sys_futex.c revision 1.26 1 /* $NetBSD: sys_futex.c,v 1.26 2025/03/05 14:01:55 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 2018, 2019, 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Taylor R. Campbell and Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: sys_futex.c,v 1.26 2025/03/05 14:01:55 riastradh Exp $");
34
35 /*
36 * Futexes
37 *
38 * The futex system call coordinates notifying threads waiting for
39 * changes on a 32-bit word of memory. The word can be managed by
40 * CPU atomic operations in userland, without system calls, as long
41 * as there is no contention.
42 *
43 * The simplest use case demonstrating the utility is:
44 *
45 * // 32-bit word of memory shared among threads or
46 * // processes in userland. lock & 1 means owned;
47 * // lock & 2 means there are waiters waiting.
48 * volatile int lock = 0;
49 *
50 * int v;
51 *
52 * // Acquire a lock.
53 * do {
54 * v = lock;
55 * if (v & 1) {
56 * // Lock is held. Set a bit to say that
57 * // there are waiters, and wait for lock
58 * // to change to anything other than v;
59 * // then retry.
60 * if (atomic_cas_uint(&lock, v, v | 2) != v)
61 * continue;
62 * futex(&lock, FUTEX_WAIT, v | 2, NULL, NULL, 0,
63 * 0);
64 * continue;
65 * }
66 * } while (atomic_cas_uint(&lock, v, v | 1) != v);
67 * membar_acquire();
68 *
69 * ...
70 *
71 * // Release the lock. Optimistically assume there are
72 * // no waiters first until demonstrated otherwise.
73 * membar_release();
74 * if (atomic_cas_uint(&lock, 1, 0) != 1) {
75 * // There may be waiters.
76 * v = atomic_swap_uint(&lock, 0);
77 * // If there are still waiters, wake one.
78 * if (v & 2)
79 * futex(&lock, FUTEX_WAKE, 1, NULL, NULL, 0, 0);
80 * }
81 *
82 * The goal is to avoid the futex system call unless there is
83 * contention; then if there is contention, to guarantee no missed
84 * wakeups.
85 *
86 * For a simple implementation, futex(FUTEX_WAIT) could queue
87 * itself to be woken, double-check the lock word, and then sleep;
88 * spurious wakeups are generally a fact of life, so any
89 * FUTEX_WAKE could just wake every FUTEX_WAIT in the system.
90 *
91 * If this were all there is to it, we could then increase
92 * parallelism by refining the approximation: partition the
93 * waiters into buckets by hashing the lock addresses to reduce
94 * the incidence of spurious wakeups. But this is not all.
95 *
96 * The futex(&lock, FUTEX_CMP_REQUEUE, n, timeout, &lock2, m, val)
97 * operation not only wakes n waiters on lock if lock == val, but
98 * also _transfers_ m additional waiters to lock2. Unless wakeups
99 * on lock2 also trigger wakeups on lock, we cannot move waiters
100 * to lock2 if they merely share the same hash as waiters on lock.
101 * Thus, we can't approximately distribute waiters into queues by
102 * a hash function; we must distinguish futex queues exactly by
103 * lock address.
104 *
105 * For now, we use a global red/black tree to index futexes. This
106 * should be replaced by a lockless radix tree with a thread to
107 * free entries no longer in use once all lookups on all CPUs have
108 * completed.
109 *
110 * Specifically, we maintain two maps:
111 *
112 * futex_tab.va[vmspace, va] for private futexes
113 * futex_tab.oa[uvm_voaddr] for shared futexes
114 *
115 * This implementation does not support priority inheritance.
116 */
117
118 #include <sys/param.h>
119 #include <sys/types.h>
120 #include <sys/atomic.h>
121 #include <sys/condvar.h>
122 #include <sys/futex.h>
123 #include <sys/mutex.h>
124 #include <sys/rbtree.h>
125 #include <sys/queue.h>
126
127 #include <sys/syscall.h>
128 #include <sys/syscallargs.h>
129 #include <sys/syscallvar.h>
130
131 #include <uvm/uvm_extern.h>
132
133 /*
134 * Lock order:
135 *
136 * futex_tab.lock
137 * futex::fx_qlock ordered by kva of struct futex
138 * -> futex_wait::fw_lock only one at a time
139 * futex_wait::fw_lock only one at a time
140 * -> futex::fx_abortlock only one at a time
141 */
142
143 /*
144 * union futex_key
145 *
146 * A futex is addressed either by a vmspace+va (private) or by
147 * a uvm_voaddr (shared).
148 */
149 union futex_key {
150 struct {
151 struct vmspace *vmspace;
152 vaddr_t va;
153 } fk_private;
154 struct uvm_voaddr fk_shared;
155 };
156
157 /*
158 * struct futex
159 *
160 * Kernel state for a futex located at a particular address in a
161 * particular virtual address space.
162 *
163 * N.B. fx_refcnt is an unsigned long because we need to be able
164 * to operate on it atomically on all systems while at the same
165 * time rendering practically impossible the chance of it reaching
166 * its max value. In practice, we're limited by the number of LWPs
167 * that can be present on the system at any given time, and the
168 * assumption is that limit will be good enough on a 32-bit platform.
169 * See futex_wake() for why overflow needs to be avoided.
170 */
171 struct futex {
172 union futex_key fx_key;
173 unsigned long fx_refcnt;
174 bool fx_shared;
175 bool fx_on_tree;
176 struct rb_node fx_node;
177
178 kmutex_t fx_qlock;
179 TAILQ_HEAD(, futex_wait) fx_queue;
180
181 kmutex_t fx_abortlock;
182 LIST_HEAD(, futex_wait) fx_abortlist;
183 kcondvar_t fx_abortcv;
184 };
185
186 /*
187 * struct futex_wait
188 *
189 * State for a thread to wait on a futex. Threads wait on fw_cv
190 * for fw_bitset to be set to zero. The thread may transition to
191 * a different futex queue at any time under the futex's lock.
192 */
193 struct futex_wait {
194 kmutex_t fw_lock;
195 kcondvar_t fw_cv;
196 struct futex *fw_futex;
197 TAILQ_ENTRY(futex_wait) fw_entry; /* queue lock */
198 LIST_ENTRY(futex_wait) fw_abort; /* queue abortlock */
199 int fw_bitset;
200 bool fw_aborting; /* fw_lock */
201 };
202
203 /*
204 * futex_tab
205 *
206 * Global trees of futexes by vmspace/va and VM object address.
207 *
208 * XXX This obviously doesn't scale in parallel. We could use a
209 * pserialize-safe data structure, but there may be a high cost to
210 * frequent deletion since we don't cache futexes after we're done
211 * with them. We could use hashed locks. But for now, just make
212 * sure userland can't DoS the serial performance, by using a
213 * balanced binary tree for lookup.
214 *
215 * XXX We could use a per-process tree for the table indexed by
216 * virtual address to reduce contention between processes.
217 */
218 static struct {
219 kmutex_t lock;
220 struct rb_tree va;
221 struct rb_tree oa;
222 } futex_tab __cacheline_aligned;
223
224 static int
225 compare_futex_key(void *cookie, const void *n, const void *k)
226 {
227 const struct futex *fa = n;
228 const union futex_key *fka = &fa->fx_key;
229 const union futex_key *fkb = k;
230
231 if ((uintptr_t)fka->fk_private.vmspace <
232 (uintptr_t)fkb->fk_private.vmspace)
233 return -1;
234 if ((uintptr_t)fka->fk_private.vmspace >
235 (uintptr_t)fkb->fk_private.vmspace)
236 return +1;
237 if (fka->fk_private.va < fkb->fk_private.va)
238 return -1;
239 if (fka->fk_private.va > fkb->fk_private.va)
240 return +1;
241 return 0;
242 }
243
244 static int
245 compare_futex(void *cookie, const void *na, const void *nb)
246 {
247 const struct futex *fa = na;
248 const struct futex *fb = nb;
249
250 return compare_futex_key(cookie, fa, &fb->fx_key);
251 }
252
253 static const rb_tree_ops_t futex_rb_ops = {
254 .rbto_compare_nodes = compare_futex,
255 .rbto_compare_key = compare_futex_key,
256 .rbto_node_offset = offsetof(struct futex, fx_node),
257 };
258
259 static int
260 compare_futex_shared_key(void *cookie, const void *n, const void *k)
261 {
262 const struct futex *fa = n;
263 const union futex_key *fka = &fa->fx_key;
264 const union futex_key *fkb = k;
265
266 return uvm_voaddr_compare(&fka->fk_shared, &fkb->fk_shared);
267 }
268
269 static int
270 compare_futex_shared(void *cookie, const void *na, const void *nb)
271 {
272 const struct futex *fa = na;
273 const struct futex *fb = nb;
274
275 return compare_futex_shared_key(cookie, fa, &fb->fx_key);
276 }
277
278 static const rb_tree_ops_t futex_shared_rb_ops = {
279 .rbto_compare_nodes = compare_futex_shared,
280 .rbto_compare_key = compare_futex_shared_key,
281 .rbto_node_offset = offsetof(struct futex, fx_node),
282 };
283
284 static void futex_wait_dequeue(struct futex_wait *, struct futex *);
285
286 /*
287 * futex_load(uaddr, kaddr)
288 *
289 * Perform a single atomic load to read *uaddr, and return the
290 * result in *kaddr. Return 0 on success, EFAULT if uaddr is not
291 * mapped.
