sys_futex.c revision 1.24 1 /* $NetBSD: sys_futex.c,v 1.24 2025/03/05 14:01:20 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 2018, 2019, 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Taylor R. Campbell and Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: sys_futex.c,v 1.24 2025/03/05 14:01:20 riastradh Exp $");
34
35 /*
36 * Futexes
37 *
38 * The futex system call coordinates notifying threads waiting for
39 * changes on a 32-bit word of memory. The word can be managed by
40 * CPU atomic operations in userland, without system calls, as long
41 * as there is no contention.
42 *
43 * The simplest use case demonstrating the utility is:
44 *
45 * // 32-bit word of memory shared among threads or
46 * // processes in userland. lock & 1 means owned;
47 * // lock & 2 means there are waiters waiting.
48 * volatile int lock = 0;
49 *
50 * int v;
51 *
52 * // Acquire a lock.
53 * do {
54 * v = lock;
55 * if (v & 1) {
56 * // Lock is held. Set a bit to say that
57 * // there are waiters, and wait for lock
58 * // to change to anything other than v;
59 * // then retry.
60 * if (atomic_cas_uint(&lock, v, v | 2) != v)
61 * continue;
62 * futex(&lock, FUTEX_WAIT, v | 2, NULL, NULL, 0,
63 * 0);
64 * continue;
65 * }
66 * } while (atomic_cas_uint(&lock, v, v | 1) != v);
67 * membar_acquire();
68 *
69 * ...
70 *
71 * // Release the lock. Optimistically assume there are
72 * // no waiters first until demonstrated otherwise.
73 * membar_release();
74 * if (atomic_cas_uint(&lock, 1, 0) != 1) {
75 * // There may be waiters.
76 * v = atomic_swap_uint(&lock, 0);
77 * // If there are still waiters, wake one.
78 * if (v & 2)
79 * futex(&lock, FUTEX_WAKE, 1, NULL, NULL, 0, 0);
80 * }
81 *
82 * The goal is to avoid the futex system call unless there is
83 * contention; then if there is contention, to guarantee no missed
84 * wakeups.
85 *
86 * For a simple implementation, futex(FUTEX_WAIT) could queue
87 * itself to be woken, double-check the lock word, and then sleep;
88 * spurious wakeups are generally a fact of life, so any
89 * FUTEX_WAKE could just wake every FUTEX_WAIT in the system.
90 *
91 * If this were all there is to it, we could then increase
92 * parallelism by refining the approximation: partition the
93 * waiters into buckets by hashing the lock addresses to reduce
94 * the incidence of spurious wakeups. But this is not all.
95 *
96 * The futex(&lock, FUTEX_CMP_REQUEUE, n, timeout, &lock2, m, val)
97 * operation not only wakes n waiters on lock if lock == val, but
98 * also _transfers_ m additional waiters to lock2. Unless wakeups
99 * on lock2 also trigger wakeups on lock, we cannot move waiters
100 * to lock2 if they merely share the same hash as waiters on lock.
101 * Thus, we can't approximately distribute waiters into queues by
102 * a hash function; we must distinguish futex queues exactly by
103 * lock address.
104 *
105 * For now, we use a global red/black tree to index futexes. This
106 * should be replaced by a lockless radix tree with a thread to
107 * free entries no longer in use once all lookups on all CPUs have
108 * completed.
109 *
110 * Specifically, we maintain two maps:
111 *
112 * futex_tab.va[vmspace, va] for private futexes
113 * futex_tab.oa[uvm_voaddr] for shared futexes
114 *
115 * This implementation does not support priority inheritance.
116 */
117
118 #include <sys/param.h>
119 #include <sys/types.h>
120 #include <sys/atomic.h>
121 #include <sys/condvar.h>
122 #include <sys/futex.h>
123 #include <sys/mutex.h>
124 #include <sys/rbtree.h>
125 #include <sys/queue.h>
126
127 #include <sys/syscall.h>
128 #include <sys/syscallargs.h>
129 #include <sys/syscallvar.h>
130
131 #include <uvm/uvm_extern.h>
132
133 /*
134 * Lock order:
135 *
136 * futex_tab.lock
137 * futex::fx_qlock ordered by kva of struct futex
138 * -> futex_wait::fw_lock only one at a time
139 * futex_wait::fw_lock only one at a time
140 * -> futex::fx_abortlock only one at a time
141 */
142
143 /*
144 * union futex_key
145 *
146 * A futex is addressed either by a vmspace+va (private) or by
147 * a uvm_voaddr (shared).
148 */
149 union futex_key {
150 struct {
151 struct vmspace *vmspace;
152 vaddr_t va;
153 } fk_private;
154 struct uvm_voaddr fk_shared;
155 };
156
157 /*
158 * struct futex
159 *
160 * Kernel state for a futex located at a particular address in a
161 * particular virtual address space.
162 *
163 * N.B. fx_refcnt is an unsigned long because we need to be able
164 * to operate on it atomically on all systems while at the same
165 * time rendering practically impossible the chance of it reaching
166 * its max value. In practice, we're limited by the number of LWPs
167 * that can be present on the system at any given time, and the
168 * assumption is that limit will be good enough on a 32-bit platform.
169 * See futex_wake() for why overflow needs to be avoided.
170 */
171 struct futex {
172 union futex_key fx_key;
173 unsigned long fx_refcnt;
174 bool fx_shared;
175 bool fx_on_tree;
176 struct rb_node fx_node;
177
178 kmutex_t fx_qlock;
179 TAILQ_HEAD(, futex_wait) fx_queue;
180
181 kmutex_t fx_abortlock;
182 LIST_HEAD(, futex_wait) fx_abortlist;
183 kcondvar_t fx_abortcv;
184 };
185
186 /*
187 * struct futex_wait
188 *
189 * State for a thread to wait on a futex. Threads wait on fw_cv
190 * for fw_bitset to be set to zero. The thread may transition to
191 * a different futex queue at any time under the futex's lock.
192 */
193 struct futex_wait {
194 kmutex_t fw_lock;
195 kcondvar_t fw_cv;
196 struct futex *fw_futex;
197 TAILQ_ENTRY(futex_wait) fw_entry; /* queue lock */
198 LIST_ENTRY(futex_wait) fw_abort; /* queue abortlock */
199 int fw_bitset;
200 bool fw_aborting; /* fw_lock */
201 };
202
203 /*
204 * futex_tab
205 *
206 * Global trees of futexes by vmspace/va and VM object address.
207 *
208 * XXX This obviously doesn't scale in parallel. We could use a
209 * pserialize-safe data structure, but there may be a high cost to
210 * frequent deletion since we don't cache futexes after we're done
211 * with them. We could use hashed locks. But for now, just make
212 * sure userland can't DoS the serial performance, by using a
213 * balanced binary tree for lookup.
214 *
215 * XXX We could use a per-process tree for the table indexed by
216 * virtual address to reduce contention between processes.
217 */
218 static struct {
219 kmutex_t lock;
220 struct rb_tree va;
221 struct rb_tree oa;
222 } futex_tab __cacheline_aligned;
223
224 static int
225 compare_futex_key(void *cookie, const void *n, const void *k)
226 {
227 const struct futex *fa = n;
228 const union futex_key *fka = &fa->fx_key;
229 const union futex_key *fkb = k;
230
231 if ((uintptr_t)fka->fk_private.vmspace <
232 (uintptr_t)fkb->fk_private.vmspace)
233 return -1;
234 if ((uintptr_t)fka->fk_private.vmspace >
235 (uintptr_t)fkb->fk_private.vmspace)
236 return +1;
237 if (fka->fk_private.va < fkb->fk_private.va)
238 return -1;
239 if (fka->fk_private.va > fkb->fk_private.va)
240 return +1;
241 return 0;
242 }
243
244 static int
245 compare_futex(void *cookie, const void *na, const void *nb)
246 {
247 const struct futex *fa = na;
248 const struct futex *fb = nb;
249
250 return compare_futex_key(cookie, fa, &fb->fx_key);
251 }
252
253 static const rb_tree_ops_t futex_rb_ops = {
254 .rbto_compare_nodes = compare_futex,
255 .rbto_compare_key = compare_futex_key,
256 .rbto_node_offset = offsetof(struct futex, fx_node),
257 };
258
259 static int
260 compare_futex_shared_key(void *cookie, const void *n, const void *k)
261 {
262 const struct futex *fa = n;
263 const union futex_key *fka = &fa->fx_key;
264 const union futex_key *fkb = k;
265
266 return uvm_voaddr_compare(&fka->fk_shared, &fkb->fk_shared);
267 }
268
269 static int
270 compare_futex_shared(void *cookie, const void *na, const void *nb)
271 {
272 const struct futex *fa = na;
273 const struct futex *fb = nb;
274
275 return compare_futex_shared_key(cookie, fa, &fb->fx_key);
276 }
277
278 static const rb_tree_ops_t futex_shared_rb_ops = {
279 .rbto_compare_nodes = compare_futex_shared,
280 .rbto_compare_key = compare_futex_shared_key,
281 .rbto_node_offset = offsetof(struct futex, fx_node),
282 };
283
284 static void futex_wait_dequeue(struct futex_wait *, struct futex *);
285
286 /*
287 * futex_load(uaddr, kaddr)
288 *
289 * Perform a single atomic load to read *uaddr, and return the
290 * result in *kaddr. Return 0 on success, EFAULT if uaddr is not
291 * mapped.
