever be issued, oops!
1749 *
1750 * 2. Awakened waiter died before being able to acquire
1751 * the futex in user space. Any other waiters are
1752 * now stuck, oops!
1753 *
1754 * In both of these cases, the futex word will be 0 (because
1755 * it's updated before the wake is issued). The best we can
1756 * do is detect this situation if it's the pending futex and
1757 * issue a wake without modifying the futex word.
1758 *
1759 * XXX eventual PI handling?
1760 */
1761 if (__predict_false(is_pending && (oldval & ~FUTEX_WAITERS) == 0)) {
1762 register_t retval;
1763 (void) futex_func_wake(/*shared*/true, uaddr, 1,
1764 FUTEX_BITSET_MATCH_ANY, &retval);
1765 return;
1766 }
1767
1768 /* Optimistically test whether we need to do anything at all. */
1769 if ((oldval & FUTEX_TID_MASK) != tid)
1770 return;
1771
1772 /*
1773 * We need to handle the case where this thread owned the futex,
1774 * but it was uncontended. In this case, there won't be any
1775 * kernel state to look up. All we can do is mark the futex
1776 * as a zombie to be mopped up the next time another thread
1777 * attempts to acquire it.
1778 *
1779 * N.B. It's important to ensure to set FUTEX_OWNER_DIED in
1780 * this loop, even if waiters appear while we're are doing
1781 * so. This is beause FUTEX_WAITERS is set by user space
1782 * before calling __futex() to wait, and the futex needs
1783 * to be marked as a zombie when the new waiter gets into
1784 * the kernel.
1785 */
1786 if ((oldval & FUTEX_WAITERS) == 0) {
1787 do {
1788 error = futex_load(uaddr, &oldval);
1789 if (error)
1790 return;
1791 if ((oldval & FUTEX_TID_MASK) != tid)
1792 return;
1793 newval = oldval | FUTEX_OWNER_DIED;
1794 error = ucas_int(uaddr, oldval, newval, &actual);
1795 if (error)
1796 return;
1797 } while (actual != oldval);
1798
1799 /*
1800 * If where is still no indication of waiters, then there is
1801 * no more work for us to do.
1802 */
1803 if ((oldval & FUTEX_WAITERS) == 0)
1804 return;
1805 }
1806
1807 /*
1808 * Look for a shared futex since we have no positive indication
1809 * it is private. If we can't, tough.
1810 */
1811 error = futex_lookup(uaddr, /*shared*/true, &f);
1812 if (error)
1813 return;
1814
1815 /*
1816 * If there's no kernel state for this futex, there's nothing to
1817 * release.
1818 */
1819 if (f == NULL)
1820 return;
1821
1822 /* Work under the futex queue lock. */
1823 futex_queue_lock(f);
1824
1825 /*
1826 * Fetch the word: if the tid doesn't match ours, skip;
1827 * otherwise, set the owner-died bit, atomically.
1828 */
1829 do {
1830 error = futex_load(uaddr, &oldval);
1831 if (error)
1832 goto out;
1833 if ((oldval & FUTEX_TID_MASK) != tid)
1834 goto out;
1835 newval = oldval | FUTEX_OWNER_DIED;
1836 error = ucas_int(uaddr, oldval, newval, &actual);
1837 if (error)
1838 goto out;
1839 } while (actual != oldval);
1840
1841 /*
1842 * If there may be waiters, try to wake one. If anything goes
1843 * wrong, tough.
1844 *
1845 * XXX eventual PI handling?
1846 */
1847 if (oldval & FUTEX_WAITERS)
1848 (void)futex_wake(f, 1, NULL, 0, FUTEX_BITSET_MATCH_ANY);
1849
1850 /* Unlock the queue and release the futex. */
1851 out: futex_queue_unlock(f);
1852 futex_rele(f);
1853 }
1854
1855 /*
1856 * futex_robust_head_lookup(l, lwpid)
1857 *
1858 * Helper function to look up a robust head by LWP ID.
1859 */
1860 int
1861 futex_robust_head_lookup(struct lwp *l, lwpid_t lwpid, void **headp)
1862 {
1863 struct proc *p = l->l_proc;
1864
1865 /* Find the other lwp, if requested; otherwise use our robust head. */
1866 if (lwpid) {
1867 mutex_enter(p->p_lock);
1868 l = lwp_find(p, lwpid);
1869 if (l == NULL) {
1870 mutex_exit(p->p_lock);
1871 return ESRCH;
1872 }
1873 *headp = (void *)l->l_robust_head;
1874 mutex_exit(p->p_lock);
1875 } else {
1876 *headp = (void *)l->l_robust_head;
1877 }
1878 return 0;
1879 }
1880
1881 /*
1882 * futex_fetch_robust_head(uaddr)
1883 *
1884 * Helper routine to fetch the futex robust list head that
1885 * handles 32-bit binaries running on 64-bit kernels.