292 */
293 static inline int
294 futex_load(int *uaddr, int *kaddr)
295 {
296 return ufetch_int((u_int *)uaddr, (u_int *)kaddr);
297 }
298
299 /*
300 * futex_test(uaddr, expected)
301 *
302 * True if *uaddr == expected. False if *uaddr != expected, or if
303 * uaddr is not mapped.
304 */
305 static bool
306 futex_test(int *uaddr, int expected)
307 {
308 int val;
309 int error;
310
311 error = futex_load(uaddr, &val);
312 if (error)
313 return false;
314 return val == expected;
315 }
316
317 /*
318 * futex_sys_init()
319 *
320 * Initialize the futex subsystem.
321 */
322 void
323 futex_sys_init(void)
324 {
325
326 mutex_init(&futex_tab.lock, MUTEX_DEFAULT, IPL_NONE);
327 rb_tree_init(&futex_tab.va, &futex_rb_ops);
328 rb_tree_init(&futex_tab.oa, &futex_shared_rb_ops);
329 }
330
331 /*
332 * futex_sys_fini()
333 *
334 * Finalize the futex subsystem.
335 */
336 void
337 futex_sys_fini(void)
338 {
339
340 KASSERT(RB_TREE_MIN(&futex_tab.oa) == NULL);
341 KASSERT(RB_TREE_MIN(&futex_tab.va) == NULL);
342 mutex_destroy(&futex_tab.lock);
343 }
344
345 /*
346 * futex_queue_init(f)
347 *
348 * Initialize the futex queue. Caller must call futex_queue_fini
349 * when done.
350 *
351 * Never sleeps.
352 */
353 static void
354 futex_queue_init(struct futex *f)
355 {
356
357 mutex_init(&f->fx_qlock, MUTEX_DEFAULT, IPL_NONE);
358 mutex_init(&f->fx_abortlock, MUTEX_DEFAULT, IPL_NONE);
359 cv_init(&f->fx_abortcv, "fqabort");
360 LIST_INIT(&f->fx_abortlist);
361 TAILQ_INIT(&f->fx_queue);
362 }
363
364 /*
365 * futex_queue_drain(f)
366 *
367 * Wait for any aborting waiters in f; then empty the queue of
368 * any stragglers and wake them. Caller must guarantee no new
369 * references to f.
370 *
371 * May sleep.
372 */
373 static void
374 futex_queue_drain(struct futex *f)
375 {
376 struct futex_wait *fw, *fw_next;
377
378 mutex_enter(&f->fx_abortlock);
379 while (!LIST_EMPTY(&f->fx_abortlist))
380 cv_wait(&f->fx_abortcv, &f->fx_abortlock);
381 mutex_exit(&f->fx_abortlock);
382
383 mutex_enter(&f->fx_qlock);
384 TAILQ_FOREACH_SAFE(fw, &f->fx_queue, fw_entry, fw_next) {
385 mutex_enter(&fw->fw_lock);
386 futex_wait_dequeue(fw, f);
387 cv_broadcast(&fw->fw_cv);
388 mutex_exit(&fw->fw_lock);
389 }
390 mutex_exit(&f->fx_qlock);
391 }
392
393 /*
394 * futex_queue_fini(fq)
395 *
396 * Finalize the futex queue initialized by futex_queue_init. Queue
397 * must be empty. Caller must not use f again until a subsequent
398 * futex_queue_init.
399 */
400 static void
401 futex_queue_fini(struct futex *f)
402 {
403
404 KASSERT(TAILQ_EMPTY(&f->fx_queue));
405 KASSERT(LIST_EMPTY(&f->fx_abortlist));
406 mutex_destroy(&f->fx_qlock);
407 mutex_destroy(&f->fx_abortlock);
408 cv_destroy(&f->fx_abortcv);
409 }
410
411 /*
412 * futex_key_init(key, vm, va, shared)
413 *
414 * Initialize a futex key for lookup, etc.
415 */
416 static int
417 futex_key_init(union futex_key *fk, struct vmspace *vm, vaddr_t va, bool shared)
418 {
419 int error = 0;
420
421 if (__predict_false(shared)) {
422 if (!uvm_voaddr_acquire(&vm->vm_map, va, &fk->fk_shared))
423 error = EFAULT;
424 } else {
425 fk->fk_private.vmspace = vm;
426 fk->fk_private.va = va;
427 }
428
429 return error;
430 }
431
432 /*
433 * futex_key_fini(key, shared)
434 *
435 * Release a futex key.
436 */
437 static void
438 futex_key_fini(union futex_key *fk, bool shared)
439 {
440 if (__predict_false(shared))
441 uvm_voaddr_release(&fk->fk_shared);
442 memset(fk, 0, sizeof(*fk));
443 }
444
445 /*
446 * futex_create(fk, shared)
447 *
448 * Create a futex. Initial reference count is 1, representing the
449 * caller. Returns NULL on failure. Always takes ownership of the
450 * key, either transferring it to the newly-created futex, or releasing
451 * the key if creation fails.
452 *
453 * Never sleeps for memory, but may sleep to acquire a lock.
454 */
455 static struct futex *
456 futex_create(union futex_key *fk, bool shared)
457 {
458 struct futex *f;
459
460 f = kmem_alloc(sizeof(*f), KM_NOSLEEP);
461 if (f == NULL) {
462 futex_key_fini(fk, shared);
463 return NULL;
464 }
465 f->fx_key = *fk;
466 f->fx_refcnt = 1;
467 f->fx_shared = shared;
468 f->fx_on_tree = false;
469 futex_queue_init(f);
470
471 return f;
472 }
473
474 /*
475 * futex_destroy(f)
476 *
477 * Destroy a futex created with futex_create. Reference count
478 * must be zero.
479 *
480 * May sleep.
481 */
482 static void
483 futex_destroy(struct futex *f)
484 {
485
486 ASSERT_SLEEPABLE();
487
488 KASSERT(atomic_load_relaxed(&f->fx_refcnt) == 0);
489 KASSERT(!f->fx_on_tree);
490
491 /* Drain and destroy the private queue. */
492 futex_queue_drain(f);
493 futex_queue_fini(f);
494
495 futex_key_fini(&f->fx_key, f->fx_shared);
496
497 kmem_free(f, sizeof(*f));
498 }
499
500 /*
501 * futex_hold(f)
502 *
503 * Attempt to acquire a reference to f. Return 0 on success,
504 * ENFILE on too many references.
505 *
506 * Never sleeps.
507 */
508 static int
509 futex_hold(struct futex *f)
510 {
511 unsigned long refcnt;
512
513 do {
514 refcnt = atomic_load_relaxed(&f->fx_refcnt);
515 if (refcnt == ULONG_MAX)
516 return ENFILE;
517 } while (atomic_cas_ulong(&f->fx_refcnt, refcnt, refcnt + 1) != refcnt);
518
519 return 0;
520 }
521
522 /*
523 * futex_rele(f)
524 *
525 * Release a reference to f acquired with futex_create or
526 * futex_hold.
527 *
528 * May sleep to free f.
529 */
530 static void
531 futex_rele(struct futex *f)
532 {
533 unsigned long refcnt;
534
535 ASSERT_SLEEPABLE();
536
537 do {
538 refcnt = atomic_load_relaxed(&f->fx_refcnt);
539 if (refcnt == 1)
540 goto trylast;
541 membar_release();
542 } while (atomic_cas_ulong(&f->fx_refcnt, refcnt, refcnt - 1) != refcnt);
543 return;
544
545 trylast:
546 mutex_enter(&futex_tab.lock);
547 if (atomic_dec_ulong_nv(&f->fx_refcnt) == 0) {
548 membar_acquire();
549 if (f->fx_on_tree) {
550 if (__predict_false(f->fx_shared))
551 rb_tree_remove_node(&futex_tab.oa, f);
552 else
553 rb_tree_remove_node(&futex_tab.va, f);
554 f->fx_on_tree = false;
555 }
556 } else {
557 /* References remain -- don't destroy it. */
558 f = NULL;
559 }
560 mutex_exit(&futex_tab.lock);
561 if (f != NULL)
562 futex_destroy(f);
563 }
564
565 /*
566 * futex_rele_not_last(f)
567 *
568 * Release a reference to f acquired with futex_create or
569 * futex_hold.
570 *
571 * This version asserts that we are not dropping the last
572 * reference to f.
