Home | History | Annotate | Line # | Download | only in kern
sys_futex.c revision 1.5
      1 /*	$NetBSD: sys_futex.c,v 1.5 2020/04/28 00:54:24 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2018, 2019, 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Taylor R. Campbell and Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: sys_futex.c,v 1.5 2020/04/28 00:54:24 riastradh Exp $");
     34 
     35 /*
     36  * Futexes
     37  *
     38  *	The futex system call coordinates notifying threads waiting for
     39  *	changes on a 32-bit word of memory.  The word can be managed by
     40  *	CPU atomic operations in userland, without system calls, as long
     41  *	as there is no contention.
     42  *
     43  *	The simplest use case demonstrating the utility is:
     44  *
     45  *		// 32-bit word of memory shared among threads or
     46  *		// processes in userland.  lock & 1 means owned;
     47  *		// lock & 2 means there are waiters waiting.
     48  *		volatile int lock = 0;
     49  *
     50  *		int v;
     51  *
     52  *		// Acquire a lock.
     53  *		do {
     54  *			v = lock;
     55  *			if (v & 1) {
     56  *				// Lock is held.  Set a bit to say that
     57  *				// there are waiters, and wait for lock
     58  *				// to change to anything other than v;
     59  *				// then retry.
     60  *				if (atomic_cas_uint(&lock, v, v | 2) != v)
     61  *					continue;
     62  *				futex(FUTEX_WAIT, &lock, v | 2, NULL, NULL, 0);
     63  *				continue;
     64  *			}
     65  *		} while (atomic_cas_uint(&lock, v, v & ~1) != v);
     66  *		membar_enter();
     67  *
     68  *		...
     69  *
     70  *		// Release the lock.  Optimistically assume there are
     71  *		// no waiters first until demonstrated otherwise.
     72  *		membar_exit();
     73  *		if (atomic_cas_uint(&lock, 1, 0) != 1) {
     74  *			// There may be waiters.
     75  *			v = atomic_swap_uint(&lock, 0);
     76  *			// If there are still waiters, wake one.
     77  *			if (v & 2)
     78  *				futex(FUTEX_WAKE, &lock, 1, NULL, NULL, 0);
     79  *		}
     80  *
     81  *	The goal is to avoid the futex system call unless there is
     82  *	contention; then if there is contention, to guarantee no missed
     83  *	wakeups.
     84  *
     85  *	For a simple implementation, futex(FUTEX_WAIT) could queue
     86  *	itself to be woken, double-check the lock word, and then sleep;
     87  *	spurious wakeups are generally a fact of life, so any
     88  *	FUTEX_WAKE could just wake every FUTEX_WAIT in the system.
     89  *
     90  *	If this were all there is to it, we could then increase
     91  *	parallelism by refining the approximation: partition the
     92  *	waiters into buckets by hashing the lock addresses to reduce
     93  *	the incidence of spurious wakeups.  But this is not all.
     94  *
     95  *	The futex(FUTEX_CMP_REQUEUE, &lock, n, &lock2, m, val)
     96  *	operation not only wakes n waiters on lock if lock == val, but
     97  *	also _transfers_ m additional waiters to lock2.  Unless wakeups
     98  *	on lock2 also trigger wakeups on lock, we cannot move waiters
     99  *	to lock2 if they merely share the same hash as waiters on lock.
    100  *	Thus, we can't approximately distribute waiters into queues by
    101  *	a hash function; we must distinguish futex queues exactly by
    102  *	lock address.
    103  *
    104  *	For now, we use a global red/black tree to index futexes.  This
    105  *	should be replaced by a lockless radix tree with a thread to
    106  *	free entries no longer in use once all lookups on all CPUs have
    107  *	completed.
    108  *
    109  *	Specifically, we maintain two maps:
    110  *
    111  *	futex_tab.va[vmspace, va] for private futexes
    112  *	futex_tab.oa[uvm_voaddr] for shared futexes
    113  *
    114  *	This implementation does not support priority inheritance.
    115  */
    116 
    117 #include <sys/types.h>
    118 #include <sys/atomic.h>
    119 #include <sys/condvar.h>
    120 #include <sys/futex.h>
    121 #include <sys/mutex.h>
    122 #include <sys/rbtree.h>
    123 #include <sys/queue.h>
    124 
    125 #include <sys/syscall.h>
    126 #include <sys/syscallargs.h>
    127 #include <sys/syscallvar.h>
    128 
    129 #include <uvm/uvm_extern.h>
    130 
    131 /*
    132  * Lock order:
    133  *
    134  *	futex_tab.lock
    135  *	futex::fx_qlock			ordered by kva of struct futex
    136  *	 -> futex_wait::fw_lock		only one at a time
    137  *	futex_wait::fw_lock		only one at a time
    138  *	 -> futex::fx_abortlock		only one at a time
    139  */
    140 
    141 /*
    142  * union futex_key
    143  *
    144  *	A futex is addressed either by a vmspace+va (private) or by
    145  *	a uvm_voaddr (shared).
    146  */
    147 union futex_key {
    148 	struct {
    149 		struct vmspace			*vmspace;
    150 		vaddr_t				va;
    151 	}			fk_private;
    152 	struct uvm_voaddr	fk_shared;
    153 };
    154 
    155 /*
    156  * struct futex
    157  *
    158  *	Kernel state for a futex located at a particular address in a
    159  *	particular virtual address space.
    160  *
    161  *	N.B. fx_refcnt is an unsigned long because we need to be able
    162  *	to operate on it atomically on all systems while at the same
    163  *	time rendering practically impossible the chance of it reaching
    164  *	its max value.  In practice, we're limited by the number of LWPs
    165  *	that can be present on the system at any given time, and the
    166  *	assumption is that limit will be good enough on a 32-bit platform.
    167  *	See futex_wake() for why overflow needs to be avoided.
    168  */
    169 struct futex {
    170 	union futex_key		fx_key;
    171 	unsigned long		fx_refcnt;
    172 	bool			fx_shared;
    173 	bool			fx_on_tree;
    174 	struct rb_node		fx_node;
    175 
    176 	kmutex_t			fx_qlock;
    177 	TAILQ_HEAD(, futex_wait)	fx_queue;
    178 
    179 	kmutex_t			fx_abortlock;
    180 	LIST_HEAD(, futex_wait)		fx_abortlist;
    181 	kcondvar_t			fx_abortcv;
    182 };
    183 
    184 /*
    185  * struct futex_wait
    186  *
    187  *	State for a thread to wait on a futex.  Threads wait on fw_cv
    188  *	for fw_bitset to be set to zero.  The thread may transition to
    189  *	a different futex queue at any time under the futex's lock.