1886 */
1887 static int
1888 futex_fetch_robust_head(uintptr_t uaddr, u_long *rhead)
1889 {
1890 #ifdef _LP64
1891 if (curproc->p_flag & PK_32) {
1892 uint32_t rhead32[_FUTEX_ROBUST_HEAD_NWORDS];
1893 int error;
1894
1895 error = copyin((void *)uaddr, rhead32, sizeof(rhead32));
1896 if (__predict_true(error == 0)) {
1897 for (int i = 0; i < _FUTEX_ROBUST_HEAD_NWORDS; i++) {
1898 if (i == _FUTEX_ROBUST_HEAD_OFFSET) {
1899 /*
1900 * Make sure the offset is sign-
1901 * extended.
1902 */
1903 rhead[i] = (int32_t)rhead32[i];
1904 } else {
1905 rhead[i] = rhead32[i];
1906 }
1907 }
1908 }
1909 return error;
1910 }
1911 #endif /* _L64 */
1912
1913 return copyin((void *)uaddr, rhead,
1914 sizeof(*rhead) * _FUTEX_ROBUST_HEAD_NWORDS);
1915 }
1916
1917 /*
1918 * futex_decode_robust_word(word)
1919 *
1920 * Decode a robust futex list word into the entry and entry
1921 * properties.
1922 */
1923 static inline void
1924 futex_decode_robust_word(uintptr_t const word, uintptr_t * const entry,
1925 bool * const is_pi)
1926 {
1927 *is_pi = (word & _FUTEX_ROBUST_ENTRY_PI) ? true : false;
1928 *entry = word & ~_FUTEX_ROBUST_ENTRY_PI;
1929 }
1930
1931 /*
1932 * futex_fetch_robust_entry(uaddr)
1933 *
1934 * Helper routine to fetch and decode a robust futex entry
1935 * that handles 32-bit binaries running on 64-bit kernels.
1936 */
1937 static int
1938 futex_fetch_robust_entry(uintptr_t const uaddr, uintptr_t * const valp,
1939 bool * const is_pi)
1940 {
1941 uintptr_t val = 0;
1942 int error = 0;
1943
1944 #ifdef _LP64
1945 if (curproc->p_flag & PK_32) {
1946 uint32_t val32;
1947
1948 error = ufetch_32((uint32_t *)uaddr, &val32);
1949 if (__predict_true(error == 0))
1950 val = val32;
1951 } else
1952 #endif /* _LP64 */
1953 error = ufetch_long((u_long *)uaddr, (u_long *)&val);
1954 if (__predict_false(error))
1955 return error;
1956
1957 futex_decode_robust_word(val, valp, is_pi);
1958 return 0;
1959 }
1960
1961 /*
1962 * futex_release_all_lwp(l, tid)
1963 *
1964 * Release all l's robust futexes. If anything looks funny in
1965 * the process, give up -- it's userland's responsibility to dot
1966 * the i's and cross the t's.
1967 */
1968 void
1969 futex_release_all_lwp(struct lwp * const l, lwpid_t const tid)
1970 {
1971 u_long rhead[_FUTEX_ROBUST_HEAD_NWORDS];
1972 int limit = 1000000;
1973 int error;
1974
1975 /* If there's no robust list there's nothing to do. */
1976 if (l->l_robust_head == 0)
1977 return;
1978
1979 /* Read the final snapshot of the robust list head. */
1980 error = futex_fetch_robust_head(l->l_robust_head, rhead);
1981 if (error) {
1982 printf("WARNING: pid %jd (%s) lwp %jd tid %jd:"
1983 " unmapped robust futex list head\n",
1984 (uintmax_t)l->l_proc->p_pid, l->l_proc->p_comm,
1985 (uintmax_t)l->l_lid, (uintmax_t)tid);
1986 return;
1987 }
1988
1989 const long offset = (long)rhead[_FUTEX_ROBUST_HEAD_OFFSET];
1990
1991 uintptr_t next, pending;
1992 bool is_pi, pending_is_pi;
1993
1994 futex_decode_robust_word(rhead[_FUTEX_ROBUST_HEAD_LIST],
1995 &next, &is_pi);
1996 futex_decode_robust_word(rhead[_FUTEX_ROBUST_HEAD_PENDING],
1997 &pending, &pending_is_pi);
1998
1999 /*
2000 * Walk down the list of locked futexes and release them, up
2001 * to one million of them before we give up.
2002 */
2003
2004 while (next != l->l_robust_head && limit-- > 0) {
2005 /* pending handled below. */
2006 if (next != pending)
2007 release_futex(next + offset, tid, is_pi, false);
2008 error = futex_fetch_robust_entry(next, &next, &is_pi);
2009 if (error)
2010 break;
2011 preempt_point();
2012 }
2013 if (limit <= 0) {
2014 printf("WARNING: pid %jd (%s) lwp %jd tid %jd:"
2015 " exhausted robust futex limit\n",
2016 (uintmax_t)l->l_proc->p_pid, l->l_proc->p_comm,
2017 (uintmax_t)l->l_lid, (uintmax_t)tid);
2018 }
2019
2020 /* If there's a pending futex, it may need to be released too. */
2021 if (pending != 0) {
2022 release_futex(pending + offset, tid, pending_is_pi, true);
2023 }
2024 }
2025