573 */
574 static void
575 futex_rele_not_last(struct futex *f)
576 {
577 unsigned long refcnt;
578
579 do {
580 refcnt = atomic_load_relaxed(&f->fx_refcnt);
581 KASSERT(refcnt > 1);
582 } while (atomic_cas_ulong(&f->fx_refcnt, refcnt, refcnt - 1) != refcnt);
583 }
584
585 /*
586 * futex_lookup_by_key(key, shared, &f)
587 *
588 * Try to find an existing futex va reference in the specified key
589 * On success, return 0, set f to found futex or to NULL if not found,
590 * and increment f's reference count if found.
591 *
592 * Return ENFILE if reference count too high.
593 *
594 * Internal lookup routine shared by futex_lookup() and
595 * futex_lookup_create().
596 */
597 static int
598 futex_lookup_by_key(union futex_key *fk, bool shared, struct futex **fp)
599 {
600 struct futex *f;
601 int error = 0;
602
603 mutex_enter(&futex_tab.lock);
604 if (__predict_false(shared)) {
605 f = rb_tree_find_node(&futex_tab.oa, fk);
606 } else {
607 f = rb_tree_find_node(&futex_tab.va, fk);
608 }
609 if (f) {
610 error = futex_hold(f);
611 if (error)
612 f = NULL;
613 }
614 *fp = f;
615 mutex_exit(&futex_tab.lock);
616
617 return error;
618 }
619
620 /*
621 * futex_insert(f, fp)
622 *
623 * Try to insert the futex f into the tree by va. If there
624 * already is a futex for its va, acquire a reference to it, and
625 * store it in *fp; otherwise store f in *fp.
626 *
627 * Return 0 on success, ENFILE if there already is a futex but its
628 * reference count is too high.
629 */
630 static int
631 futex_insert(struct futex *f, struct futex **fp)
632 {
633 struct futex *f0;
634 int error;
635
636 KASSERT(atomic_load_relaxed(&f->fx_refcnt) != 0);
637 KASSERT(!f->fx_on_tree);
638
639 mutex_enter(&futex_tab.lock);
640 if (__predict_false(f->fx_shared))
641 f0 = rb_tree_insert_node(&futex_tab.oa, f);
642 else
643 f0 = rb_tree_insert_node(&futex_tab.va, f);
644 if (f0 == f) {
645 f->fx_on_tree = true;
646 error = 0;
647 } else {
648 KASSERT(atomic_load_relaxed(&f0->fx_refcnt) != 0);
649 KASSERT(f0->fx_on_tree);
650 error = futex_hold(f0);
651 if (error)
652 goto out;
653 }
654 *fp = f0;
655 out: mutex_exit(&futex_tab.lock);
656
657 return error;
658 }
659
660 /*
661 * futex_lookup(uaddr, shared, &f)
662 *
663 * Find a futex at the userland pointer uaddr in the current
664 * process's VM space. On success, return the futex in f and
665 * increment its reference count.
666 *
667 * Caller must call futex_rele when done.
668 */
669 static int
670 futex_lookup(int *uaddr, bool shared, struct futex **fp)
671 {
672 union futex_key fk;
673 struct vmspace *vm = curproc->p_vmspace;
674 vaddr_t va = (vaddr_t)uaddr;
675 int error;
676
677 /*
678 * Reject unaligned user pointers so we don't cross page
679 * boundaries and so atomics will work.
680 */
681 if ((va & 3) != 0)
682 return EINVAL;
683
684 /* Look it up. */
685 error = futex_key_init(&fk, vm, va, shared);
686 if (error)
687 return error;
688
689 error = futex_lookup_by_key(&fk, shared, fp);
690 futex_key_fini(&fk, shared);
691 if (error)
692 return error;
693
694 KASSERT(*fp == NULL || (*fp)->fx_shared == shared);
695 KASSERT(*fp == NULL || atomic_load_relaxed(&(*fp)->fx_refcnt) != 0);
696
697 /*
698 * Success! (Caller must still check whether we found
699 * anything, but nothing went _wrong_ like trying to use
700 * unmapped memory.)
701 */
702 KASSERT(error == 0);
703
704 return error;
705 }
706
707 /*
708 * futex_lookup_create(uaddr, shared, &f)
709 *
710 * Find or create a futex at the userland pointer uaddr in the
711 * current process's VM space. On success, return the futex in f
712 * and increment its reference count.
713 *
714 * Caller must call futex_rele when done.
715 */
716 static int
717 futex_lookup_create(int *uaddr, bool shared, struct futex **fp)
718 {
719 union futex_key fk;
720 struct vmspace *vm = curproc->p_vmspace;
721 struct futex *f = NULL;
722 vaddr_t va = (vaddr_t)uaddr;
723 int error;
724
725 /*
726 * Reject unaligned user pointers so we don't cross page
727 * boundaries and so atomics will work.
728 */
729 if ((va & 3) != 0)
730 return EINVAL;
731
732 error = futex_key_init(&fk, vm, va, shared);
733 if (error)
734 return error;
735
736 /*
737 * Optimistically assume there already is one, and try to find
738 * it.
739 */
740 error = futex_lookup_by_key(&fk, shared, fp);
741 if (error || *fp != NULL) {
742 /*
743 * We either found one, or there was an error.
744 * In either case, we are done with the key.
745 */
746 futex_key_fini(&fk, shared);
747 goto out;
748 }
749
750 /*
751 * Create a futex record. This transfers ownership of the key
752 * in all cases.
753 */
754 f = futex_create(&fk, shared);
755 if (f == NULL) {
756 error = ENOMEM;
757 goto out;
758 }
759
760 /*
761 * Insert our new futex, or use existing if someone else beat
762 * us to it.
763 */
764 error = futex_insert(f, fp);
765 if (error)
766 goto out;
767 if (*fp == f)
768 f = NULL; /* don't release on exit */
769
770 /* Success! */
771 KASSERT(error == 0);
772
773 out: if (f != NULL)
774 futex_rele(f);
775 KASSERT(error || *fp != NULL);
776 KASSERT(error || atomic_load_relaxed(&(*fp)->fx_refcnt) != 0);
777 return error;
778 }
779
780 /*
781 * futex_wait_init(fw, bitset)
782 *
783 * Initialize a record for a thread to wait on a futex matching
784 * the specified bit set. Should be passed to futex_wait_enqueue
785 * before futex_wait, and should be passed to futex_wait_fini when
786 * done.
787 */
788 static void
789 futex_wait_init(struct futex_wait *fw, int bitset)
790 {
791
792 KASSERT(bitset);
793
794 mutex_init(&fw->fw_lock, MUTEX_DEFAULT, IPL_NONE);
795 cv_init(&fw->fw_cv, "futex");
796 fw->fw_futex = NULL;
797 fw->fw_bitset = bitset;
798 fw->fw_aborting = false;
799 }
800
801 /*
802 * futex_wait_fini(fw)
803 *
804 * Finalize a record for a futex waiter. Must not be on any
805 * futex's queue.
806 */
807 static void
808 futex_wait_fini(struct futex_wait *fw)
809 {
810
811 KASSERT(fw->fw_futex == NULL);
812
813 cv_destroy(&fw->fw_cv);
814 mutex_destroy(&fw->fw_lock);
815 }
816
817 /*
818 * futex_wait_enqueue(fw, f)
819 *
820 * Put fw on the futex queue. Must be done before futex_wait.
821 * Caller must hold fw's lock and f's lock, and fw must not be on
822 * any existing futex's waiter list.
823 */
824 static void
825 futex_wait_enqueue(struct futex_wait *fw, struct futex *f)
826 {
827
828 KASSERT(mutex_owned(&f->fx_qlock));
829 KASSERT(mutex_owned(&fw->fw_lock));
830 KASSERT(fw->fw_futex == NULL);
831 KASSERT(!fw->fw_aborting);
832
833 fw->fw_futex = f;
834 TAILQ_INSERT_TAIL(&f->fx_queue, fw, fw_entry);
835 }
836
837 /*
838 * futex_wait_dequeue(fw, f)
839 *
840 * Remove fw from the futex queue. Precludes subsequent
841 * futex_wait until a futex_wait_enqueue. Caller must hold fw's
842 * lock and f's lock, and fw must be on f.
843 */
844 static void
845 futex_wait_dequeue(struct futex_wait *fw, struct futex *f)
846 {
847
848 KASSERT(mutex_owned(&f->fx_qlock));
849 KASSERT(mutex_owned(&fw->fw_lock));
850 KASSERT(fw->fw_futex == f);
851
852 TAILQ_REMOVE(&f->fx_queue, fw, fw_entry);
853 fw->fw_futex = NULL;
854 }
855
856 /*
857 * futex_wait_abort(fw)
858 *
859 * Caller is no longer waiting for fw. Remove it from any queue
860 * if it was on one. Caller must hold fw->fw_lock.
861 */
862 static void
863 futex_wait_abort(struct futex_wait *fw)
864 {
865 struct futex *f;
866
867 KASSERT(mutex_owned(&fw->fw_lock));
868
869 /*
870 * Grab the futex queue. It can't go away as long as we hold
871 * fw_lock. However, we can't take the queue lock because
872 * that's a lock order reversal.