    190  */
    191 struct futex_wait {
    192 	kmutex_t		fw_lock;
    193 	kcondvar_t		fw_cv;
    194 	struct futex		*fw_futex;
    195 	TAILQ_ENTRY(futex_wait)	fw_entry;	/* queue lock */
    196 	LIST_ENTRY(futex_wait)	fw_abort;	/* queue abortlock */
    197 	int			fw_bitset;
    198 	bool			fw_aborting;	/* fw_lock */
    199 };
    200 
    201 /*
    202  * futex_tab
    203  *
    204  *	Global trees of futexes by vmspace/va and VM object address.
    205  *
    206  *	XXX This obviously doesn't scale in parallel.  We could use a
    207  *	pserialize-safe data structure, but there may be a high cost to
    208  *	frequent deletion since we don't cache futexes after we're done
    209  *	with them.  We could use hashed locks.  But for now, just make
    210  *	sure userland can't DoS the serial performance, by using a
    211  *	balanced binary tree for lookup.
    212  *
    213  *	XXX We could use a per-process tree for the table indexed by
    214  *	virtual address to reduce contention between processes.
    215  */
    216 static struct {
    217 	kmutex_t	lock;
    218 	struct rb_tree	va;
    219 	struct rb_tree	oa;
    220 } futex_tab __cacheline_aligned;
    221 
    222 static int
    223 compare_futex_key(void *cookie, const void *n, const void *k)
    224 {
    225 	const struct futex *fa = n;
    226 	const union futex_key *fka = &fa->fx_key;
    227 	const union futex_key *fkb = k;
    228 
    229 	if ((uintptr_t)fka->fk_private.vmspace <
    230 	    (uintptr_t)fkb->fk_private.vmspace)
    231 		return -1;
    232 	if ((uintptr_t)fka->fk_private.vmspace >
    233 	    (uintptr_t)fkb->fk_private.vmspace)
    234 		return +1;
    235 	if (fka->fk_private.va < fkb->fk_private.va)
    236 		return -1;
    237 	if (fka->fk_private.va > fkb->fk_private.va)
    238 		return -1;
    239 	return 0;
    240 }
    241 
    242 static int
    243 compare_futex(void *cookie, const void *na, const void *nb)
    244 {
    245 	const struct futex *fa = na;
    246 	const struct futex *fb = nb;
    247 
    248 	return compare_futex_key(cookie, fa, &fb->fx_key);
    249 }
    250 
    251 static const rb_tree_ops_t futex_rb_ops = {
    252 	.rbto_compare_nodes = compare_futex,
    253 	.rbto_compare_key = compare_futex_key,
    254 	.rbto_node_offset = offsetof(struct futex, fx_node),
    255 };
    256 
    257 static int
    258 compare_futex_shared_key(void *cookie, const void *n, const void *k)
    259 {
    260 	const struct futex *fa = n;
    261 	const union futex_key *fka = &fa->fx_key;
    262 	const union futex_key *fkb = k;
    263 
    264 	return uvm_voaddr_compare(&fka->fk_shared, &fkb->fk_shared);
    265 }
    266 
    267 static int
    268 compare_futex_shared(void *cookie, const void *na, const void *nb)
    269 {
    270 	const struct futex *fa = na;
    271 	const struct futex *fb = nb;
    272 
    273 	return compare_futex_shared_key(cookie, fa, &fb->fx_key);
    274 }
    275 
    276 static const rb_tree_ops_t futex_shared_rb_ops = {
    277 	.rbto_compare_nodes = compare_futex_shared,
    278 	.rbto_compare_key = compare_futex_shared_key,
    279 	.rbto_node_offset = offsetof(struct futex, fx_node),
    280 };
    281 
    282 static void	futex_wait_dequeue(struct futex_wait *, struct futex *);
    283 
    284 /*
    285  * futex_load(uaddr, kaddr)
    286  *
    287  *	Perform a single atomic load to read *uaddr, and return the
    288  *	result in *kaddr.  Return 0 on success, EFAULT if uaddr is not
    289  *	mapped.
    290  */
    291 static inline int
    292 futex_load(int *uaddr, int *kaddr)
    293 {
    294 	return ufetch_int((u_int *)uaddr, (u_int *)kaddr);
    295 }
    296 
    297 /*
    298  * futex_test(uaddr, expected)
    299  *
    300  *	True if *uaddr == expected.  False if *uaddr != expected, or if
    301  *	uaddr is not mapped.
    302  */
    303 static bool
    304 futex_test(int *uaddr, int expected)
    305 {
    306 	int val;
    307 	int error;
    308 
    309 	error = futex_load(uaddr, &val);
    310 	if (error)
    311 		return false;
    312 	return val == expected;
    313 }
    314 
    315 /*
    316  * futex_sys_init()
    317  *
    318  *	Initialize the futex subsystem.
    319  */
    320 void
    321 futex_sys_init(void)
    322 {
    323 
    324 	mutex_init(&futex_tab.lock, MUTEX_DEFAULT, IPL_NONE);
    325 	rb_tree_init(&futex_tab.va, &futex_rb_ops);
    326 	rb_tree_init(&futex_tab.oa, &futex_shared_rb_ops);
    327 }
    328 
    329 /*
    330  * futex_sys_fini()
    331  *
    332  *	Finalize the futex subsystem.
    333  */
    334 void
    335 futex_sys_fini(void)
    336 {
    337 
    338 	KASSERT(RB_TREE_MIN(&futex_tab.oa) == NULL);
    339 	KASSERT(RB_TREE_MIN(&futex_tab.va) == NULL);
    340 	mutex_destroy(&futex_tab.lock);
    341 }
    342 
    343 /*
    344  * futex_queue_init(f)
    345  *
    346  *	Initialize the futex queue.  Caller must call futex_queue_fini
    347  *	when done.
    348  *
    349  *	Never sleeps.
    350  */
    351 static void
    352 futex_queue_init(struct futex *f)
    353 {
    354 
    355 	mutex_init(&f->fx_qlock, MUTEX_DEFAULT, IPL_NONE);
    356 	mutex_init(&f->fx_abortlock, MUTEX_DEFAULT, IPL_NONE);
    357 	cv_init(&f->fx_abortcv, "fqabort");
    358 	LIST_INIT(&f->fx_abortlist);
    359 	TAILQ_INIT(&f->fx_queue);
    360 }
    361 
    362 /*
    363  * futex_queue_drain(f)
    364  *
    365  *	Wait for any aborting waiters in f; then empty the queue of
    366  *	any stragglers and wake them.  Caller must guarantee no new
    367  *	references to f.