292 */
293 static inline int
294 futex_load(int *uaddr, int *kaddr)
295 {
296 return ufetch_int((u_int *)uaddr, (u_int *)kaddr);
297 }
298
299 /*
300 * futex_test(uaddr, expected)
301 *
302 * True if *uaddr == expected. False if *uaddr != expected, or if
303 * uaddr is not mapped.
304 */
305 static bool
306 futex_test(int *uaddr, int expected)
307 {
308 int val;
309 int error;
310
311 error = futex_load(uaddr, &val);
312 if (error)
313 return false;
314 return val == expected;
315 }
316
317 /*
318 * futex_sys_init()
319 *
320 * Initialize the futex subsystem.
321 */
322 void
323 futex_sys_init(void)
324 {
325
326 mutex_init(&futex_tab.lock, MUTEX_DEFAULT, IPL_NONE);
327 rb_tree_init(&futex_tab.va, &futex_rb_ops);
328 rb_tree_init(&futex_tab.oa, &futex_shared_rb_ops);
329 }
330
331 /*
332 * futex_sys_fini()
333 *
334 * Finalize the futex subsystem.
335 */
336 void
337 futex_sys_fini(void)
338 {
339
340 KASSERT(RB_TREE_MIN(&futex_tab.oa) == NULL);
341 KASSERT(RB_TREE_MIN(&futex_tab.va) == NULL);
342 mutex_destroy(&futex_tab.lock);
343 }
344
345 /*
346 * futex_queue_init(f)
347 *
348 * Initialize the futex queue. Caller must call futex_queue_fini
349 * when done.
350 *
351 * Never sleeps.
352 */
353 static void
354 futex_queue_init(struct futex *f)
355 {
356
357 mutex_init(&f->fx_qlock, MUTEX_DEFAULT, IPL_NONE);
358 mutex_init(&f->fx_abortlock, MUTEX_DEFAULT, IPL_NONE);
359 cv_init(&f->fx_abortcv, "fqabort");
360 LIST_INIT(&f->fx_abortlist);
361 TAILQ_INIT(&f->fx_queue);
362 }
363
364 /*
365 * futex_queue_drain(f)
366 *
367 * Wait for any aborting waiters in f; then empty the queue of
368 * any stragglers and wake them. Caller must guarantee no new
369 * references to f.
370 *
371 * May sleep.
372 */
373 static void
374 futex_queue_drain(struct futex *f)
375 {
376 struct futex_wait *fw, *fw_next;
377
378 mutex_enter(&f->fx_abortlock);
379 while (!LIST_EMPTY(&f->fx_abortlist))
380 cv_wait(&f->fx_abortcv, &f->fx_abortlock);
381 mutex_exit(&f->fx_abortlock);
382
383 mutex_enter(&f->fx_qlock);
384 TAILQ_FOREACH_SAFE(fw, &f->fx_queue, fw_entry, fw_next) {
385 mutex_enter(&fw->fw_lock);
386 futex_wait_dequeue(fw, f);
387 cv_broadcast(&fw->fw_cv);
388 mutex_exit(&fw->fw_lock);
389 }
390 mutex_exit(&f->fx_qlock);
391 }
392
393 /*
394 * futex_queue_fini(fq)
395 *
396 * Finalize the futex queue initialized by futex_queue_init. Queue
397 * must be empty. Caller must not use f again until a subsequent
398 * futex_queue_init.
399 */
400 static void
401 futex_queue_fini(struct futex *f)
402 {
403
404 KASSERT(TAILQ_EMPTY(&f->fx_queue));
405 KASSERT(LIST_EMPTY(&f->fx_abortlist));
406 mutex_destroy(&f->fx_qlock);
407 mutex_destroy(&f->fx_abortlock);
408 cv_destroy(&f->fx_abortcv);
409 }
410
411 /*
412 * futex_key_init(key, vm, va, shared)
413 *
414 * Initialize a futex key for lookup, etc.
415 */
416 static int
417 futex_key_init(union futex_key *fk, struct vmspace *vm, vaddr_t va, bool shared)
418 {
419 int error = 0;
420
421 if (__predict_false(shared)) {
422 if (!uvm_voaddr_acquire(&vm->vm_map, va, &fk->fk_shared))
423 error = EFAULT;
424 } else {
425 fk->fk_private.vmspace = vm;
426 fk->fk_private.va = va;
427 }
428
429 return error;
430 }
431
432 /*
433 * futex_key_fini(key, shared)
434 *
435 * Release a futex key.
436 */
437 static void
438 futex_key_fini(union futex_key *fk, bool shared)
439 {
440 if (__predict_false(shared))
441 uvm_voaddr_release(&fk->fk_shared);
442 memset(fk, 0, sizeof(*fk));
443 }
444
445 /*
446 * futex_create(fk, shared)
447 *
448 * Create a futex. Initial reference count is 1, representing the
449 * caller. Returns NULL on failure. Always takes ownership of the
450 * key, either transferring it to the newly-created futex, or releasing
451 * the key if creation fails.
452 *
453 * Never sleeps for memory, but may sleep to acquire a lock.
454 */
455 static struct futex *
456 futex_create(union futex_key *fk, bool shared)
457 {
458 struct futex *f;
459
460 f = kmem_alloc(sizeof(*f), KM_NOSLEEP);
461 if (f == NULL) {
462 futex_key_fini(fk, shared);
463 return NULL;
464 }
465 f->fx_key = *fk;
466 f->fx_refcnt = 1;
467 f->fx_shared = shared;
468 f->fx_on_tree = false;
469 futex_queue_init(f);
470
471 return f;
472 }
473
474 /*
475 * futex_destroy(f)
476 *
477 * Destroy a futex created with futex_create. Reference count
478 * must be zero.
479 *
480 * May sleep.
481 */
482 static void
483 futex_destroy(struct futex *f)
484 {
485
486 ASSERT_SLEEPABLE();
487
488 KASSERT(atomic_load_relaxed(&f->fx_refcnt) == 0);
489 KASSERT(!f->fx_on_tree);
490
491 /* Drain and destroy the private queue. */
492 futex_queue_drain(f);
493 futex_queue_fini(f);
494
495 futex_key_fini(&f->fx_key, f->fx_shared);
496
497 kmem_free(f, sizeof(*f));
498 }
499
500 /*
501 * futex_hold(f)
502 *
503 * Attempt to acquire a reference to f. Return 0 on success,
504 * ENFILE on too many references.
505 *
506 * Never sleeps.
507 */
508 static int
509 futex_hold(struct futex *f)
510 {
511 unsigned long refcnt;
512
513 do {
514 refcnt = atomic_load_relaxed(&f->fx_refcnt);
515 if (refcnt == ULONG_MAX)
516 return ENFILE;
517 } while (atomic_cas_ulong(&f->fx_refcnt, refcnt, refcnt + 1) != refcnt);
518
519 return 0;
520 }
521
522 /*
523 * futex_rele(f)
524 *
525 * Release a reference to f acquired with futex_create or
526 * futex_hold.
527 *
528 * May sleep to free f.
529 */
530 static void
531 futex_rele(struct futex *f)
532 {
533 unsigned long refcnt;
534
535 ASSERT_SLEEPABLE();
536
537 do {
538 refcnt = atomic_load_relaxed(&f->fx_refcnt);
539 if (refcnt == 1)
540 goto trylast;
541 membar_release();
542 } while (atomic_cas_ulong(&f->fx_refcnt, refcnt, refcnt - 1) != refcnt);
543 return;
544
545 trylast:
546 mutex_enter(&futex_tab.lock);
547 if (atomic_dec_ulong_nv(&f->fx_refcnt) == 0) {
548 membar_acquire();
549 if (f->fx_on_tree) {
550 if (__predict_false(f->fx_shared))
551 rb_tree_remove_node(&futex_tab.oa, f);
552 else
553 rb_tree_remove_node(&futex_tab.va, f);
554 f->fx_on_tree = false;
555 }
556 } else {
557 /* References remain -- don't destroy it. */
558 f = NULL;
559 }
560 mutex_exit(&futex_tab.lock);
561 if (f != NULL)
562 futex_destroy(f);
563 }
564
565 /*
566 * futex_rele_not_last(f)
567 *
568 * Release a reference to f acquired with futex_create or
569 * futex_hold.