873 */
874 f = fw->fw_futex;
875
876 /* Put us on the abort list so that fq won't go away. */
877 mutex_enter(&f->fx_abortlock);
878 LIST_INSERT_HEAD(&f->fx_abortlist, fw, fw_abort);
879 mutex_exit(&f->fx_abortlock);
880
881 /*
882 * Mark fw as aborting so it won't lose wakeups and won't be
883 * transferred to any other queue.
884 */
885 fw->fw_aborting = true;
886
887 /* f is now stable, so we can release fw_lock. */
888 mutex_exit(&fw->fw_lock);
889
890 /* Now we can remove fw under the queue lock. */
891 mutex_enter(&f->fx_qlock);
892 mutex_enter(&fw->fw_lock);
893 futex_wait_dequeue(fw, f);
894 mutex_exit(&fw->fw_lock);
895 mutex_exit(&f->fx_qlock);
896
897 /*
898 * Finally, remove us from the abort list and notify anyone
899 * waiting for the abort to complete if we were the last to go.
900 */
901 mutex_enter(&f->fx_abortlock);
902 LIST_REMOVE(fw, fw_abort);
903 if (LIST_EMPTY(&f->fx_abortlist))
904 cv_broadcast(&f->fx_abortcv);
905 mutex_exit(&f->fx_abortlock);
906
907 /*
908 * Release our reference to the futex now that we are not
909 * waiting for it.
910 */
911 futex_rele(f);
912
913 /*
914 * Reacquire the fw lock as caller expects. Verify that we're
915 * aborting and no longer associated with a futex.
916 */
917 mutex_enter(&fw->fw_lock);
918 KASSERT(fw->fw_aborting);
919 KASSERT(fw->fw_futex == NULL);
920 }
921
922 /*
923 * futex_wait(fw, deadline, clkid)
924 *
925 * fw must be a waiter on a futex's queue. Wait until deadline on
926 * the clock clkid, or forever if deadline is NULL, for a futex
927 * wakeup. Return 0 on explicit wakeup or destruction of futex,
928 * ETIMEDOUT on timeout, EINTR/ERESTART on signal. Either way, fw
929 * will no longer be on a futex queue on return.
930 */
931 static int
932 futex_wait(struct futex_wait *fw, const struct timespec *deadline,
933 clockid_t clkid)
934 {
935 int error = 0;
936
937 /* Test and wait under the wait lock. */
938 mutex_enter(&fw->fw_lock);
939
940 for (;;) {
941 /* If we're done yet, stop and report success. */
942 if (fw->fw_bitset == 0 || fw->fw_futex == NULL) {
943 error = 0;
944 break;
945 }
946
947 /* If anything went wrong in the last iteration, stop. */
948 if (error)
949 break;
950
951 /* Not done yet. Wait. */
952 if (deadline) {
953 struct timespec ts;
954
955 /* Check our watch. */
956 error = clock_gettime1(clkid, &ts);
957 if (error)
958 break;
959
960 /* If we're past the deadline, ETIMEDOUT. */
961 if (timespeccmp(deadline, &ts, <=)) {
962 error = ETIMEDOUT;
963 break;
964 }
965
966 /* Count how much time is left. */
967 timespecsub(deadline, &ts, &ts);
968
969 /*
970 * Wait for that much time, allowing signals.
971 * Ignore EWOULDBLOCK, however: we will detect
972 * timeout ourselves on the next iteration of
973 * the loop -- and the timeout may have been
974 * truncated by tstohz, anyway.
975 */
976 error = cv_timedwait_sig(&fw->fw_cv, &fw->fw_lock,
977 MAX(1, tstohz(&ts)));
978 if (error == EWOULDBLOCK)
979 error = 0;
980 } else {
981 /* Wait indefinitely, allowing signals. */
982 error = cv_wait_sig(&fw->fw_cv, &fw->fw_lock);
983 }
984 }
985
986 /*
987 * If we were woken up, the waker will have removed fw from the
988 * queue. But if anything went wrong, we must remove fw from
989 * the queue ourselves.
990 */
991 if (error)
992 futex_wait_abort(fw);
993
994 mutex_exit(&fw->fw_lock);
995
996 return error;
997 }
998
999 /*
1000 * futex_wake(f, nwake, f2, nrequeue, bitset)
1001 *
1002 * Wake up to nwake waiters on f matching bitset; then, if f2 is
1003 * provided, move up to nrequeue remaining waiters on f matching
1004 * bitset to f2. Return the number of waiters actually woken or
1005 * requeued. Caller must hold the locks of f and f2, if provided.
1006 */
1007 static unsigned
1008 futex_wake(struct futex *f, unsigned nwake, struct futex *f2,
1009 unsigned nrequeue, int bitset)
1010 {
1011 struct futex_wait *fw, *fw_next;
1012 unsigned nwoken_or_requeued = 0;
1013 int hold_error __diagused;
1014
1015 KASSERT(mutex_owned(&f->fx_qlock));
1016 KASSERT(f2 == NULL || mutex_owned(&f2->fx_qlock));
1017
1018 /* Wake up to nwake waiters, and count the number woken. */
1019 TAILQ_FOREACH_SAFE(fw, &f->fx_queue, fw_entry, fw_next) {
1020 if ((fw->fw_bitset & bitset) == 0)
1021 continue;
1022 if (nwake > 0) {
1023 mutex_enter(&fw->fw_lock);
1024 if (__predict_false(fw->fw_aborting)) {
1025 mutex_exit(&fw->fw_lock);
1026 continue;
1027 }
1028 futex_wait_dequeue(fw, f);
1029 fw->fw_bitset = 0;
1030 cv_broadcast(&fw->fw_cv);
1031 mutex_exit(&fw->fw_lock);
1032 nwake--;
1033 nwoken_or_requeued++;
1034 /*
1035 * Drop the futex reference on behalf of the
1036 * waiter. We assert this is not the last
1037 * reference on the futex (our caller should
1038 * also have one).
1039 */
1040 futex_rele_not_last(f);
1041 } else {
1042 break;
1043 }
1044 }
1045
1046 if (f2) {
1047 /* Move up to nrequeue waiters from f's queue to f2's queue. */
1048 TAILQ_FOREACH_SAFE(fw, &f->fx_queue, fw_entry, fw_next) {
1049 if ((fw->fw_bitset & bitset) == 0)
1050 continue;
1051 if (nrequeue > 0) {
1052 mutex_enter(&fw->fw_lock);
1053 if (__predict_false(fw->fw_aborting)) {
1054 mutex_exit(&fw->fw_lock);
1055 continue;
1056 }
1057 futex_wait_dequeue(fw, f);
1058 futex_wait_enqueue(fw, f2);
1059 mutex_exit(&fw->fw_lock);
1060 nrequeue--;
1061 /*
1062 * PR kern/59004: Missing constant for upper
1063 * bound on systemwide number of lwps
1064 */
1065 KASSERT(nwoken_or_requeued <
1066 MIN(PID_MAX*MAXMAXLWP, FUTEX_TID_MASK));
1067 __CTASSERT(UINT_MAX >=
1068 MIN(PID_MAX*MAXMAXLWP, FUTEX_TID_MASK));
1069 if (++nwoken_or_requeued == 0) /* paranoia */
1070 nwoken_or_requeued = UINT_MAX;
1071 /*
1072 * Transfer the reference from f to f2.
1073 * As above, we assert that we are not
1074 * dropping the last reference to f here.
1075 *
1076 * XXX futex_hold() could theoretically
1077 * XXX fail here.
1078 */
1079 futex_rele_not_last(f);
1080 hold_error = futex_hold(f2);
1081 KASSERT(hold_error == 0);
1082 } else {
1083 break;
1084 }
1085 }
1086 } else {
1087 KASSERT(nrequeue == 0);
1088 }
1089
1090 /* Return the number of waiters woken or requeued. */
1091 return nwoken_or_requeued;
1092 }
1093
1094 /*
1095 * futex_queue_lock(f)
1096 *
1097 * Acquire the queue lock of f. Pair with futex_queue_unlock. Do
1098 * not use if caller needs to acquire two locks; use
1099 * futex_queue_lock2 instead.
1100 */
1101 static void
1102 futex_queue_lock(struct futex *f)
1103 {
1104 mutex_enter(&f->fx_qlock);
1105 }
1106
1107 /*
1108 * futex_queue_unlock(f)
1109 *
1110 * Release the queue lock of f.
1111 */
1112 static void
1113 futex_queue_unlock(struct futex *f)
1114 {
1115 mutex_exit(&f->fx_qlock);
1116 }
1117
1118 /*
1119 * futex_queue_lock2(f, f2)
1120 *
1121 * Acquire the queue locks of both f and f2, which may be null, or
1122 * which may have the same underlying queue. If they are
1123 * distinct, an arbitrary total order is chosen on the locks.