    368  *
    369  *	May sleep.
    370  */
    371 static void
    372 futex_queue_drain(struct futex *f)
    373 {
    374 	struct futex_wait *fw, *fw_next;
    375 
    376 	mutex_enter(&f->fx_abortlock);
    377 	while (!LIST_EMPTY(&f->fx_abortlist))
    378 		cv_wait(&f->fx_abortcv, &f->fx_abortlock);
    379 	mutex_exit(&f->fx_abortlock);
    380 
    381 	mutex_enter(&f->fx_qlock);
    382 	TAILQ_FOREACH_SAFE(fw, &f->fx_queue, fw_entry, fw_next) {
    383 		mutex_enter(&fw->fw_lock);
    384 		futex_wait_dequeue(fw, f);
    385 		cv_broadcast(&fw->fw_cv);
    386 		mutex_exit(&fw->fw_lock);
    387 	}
    388 	mutex_exit(&f->fx_qlock);
    389 }
    390 
    391 /*
    392  * futex_queue_fini(fq)
    393  *
    394  *	Finalize the futex queue initialized by futex_queue_init.  Queue
    395  *	must be empty.  Caller must not use f again until a subsequent
    396  *	futex_queue_init.
    397  */
    398 static void
    399 futex_queue_fini(struct futex *f)
    400 {
    401 
    402 	KASSERT(TAILQ_EMPTY(&f->fx_queue));
    403 	KASSERT(LIST_EMPTY(&f->fx_abortlist));
    404 	mutex_destroy(&f->fx_qlock);
    405 	mutex_destroy(&f->fx_abortlock);
    406 	cv_destroy(&f->fx_abortcv);
    407 }
    408 
    409 /*
    410  * futex_key_init(key, vm, va, shared)
    411  *
    412  *	Initialize a futex key for lookup, etc.
    413  */
    414 static int
    415 futex_key_init(union futex_key *fk, struct vmspace *vm, vaddr_t va, bool shared)
    416 {
    417 	int error = 0;
    418 
    419 	if (__predict_false(shared)) {
    420 		if (!uvm_voaddr_acquire(&vm->vm_map, va, &fk->fk_shared))
    421 			error = EFAULT;
    422 	} else {
    423 		fk->fk_private.vmspace = vm;
    424 		fk->fk_private.va = va;
    425 	}
    426 
    427 	return error;
    428 }
    429 
    430 /*
    431  * futex_key_fini(key, shared)
    432  *
    433  *	Release a futex key.
    434  */
    435 static void
    436 futex_key_fini(union futex_key *fk, bool shared)
    437 {
    438 	if (__predict_false(shared))
    439 		uvm_voaddr_release(&fk->fk_shared);
    440 	memset(fk, 0, sizeof(*fk));
    441 }
    442 
    443 /*
    444  * futex_create(fk, shared)
    445  *
    446  *	Create a futex.  Initial reference count is 1, representing the
    447  *	caller.  Returns NULL on failure.  Always takes ownership of the
    448  *	key, either transferring it to the newly-created futex, or releasing
    449  *	the key if creation fails.
    450  *
    451  *	Never sleeps for memory, but may sleep to acquire a lock.
    452  */
    453 static struct futex *
    454 futex_create(union futex_key *fk, bool shared)
    455 {
    456 	struct futex *f;
    457 
    458 	f = kmem_alloc(sizeof(*f), KM_NOSLEEP);
    459 	if (f == NULL) {
    460 		futex_key_fini(fk, shared);
    461 		return NULL;
    462 	}
    463 	f->fx_key = *fk;
    464 	f->fx_refcnt = 1;
    465 	f->fx_shared = shared;
    466 	f->fx_on_tree = false;
    467 	futex_queue_init(f);
    468 
    469 	return f;
    470 }
    471 
    472 /*
    473  * futex_destroy(f)
    474  *
    475  *	Destroy a futex created with futex_create.  Reference count
    476  *	must be zero.
    477  *
    478  *	May sleep.
    479  */
    480 static void
    481 futex_destroy(struct futex *f)
    482 {
    483 
    484 	ASSERT_SLEEPABLE();
    485 
    486 	KASSERT(atomic_load_relaxed(&f->fx_refcnt) == 0);
    487 	KASSERT(!f->fx_on_tree);
    488 
    489 	/* Drain and destroy the private queue.  */
    490 	futex_queue_drain(f);
    491 	futex_queue_fini(f);
    492 
    493 	futex_key_fini(&f->fx_key, f->fx_shared);
    494 
    495 	kmem_free(f, sizeof(*f));
    496 }
    497 
    498 /*
    499  * futex_hold(f)
    500  *
    501  *	Attempt to acquire a reference to f.  Return 0 on success,
    502  *	ENFILE on too many references.
    503  *
    504  *	Never sleeps.
    505  */
    506 static int
    507 futex_hold(struct futex *f)
    508 {
    509 	unsigned long refcnt;
    510 
    511 	do {
    512 		refcnt = atomic_load_relaxed(&f->fx_refcnt);
    513 		if (refcnt == ULONG_MAX)
    514 			return ENFILE;
    515 	} while (atomic_cas_ulong(&f->fx_refcnt, refcnt, refcnt + 1) != refcnt);
    516 
    517 	return 0;
    518 }
    519 
    520 /*
    521  * futex_rele(f)
    522  *
    523  *	Release a reference to f acquired with futex_create or
    524  *	futex_hold.
    525  *
    526  *	May sleep to free f.
    527  */
    528 static void
    529 futex_rele(struct futex *f)
    530 {
    531 	unsigned long refcnt;
    532 
    533 	ASSERT_SLEEPABLE();
    534 
    535 	do {
    536 		refcnt = atomic_load_relaxed(&f->fx_refcnt);
    537 		if (refcnt == 1)
    538 			goto trylast;
    539 	} while (atomic_cas_ulong(&f->fx_refcnt, refcnt, refcnt - 1) != refcnt);
    540 	return;
    541 
    542 trylast:
    543 	mutex_enter(&futex_tab.lock);
    544 	if (atomic_dec_ulong_nv(&f->fx_refcnt) == 0) {
    545 		if (f->fx_on_tree) {
    546 			if (__predict_false(f->fx_shared))
    547 				rb_tree_remove_node(&futex_tab.oa, f);
    548 			else
    549 				rb_tree_remove_node(&futex_tab.va, f);
    550 			f->fx_on_tree = false;
    551 		}
    552 	} else {
    553 		/* References remain -- don't destroy it.  */
    554 		f = NULL;
    555 	}
    556 	mutex_exit(&futex_tab.lock);
    557 	if (f != NULL)
    558 		futex_destroy(f);
    559 }
    560 
    561 /*
    562  * futex_rele_not_last(f)
    563  *
    564  *	Release a reference to f acquired with futex_create or
    565  *	futex_hold.