570 *
571 * This version asserts that we are not dropping the last
572 * reference to f.
573 */
574 static void
575 futex_rele_not_last(struct futex *f)
576 {
577 unsigned long refcnt;
578
579 do {
580 refcnt = atomic_load_relaxed(&f->fx_refcnt);
581 KASSERT(refcnt > 1);
582 } while (atomic_cas_ulong(&f->fx_refcnt, refcnt, refcnt - 1) != refcnt);
583 }
584
585 /*
586 * futex_lookup_by_key(key, shared, &f)
587 *
588 * Try to find an existing futex va reference in the specified key
589 * On success, return 0, set f to found futex or to NULL if not found,
590 * and increment f's reference count if found.
591 *
592 * Return ENFILE if reference count too high.
593 *
594 * Internal lookup routine shared by futex_lookup() and
595 * futex_lookup_create().
596 */
597 static int
598 futex_lookup_by_key(union futex_key *fk, bool shared, struct futex **fp)
599 {
600 struct futex *f;
601 int error = 0;
602
603 mutex_enter(&futex_tab.lock);
604 if (__predict_false(shared)) {
605 f = rb_tree_find_node(&futex_tab.oa, fk);
606 } else {
607 f = rb_tree_find_node(&futex_tab.va, fk);
608 }
609 if (f) {
610 error = futex_hold(f);
611 if (error)
612 f = NULL;
613 }
614 *fp = f;
615 mutex_exit(&futex_tab.lock);
616
617 return error;
618 }
619
620 /*
621 * futex_insert(f, fp)
622 *
623 * Try to insert the futex f into the tree by va. If there
624 * already is a futex for its va, acquire a reference to it, and
625 * store it in *fp; otherwise store f in *fp.
626 *
627 * Return 0 on success, ENFILE if there already is a futex but its
628 * reference count is too high.
629 */
630 static int
631 futex_insert(struct futex *f, struct futex **fp)
632 {
633 struct futex *f0;
634 int error;
635
636 KASSERT(atomic_load_relaxed(&f->fx_refcnt) != 0);
637 KASSERT(!f->fx_on_tree);
638
639 mutex_enter(&futex_tab.lock);
640 if (__predict_false(f->fx_shared))
641 f0 = rb_tree_insert_node(&futex_tab.oa, f);
642 else
643 f0 = rb_tree_insert_node(&futex_tab.va, f);
644 if (f0 == f) {
645 f->fx_on_tree = true;
646 error = 0;
647 } else {
648 KASSERT(atomic_load_relaxed(&f0->fx_refcnt) != 0);
649 KASSERT(f0->fx_on_tree);
650 error = futex_hold(f0);
651 if (error)
652 goto out;
653 }
654 *fp = f0;
655 out: mutex_exit(&futex_tab.lock);
656
657 return error;
658 }
659
660 /*
661 * futex_lookup(uaddr, shared, &f)
662 *
663 * Find a futex at the userland pointer uaddr in the current
664 * process's VM space. On success, return the futex in f and
665 * increment its reference count.
666 *
667 * Caller must call futex_rele when done.
668 */
669 static int
670 futex_lookup(int *uaddr, bool shared, struct futex **fp)
671 {
672 union futex_key fk;
673 struct vmspace *vm = curproc->p_vmspace;
674 vaddr_t va = (vaddr_t)uaddr;
675 int error;
676
677 /*
678 * Reject unaligned user pointers so we don't cross page
679 * boundaries and so atomics will work.
680 */
681 if ((va & 3) != 0)
682 return EINVAL;
683
684 /* Look it up. */
685 error = futex_key_init(&fk, vm, va, shared);
686 if (error)
687 return error;
688
689 error = futex_lookup_by_key(&fk, shared, fp);
690 futex_key_fini(&fk, shared);
691 if (error)
692 return error;
693
694 KASSERT(*fp == NULL || (*fp)->fx_shared == shared);
695 KASSERT(*fp == NULL || atomic_load_relaxed(&(*fp)->fx_refcnt) != 0);
696
697 /*
698 * Success! (Caller must still check whether we found
699 * anything, but nothing went _wrong_ like trying to use
700 * unmapped memory.)
701 */
702 KASSERT(error == 0);
703
704 return error;
705 }
706
707 /*
708 * futex_lookup_create(uaddr, shared, &f)
709 *
710 * Find or create a futex at the userland pointer uaddr in the
711 * current process's VM space. On success, return the futex in f
712 * and increment its reference count.
713 *
714 * Caller must call futex_rele when done.
715 */
716 static int
717 futex_lookup_create(int *uaddr, bool shared, struct futex **fp)
718 {
719 union futex_key fk;
720 struct vmspace *vm = curproc->p_vmspace;
721 struct futex *f = NULL;
722 vaddr_t va = (vaddr_t)uaddr;
723 int error;
724
725 /*
726 * Reject unaligned user pointers so we don't cross page
727 * boundaries and so atomics will work.
728 */
729 if ((va & 3) != 0)
730 return EINVAL;
731
732 error = futex_key_init(&fk, vm, va, shared);
733 if (error)
734 return error;
735
736 /*
737 * Optimistically assume there already is one, and try to find
738 * it.
739 */
740 error = futex_lookup_by_key(&fk, shared, fp);
741 if (error || *fp != NULL) {
742 /*
743 * We either found one, or there was an error.
744 * In either case, we are done with the key.
745 */
746 futex_key_fini(&fk, shared);
747 goto out;
748 }
749
750 /*
751 * Create a futex record. This transfers ownership of the key
752 * in all cases.
753 */
754 f = futex_create(&fk, shared);
755 if (f == NULL) {
756 error = ENOMEM;
757 goto out;
758 }
759
760 /*
761 * Insert our new futex, or use existing if someone else beat
762 * us to it.
763 */
764 error = futex_insert(f, fp);
765 if (error)
766 goto out;
767 if (*fp == f)
768 f = NULL; /* don't release on exit */
769
770 /* Success! */
771 KASSERT(error == 0);
772
773 out: if (f != NULL)
774 futex_rele(f);
775 KASSERT(error || *fp != NULL);
776 KASSERT(error || atomic_load_relaxed(&(*fp)->fx_refcnt) != 0);
777 return error;
778 }
779
780 /*
781 * futex_wait_init(fw, bitset)
782 *
783 * Initialize a record for a thread to wait on a futex matching
784 * the specified bit set. Should be passed to futex_wait_enqueue
785 * before futex_wait, and should be passed to futex_wait_fini when
786 * done.
787 */
788 static void
789 futex_wait_init(struct futex_wait *fw, int bitset)
790 {
791
792 KASSERT(bitset);
793
794 mutex_init(&fw->fw_lock, MUTEX_DEFAULT, IPL_NONE);
795 cv_init(&fw->fw_cv, "futex");
796 fw->fw_futex = NULL;
797 fw->fw_bitset = bitset;
798 fw->fw_aborting = false;
799 }
800
801 /*
802 * futex_wait_fini(fw)
803 *
804 * Finalize a record for a futex waiter. Must not be on any
805 * futex's queue.
806 */
807 static void
808 futex_wait_fini(struct futex_wait *fw)
809 {
810
811 KASSERT(fw->fw_futex == NULL);
812
813 cv_destroy(&fw->fw_cv);
814 mutex_destroy(&fw->fw_lock);
815 }
816
817 /*
818 * futex_wait_enqueue(fw, f)
819 *
820 * Put fw on the futex queue. Must be done before futex_wait.
821 * Caller must hold fw's lock and f's lock, and fw must not be on
822 * any existing futex's waiter list.
823 */
824 static void
825 futex_wait_enqueue(struct futex_wait *fw, struct futex *f)
826 {
827
828 KASSERT(mutex_owned(&f->fx_qlock));
829 KASSERT(mutex_owned(&fw->fw_lock));
830 KASSERT(fw->fw_futex == NULL);
831 KASSERT(!fw->fw_aborting);
832
833 fw->fw_futex = f;
834 TAILQ_INSERT_TAIL(&f->fx_queue, fw, fw_entry);
835 }
836
837 /*
838 * futex_wait_dequeue(fw, f)
839 *
840 * Remove fw from the futex queue. Precludes subsequent
841 * futex_wait until a futex_wait_enqueue. Caller must hold fw's
842 * lock and f's lock, and fw must be on f.