1124 *
1125 * Callers should only ever acquire multiple queue locks
1126 * simultaneously using futex_queue_lock2.
1127 */
1128 static void
1129 futex_queue_lock2(struct futex *f, struct futex *f2)
1130 {
1131
1132 /*
1133 * If both are null, do nothing; if one is null and the other
1134 * is not, lock the other and be done with it.
1135 */
1136 if (f == NULL && f2 == NULL) {
1137 return;
1138 } else if (f == NULL) {
1139 mutex_enter(&f2->fx_qlock);
1140 return;
1141 } else if (f2 == NULL) {
1142 mutex_enter(&f->fx_qlock);
1143 return;
1144 }
1145
1146 /* If both futexes are the same, acquire only one. */
1147 if (f == f2) {
1148 mutex_enter(&f->fx_qlock);
1149 return;
1150 }
1151
1152 /* Otherwise, use the ordering on the kva of the futex pointer. */
1153 if ((uintptr_t)f < (uintptr_t)f2) {
1154 mutex_enter(&f->fx_qlock);
1155 mutex_enter(&f2->fx_qlock);
1156 } else {
1157 mutex_enter(&f2->fx_qlock);
1158 mutex_enter(&f->fx_qlock);
1159 }
1160 }
1161
1162 /*
1163 * futex_queue_unlock2(f, f2)
1164 *
1165 * Release the queue locks of both f and f2, which may be null, or
1166 * which may have the same underlying queue.
1167 */
1168 static void
1169 futex_queue_unlock2(struct futex *f, struct futex *f2)
1170 {
1171
1172 /*
1173 * If both are null, do nothing; if one is null and the other
1174 * is not, unlock the other and be done with it.
1175 */
1176 if (f == NULL && f2 == NULL) {
1177 return;
1178 } else if (f == NULL) {
1179 mutex_exit(&f2->fx_qlock);
1180 return;
1181 } else if (f2 == NULL) {
1182 mutex_exit(&f->fx_qlock);
1183 return;
1184 }
1185
1186 /* If both futexes are the same, release only one. */
1187 if (f == f2) {
1188 mutex_exit(&f->fx_qlock);
1189 return;
1190 }
1191
1192 /* Otherwise, use the ordering on the kva of the futex pointer. */
1193 if ((uintptr_t)f < (uintptr_t)f2) {
1194 mutex_exit(&f2->fx_qlock);
1195 mutex_exit(&f->fx_qlock);
1196 } else {
1197 mutex_exit(&f->fx_qlock);
1198 mutex_exit(&f2->fx_qlock);
1199 }
1200 }
1201
1202 /*
1203 * futex_func_wait(uaddr, cmpval@val, bitset@val3, timeout, clkid, clkflags,
1204 * retval)
1205 *
1206 * Implement futex(FUTEX_WAIT) and futex(FUTEX_WAIT_BITSET): If
1207 * *uaddr == cmpval, wait until futex-woken on any of the bits in
1208 * bitset. But if *uaddr != cmpval, fail with EAGAIN.
1209 *
1210 * For FUTEX_WAIT, bitset has all bits set and val3 is ignored.
1211 */
1212 static int
1213 futex_func_wait(bool shared, int *uaddr, int cmpval, int bitset,
1214 const struct timespec *timeout, clockid_t clkid, int clkflags,
1215 register_t *retval)
1216 {
1217 struct futex *f;
1218 struct futex_wait wait, *fw = &wait;
1219 struct timespec ts;
1220 const struct timespec *deadline;
1221 int error;
1222
1223 /*
1224 * If there's nothing to wait for, and nobody will ever wake
1225 * us, then don't set anything up to wait -- just stop here.
1226 */
1227 if (bitset == 0)
1228 return EINVAL;
1229
1230 /* Optimistically test before anything else. */
1231 if (!futex_test(uaddr, cmpval))
1232 return EAGAIN;
1233
1234 /* Determine a deadline on the specified clock. */
1235 if (timeout == NULL || (clkflags & TIMER_ABSTIME) == TIMER_ABSTIME) {
1236 deadline = timeout;
1237 } else {
1238 error = clock_gettime1(clkid, &ts);
1239 if (error)
1240 return error;
1241 timespecadd(&ts, timeout, &ts);
1242 deadline = &ts;
1243 }
1244
1245 /* Get the futex, creating it if necessary. */
1246 error = futex_lookup_create(uaddr, shared, &f);
1247 if (error)
1248 return error;
1249 KASSERT(f);
1250
1251 /* Get ready to wait. */
1252 futex_wait_init(fw, bitset);
1253
1254 /*
1255 * Under the queue lock, check the value again: if it has
1256 * already changed, EAGAIN; otherwise enqueue the waiter.
1257 * Since FUTEX_WAKE will use the same lock and be done after
1258 * modifying the value, the order in which we check and enqueue
1259 * is immaterial.
1260 */
1261 futex_queue_lock(f);
1262 if (!futex_test(uaddr, cmpval)) {
1263 futex_queue_unlock(f);
1264 error = EAGAIN;
1265 goto out;
1266 }
1267 mutex_enter(&fw->fw_lock);
1268 futex_wait_enqueue(fw, f);
1269 mutex_exit(&fw->fw_lock);
1270 futex_queue_unlock(f);
1271
1272 /*
1273 * We cannot drop our reference to the futex here, because
1274 * we might be enqueued on a different one when we are awakened.
1275 * The references will be managed on our behalf in the requeue
1276 * and wake cases.
1277 */
1278 f = NULL;
1279
1280 /* Wait. */
1281 error = futex_wait(fw, deadline, clkid);
1282 if (error)
1283 goto out;
1284
1285 /* Return 0 on success, error on failure. */
1286 *retval = 0;
1287
1288 out: if (f != NULL)
1289 futex_rele(f);
1290 futex_wait_fini(fw);
1291 return error;
1292 }
1293
1294 /*
1295 * futex_func_wake(uaddr, nwake@val, bitset@val3, retval)
1296 *
1297 * Implement futex(FUTEX_WAKE) and futex(FUTEX_WAKE_BITSET): Wake
1298 * up to nwake waiters on uaddr waiting on any of the bits in
1299 * bitset.
1300 *
1301 * Return the number of waiters woken.
1302 *
1303 * For FUTEX_WAKE, bitset has all bits set and val3 is ignored.
1304 */
1305 static int
1306 futex_func_wake(bool shared, int *uaddr, int nwake, int bitset,
1307 register_t *retval)
1308 {
1309 struct futex *f;
1310 unsigned int nwoken = 0;
1311 int error = 0;
1312
1313 /* Reject negative number of wakeups. */
1314 if (nwake < 0) {
1315 error = EINVAL;
1316 goto out;
1317 }
1318
1319 /* Look up the futex, if any. */
1320 error = futex_lookup(uaddr, shared, &f);
1321 if (error)
1322 goto out;
1323
1324 /* If there's no futex, there are no waiters to wake. */
1325 if (f == NULL)
1326 goto out;
1327
1328 /*
1329 * Under f's queue lock, wake the waiters and remember the
1330 * number woken.
1331 */
1332 futex_queue_lock(f);
1333 nwoken = futex_wake(f, nwake, NULL, /*nrequeue*/0, bitset);
1334 futex_queue_unlock(f);
1335
1336 /* Release the futex. */
1337 futex_rele(f);
1338
1339 out:
1340 /* Return the number of waiters woken. */
1341 *retval = nwoken;
1342
1343 /* Success! */
1344 return error;
1345 }
1346
1347 /*
1348 * futex_func_requeue(op, uaddr, nwake@val, uaddr2, nrequeue@val2,
1349 * cmpval@val3, retval)
1350 *
1351 * Implement futex(FUTEX_REQUEUE) and futex(FUTEX_CMP_REQUEUE): If
1352 * *uaddr == cmpval or if op == FUTEX_REQUEUE, wake up to nwake
1353 * waiters at uaddr and then requeue up to nrequeue waiters from
1354 * uaddr to uaddr2.
1355 *
1356 * Return the number of waiters woken or requeued.
1357 *
1358 * For FUTEX_CMP_REQUEUE, if *uaddr != cmpval, fail with EAGAIN
1359 * and no wakeups.
1360 */
1361 static int
1362 futex_func_requeue(bool shared, int op, int *uaddr, int nwake, int *uaddr2,
1363 int nrequeue, int cmpval, register_t *retval)
1364 {
1365 struct futex *f = NULL, *f2 = NULL;
1366 unsigned nwoken_or_requeued = 0; /* default to zero on early return */
1367 int error;
1368
1369 /* Reject negative number of wakeups or requeues. */
1370 if (nwake < 0 || nrequeue < 0) {
1371 error = EINVAL;
1372 goto out;
1373 }
1374
1375 /*
1376 * Look up or create the source futex. For FUTEX_CMP_REQUEUE,
1377 * we always create it, rather than bail if it has no waiters,
1378 * because FUTEX_CMP_REQUEUE always tests the futex word in
1379 * order to report EAGAIN.