    566  *
    567  *	This version asserts that we are not dropping the last
    568  *	reference to f.
    569  */
    570 static void
    571 futex_rele_not_last(struct futex *f)
    572 {
    573 	unsigned long refcnt;
    574 
    575 	do {
    576 		refcnt = atomic_load_relaxed(&f->fx_refcnt);
    577 		KASSERT(refcnt > 1);
    578 	} while (atomic_cas_ulong(&f->fx_refcnt, refcnt, refcnt - 1) != refcnt);
    579 }
    580 
    581 /*
    582  * futex_lookup_by_key(key, shared, &f)
    583  *
    584  *	Try to find an existing futex va reference in the specified key
    585  *	On success, return 0, set f to found futex or to NULL if not found,
    586  *	and increment f's reference count if found.
    587  *
    588  *	Return ENFILE if reference count too high.
    589  *
    590  *	Internal lookup routine shared by futex_lookup() and
    591  *	futex_lookup_create().
    592  */
    593 static int
    594 futex_lookup_by_key(union futex_key *fk, bool shared, struct futex **fp)
    595 {
    596 	struct futex *f;
    597 	int error = 0;
    598 
    599 	mutex_enter(&futex_tab.lock);
    600 	if (__predict_false(shared)) {
    601 		f = rb_tree_find_node(&futex_tab.oa, fk);
    602 	} else {
    603 		f = rb_tree_find_node(&futex_tab.va, fk);
    604 	}
    605 	if (f) {
    606 		error = futex_hold(f);
    607 		if (error)
    608 			f = NULL;
    609 	}
    610  	*fp = f;
    611 	mutex_exit(&futex_tab.lock);
    612 
    613 	return error;
    614 }
    615 
    616 /*
    617  * futex_insert(f, fp)
    618  *
    619  *	Try to insert the futex f into the tree by va.  If there
    620  *	already is a futex for its va, acquire a reference to it, and
    621  *	store it in *fp; otherwise store f in *fp.
    622  *
    623  *	Return 0 on success, ENFILE if there already is a futex but its
    624  *	reference count is too high.
    625  */
    626 static int
    627 futex_insert(struct futex *f, struct futex **fp)
    628 {
    629 	struct futex *f0;
    630 	int error;
    631 
    632 	KASSERT(atomic_load_relaxed(&f->fx_refcnt) != 0);
    633 	KASSERT(!f->fx_on_tree);
    634 
    635 	mutex_enter(&futex_tab.lock);
    636 	if (__predict_false(f->fx_shared))
    637 		f0 = rb_tree_insert_node(&futex_tab.oa, f);
    638 	else
    639 		f0 = rb_tree_insert_node(&futex_tab.va, f);
    640 	if (f0 == f) {
    641 		f->fx_on_tree = true;
    642 		error = 0;
    643 	} else {
    644 		KASSERT(atomic_load_relaxed(&f0->fx_refcnt) != 0);
    645 		KASSERT(f0->fx_on_tree);
    646 		error = futex_hold(f0);
    647 		if (error)
    648 			goto out;
    649 	}
    650 	*fp = f0;
    651 out:	mutex_exit(&futex_tab.lock);
    652 
    653 	return error;
    654 }
    655 
    656 /*
    657  * futex_lookup(uaddr, shared, &f)
    658  *
    659  *	Find a futex at the userland pointer uaddr in the current
    660  *	process's VM space.  On success, return the futex in f and
    661  *	increment its reference count.
    662  *
    663  *	Caller must call futex_rele when done.
    664  */
    665 static int
    666 futex_lookup(int *uaddr, bool shared, struct futex **fp)
    667 {
    668 	union futex_key fk;
    669 	struct vmspace *vm = curproc->p_vmspace;
    670 	vaddr_t va = (vaddr_t)uaddr;
    671 	int error;
    672 
    673 	/*
    674 	 * Reject unaligned user pointers so we don't cross page
    675 	 * boundaries and so atomics will work.
    676 	 */
    677 	if ((va & 3) != 0)
    678 		return EINVAL;
    679 
    680 	/* Look it up. */
    681 	error = futex_key_init(&fk, vm, va, shared);
    682 	if (error)
    683 		return error;
    684 
    685 	error = futex_lookup_by_key(&fk, shared, fp);
    686 	futex_key_fini(&fk, shared);
    687 	if (error)
    688 		return error;
    689 
    690 	KASSERT(*fp == NULL || (*fp)->fx_shared == shared);
    691 	KASSERT(*fp == NULL || atomic_load_relaxed(&(*fp)->fx_refcnt) != 0);
    692 
    693 	/*
    694 	 * Success!  (Caller must still check whether we found
    695 	 * anything, but nothing went _wrong_ like trying to use
    696 	 * unmapped memory.)
    697 	 */
    698 	KASSERT(error == 0);
    699 
    700 	return error;
    701 }
    702 
    703 /*
    704  * futex_lookup_create(uaddr, shared, &f)
    705  *
    706  *	Find or create a futex at the userland pointer uaddr in the
    707  *	current process's VM space.  On success, return the futex in f
    708  *	and increment its reference count.
    709  *
    710  *	Caller must call futex_rele when done.
    711  */
    712 static int
    713 futex_lookup_create(int *uaddr, bool shared, struct futex **fp)
    714 {
    715 	union futex_key fk;
    716 	struct vmspace *vm = curproc->p_vmspace;
    717 	struct futex *f = NULL;
    718 	vaddr_t va = (vaddr_t)uaddr;
    719 	int error;
    720 
    721 	/*
    722 	 * Reject unaligned user pointers so we don't cross page
    723 	 * boundaries and so atomics will work.
    724 	 */
    725 	if ((va & 3) != 0)
    726 		return EINVAL;
    727 
    728 	error = futex_key_init(&fk, vm, va, shared);
    729 	if (error)
    730 		return error;
    731 
    732 	/*
    733 	 * Optimistically assume there already is one, and try to find
    734 	 * it.
    735 	 */
    736 	error = futex_lookup_by_key(&fk, shared, fp);
    737 	if (error || *fp != NULL) {
    738 		/*
    739 		 * We either found one, or there was an error.