843 */
844 static void
845 futex_wait_dequeue(struct futex_wait *fw, struct futex *f)
846 {
847
848 KASSERT(mutex_owned(&f->fx_qlock));
849 KASSERT(mutex_owned(&fw->fw_lock));
850 KASSERT(fw->fw_futex == f);
851
852 TAILQ_REMOVE(&f->fx_queue, fw, fw_entry);
853 fw->fw_futex = NULL;
854 }
855
856 /*
857 * futex_wait_abort(fw)
858 *
859 * Caller is no longer waiting for fw. Remove it from any queue
860 * if it was on one. Caller must hold fw->fw_lock.
861 */
862 static void
863 futex_wait_abort(struct futex_wait *fw)
864 {
865 struct futex *f;
866
867 KASSERT(mutex_owned(&fw->fw_lock));
868
869 /*
870 * Grab the futex queue. It can't go away as long as we hold
871 * fw_lock. However, we can't take the queue lock because
872 * that's a lock order reversal.
873 */
874 f = fw->fw_futex;
875
876 /* Put us on the abort list so that fq won't go away. */
877 mutex_enter(&f->fx_abortlock);
878 LIST_INSERT_HEAD(&f->fx_abortlist, fw, fw_abort);
879 mutex_exit(&f->fx_abortlock);
880
881 /*
882 * Mark fw as aborting so it won't lose wakeups and won't be
883 * transferred to any other queue.
884 */
885 fw->fw_aborting = true;
886
887 /* f is now stable, so we can release fw_lock. */
888 mutex_exit(&fw->fw_lock);
889
890 /* Now we can remove fw under the queue lock. */
891 mutex_enter(&f->fx_qlock);
892 mutex_enter(&fw->fw_lock);
893 futex_wait_dequeue(fw, f);
894 mutex_exit(&fw->fw_lock);
895 mutex_exit(&f->fx_qlock);
896
897 /*
898 * Finally, remove us from the abort list and notify anyone
899 * waiting for the abort to complete if we were the last to go.
900 */
901 mutex_enter(&f->fx_abortlock);
902 LIST_REMOVE(fw, fw_abort);
903 if (LIST_EMPTY(&f->fx_abortlist))
904 cv_broadcast(&f->fx_abortcv);
905 mutex_exit(&f->fx_abortlock);
906
907 /*
908 * Release our reference to the futex now that we are not
909 * waiting for it.
910 */
911 futex_rele(f);
912
913 /*
914 * Reacquire the fw lock as caller expects. Verify that we're
915 * aborting and no longer associated with a futex.
916 */
917 mutex_enter(&fw->fw_lock);
918 KASSERT(fw->fw_aborting);
919 KASSERT(fw->fw_futex == NULL);
920 }
921
922 /*
923 * futex_wait(fw, deadline, clkid)
924 *
925 * fw must be a waiter on a futex's queue. Wait until deadline on
926 * the clock clkid, or forever if deadline is NULL, for a futex
927 * wakeup. Return 0 on explicit wakeup or destruction of futex,
928 * ETIMEDOUT on timeout, EINTR/ERESTART on signal. Either way, fw
929 * will no longer be on a futex queue on return.
930 */
931 static int
932 futex_wait(struct futex_wait *fw, const struct timespec *deadline,
933 clockid_t clkid)
934 {
935 int error = 0;
936
937 /* Test and wait under the wait lock. */
938 mutex_enter(&fw->fw_lock);
939
940 for (;;) {
941 /* If we're done yet, stop and report success. */
942 if (fw->fw_bitset == 0 || fw->fw_futex == NULL) {
943 error = 0;
944 break;
945 }
946
947 /* If anything went wrong in the last iteration, stop. */
948 if (error)
949 break;
950
951 /* Not done yet. Wait. */
952 if (deadline) {
953 struct timespec ts;
954
955 /* Check our watch. */
956 error = clock_gettime1(clkid, &ts);
957 if (error)
958 break;
959
960 /* If we're past the deadline, ETIMEDOUT. */
961 if (timespeccmp(deadline, &ts, <=)) {
962 error = ETIMEDOUT;
963 break;
964 }
965
966 /* Count how much time is left. */
967 timespecsub(deadline, &ts, &ts);
968
969 /* Wait for that much time, allowing signals. */
970 error = cv_timedwait_sig(&fw->fw_cv, &fw->fw_lock,
971 tstohz(&ts));
972 } else {
973 /* Wait indefinitely, allowing signals. */
974 error = cv_wait_sig(&fw->fw_cv, &fw->fw_lock);
975 }
976 }
977
978 /*
979 * If we were woken up, the waker will have removed fw from the
980 * queue. But if anything went wrong, we must remove fw from
981 * the queue ourselves. While here, convert EWOULDBLOCK to
982 * ETIMEDOUT.
983 */
984 if (error) {
985 futex_wait_abort(fw);
986 if (error == EWOULDBLOCK)
987 error = ETIMEDOUT;
988 }
989
990 mutex_exit(&fw->fw_lock);
991
992 return error;
993 }
994
995 /*
996 * futex_wake(f, nwake, f2, nrequeue, bitset)
997 *
998 * Wake up to nwake waiters on f matching bitset; then, if f2 is
999 * provided, move up to nrequeue remaining waiters on f matching
1000 * bitset to f2. Return the number of waiters actually woken or
1001 * requeued. Caller must hold the locks of f and f2, if provided.
1002 */
1003 static unsigned
1004 futex_wake(struct futex *f, unsigned nwake, struct futex *f2,
1005 unsigned nrequeue, int bitset)
1006 {
1007 struct futex_wait *fw, *fw_next;
1008 unsigned nwoken_or_requeued = 0;
1009 int hold_error __diagused;
1010
1011 KASSERT(mutex_owned(&f->fx_qlock));
1012 KASSERT(f2 == NULL || mutex_owned(&f2->fx_qlock));
1013
1014 /* Wake up to nwake waiters, and count the number woken. */
1015 TAILQ_FOREACH_SAFE(fw, &f->fx_queue, fw_entry, fw_next) {
1016 if ((fw->fw_bitset & bitset) == 0)
1017 continue;
1018 if (nwake > 0) {
1019 mutex_enter(&fw->fw_lock);
1020 if (__predict_false(fw->fw_aborting)) {
1021 mutex_exit(&fw->fw_lock);
1022 continue;
1023 }
1024 futex_wait_dequeue(fw, f);
1025 fw->fw_bitset = 0;
1026 cv_broadcast(&fw->fw_cv);
1027 mutex_exit(&fw->fw_lock);
1028 nwake--;
1029 nwoken_or_requeued++;
1030 /*
1031 * Drop the futex reference on behalf of the
1032 * waiter. We assert this is not the last
1033 * reference on the futex (our caller should
1034 * also have one).
1035 */
1036 futex_rele_not_last(f);
1037 } else {
1038 break;
1039 }
1040 }
1041
1042 if (f2) {
1043 /* Move up to nrequeue waiters from f's queue to f2's queue. */
1044 TAILQ_FOREACH_SAFE(fw, &f->fx_queue, fw_entry, fw_next) {
1045 if ((fw->fw_bitset & bitset) == 0)
1046 continue;
1047 if (nrequeue > 0) {
1048 mutex_enter(&fw->fw_lock);
1049 if (__predict_false(fw->fw_aborting)) {
1050 mutex_exit(&fw->fw_lock);
1051 continue;
1052 }
1053 futex_wait_dequeue(fw, f);
1054 futex_wait_enqueue(fw, f2);
1055 mutex_exit(&fw->fw_lock);
1056 nrequeue--;
1057 /*
1058 * PR kern/59004: Missing constant for upper
1059 * bound on systemwide number of lwps
1060 */
1061 KASSERT(nwoken_or_requeued <
1062 MIN(PID_MAX*MAXMAXLWP, FUTEX_TID_MASK));
1063 __CTASSERT(UINT_MAX >=
1064 MIN(PID_MAX*MAXMAXLWP, FUTEX_TID_MASK));
1065 if (++nwoken_or_requeued == 0) /* paranoia */
1066 nwoken_or_requeued = UINT_MAX;
1067 /*
1068 * Transfer the reference from f to f2.
1069 * As above, we assert that we are not
1070 * dropping the last reference to f here.
1071 *
1072 * XXX futex_hold() could theoretically
1073 * XXX fail here.