1380 */
1381 error = (op == FUTEX_CMP_REQUEUE
1382 ? futex_lookup_create(uaddr, shared, &f)
1383 : futex_lookup(uaddr, shared, &f));
1384 if (error)
1385 goto out;
1386
1387 /* If there is none for FUTEX_REQUEUE, nothing to do. */
1388 if (f == NULL) {
1389 KASSERT(op != FUTEX_CMP_REQUEUE);
1390 goto out;
1391 }
1392
1393 /*
1394 * We may need to create the destination futex because it's
1395 * entirely possible it does not currently have any waiters.
1396 */
1397 error = futex_lookup_create(uaddr2, shared, &f2);
1398 if (error)
1399 goto out;
1400
1401 /*
1402 * Under the futexes' queue locks, check the value; if
1403 * unchanged from cmpval, or if this is the unconditional
1404 * FUTEX_REQUEUE operation, wake the waiters.
1405 */
1406 futex_queue_lock2(f, f2);
1407 if (op == FUTEX_CMP_REQUEUE && !futex_test(uaddr, cmpval)) {
1408 error = EAGAIN;
1409 } else {
1410 error = 0;
1411 nwoken_or_requeued = futex_wake(f, nwake, f2, nrequeue,
1412 FUTEX_BITSET_MATCH_ANY);
1413 }
1414 futex_queue_unlock2(f, f2);
1415
1416 out:
1417 /* Return the number of waiters woken or requeued. */
1418 *retval = nwoken_or_requeued;
1419
1420 /* Release the futexes if we got them. */
1421 if (f2)
1422 futex_rele(f2);
1423 if (f)
1424 futex_rele(f);
1425 return error;
1426 }
1427
1428 /*
1429 * futex_opcmp_arg(arg)
1430 *
1431 * arg is either the oparg or cmparg field of a FUTEX_WAKE_OP
1432 * operation, a 12-bit string in either case. Map it to a numeric
1433 * argument value by sign-extending it in two's-complement
1434 * representation.
1435 */
1436 static int
1437 futex_opcmp_arg(int arg)
1438 {
1439
1440 KASSERT(arg == (arg & __BITS(11,0)));
1441 return arg - 0x1000*__SHIFTOUT(arg, __BIT(11));
1442 }
1443
1444 /*
1445 * futex_validate_op_cmp(opcmp)
1446 *
1447 * Validate an op/cmp argument for FUTEX_WAKE_OP.
1448 */
1449 static int
1450 futex_validate_op_cmp(int opcmp)
1451 {
1452 int op = __SHIFTOUT(opcmp, FUTEX_OP_OP_MASK);
1453 int cmp = __SHIFTOUT(opcmp, FUTEX_OP_CMP_MASK);
1454
1455 if (op & FUTEX_OP_OPARG_SHIFT) {
1456 int oparg =
1457 futex_opcmp_arg(__SHIFTOUT(opcmp, FUTEX_OP_OPARG_MASK));
1458 if (oparg < 0)
1459 return EINVAL;
1460 if (oparg >= 32)
1461 return EINVAL;
1462 op &= ~FUTEX_OP_OPARG_SHIFT;
1463 }
1464
1465 switch (op) {
1466 case FUTEX_OP_SET:
1467 case FUTEX_OP_ADD:
1468 case FUTEX_OP_OR:
1469 case FUTEX_OP_ANDN:
1470 case FUTEX_OP_XOR:
1471 break;
1472 default:
1473 return EINVAL;
1474 }
1475
1476 switch (cmp) {
1477 case FUTEX_OP_CMP_EQ:
1478 case FUTEX_OP_CMP_NE:
1479 case FUTEX_OP_CMP_LT:
1480 case FUTEX_OP_CMP_LE:
1481 case FUTEX_OP_CMP_GT:
1482 case FUTEX_OP_CMP_GE:
1483 break;
1484 default:
1485 return EINVAL;
1486 }
1487
1488 return 0;
1489 }
1490
1491 /*
1492 * futex_compute_op(oldval, opcmp)
1493 *
1494 * Apply a FUTEX_WAKE_OP operation to oldval.
1495 */
1496 static int
1497 futex_compute_op(int oldval, int opcmp)
1498 {
1499 int op = __SHIFTOUT(opcmp, FUTEX_OP_OP_MASK);
1500 int oparg = futex_opcmp_arg(__SHIFTOUT(opcmp, FUTEX_OP_OPARG_MASK));
1501
1502 if (op & FUTEX_OP_OPARG_SHIFT) {
1503 KASSERT(oparg >= 0);
1504 KASSERT(oparg < 32);
1505 oparg = 1u << oparg;
1506 op &= ~FUTEX_OP_OPARG_SHIFT;
1507 }
1508
1509 switch (op) {
1510 case FUTEX_OP_SET:
1511 return oparg;
1512
1513 case FUTEX_OP_ADD:
1514 /*
1515 * Avoid signed arithmetic overflow by doing
1516 * arithmetic unsigned and converting back to signed
1517 * at the end.
1518 */
1519 return (int)((unsigned)oldval + (unsigned)oparg);
1520
1521 case FUTEX_OP_OR:
1522 return oldval | oparg;
1523
1524 case FUTEX_OP_ANDN:
1525 return oldval & ~oparg;
1526
1527 case FUTEX_OP_XOR:
1528 return oldval ^ oparg;
1529
1530 default:
1531 panic("invalid futex op");
1532 }
1533 }
1534
1535 /*
1536 * futex_compute_cmp(oldval, opcmp)
1537 *
1538 * Apply a FUTEX_WAKE_OP comparison to oldval.
1539 */
1540 static bool
1541 futex_compute_cmp(int oldval, int opcmp)
1542 {
1543 int cmp = __SHIFTOUT(opcmp, FUTEX_OP_CMP_MASK);
1544 int cmparg = futex_opcmp_arg(__SHIFTOUT(opcmp, FUTEX_OP_CMPARG_MASK));
1545
1546 switch (cmp) {
1547 case FUTEX_OP_CMP_EQ:
1548 return (oldval == cmparg);
1549
1550 case FUTEX_OP_CMP_NE:
1551 return (oldval != cmparg);
1552
1553 case FUTEX_OP_CMP_LT:
1554 return (oldval < cmparg);
1555
1556 case FUTEX_OP_CMP_LE:
1557 return (oldval <= cmparg);
1558
1559 case FUTEX_OP_CMP_GT:
1560 return (oldval > cmparg);
1561
1562 case FUTEX_OP_CMP_GE:
1563 return (oldval >= cmparg);
1564
1565 default:
1566 panic("invalid futex cmp operation");
1567 }
1568 }
1569
1570 /*
1571 * futex_func_wake_op(uaddr, nwake@val, uaddr2, nwake2@val2, opcmp@val3,
1572 * retval)
1573 *
1574 * Implement futex(FUTEX_WAKE_OP):
1575 *
1576 * 1. Update *uaddr2 according to the r/m/w operation specified in
1577 * opcmp.
1578 *
1579 * 2. If uaddr is nonnull, wake up to nwake waiters at uaddr.
1580 *
1581 * 3. If what was previously at *uaddr2 matches the comparison
1582 * operation specified in opcmp, additionally wake up to nwake2
1583 * waiters at uaddr2.
1584 */
1585 static int
1586 futex_func_wake_op(bool shared, int *uaddr, int nwake, int *uaddr2, int nwake2,
1587 int opcmp, register_t *retval)
1588 {
1589 struct futex *f = NULL, *f2 = NULL;
1590 int oldval, newval, actual;
1591 unsigned nwoken = 0;
1592 int error;
1593
1594 /* Reject negative number of wakeups. */
1595 if (nwake < 0 || nwake2 < 0) {
1596 error = EINVAL;
1597 goto out;
1598 }
1599
1600 /* Reject invalid operations before we start doing things. */
1601 if ((error = futex_validate_op_cmp(opcmp)) != 0)
1602 goto out;
1603
1604 /* Look up the first futex, if any. */
1605 error = futex_lookup(uaddr, shared, &f);
1606 if (error)
1607 goto out;
1608
1609 /* Look up the second futex, if any. */
1610 error = futex_lookup(uaddr2, shared, &f2);
1611 if (error)
1612 goto out;
1613
1614 /*
1615 * Under the queue locks:
1616 *
1617 * 1. Read/modify/write: *uaddr2 op= oparg, as in opcmp.
1618 * 2. Unconditionally wake uaddr.
1619 * 3. Conditionally wake uaddr2, if it previously matched the
1620 * comparison in opcmp.