    740 		 * In either case, we are done with the key.
    741 		 */
    742 		futex_key_fini(&fk, shared);
    743 		goto out;
    744 	}
    745 
    746 	/*
    747 	 * Create a futex recoard.  This tranfers ownership of the key
    748 	 * in all cases.
    749 	 */
    750 	f = futex_create(&fk, shared);
    751 	if (f == NULL) {
    752 		error = ENOMEM;
    753 		goto out;
    754 	}
    755 
    756 	/*
    757 	 * Insert our new futex, or use existing if someone else beat
    758 	 * us to it.
    759 	 */
    760 	error = futex_insert(f, fp);
    761 	if (error)
    762 		goto out;
    763 	if (*fp == f)
    764 		f = NULL;	/* don't release on exit */
    765 
    766 	/* Success!  */
    767 	KASSERT(error == 0);
    768 
    769 out:	if (f != NULL)
    770 		futex_rele(f);
    771 	KASSERT(error || *fp != NULL);
    772 	KASSERT(error || atomic_load_relaxed(&(*fp)->fx_refcnt) != 0);
    773 	return error;
    774 }
    775 
    776 /*
    777  * futex_wait_init(fw, bitset)
    778  *
    779  *	Initialize a record for a thread to wait on a futex matching
    780  *	the specified bit set.  Should be passed to futex_wait_enqueue
    781  *	before futex_wait, and should be passed to futex_wait_fini when
    782  *	done.
    783  */
    784 static void
    785 futex_wait_init(struct futex_wait *fw, int bitset)
    786 {
    787 
    788 	mutex_init(&fw->fw_lock, MUTEX_DEFAULT, IPL_NONE);
    789 	cv_init(&fw->fw_cv, "futex");
    790 	fw->fw_futex = NULL;
    791 	fw->fw_bitset = bitset;
    792 	fw->fw_aborting = false;
    793 }
    794 
    795 /*
    796  * futex_wait_fini(fw)
    797  *
    798  *	Finalize a record for a futex waiter.  Must not be on any
    799  *	futex's queue.
    800  */
    801 static void
    802 futex_wait_fini(struct futex_wait *fw)
    803 {
    804 
    805 	cv_destroy(&fw->fw_cv);
    806 	mutex_destroy(&fw->fw_lock);
    807 }
    808 
    809 /*
    810  * futex_wait_enqueue(fw, f)
    811  *
    812  *	Put fw on the futex queue.  Must be done before futex_wait.
    813  *	Caller must hold fw's lock and f's lock, and fw must not be on
    814  *	any existing futex's waiter list.
    815  */
    816 static void
    817 futex_wait_enqueue(struct futex_wait *fw, struct futex *f)
    818 {
    819 
    820 	KASSERT(mutex_owned(&f->fx_qlock));
    821 	KASSERT(mutex_owned(&fw->fw_lock));
    822 	KASSERT(fw->fw_futex == NULL);
    823 	KASSERT(!fw->fw_aborting);
    824 
    825 	fw->fw_futex = f;
    826 	TAILQ_INSERT_TAIL(&f->fx_queue, fw, fw_entry);
    827 }
    828 
    829 /*
    830  * futex_wait_dequeue(fw, f)
    831  *
    832  *	Remove fw from the futex queue.  Precludes subsequent
    833  *	futex_wait until a futex_wait_enqueue.  Caller must hold fw's
    834  *	lock and f's lock, and fw must be on f.
    835  */
    836 static void
    837 futex_wait_dequeue(struct futex_wait *fw, struct futex *f)
    838 {
    839 
    840 	KASSERT(mutex_owned(&f->fx_qlock));
    841 	KASSERT(mutex_owned(&fw->fw_lock));
    842 	KASSERT(fw->fw_futex == f);
    843 
    844 	TAILQ_REMOVE(&f->fx_queue, fw, fw_entry);
    845 	fw->fw_futex = NULL;
    846 }
    847 
    848 /*
    849  * futex_wait_abort(fw)
    850  *
    851  *	Caller is no longer waiting for fw.  Remove it from any queue
    852  *	if it was on one.  Caller must hold fw->fw_lock.
    853  */
    854 static void
    855 futex_wait_abort(struct futex_wait *fw)
    856 {
    857 	struct futex *f;
    858 
    859 	KASSERT(mutex_owned(&fw->fw_lock));
    860 
    861 	/*
    862 	 * Grab the futex queue.  It can't go away as long as we hold
    863 	 * fw_lock.  However, we can't take the queue lock because
    864 	 * that's a lock order reversal.
    865 	 */
    866 	f = fw->fw_futex;
    867 
    868 	/* Put us on the abort list so that fq won't go away.  */
    869 	mutex_enter(&f->fx_abortlock);
    870 	LIST_INSERT_HEAD(&f->fx_abortlist, fw, fw_abort);
    871 	mutex_exit(&f->fx_abortlock);
    872 
    873 	/*
    874 	 * Mark fw as aborting so it won't lose wakeups and won't be
    875 	 * transferred to any other queue.
    876 	 */
    877 	fw->fw_aborting = true;
    878 
    879 	/* f is now stable, so we can release fw_lock.  */
    880 	mutex_exit(&fw->fw_lock);
    881 
    882 	/* Now we can remove fw under the queue lock.  */
    883 	mutex_enter(&f->fx_qlock);
    884 	mutex_enter(&fw->fw_lock);
    885 	futex_wait_dequeue(fw, f);
    886 	mutex_exit(&fw->fw_lock);
    887 	mutex_exit(&f->fx_qlock);
    888 
    889 	/*
    890 	 * Finally, remove us from the abort list and notify anyone
    891 	 * waiting for the abort to complete if we were the last to go.
    892 	 */
    893 	mutex_enter(&f->fx_abortlock);
    894 	LIST_REMOVE(fw, fw_abort);
    895 	if (LIST_EMPTY(&f->fx_abortlist))
    896 		cv_broadcast(&f->fx_abortcv);
    897 	mutex_exit(&f->fx_abortlock);
    898 
    899 	/*
    900 	 * Release our reference to the futex now that we are not
    901 	 * waiting for it.
    902 	 */
    903 	futex_rele(f);
    904 
    905 	/*
    906 	 * Reacquire the fw lock as caller expects.  Verify that we're
    907 	 * aborting and no longer associated with a futex.