1074 */
1075 futex_rele_not_last(f);
1076 hold_error = futex_hold(f2);
1077 KASSERT(hold_error == 0);
1078 } else {
1079 break;
1080 }
1081 }
1082 } else {
1083 KASSERT(nrequeue == 0);
1084 }
1085
1086 /* Return the number of waiters woken or requeued. */
1087 return nwoken_or_requeued;
1088 }
1089
1090 /*
1091 * futex_queue_lock(f)
1092 *
1093 * Acquire the queue lock of f. Pair with futex_queue_unlock. Do
1094 * not use if caller needs to acquire two locks; use
1095 * futex_queue_lock2 instead.
1096 */
1097 static void
1098 futex_queue_lock(struct futex *f)
1099 {
1100 mutex_enter(&f->fx_qlock);
1101 }
1102
1103 /*
1104 * futex_queue_unlock(f)
1105 *
1106 * Release the queue lock of f.
1107 */
1108 static void
1109 futex_queue_unlock(struct futex *f)
1110 {
1111 mutex_exit(&f->fx_qlock);
1112 }
1113
1114 /*
1115 * futex_queue_lock2(f, f2)
1116 *
1117 * Acquire the queue locks of both f and f2, which may be null, or
1118 * which may have the same underlying queue. If they are
1119 * distinct, an arbitrary total order is chosen on the locks.
1120 *
1121 * Callers should only ever acquire multiple queue locks
1122 * simultaneously using futex_queue_lock2.
1123 */
1124 static void
1125 futex_queue_lock2(struct futex *f, struct futex *f2)
1126 {
1127
1128 /*
1129 * If both are null, do nothing; if one is null and the other
1130 * is not, lock the other and be done with it.
1131 */
1132 if (f == NULL && f2 == NULL) {
1133 return;
1134 } else if (f == NULL) {
1135 mutex_enter(&f2->fx_qlock);
1136 return;
1137 } else if (f2 == NULL) {
1138 mutex_enter(&f->fx_qlock);
1139 return;
1140 }
1141
1142 /* If both futexes are the same, acquire only one. */
1143 if (f == f2) {
1144 mutex_enter(&f->fx_qlock);
1145 return;
1146 }
1147
1148 /* Otherwise, use the ordering on the kva of the futex pointer. */
1149 if ((uintptr_t)f < (uintptr_t)f2) {
1150 mutex_enter(&f->fx_qlock);
1151 mutex_enter(&f2->fx_qlock);
1152 } else {
1153 mutex_enter(&f2->fx_qlock);
1154 mutex_enter(&f->fx_qlock);
1155 }
1156 }
1157
1158 /*
1159 * futex_queue_unlock2(f, f2)
1160 *
1161 * Release the queue locks of both f and f2, which may be null, or
1162 * which may have the same underlying queue.
1163 */
1164 static void
1165 futex_queue_unlock2(struct futex *f, struct futex *f2)
1166 {
1167
1168 /*
1169 * If both are null, do nothing; if one is null and the other
1170 * is not, unlock the other and be done with it.
1171 */
1172 if (f == NULL && f2 == NULL) {
1173 return;
1174 } else if (f == NULL) {
1175 mutex_exit(&f2->fx_qlock);
1176 return;
1177 } else if (f2 == NULL) {
1178 mutex_exit(&f->fx_qlock);
1179 return;
1180 }
1181
1182 /* If both futexes are the same, release only one. */
1183 if (f == f2) {
1184 mutex_exit(&f->fx_qlock);
1185 return;
1186 }
1187
1188 /* Otherwise, use the ordering on the kva of the futex pointer. */
1189 if ((uintptr_t)f < (uintptr_t)f2) {
1190 mutex_exit(&f2->fx_qlock);
1191 mutex_exit(&f->fx_qlock);
1192 } else {
1193 mutex_exit(&f->fx_qlock);
1194 mutex_exit(&f2->fx_qlock);
1195 }
1196 }
1197
1198 /*
1199 * futex_func_wait(uaddr, val, val3, timeout, clkid, clkflags, retval)
1200 *
1201 * Implement futex(FUTEX_WAIT).
1202 */
1203 static int
1204 futex_func_wait(bool shared, int *uaddr, int val, int val3,
1205 const struct timespec *timeout, clockid_t clkid, int clkflags,
1206 register_t *retval)
1207 {
1208 struct futex *f;
1209 struct futex_wait wait, *fw = &wait;
1210 struct timespec ts;
1211 const struct timespec *deadline;
1212 int error;
1213
1214 /*
1215 * If there's nothing to wait for, and nobody will ever wake
1216 * us, then don't set anything up to wait -- just stop here.
1217 */
1218 if (val3 == 0)
1219 return EINVAL;
1220
1221 /* Optimistically test before anything else. */
1222 if (!futex_test(uaddr, val))
1223 return EAGAIN;
1224
1225 /* Determine a deadline on the specified clock. */
1226 if (timeout == NULL || (clkflags & TIMER_ABSTIME) == TIMER_ABSTIME) {
1227 deadline = timeout;
1228 } else {
1229 error = clock_gettime1(clkid, &ts);
1230 if (error)
1231 return error;
1232 timespecadd(&ts, timeout, &ts);
1233 deadline = &ts;
1234 }
1235
1236 /* Get the futex, creating it if necessary. */
1237 error = futex_lookup_create(uaddr, shared, &f);
1238 if (error)
1239 return error;
1240 KASSERT(f);
1241
1242 /* Get ready to wait. */
1243 futex_wait_init(fw, val3);
1244
1245 /*
1246 * Under the queue lock, check the value again: if it has
1247 * already changed, EAGAIN; otherwise enqueue the waiter.
1248 * Since FUTEX_WAKE will use the same lock and be done after
1249 * modifying the value, the order in which we check and enqueue
1250 * is immaterial.
1251 */
1252 futex_queue_lock(f);
1253 if (!futex_test(uaddr, val)) {
1254 futex_queue_unlock(f);
1255 error = EAGAIN;
1256 goto out;
1257 }
1258 mutex_enter(&fw->fw_lock);
1259 futex_wait_enqueue(fw, f);
1260 mutex_exit(&fw->fw_lock);
1261 futex_queue_unlock(f);
1262
1263 /*
1264 * We cannot drop our reference to the futex here, because
1265 * we might be enqueued on a different one when we are awakened.
1266 * The references will be managed on our behalf in the requeue
1267 * and wake cases.
1268 */
1269 f = NULL;
1270
1271 /* Wait. */
1272 error = futex_wait(fw, deadline, clkid);
1273 if (error)
1274 goto out;
1275
1276 /* Return 0 on success, error on failure. */
1277 *retval = 0;
1278
1279 out: if (f != NULL)
1280 futex_rele(f);
1281 futex_wait_fini(fw);
1282 return error;
1283 }
1284
1285 /*
1286 * futex_func_wake(uaddr, val, val3, retval)
1287 *
1288 * Implement futex(FUTEX_WAKE) and futex(FUTEX_WAKE_BITSET).
1289 */
1290 static int
1291 futex_func_wake(bool shared, int *uaddr, int val, int val3, register_t *retval)
1292 {
1293 struct futex *f;
1294 unsigned int nwoken = 0;
1295 int error = 0;
1296
1297 /* Reject negative number of wakeups. */
1298 if (val < 0) {
1299 error = EINVAL;
1300 goto out;
1301 }
1302
1303 /* Look up the futex, if any. */
1304 error = futex_lookup(uaddr, shared, &f);
1305 if (error)
1306 goto out;
1307
1308 /* If there's no futex, there are no waiters to wake. */
1309 if (f == NULL)
1310 goto out;
1311
1312 /*
1313 * Under f's queue lock, wake the waiters and remember the
1314 * number woken.
1315 */
1316 futex_queue_lock(f);
1317 nwoken = futex_wake(f, /*nwake*/val, NULL, /*nrequeue*/0,
1318 /*bitset*/val3);
1319 futex_queue_unlock(f);
1320
1321 /* Release the futex. */
1322 futex_rele(f);
1323
1324 out:
1325 /* Return the number of waiters woken. */
1326 *retval = nwoken;
1327
1328 /* Success! */
1329 return error;
1330 }
1331
1332 /*
1333 * futex_func_requeue(op, uaddr, val, uaddr2, val2, val3, retval)
1334 *
1335 * Implement futex(FUTEX_REQUEUE) and futex(FUTEX_CMP_REQUEUE).