1621 */
1622 futex_queue_lock2(f, f2);
1623 do {
1624 error = futex_load(uaddr2, &oldval);
1625 if (error)
1626 goto out_unlock;
1627 newval = futex_compute_op(oldval, opcmp);
1628 error = ucas_int(uaddr2, oldval, newval, &actual);
1629 if (error)
1630 goto out_unlock;
1631 } while (actual != oldval);
1632 if (f == NULL) {
1633 nwoken = 0;
1634 } else {
1635 nwoken = futex_wake(f, nwake, NULL, /*nrequeue*/0,
1636 FUTEX_BITSET_MATCH_ANY);
1637 }
1638 if (f2 && futex_compute_cmp(oldval, opcmp)) {
1639 nwoken += futex_wake(f2, nwake2, NULL, /*nrequeue*/0,
1640 FUTEX_BITSET_MATCH_ANY);
1641 }
1642
1643 /* Success! */
1644 error = 0;
1645 out_unlock:
1646 futex_queue_unlock2(f, f2);
1647
1648 out:
1649 /* Return the number of waiters woken. */
1650 *retval = nwoken;
1651
1652 /* Release the futexes, if we got them. */
1653 if (f2)
1654 futex_rele(f2);
1655 if (f)
1656 futex_rele(f);
1657 return error;
1658 }
1659
1660 /*
1661 * do_futex(uaddr, op, val, timeout, uaddr2, val2, val3)
1662 *
1663 * Implement the futex system call with all the parameters
1664 * parsed out.
1665 */
1666 int
1667 do_futex(int *uaddr, int op, int val, const struct timespec *timeout,
1668 int *uaddr2, int val2, int val3, register_t *retval)
1669 {
1670 const bool shared = (op & FUTEX_PRIVATE_FLAG) ? false : true;
1671 const clockid_t clkid = (op & FUTEX_CLOCK_REALTIME) ? CLOCK_REALTIME
1672 : CLOCK_MONOTONIC;
1673
1674 op &= FUTEX_CMD_MASK;
1675
1676 switch (op) {
1677 case FUTEX_WAIT: {
1678 const int cmpval = val;
1679 const int bitset = FUTEX_BITSET_MATCH_ANY;
1680
1681 return futex_func_wait(shared, uaddr, cmpval, bitset, timeout,
1682 clkid, TIMER_RELTIME, retval);
1683 }
1684 case FUTEX_WAKE: {
1685 const int nwake = val;
1686 const int bitset = FUTEX_BITSET_MATCH_ANY;
1687
1688 return futex_func_wake(shared, uaddr, nwake, bitset, retval);
1689 }
1690 case FUTEX_WAKE_BITSET: {
1691 const int nwake = val;
1692 const int bitset = val3;
1693
1694 return futex_func_wake(shared, uaddr, nwake, bitset, retval);
1695 }
1696 case FUTEX_REQUEUE:
1697 case FUTEX_CMP_REQUEUE: {
1698 const int nwake = val;
1699 const int nrequeue = val2;
1700 const int cmpval = val3; /* ignored if op=FUTEX_REQUEUE */
1701
1702 return futex_func_requeue(shared, op, uaddr, nwake, uaddr2,
1703 nrequeue, cmpval, retval);
1704 }
1705 case FUTEX_WAIT_BITSET: {
1706 const int cmpval = val;
1707 const int bitset = val3;
1708
1709 return futex_func_wait(shared, uaddr, cmpval, bitset, timeout,
1710 clkid, TIMER_ABSTIME, retval);
1711 }
1712 case FUTEX_WAKE_OP: {
1713 const int nwake = val;
1714 const int nwake2 = val2;
1715 const int opcmp = val3;
1716
1717 return futex_func_wake_op(shared, uaddr, nwake, uaddr2, nwake2,
1718 opcmp, retval);
1719 }
1720 case FUTEX_FD:
1721 default:
1722 return ENOSYS;
1723 }
1724 }
1725
1726 /*
1727 * sys___futex(l, uap, retval)
1728 *
1729 * __futex(2) system call: generic futex operations.
1730 */
1731 int
1732 sys___futex(struct lwp *l, const struct sys___futex_args *uap,
1733 register_t *retval)
1734 {
1735 /* {
1736 syscallarg(int *) uaddr;
1737 syscallarg(int) op;
1738 syscallarg(int) val;
1739 syscallarg(const struct timespec *) timeout;
1740 syscallarg(int *) uaddr2;
1741 syscallarg(int) val2;
1742 syscallarg(int) val3;
1743 } */
1744 struct timespec ts, *tsp;
1745 int error;
1746
1747 /*
1748 * Copy in the timeout argument, if specified.
1749 */
1750 if (SCARG(uap, timeout)) {
1751 error = copyin(SCARG(uap, timeout), &ts, sizeof(ts));
1752 if (error)
1753 return error;
1754 tsp = &ts;
1755 } else {
1756 tsp = NULL;
1757 }
1758
1759 return do_futex(SCARG(uap, uaddr), SCARG(uap, op), SCARG(uap, val),
1760 tsp, SCARG(uap, uaddr2), SCARG(uap, val2), SCARG(uap, val3),
1761 retval);
1762 }
1763
1764 /*
1765 * sys___futex_set_robust_list(l, uap, retval)
1766 *
1767 * __futex_set_robust_list(2) system call for robust futexes.
1768 */
1769 int
1770 sys___futex_set_robust_list(struct lwp *l,
1771 const struct sys___futex_set_robust_list_args *uap, register_t *retval)
1772 {
1773 /* {
1774 syscallarg(void *) head;
1775 syscallarg(size_t) len;
1776 } */
1777 void *head = SCARG(uap, head);
1778
1779 if (SCARG(uap, len) != _FUTEX_ROBUST_HEAD_SIZE)
1780 return EINVAL;
1781 if ((uintptr_t)head % sizeof(u_long))
1782 return EINVAL;
1783
1784 l->l_robust_head = (uintptr_t)head;
1785
1786 return 0;
1787 }
1788
1789 /*
1790 * sys___futex_get_robust_list(l, uap, retval)
1791 *
1792 * __futex_get_robust_list(2) system call for robust futexes.
1793 */
1794 int
1795 sys___futex_get_robust_list(struct lwp *l,
1796 const struct sys___futex_get_robust_list_args *uap, register_t *retval)
1797 {
1798 /* {
1799 syscallarg(lwpid_t) lwpid;
1800 syscallarg(void **) headp;
1801 syscallarg(size_t *) lenp;
1802 } */
1803 void *head;
1804 const size_t len = _FUTEX_ROBUST_HEAD_SIZE;
1805 int error;
1806
1807 error = futex_robust_head_lookup(l, SCARG(uap, lwpid), &head);
1808 if (error)
1809 return error;
1810
1811 /* Copy out the head pointer and the head structure length. */
1812 error = copyout(&head, SCARG(uap, headp), sizeof(head));
1813 if (__predict_true(error == 0)) {
1814 error = copyout(&len, SCARG(uap, lenp), sizeof(len));
1815 }
1816
1817 return error;
1818 }
1819
1820 /*
1821 * release_futex(uva, tid)
1822 *
1823 * Try to release the robust futex at uva in the current process
1824 * on lwp exit. If anything goes wrong, silently fail. It is the
1825 * userland program's obligation to arrange correct behaviour.
1826 */
1827 static void
1828 release_futex(uintptr_t const uptr, lwpid_t const tid, bool const is_pi,
1829 bool const is_pending)
1830 {
1831 int *uaddr;
1832 struct futex *f;
1833 int oldval, newval, actual;
1834 int error;
1835
1836 /* If it's misaligned, tough. */
1837 if (__predict_false(uptr & 3))
1838 return;
1839 uaddr = (int *)uptr;
1840
1841 error = futex_load(uaddr, &oldval);
1842 if (__predict_false(error))
1843 return;
1844
1845 /*
1846 * There are two race conditions we need to handle here:
1847 *
1848 * 1. User space cleared the futex word but died before
1849 * being able to issue the wakeup. No wakeups will
1850 * ever be issued, oops!
1851 *
1852 * 2. Awakened waiter died before being able to acquire
1853 * the futex in user space. Any other waiters are
1854 * now stuck, oops!
1855 *
1856 * In both of these cases, the futex word will be 0 (because
1857 * it's updated before the wake is issued). The best we can
1858 * do is detect this situation if it's the pending futex and
1859 * issue a wake without modifying the futex word.
1860 *
1861 * XXX eventual PI handling?
1862 */
1863 if (__predict_false(is_pending && (oldval & ~FUTEX_WAITERS) == 0)) {
1864 register_t retval;
1865 (void) futex_func_wake(/*shared*/true, uaddr, 1,
1866 FUTEX_BITSET_MATCH_ANY, &retval);
1867 return;
1868 }
1869
1870 /* Optimistically test whether we need to do anything at all. */
1871 if ((oldval & FUTEX_TID_MASK) != tid)
1872 return;
1873
1874 /*
1875 * We need to handle the case where this thread owned the futex,
1876 * but it was uncontended. In this case, there won't be any
1877 * kernel state to look up. All we can do is mark the futex
1878 * as a zombie to be mopped up the next time another thread
1879 * attempts to acquire it.