    908 	 */
    909 	mutex_enter(&fw->fw_lock);
    910 	KASSERT(fw->fw_aborting);
    911 	KASSERT(fw->fw_futex == NULL);
    912 }
    913 
    914 /*
    915  * futex_wait(fw, deadline, clkid)
    916  *
    917  *	fw must be a waiter on a futex's queue.  Wait until deadline on
    918  *	the clock clkid, or forever if deadline is NULL, for a futex
    919  *	wakeup.  Return 0 on explicit wakeup or destruction of futex,
    920  *	ETIMEDOUT on timeout, EINTR/ERESTART on signal.  Either way, fw
    921  *	will no longer be on a futex queue on return.
    922  */
    923 static int
    924 futex_wait(struct futex_wait *fw, const struct timespec *deadline,
    925     clockid_t clkid)
    926 {
    927 	int error = 0;
    928 
    929 	/* Test and wait under the wait lock.  */
    930 	mutex_enter(&fw->fw_lock);
    931 
    932 	for (;;) {
    933 		/* If we're done yet, stop and report success.  */
    934 		if (fw->fw_bitset == 0 || fw->fw_futex == NULL) {
    935 			error = 0;
    936 			break;
    937 		}
    938 
    939 		/* If anything went wrong in the last iteration, stop.  */
    940 		if (error)
    941 			break;
    942 
    943 		/* Not done yet.  Wait.  */
    944 		if (deadline) {
    945 			struct timespec ts;
    946 
    947 			/* Check our watch.  */
    948 			error = clock_gettime1(clkid, &ts);
    949 			if (error)
    950 				break;
    951 
    952 			/* If we're past the deadline, ETIMEDOUT.  */
    953 			if (timespeccmp(deadline, &ts, <=)) {
    954 				error = ETIMEDOUT;
    955 				break;
    956 			}
    957 
    958 			/* Count how much time is left.  */
    959 			timespecsub(deadline, &ts, &ts);
    960 
    961 			/* Wait for that much time, allowing signals.  */
    962 			error = cv_timedwait_sig(&fw->fw_cv, &fw->fw_lock,
    963 			    tstohz(&ts));
    964 		} else {
    965 			/* Wait indefinitely, allowing signals. */
    966 			error = cv_wait_sig(&fw->fw_cv, &fw->fw_lock);
    967 		}
    968 	}
    969 
    970 	/*
    971 	 * If we were woken up, the waker will have removed fw from the
    972 	 * queue.  But if anything went wrong, we must remove fw from
    973 	 * the queue ourselves.  While here, convert EWOULDBLOCK to
    974 	 * ETIMEDOUT.
    975 	 */
    976 	if (error) {
    977 		futex_wait_abort(fw);
    978 		if (error == EWOULDBLOCK)
    979 			error = ETIMEDOUT;
    980 	}
    981 
    982 	mutex_exit(&fw->fw_lock);
    983 
    984 	return error;
    985 }
    986 
    987 /*
    988  * futex_wake(f, nwake, f2, nrequeue, bitset)
    989  *
    990  *	Wake up to nwake waiters on f matching bitset; then, if f2 is
    991  *	provided, move up to nrequeue remaining waiters on f matching
    992  *	bitset to f2.  Return the number of waiters actually woken.
    993  *	Caller must hold the locks of f and f2, if provided.
    994  */
    995 static unsigned
    996 futex_wake(struct futex *f, unsigned nwake, struct futex *f2,
    997     unsigned nrequeue, int bitset)
    998 {
    999 	struct futex_wait *fw, *fw_next;
   1000 	unsigned nwoken = 0;
   1001 	int hold_error __diagused;
   1002 
   1003 	KASSERT(mutex_owned(&f->fx_qlock));
   1004 	KASSERT(f2 == NULL || mutex_owned(&f2->fx_qlock));
   1005 
   1006 	/* Wake up to nwake waiters, and count the number woken.  */
   1007 	TAILQ_FOREACH_SAFE(fw, &f->fx_queue, fw_entry, fw_next) {
   1008 		if ((fw->fw_bitset & bitset) == 0)
   1009 			continue;
   1010 		if (nwake > 0) {
   1011 			mutex_enter(&fw->fw_lock);
   1012 			if (__predict_false(fw->fw_aborting)) {
   1013 				mutex_exit(&fw->fw_lock);
   1014 				continue;
   1015 			}
   1016 			futex_wait_dequeue(fw, f);
   1017 			fw->fw_bitset = 0;
   1018 			cv_broadcast(&fw->fw_cv);
   1019 			mutex_exit(&fw->fw_lock);
   1020 			nwake--;
   1021 			nwoken++;
   1022 			/*
   1023 			 * Drop the futex reference on behalf of the
   1024 			 * waiter.  We assert this is not the last
   1025 			 * reference on the futex (our caller should
   1026 			 * also have one).
   1027 			 */
   1028 			futex_rele_not_last(f);
   1029 		} else {
   1030 			break;
   1031 		}
   1032 	}
   1033 
   1034 	if (f2) {
   1035 		/* Move up to nrequeue waiters from f's queue to f2's queue. */
   1036 		TAILQ_FOREACH_SAFE(fw, &f->fx_queue, fw_entry, fw_next) {
   1037 			if ((fw->fw_bitset & bitset) == 0)
   1038 				continue;
   1039 			if (nrequeue > 0) {
   1040 				mutex_enter(&fw->fw_lock);
   1041 				if (__predict_false(fw->fw_aborting)) {
   1042 					mutex_exit(&fw->fw_lock);
   1043 					continue;
   1044 				}
   1045 				futex_wait_dequeue(fw, f);
   1046 				futex_wait_enqueue(fw, f2);
   1047 				mutex_exit(&fw->fw_lock);
   1048 				nrequeue--;
   1049 				/*
   1050 				 * Transfer the reference from f to f2.
   1051 				 * As above, we assert that we are not
   1052 				 * dropping the last reference to f here.
   1053 				 *
   1054 				 * XXX futex_hold() could theoretically
   1055 				 * XXX fail here.
   1056 				 */
   1057 				futex_rele_not_last(f);
   1058 				hold_error = futex_hold(f2);
   1059 				KASSERT(hold_error == 0);
   1060 			} else {
   1061 				break;
   1062 			}
   1063 		}
   1064 	} else {
   1065 		KASSERT(nrequeue == 0);
   1066 	}
   1067 
   1068 	/* Return the number of waiters woken.  */
   1069 	return nwoken;
   1070 }
   1071 
   1072 /*
   1073  * futex_queue_lock(f)
   1074  *
   1075  *	Acquire the queue lock of f.  Pair with futex_queue_unlock.  Do
   1076  *	not use if caller needs to acquire two locks; use
   1077  *	futex_queue_lock2 instead.