1336 */
1337 static int
1338 futex_func_requeue(bool shared, int op, int *uaddr, int val, int *uaddr2,
1339 int val2, int val3, register_t *retval)
1340 {
1341 struct futex *f = NULL, *f2 = NULL;
1342 unsigned nwoken_or_requeued = 0; /* default to zero on early return */
1343 int error;
1344
1345 /* Reject negative number of wakeups or requeues. */
1346 if (val < 0 || val2 < 0) {
1347 error = EINVAL;
1348 goto out;
1349 }
1350
1351 /*
1352 * Look up or create the source futex. For FUTEX_CMP_REQUEUE,
1353 * we always create it, rather than bail if it has no waiters,
1354 * because FUTEX_CMP_REQUEUE always tests the futex word in
1355 * order to report EAGAIN.
1356 */
1357 error = (op == FUTEX_CMP_REQUEUE
1358 ? futex_lookup_create(uaddr, shared, &f)
1359 : futex_lookup(uaddr, shared, &f));
1360 if (error)
1361 goto out;
1362
1363 /* If there is none for FUTEX_REQUEUE, nothing to do. */
1364 if (f == NULL) {
1365 KASSERT(op != FUTEX_CMP_REQUEUE);
1366 goto out;
1367 }
1368
1369 /*
1370 * We may need to create the destination futex because it's
1371 * entirely possible it does not currently have any waiters.
1372 */
1373 error = futex_lookup_create(uaddr2, shared, &f2);
1374 if (error)
1375 goto out;
1376
1377 /*
1378 * Under the futexes' queue locks, check the value; if
1379 * unchanged from val3, wake the waiters.
1380 */
1381 futex_queue_lock2(f, f2);
1382 if (op == FUTEX_CMP_REQUEUE && !futex_test(uaddr, val3)) {
1383 error = EAGAIN;
1384 } else {
1385 error = 0;
1386 nwoken_or_requeued = futex_wake(f, /*nwake*/val,
1387 f2, /*nrequeue*/val2,
1388 FUTEX_BITSET_MATCH_ANY);
1389 }
1390 futex_queue_unlock2(f, f2);
1391
1392 out:
1393 /* Return the number of waiters woken or requeued. */
1394 *retval = nwoken_or_requeued;
1395
1396 /* Release the futexes if we got them. */
1397 if (f2)
1398 futex_rele(f2);
1399 if (f)
1400 futex_rele(f);
1401 return error;
1402 }
1403
1404 /*
1405 * futex_opcmp_arg(arg)
1406 *
1407 * arg is either the oparg or cmparg field of a FUTEX_WAKE_OP
1408 * operation, a 12-bit string in either case. Map it to a numeric
1409 * argument value by sign-extending it in two's-complement
1410 * representation.
1411 */
1412 static int
1413 futex_opcmp_arg(int arg)
1414 {
1415
1416 KASSERT(arg == (arg & __BITS(11,0)));
1417 return arg - 0x1000*__SHIFTOUT(arg, __BIT(11));
1418 }
1419
1420 /*
1421 * futex_validate_op_cmp(val3)
1422 *
1423 * Validate an op/cmp argument for FUTEX_WAKE_OP.
1424 */
1425 static int
1426 futex_validate_op_cmp(int val3)
1427 {
1428 int op = __SHIFTOUT(val3, FUTEX_OP_OP_MASK);
1429 int cmp = __SHIFTOUT(val3, FUTEX_OP_CMP_MASK);
1430
1431 if (op & FUTEX_OP_OPARG_SHIFT) {
1432 int oparg =
1433 futex_opcmp_arg(__SHIFTOUT(val3, FUTEX_OP_OPARG_MASK));
1434 if (oparg < 0)
1435 return EINVAL;
1436 if (oparg >= 32)
1437 return EINVAL;
1438 op &= ~FUTEX_OP_OPARG_SHIFT;
1439 }
1440
1441 switch (op) {
1442 case FUTEX_OP_SET:
1443 case FUTEX_OP_ADD:
1444 case FUTEX_OP_OR:
1445 case FUTEX_OP_ANDN:
1446 case FUTEX_OP_XOR:
1447 break;
1448 default:
1449 return EINVAL;
1450 }
1451
1452 switch (cmp) {
1453 case FUTEX_OP_CMP_EQ:
1454 case FUTEX_OP_CMP_NE:
1455 case FUTEX_OP_CMP_LT:
1456 case FUTEX_OP_CMP_LE:
1457 case FUTEX_OP_CMP_GT:
1458 case FUTEX_OP_CMP_GE:
1459 break;
1460 default:
1461 return EINVAL;
1462 }
1463
1464 return 0;
1465 }
1466
1467 /*
1468 * futex_compute_op(oldval, val3)
1469 *
1470 * Apply a FUTEX_WAKE_OP operation to oldval.
1471 */
1472 static int
1473 futex_compute_op(int oldval, int val3)
1474 {
1475 int op = __SHIFTOUT(val3, FUTEX_OP_OP_MASK);
1476 int oparg = futex_opcmp_arg(__SHIFTOUT(val3, FUTEX_OP_OPARG_MASK));
1477
1478 if (op & FUTEX_OP_OPARG_SHIFT) {
1479 KASSERT(oparg >= 0);
1480 KASSERT(oparg < 32);
1481 oparg = 1u << oparg;
1482 op &= ~FUTEX_OP_OPARG_SHIFT;
1483 }
1484
1485 switch (op) {
1486 case FUTEX_OP_SET:
1487 return oparg;
1488
1489 case FUTEX_OP_ADD:
1490 /*
1491 * Avoid signed arithmetic overflow by doing
1492 * arithmetic unsigned and converting back to signed
1493 * at the end.
1494 */
1495 return (int)((unsigned)oldval + (unsigned)oparg);
1496
1497 case FUTEX_OP_OR:
1498 return oldval | oparg;
1499
1500 case FUTEX_OP_ANDN:
1501 return oldval & ~oparg;
1502
1503 case FUTEX_OP_XOR:
1504 return oldval ^ oparg;
1505
1506 default:
1507 panic("invalid futex op");
1508 }
1509 }
1510
1511 /*
1512 * futex_compute_cmp(oldval, val3)
1513 *
1514 * Apply a FUTEX_WAKE_OP comparison to oldval.
1515 */
1516 static bool
1517 futex_compute_cmp(int oldval, int val3)
1518 {
1519 int cmp = __SHIFTOUT(val3, FUTEX_OP_CMP_MASK);
1520 int cmparg = futex_opcmp_arg(__SHIFTOUT(val3, FUTEX_OP_CMPARG_MASK));
1521
1522 switch (cmp) {
1523 case FUTEX_OP_CMP_EQ:
1524 return (oldval == cmparg);
1525
1526 case FUTEX_OP_CMP_NE:
1527 return (oldval != cmparg);
1528
1529 case FUTEX_OP_CMP_LT:
1530 return (oldval < cmparg);
1531
1532 case FUTEX_OP_CMP_LE:
1533 return (oldval <= cmparg);
1534
1535 case FUTEX_OP_CMP_GT:
1536 return (oldval > cmparg);
1537
1538 case FUTEX_OP_CMP_GE:
1539 return (oldval >= cmparg);
1540
1541 default:
1542 panic("invalid futex cmp operation");
1543 }
1544 }
1545
1546 /*
1547 * futex_func_wake_op(uaddr, val, uaddr2, val2, val3, retval)
1548 *
1549 * Implement futex(FUTEX_WAKE_OP).
1550 */
1551 static int
1552 futex_func_wake_op(bool shared, int *uaddr, int val, int *uaddr2, int val2,
1553 int val3, register_t *retval)
1554 {
1555 struct futex *f = NULL, *f2 = NULL;
1556 int oldval, newval, actual;
1557 unsigned nwoken = 0;
1558 int error;
1559
1560 /* Reject negative number of wakeups. */
1561 if (val < 0 || val2 < 0) {
1562 error = EINVAL;
1563 goto out;
1564 }
1565
1566 /* Reject invalid operations before we start doing things. */
1567 if ((error = futex_validate_op_cmp(val3)) != 0)
1568 goto out;
1569
1570 /* Look up the first futex, if any. */
1571 error = futex_lookup(uaddr, shared, &f);
1572 if (error)
1573 goto out;
1574
1575 /* Look up the second futex, if any. */
1576 error = futex_lookup(uaddr2, shared, &f2);
1577 if (error)
1578 goto out;
1579
1580 /*
1581 * Under the queue locks:
1582 *
1583 * 1. Read/modify/write: *uaddr2 op= oparg.
1584 * 2. Unconditionally wake uaddr.
1585 * 3. Conditionally wake uaddr2, if it previously matched val2.