1880 *
1881 * N.B. It's important to ensure to set FUTEX_OWNER_DIED in
1882 * this loop, even if waiters appear while we're are doing
1883 * so. This is beause FUTEX_WAITERS is set by user space
1884 * before calling __futex() to wait, and the futex needs
1885 * to be marked as a zombie when the new waiter gets into
1886 * the kernel.
1887 */
1888 if ((oldval & FUTEX_WAITERS) == 0) {
1889 do {
1890 error = futex_load(uaddr, &oldval);
1891 if (error)
1892 return;
1893 if ((oldval & FUTEX_TID_MASK) != tid)
1894 return;
1895 newval = oldval | FUTEX_OWNER_DIED;
1896 error = ucas_int(uaddr, oldval, newval, &actual);
1897 if (error)
1898 return;
1899 } while (actual != oldval);
1900
1901 /*
1902 * If where is still no indication of waiters, then there is
1903 * no more work for us to do.
1904 */
1905 if ((oldval & FUTEX_WAITERS) == 0)
1906 return;
1907 }
1908
1909 /*
1910 * Look for a shared futex since we have no positive indication
1911 * it is private. If we can't, tough.
1912 */
1913 error = futex_lookup(uaddr, /*shared*/true, &f);
1914 if (error)
1915 return;
1916
1917 /*
1918 * If there's no kernel state for this futex, there's nothing to
1919 * release.
1920 */
1921 if (f == NULL)
1922 return;
1923
1924 /* Work under the futex queue lock. */
1925 futex_queue_lock(f);
1926
1927 /*
1928 * Fetch the word: if the tid doesn't match ours, skip;
1929 * otherwise, set the owner-died bit, atomically.
1930 */
1931 do {
1932 error = futex_load(uaddr, &oldval);
1933 if (error)
1934 goto out;
1935 if ((oldval & FUTEX_TID_MASK) != tid)
1936 goto out;
1937 newval = oldval | FUTEX_OWNER_DIED;
1938 error = ucas_int(uaddr, oldval, newval, &actual);
1939 if (error)
1940 goto out;
1941 } while (actual != oldval);
1942
1943 /*
1944 * If there may be waiters, try to wake one. If anything goes
1945 * wrong, tough.
1946 *
1947 * XXX eventual PI handling?
1948 */
1949 if (oldval & FUTEX_WAITERS) {
1950 (void)futex_wake(f, /*nwake*/1, NULL, /*nrequeue*/0,
1951 FUTEX_BITSET_MATCH_ANY);
1952 }
1953
1954 /* Unlock the queue and release the futex. */
1955 out: futex_queue_unlock(f);
1956 futex_rele(f);
1957 }
1958
1959 /*
1960 * futex_robust_head_lookup(l, lwpid)
1961 *
1962 * Helper function to look up a robust head by LWP ID.
1963 */
1964 int
1965 futex_robust_head_lookup(struct lwp *l, lwpid_t lwpid, void **headp)
1966 {
1967 struct proc *p = l->l_proc;
1968
1969 /* Find the other lwp, if requested; otherwise use our robust head. */
1970 if (lwpid) {
1971 mutex_enter(p->p_lock);
1972 l = lwp_find(p, lwpid);
1973 if (l == NULL) {
1974 mutex_exit(p->p_lock);
1975 return ESRCH;
1976 }
1977 *headp = (void *)l->l_robust_head;
1978 mutex_exit(p->p_lock);
1979 } else {
1980 *headp = (void *)l->l_robust_head;
1981 }
1982 return 0;
1983 }
1984
1985 /*
1986 * futex_fetch_robust_head(uaddr)
1987 *
1988 * Helper routine to fetch the futex robust list head that
1989 * handles 32-bit binaries running on 64-bit kernels.
1990 */
1991 static int
1992 futex_fetch_robust_head(uintptr_t uaddr, u_long *rhead)
1993 {
1994 #ifdef _LP64
1995 if (curproc->p_flag & PK_32) {
1996 uint32_t rhead32[_FUTEX_ROBUST_HEAD_NWORDS];
1997 int error;
1998
1999 error = copyin((void *)uaddr, rhead32, sizeof(rhead32));
2000 if (__predict_true(error == 0)) {
2001 for (int i = 0; i < _FUTEX_ROBUST_HEAD_NWORDS; i++) {
2002 if (i == _FUTEX_ROBUST_HEAD_OFFSET) {
2003 /*
2004 * Make sure the offset is sign-
2005 * extended.
2006 */
2007 rhead[i] = (int32_t)rhead32[i];
2008 } else {
2009 rhead[i] = rhead32[i];
2010 }
2011 }
2012 }
2013 return error;
2014 }
2015 #endif /* _L64 */
2016
2017 return copyin((void *)uaddr, rhead,
2018 sizeof(*rhead) * _FUTEX_ROBUST_HEAD_NWORDS);
2019 }
2020
2021 /*
2022 * futex_decode_robust_word(word)
2023 *
2024 * Decode a robust futex list word into the entry and entry
2025 * properties.
2026 */
2027 static inline void
2028 futex_decode_robust_word(uintptr_t const word, uintptr_t * const entry,
2029 bool * const is_pi)
2030 {
2031 *is_pi = (word & _FUTEX_ROBUST_ENTRY_PI) ? true : false;
2032 *entry = word & ~_FUTEX_ROBUST_ENTRY_PI;
2033 }
2034
2035 /*
2036 * futex_fetch_robust_entry(uaddr)
2037 *
2038 * Helper routine to fetch and decode a robust futex entry
2039 * that handles 32-bit binaries running on 64-bit kernels.
2040 */
2041 static int
2042 futex_fetch_robust_entry(uintptr_t const uaddr, uintptr_t * const valp,
2043 bool * const is_pi)
2044 {
2045 uintptr_t val = 0;
2046 int error = 0;
2047
2048 #ifdef _LP64
2049 if (curproc->p_flag & PK_32) {
2050 uint32_t val32;
2051
2052 error = ufetch_32((uint32_t *)uaddr, &val32);
2053 if (__predict_true(error == 0))
2054 val = val32;
2055 } else
2056 #endif /* _LP64 */
2057 error = ufetch_long((u_long *)uaddr, (u_long *)&val);
2058 if (__predict_false(error))
2059 return error;
2060
2061 futex_decode_robust_word(val, valp, is_pi);
2062 return 0;
2063 }
2064
2065 /*
2066 * futex_release_all_lwp(l, tid)
2067 *
2068 * Release all l's robust futexes. If anything looks funny in
2069 * the process, give up -- it's userland's responsibility to dot
2070 * the i's and cross the t's.
2071 */
2072 void
2073 futex_release_all_lwp(struct lwp * const l)
2074 {
2075 u_long rhead[_FUTEX_ROBUST_HEAD_NWORDS];
2076 int limit = 1000000;
2077 int error;
2078
2079 /* If there's no robust list there's nothing to do. */
2080 if (l->l_robust_head == 0)
2081 return;
2082
2083 KASSERT((l->l_lid & FUTEX_TID_MASK) == l->l_lid);
2084
2085 /* Read the final snapshot of the robust list head. */
2086 error = futex_fetch_robust_head(l->l_robust_head, rhead);
2087 if (error) {
2088 printf("WARNING: pid %jd (%s) lwp %jd:"
2089 " unmapped robust futex list head\n",
2090 (uintmax_t)l->l_proc->p_pid, l->l_proc->p_comm,
2091 (uintmax_t)l->l_lid);
2092 return;
2093 }
2094
2095 const long offset = (long)rhead[_FUTEX_ROBUST_HEAD_OFFSET];
2096
2097 uintptr_t next, pending;
2098 bool is_pi, pending_is_pi;
2099
2100 futex_decode_robust_word(rhead[_FUTEX_ROBUST_HEAD_LIST],
2101 &next, &is_pi);
2102 futex_decode_robust_word(rhead[_FUTEX_ROBUST_HEAD_PENDING],
2103 &pending, &pending_is_pi);
2104
2105 /*
2106 * Walk down the list of locked futexes and release them, up
2107 * to one million of them before we give up.
2108 */
2109
2110 while (next != l->l_robust_head && limit-- > 0) {
2111 /* pending handled below. */
2112 if (next != pending)
2113 release_futex(next + offset, l->l_lid, is_pi, false);
2114 error = futex_fetch_robust_entry(next, &next, &is_pi);
2115 if (error)
2116 break;
2117 preempt_point();
2118 }
2119 if (limit <= 0) {
2120 printf("WARNING: pid %jd (%s) lwp %jd:"
2121 " exhausted robust futex limit\n",
2122 (uintmax_t)l->l_proc->p_pid, l->l_proc->p_comm,
2123 (uintmax_t)l->l_lid);
2124 }
2125
2126 /* If there's a pending futex, it may need to be released too. */
2127 if (pending != 0) {
2128 release_futex(pending + offset, l->l_lid, pending_is_pi, true);
2129 }
2130 }
2131