   1078  */
   1079 static void
   1080 futex_queue_lock(struct futex *f)
   1081 {
   1082 	mutex_enter(&f->fx_qlock);
   1083 }
   1084 
   1085 /*
   1086  * futex_queue_unlock(f)
   1087  *
   1088  *	Release the queue lock of f.
   1089  */
   1090 static void
   1091 futex_queue_unlock(struct futex *f)
   1092 {
   1093 	mutex_exit(&f->fx_qlock);
   1094 }
   1095 
   1096 /*
   1097  * futex_queue_lock2(f, f2)
   1098  *
   1099  *	Acquire the queue locks of both f and f2, which may be null, or
   1100  *	which may have the same underlying queue.  If they are
   1101  *	distinct, an arbitrary total order is chosen on the locks.
   1102  *
   1103  *	Callers should only ever acquire multiple queue locks
   1104  *	simultaneously using futex_queue_lock2.
   1105  */
   1106 static void
   1107 futex_queue_lock2(struct futex *f, struct futex *f2)
   1108 {
   1109 
   1110 	/*
   1111 	 * If both are null, do nothing; if one is null and the other
   1112 	 * is not, lock the other and be done with it.
   1113 	 */
   1114 	if (f == NULL && f2 == NULL) {
   1115 		return;
   1116 	} else if (f == NULL) {
   1117 		mutex_enter(&f2->fx_qlock);
   1118 		return;
   1119 	} else if (f2 == NULL) {
   1120 		mutex_enter(&f->fx_qlock);
   1121 		return;
   1122 	}
   1123 
   1124 	/* If both futexes are the same, acquire only one. */
   1125 	if (f == f2) {
   1126 		mutex_enter(&f->fx_qlock);
   1127 		return;
   1128 	}
   1129 
   1130 	/* Otherwise, use the ordering on the kva of the futex pointer.  */
   1131 	if ((uintptr_t)f < (uintptr_t)f2) {
   1132 		mutex_enter(&f->fx_qlock);
   1133 		mutex_enter(&f2->fx_qlock);
   1134 	} else {
   1135 		mutex_enter(&f2->fx_qlock);
   1136 		mutex_enter(&f->fx_qlock);
   1137 	}
   1138 }
   1139 
   1140 /*
   1141  * futex_queue_unlock2(f, f2)
   1142  *
   1143  *	Release the queue locks of both f and f2, which may be null, or
   1144  *	which may have the same underlying queue.
   1145  */
   1146 static void
   1147 futex_queue_unlock2(struct futex *f, struct futex *f2)
   1148 {
   1149 
   1150 	/*
   1151 	 * If both are null, do nothing; if one is null and the other
   1152 	 * is not, unlock the other and be done with it.
   1153 	 */
   1154 	if (f == NULL && f2 == NULL) {
   1155 		return;
   1156 	} else if (f == NULL) {
   1157 		mutex_exit(&f2->fx_qlock);
   1158 		return;
   1159 	} else if (f2 == NULL) {
   1160 		mutex_exit(&f->fx_qlock);
   1161 		return;
   1162 	}
   1163 
   1164 	/* If both futexes are the same, release only one. */
   1165 	if (f == f2) {
   1166 		mutex_exit(&f->fx_qlock);
   1167 		return;
   1168 	}
   1169 
   1170 	/* Otherwise, use the ordering on the kva of the futex pointer.  */
   1171 	if ((uintptr_t)f < (uintptr_t)f2) {
   1172 		mutex_exit(&f2->fx_qlock);
   1173 		mutex_exit(&f->fx_qlock);
   1174 	} else {
   1175 		mutex_exit(&f->fx_qlock);
   1176 		mutex_exit(&f2->fx_qlock);
   1177 	}
   1178 }
   1179 
   1180 /*
   1181  * futex_func_wait(uaddr, val, val3, timeout, clkid, clkflags, retval)
   1182  *
   1183  *	Implement futex(FUTEX_WAIT).
   1184  */
   1185 static int
   1186 futex_func_wait(bool shared, int *uaddr, int val, int val3,
   1187     const struct timespec *timeout, clockid_t clkid, int clkflags,
   1188     register_t *retval)
   1189 {
   1190 	struct futex *f;
   1191 	struct futex_wait wait, *fw = &wait;
   1192 	struct timespec ts;
   1193 	const struct timespec *deadline;
   1194 	int error;
   1195 
   1196 	/* Optimistically test before anything else.  */
   1197 	if (!futex_test(uaddr, val))
   1198 		return EAGAIN;
   1199 
   1200 	/* Determine a deadline on the specified clock.  */
   1201 	if (timeout == NULL || (clkflags & TIMER_ABSTIME) == TIMER_ABSTIME) {
   1202 		deadline = timeout;
   1203 	} else {
   1204 		error = clock_gettime1(clkid, &ts);
   1205 		if (error)
   1206 			return error;
   1207 		timespecadd(&ts, timeout, &ts);
   1208 		deadline = &ts;
   1209 	}
   1210 
   1211 	/* Get the futex, creating it if necessary.  */
   1212 	error = futex_lookup_create(uaddr, shared, &f);
   1213 	if (error)
   1214 		return error;
   1215 	KASSERT(f);
   1216 
   1217 	/* Get ready to wait.  */
   1218 	futex_wait_init(fw, val3);
   1219 
   1220 	/*
   1221 	 * Under the queue lock, check the value again: if it has
   1222 	 * already changed, EAGAIN; otherwise enqueue the waiter.
   1223 	 * Since FUTEX_WAKE will use the same lock and be done after
   1224 	 * modifying the value, the order in which we check and enqueue
   1225 	 * is immaterial.
   1226 	 */
   1227 	futex_queue_lock(f);
   1228 	if (!futex_test(uaddr, val)) {
   1229 		futex_queue_unlock(f);
   1230 		error = EAGAIN;
   1231 		goto out;
   1232 	}
   1233 	mutex_enter(&fw->fw_lock);
   1234 	futex_wait_enqueue(fw, f);
   1235 	mutex_exit(&fw->fw_lock);
   1236 	futex_queue_unlock(f);
   1237 
   1238 	/*
   1239 	 * We cannot drop our reference to the futex here, because
   1240 	 * we might be enqueued on a different one when we are awakened.
   1241 	 * The references will be managed on our behalf in the requeue
   1242 	 * and wake cases.