1586 */
1587 futex_queue_lock2(f, f2);
1588 do {
1589 error = futex_load(uaddr2, &oldval);
1590 if (error)
1591 goto out_unlock;
1592 newval = futex_compute_op(oldval, val3);
1593 error = ucas_int(uaddr2, oldval, newval, &actual);
1594 if (error)
1595 goto out_unlock;
1596 } while (actual != oldval);
1597 if (f == NULL) {
1598 nwoken = 0;
1599 } else {
1600 nwoken = futex_wake(f, /*nwake*/val, NULL, /*nrequeue*/0,
1601 FUTEX_BITSET_MATCH_ANY);
1602 }
1603 if (f2 && futex_compute_cmp(oldval, val3)) {
1604 nwoken += futex_wake(f2, /*nwake*/val2, NULL, /*nrequeue*/0,
1605 FUTEX_BITSET_MATCH_ANY);
1606 }
1607
1608 /* Success! */
1609 error = 0;
1610 out_unlock:
1611 futex_queue_unlock2(f, f2);
1612
1613 out:
1614 /* Return the number of waiters woken. */
1615 *retval = nwoken;
1616
1617 /* Release the futexes, if we got them. */
1618 if (f2)
1619 futex_rele(f2);
1620 if (f)
1621 futex_rele(f);
1622 return error;
1623 }
1624
1625 /*
1626 * do_futex(uaddr, op, val, timeout, uaddr2, val2, val3)
1627 *
1628 * Implement the futex system call with all the parameters
1629 * parsed out.
1630 */
1631 int
1632 do_futex(int *uaddr, int op, int val, const struct timespec *timeout,
1633 int *uaddr2, int val2, int val3, register_t *retval)
1634 {
1635 const bool shared = (op & FUTEX_PRIVATE_FLAG) ? false : true;
1636 const clockid_t clkid = (op & FUTEX_CLOCK_REALTIME) ? CLOCK_REALTIME
1637 : CLOCK_MONOTONIC;
1638
1639 op &= FUTEX_CMD_MASK;
1640
1641 switch (op) {
1642 case FUTEX_WAIT:
1643 return futex_func_wait(shared, uaddr, val,
1644 FUTEX_BITSET_MATCH_ANY, timeout, clkid, TIMER_RELTIME,
1645 retval);
1646
1647 case FUTEX_WAKE:
1648 val3 = FUTEX_BITSET_MATCH_ANY;
1649 /* FALLTHROUGH */
1650 case FUTEX_WAKE_BITSET:
1651 return futex_func_wake(shared, uaddr, val, val3, retval);
1652
1653 case FUTEX_REQUEUE:
1654 case FUTEX_CMP_REQUEUE:
1655 return futex_func_requeue(shared, op, uaddr, val, uaddr2,
1656 val2, val3, retval);
1657
1658 case FUTEX_WAIT_BITSET:
1659 return futex_func_wait(shared, uaddr, val, val3, timeout,
1660 clkid, TIMER_ABSTIME, retval);
1661
1662 case FUTEX_WAKE_OP:
1663 return futex_func_wake_op(shared, uaddr, val, uaddr2, val2,
1664 val3, retval);
1665
1666 case FUTEX_FD:
1667 default:
1668 return ENOSYS;
1669 }
1670 }
1671
1672 /*
1673 * sys___futex(l, uap, retval)
1674 *
1675 * __futex(2) system call: generic futex operations.
1676 */
1677 int
1678 sys___futex(struct lwp *l, const struct sys___futex_args *uap,
1679 register_t *retval)
1680 {
1681 /* {
1682 syscallarg(int *) uaddr;
1683 syscallarg(int) op;
1684 syscallarg(int) val;
1685 syscallarg(const struct timespec *) timeout;
1686 syscallarg(int *) uaddr2;
1687 syscallarg(int) val2;
1688 syscallarg(int) val3;
1689 } */
1690 struct timespec ts, *tsp;
1691 int error;
1692
1693 /*
1694 * Copy in the timeout argument, if specified.
1695 */
1696 if (SCARG(uap, timeout)) {
1697 error = copyin(SCARG(uap, timeout), &ts, sizeof(ts));
1698 if (error)
1699 return error;
1700 tsp = &ts;
1701 } else {
1702 tsp = NULL;
1703 }
1704
1705 return do_futex(SCARG(uap, uaddr), SCARG(uap, op), SCARG(uap, val),
1706 tsp, SCARG(uap, uaddr2), SCARG(uap, val2), SCARG(uap, val3),
1707 retval);
1708 }
1709
1710 /*
1711 * sys___futex_set_robust_list(l, uap, retval)
1712 *
1713 * __futex_set_robust_list(2) system call for robust futexes.
1714 */
1715 int
1716 sys___futex_set_robust_list(struct lwp *l,
1717 const struct sys___futex_set_robust_list_args *uap, register_t *retval)
1718 {
1719 /* {
1720 syscallarg(void *) head;
1721 syscallarg(size_t) len;
1722 } */
1723 void *head = SCARG(uap, head);
1724
1725 if (SCARG(uap, len) != _FUTEX_ROBUST_HEAD_SIZE)
1726 return EINVAL;
1727 if ((uintptr_t)head % sizeof(u_long))
1728 return EINVAL;
1729
1730 l->l_robust_head = (uintptr_t)head;
1731
1732 return 0;
1733 }
1734
1735 /*
1736 * sys___futex_get_robust_list(l, uap, retval)
1737 *
1738 * __futex_get_robust_list(2) system call for robust futexes.
1739 */
1740 int
1741 sys___futex_get_robust_list(struct lwp *l,
1742 const struct sys___futex_get_robust_list_args *uap, register_t *retval)
1743 {
1744 /* {
1745 syscallarg(lwpid_t) lwpid;
1746 syscallarg(void **) headp;
1747 syscallarg(size_t *) lenp;
1748 } */
1749 void *head;
1750 const size_t len = _FUTEX_ROBUST_HEAD_SIZE;
1751 int error;
1752
1753 error = futex_robust_head_lookup(l, SCARG(uap, lwpid), &head);
1754 if (error)
1755 return error;
1756
1757 /* Copy out the head pointer and the head structure length. */
1758 error = copyout(&head, SCARG(uap, headp), sizeof(head));
1759 if (__predict_true(error == 0)) {
1760 error = copyout(&len, SCARG(uap, lenp), sizeof(len));
1761 }
1762
1763 return error;
1764 }
1765
1766 /*
1767 * release_futex(uva, tid)
1768 *
1769 * Try to release the robust futex at uva in the current process
1770 * on lwp exit. If anything goes wrong, silently fail. It is the
1771 * userland program's obligation to arrange correct behaviour.
1772 */
1773 static void
1774 release_futex(uintptr_t const uptr, lwpid_t const tid, bool const is_pi,
1775 bool const is_pending)
1776 {
1777 int *uaddr;
1778 struct futex *f;
1779 int oldval, newval, actual;
1780 int error;
1781
1782 /* If it's misaligned, tough. */
1783 if (__predict_false(uptr & 3))
1784 return;
1785 uaddr = (int *)uptr;
1786
1787 error = futex_load(uaddr, &oldval);
1788 if (__predict_false(error))
1789 return;
1790
1791 /*
1792 * There are two race conditions we need to handle here:
1793 *
1794 * 1. User space cleared the futex word but died before
1795 * being able to issue the wakeup. No wakeups will
1796 * ever be issued, oops!
1797 *
1798 * 2. Awakened waiter died before being able to acquire
1799 * the futex in user space. Any other waiters are
1800 * now stuck, oops!
1801 *
1802 * In both of these cases, the futex word will be 0 (because
1803 * it's updated before the wake is issued). The best we can
1804 * do is detect this situation if it's the pending futex and
1805 * issue a wake without modifying the futex word.
1806 *
1807 * XXX eventual PI handling?
1808 */
1809 if (__predict_false(is_pending && (oldval & ~FUTEX_WAITERS) == 0)) {
1810 register_t retval;
1811 (void) futex_func_wake(/*shared*/true, uaddr, 1,
1812 FUTEX_BITSET_MATCH_ANY, &retval);
1813 return;
1814 }
1815
1816 /* Optimistically test whether we need to do anything at all. */
1817 if ((oldval & FUTEX_TID_MASK) != tid)
1818 return;
1819
1820 /*
1821 * We need to handle the case where this thread owned the futex,
1822 * but it was uncontended. In this case, there won't be any
1823 * kernel state to look up. All we can do is mark the futex
1824 * as a zombie to be mopped up the next time another thread
1825 * attempts to acquire it.
1826 *
1827 * N.B. It's important to ensure to set FUTEX_OWNER_DIED in
1828 * this loop, even if waiters appear while we're are doing
1829 * so. This is beause FUTEX_WAITERS is set by user space
1830 * before calling __futex() to wait, and the futex needs
1831 * to be marked as a zombie when the new waiter gets into
1832 * the kernel.
1833 */
1834 if ((oldval & FUTEX_WAITERS) == 0) {
1835 do {
1836 error = futex_load(uaddr, &oldval);
1837 if (error)
1838 return;
1839 if ((oldval & FUTEX_TID_MASK) != tid)
1840 return;
1841 newval = oldval | FUTEX_OWNER_DIED;
1842 error = ucas_int(uaddr, oldval, newval, &actual);
1843 if (error)
1844 return;
1845 } while (actual != oldval);
1846
1847 /*
1848 * If where is still no indication of waiters, then there is
1849 * no more work for us to do.
1850 */
1851 if ((oldval & FUTEX_WAITERS) == 0)
1852 return;
1853 }
1854
1855 /*
1856 * Look for a shared futex since we have no positive indication
1857 * it is private. If we can't, tough.
1858 */
1859 error = futex_lookup(uaddr, /*shared*/true, &f);
1860 if (error)
1861 return;
1862
1863 /*
1864 * If there's no kernel state for this futex, there's nothing to
1865 * release.
1866 */
1867 if (f == NULL)
1868 return;
1869
1870 /* Work under the futex queue lock. */
1871 futex_queue_lock(f);
1872
1873 /*
1874 * Fetch the word: if the tid doesn't match ours, skip;
1875 * otherwise, set the owner-died bit, atomically.
1876 */
1877 do {
1878 error = futex_load(uaddr, &oldval);
1879 if (error)
1880 goto out;
1881 if ((oldval & FUTEX_TID_MASK) != tid)
1882 goto out;
1883 newval = oldval | FUTEX_OWNER_DIED;
1884 error = ucas_int(uaddr, oldval, newval, &actual);
1885 if (error)
1886 goto out;
1887 } while (actual != oldval);
1888
1889 /*
1890 * If there may be waiters, try to wake one. If anything goes
1891 * wrong, tough.
1892 *
1893 * XXX eventual PI handling?
1894 */
1895 if (oldval & FUTEX_WAITERS) {
1896 (void)futex_wake(f, /*nwake*/1, NULL, /*nrequeue*/0,
1897 FUTEX_BITSET_MATCH_ANY);
1898 }
1899
1900 /* Unlock the queue and release the futex. */
1901 out: futex_queue_unlock(f);
1902 futex_rele(f);
1903 }
1904
1905 /*
1906 * futex_robust_head_lookup(l, lwpid)
1907 *
1908 * Helper function to look up a robust head by LWP ID.
1909 */
1910 int
1911 futex_robust_head_lookup(struct lwp *l, lwpid_t lwpid, void **headp)
1912 {
1913 struct proc *p = l->l_proc;
1914
1915 /* Find the other lwp, if requested; otherwise use our robust head. */
1916 if (lwpid) {
1917 mutex_enter(p->p_lock);
1918 l = lwp_find(p, lwpid);
1919 if (l == NULL) {
1920 mutex_exit(p->p_lock);
1921 return ESRCH;
1922 }
1923 *headp = (void *)l->l_robust_head;
1924 mutex_exit(p->p_lock);
1925 } else {
1926 *headp = (void *)l->l_robust_head;
1927 }
1928 return 0;
1929 }
1930
1931 /*
1932 * futex_fetch_robust_head(uaddr)
1933 *
1934 * Helper routine to fetch the futex robust list head that
1935 * handles 32-bit binaries running on 64-bit kernels.
1936 */
1937 static int
1938 futex_fetch_robust_head(uintptr_t uaddr, u_long *rhead)
1939 {
1940 #ifdef _LP64
1941 if (curproc->p_flag & PK_32) {
1942 uint32_t rhead32[_FUTEX_ROBUST_HEAD_NWORDS];
1943 int error;
1944
1945 error = copyin((void *)uaddr, rhead32, sizeof(rhead32));
1946 if (__predict_true(error == 0)) {
1947 for (int i = 0; i < _FUTEX_ROBUST_HEAD_NWORDS; i++) {
1948 if (i == _FUTEX_ROBUST_HEAD_OFFSET) {
1949 /*
1950 * Make sure the offset is sign-
1951 * extended.
1952 */
1953 rhead[i] = (int32_t)rhead32[i];
1954 } else {
1955 rhead[i] = rhead32[i];
1956 }
1957 }
1958 }
1959 return error;
1960 }
1961 #endif /* _L64 */
1962
1963 return copyin((void *)uaddr, rhead,
1964 sizeof(*rhead) * _FUTEX_ROBUST_HEAD_NWORDS);
1965 }
1966
1967 /*
1968 * futex_decode_robust_word(word)
1969 *
1970 * Decode a robust futex list word into the entry and entry
1971 * properties.
1972 */
1973 static inline void
1974 futex_decode_robust_word(uintptr_t const word, uintptr_t * const entry,
1975 bool * const is_pi)
1976 {
1977 *is_pi = (word & _FUTEX_ROBUST_ENTRY_PI) ? true : false;
1978 *entry = word & ~_FUTEX_ROBUST_ENTRY_PI;
1979 }
1980
1981 /*
1982 * futex_fetch_robust_entry(uaddr)
1983 *
1984 * Helper routine to fetch and decode a robust futex entry
1985 * that handles 32-bit binaries running on 64-bit kernels.
1986 */
1987 static int
1988 futex_fetch_robust_entry(uintptr_t const uaddr, uintptr_t * const valp,
1989 bool * const is_pi)
1990 {
1991 uintptr_t val = 0;
1992 int error = 0;
1993
1994 #ifdef _LP64
1995 if (curproc->p_flag & PK_32) {
1996 uint32_t val32;
1997
1998 error = ufetch_32((uint32_t *)uaddr, &val32);
1999 if (__predict_true(error == 0))
2000 val = val32;
2001 } else
2002 #endif /* _LP64 */
2003 error = ufetch_long((u_long *)uaddr, (u_long *)&val);
2004 if (__predict_false(error))
2005 return error;
2006
2007 futex_decode_robust_word(val, valp, is_pi);
2008 return 0;
2009 }
2010
2011 /*
2012 * futex_release_all_lwp(l, tid)
2013 *
2014 * Release all l's robust futexes. If anything looks funny in
2015 * the process, give up -- it's userland's responsibility to dot
2016 * the i's and cross the t's.
2017 */
2018 void
2019 futex_release_all_lwp(struct lwp * const l)
2020 {
2021 u_long rhead[_FUTEX_ROBUST_HEAD_NWORDS];
2022 int limit = 1000000;
2023 int error;
2024
2025 /* If there's no robust list there's nothing to do. */
2026 if (l->l_robust_head == 0)
2027 return;
2028
2029 KASSERT((l->l_lid & FUTEX_TID_MASK) == l->l_lid);
2030
2031 /* Read the final snapshot of the robust list head. */
2032 error = futex_fetch_robust_head(l->l_robust_head, rhead);
2033 if (error) {
2034 printf("WARNING: pid %jd (%s) lwp %jd:"
2035 " unmapped robust futex list head\n",
2036 (uintmax_t)l->l_proc->p_pid, l->l_proc->p_comm,
2037 (uintmax_t)l->l_lid);
2038 return;
2039 }
2040
2041 const long offset = (long)rhead[_FUTEX_ROBUST_HEAD_OFFSET];
2042
2043 uintptr_t next, pending;
2044 bool is_pi, pending_is_pi;
2045
2046 futex_decode_robust_word(rhead[_FUTEX_ROBUST_HEAD_LIST],
2047 &next, &is_pi);
2048 futex_decode_robust_word(rhead[_FUTEX_ROBUST_HEAD_PENDING],
2049 &pending, &pending_is_pi);
2050
2051 /*
2052 * Walk down the list of locked futexes and release them, up
2053 * to one million of them before we give up.
2054 */
2055
2056 while (next != l->l_robust_head && limit-- > 0) {
2057 /* pending handled below. */
2058 if (next != pending)
2059 release_futex(next + offset, l->l_lid, is_pi, false);
2060 error = futex_fetch_robust_entry(next, &next, &is_pi);
2061 if (error)
2062 break;
2063 preempt_point();
2064 }
2065 if (limit <= 0) {
2066 printf("WARNING: pid %jd (%s) lwp %jd:"
2067 " exhausted robust futex limit\n",
2068 (uintmax_t)l->l_proc->p_pid, l->l_proc->p_comm,
2069 (uintmax_t)l->l_lid);
2070 }
2071
2072 /* If there's a pending futex, it may need to be released too. */
2073 if (pending != 0) {
2074 release_futex(pending + offset, l->l_lid, pending_is_pi, true);
2075 }
2076 }
2077