   1243 	 */
   1244 	f = NULL;
   1245 
   1246 	/* Wait. */
   1247 	error = futex_wait(fw, deadline, clkid);
   1248 	if (error)
   1249 		goto out;
   1250 
   1251 	/* Return 0 on success, error on failure. */
   1252 	*retval = 0;
   1253 
   1254 out:	if (f != NULL)
   1255 		futex_rele(f);
   1256 	futex_wait_fini(fw);
   1257 	return error;
   1258 }
   1259 
   1260 /*
   1261  * futex_func_wake(uaddr, val, val3, retval)
   1262  *
   1263  *	Implement futex(FUTEX_WAKE) and futex(FUTEX_WAKE_BITSET).
   1264  */
   1265 static int
   1266 futex_func_wake(bool shared, int *uaddr, int val, int val3, register_t *retval)
   1267 {
   1268 	struct futex *f;
   1269 	unsigned int nwoken = 0;
   1270 	int error = 0;
   1271 
   1272 	/* Reject negative number of wakeups.  */
   1273 	if (val < 0) {
   1274 		error = EINVAL;
   1275 		goto out;
   1276 	}
   1277 
   1278 	/* Look up the futex, if any.  */
   1279 	error = futex_lookup(uaddr, shared, &f);
   1280 	if (error)
   1281 		goto out;
   1282 
   1283 	/* If there's no futex, there are no waiters to wake.  */
   1284 	if (f == NULL)
   1285 		goto out;
   1286 
   1287 	/*
   1288 	 * Under f's queue lock, wake the waiters and remember the
   1289 	 * number woken.
   1290 	 */
   1291 	futex_queue_lock(f);
   1292 	nwoken = futex_wake(f, val, NULL, 0, val3);
   1293 	futex_queue_unlock(f);
   1294 
   1295 	/* Release the futex.  */
   1296 	futex_rele(f);
   1297 
   1298 out:
   1299 	/* Return the number of waiters woken.  */
   1300 	*retval = nwoken;
   1301 
   1302 	/* Success!  */
   1303 	return error;
   1304 }
   1305 
   1306 /*
   1307  * futex_func_requeue(op, uaddr, val, uaddr2, val2, val3, retval)
   1308  *
   1309  *	Implement futex(FUTEX_REQUEUE) and futex(FUTEX_CMP_REQUEUE).
   1310  */
   1311 static int
   1312 futex_func_requeue(bool shared, int op, int *uaddr, int val, int *uaddr2,
   1313     int val2, int val3, register_t *retval)
   1314 {
   1315 	struct futex *f = NULL, *f2 = NULL;
   1316 	unsigned nwoken = 0;	/* default to zero woken on early return */
   1317 	int error;
   1318 
   1319 	/* Reject negative number of wakeups or requeues. */
   1320 	if (val < 0 || val2 < 0) {
   1321 		error = EINVAL;
   1322 		goto out;
   1323 	}
   1324 
   1325 	/* Look up the source futex, if any. */
   1326 	error = futex_lookup(uaddr, shared, &f);
   1327 	if (error)
   1328 		goto out;
   1329 
   1330 	/* If there is none, nothing to do. */
   1331 	if (f == NULL)
   1332 		goto out;
   1333 
   1334 	/*
   1335 	 * We may need to create the destination futex because it's
   1336 	 * entirely possible it does not currently have any waiters.
   1337 	 */
   1338 	error = futex_lookup_create(uaddr2, shared, &f2);
   1339 	if (error)
   1340 		goto out;
   1341 
   1342 	/*
   1343 	 * Under the futexes' queue locks, check the value; if
   1344 	 * unchanged from val3, wake the waiters.
   1345 	 */
   1346 	futex_queue_lock2(f, f2);
   1347 	if (op == FUTEX_CMP_REQUEUE && !futex_test(uaddr, val3)) {
   1348 		error = EAGAIN;
   1349 	} else {
   1350 		error = 0;
   1351 		nwoken = futex_wake(f, val, f2, val2, FUTEX_BITSET_MATCH_ANY);
   1352 	}
   1353 	futex_queue_unlock2(f, f2);
   1354 
   1355 out:
   1356 	/* Return the number of waiters woken.  */
   1357 	*retval = nwoken;
   1358 
   1359 	/* Release the futexes if we got them.  */
   1360 	if (f2)
   1361 		futex_rele(f2);
   1362 	if (f)
   1363 		futex_rele(f);
   1364 	return error;
   1365 }
   1366 
   1367 /*
   1368  * futex_validate_op_cmp(val3)
   1369  *
   1370  *	Validate an op/cmp argument for FUTEX_WAKE_OP.
   1371  */
   1372 static int
   1373 futex_validate_op_cmp(int val3)
   1374 {
   1375 	int op = __SHIFTOUT(val3, FUTEX_OP_OP_MASK);
   1376 	int cmp = __SHIFTOUT(val3, FUTEX_OP_CMP_MASK);
   1377 
   1378 	if (op & FUTEX_OP_OPARG_SHIFT) {
   1379 		int oparg = __SHIFTOUT(val3, FUTEX_OP_OPARG_MASK);
   1380 		if (oparg < 0)
   1381 			return EINVAL;
   1382 		if (oparg >= 32)
   1383 			return EINVAL;
   1384 		op &= ~FUTEX_OP_OPARG_SHIFT;
   1385 	}
   1386 
   1387 	switch (op) {
   1388 	case FUTEX_OP_SET:
   1389 	case FUTEX_OP_ADD:
   1390 	case FUTEX_OP_OR:
   1391 	case FUTEX_OP_ANDN:
   1392 	case FUTEX_OP_XOR:
   1393 		break;
   1394 	default:
   1395 		return EINVAL;
   1396 	}
   1397 
   1398 	switch (cmp) {
   1399 	case FUTEX_OP_CMP_EQ:
   1400 	case FUTEX_OP_CMP_NE:
   1401 	case FUTEX_OP_CMP_LT:
   1402 	case FUTEX_OP_CMP_LE:
   1403 	case FUTEX_OP_CMP_GT:
   1404 	case FUTEX_OP_CMP_GE:
   1405 		break;
   1406 	default:
   1407 		return EINVAL;
   1408 	}
   1409 
   1410 	return 0;
   1411 }
   1412 
   1413 /*
   1414  * futex_compute_op(oldval, val3)
   1415  *
   1416  *	Apply a FUTEX_WAIT_OP operation to oldval.
   1417  */
   1418 static int
   1419 futex_compute_op(int oldval, int val3)
   1420 {
   1421 	int op = __SHIFTOUT(val3, FUTEX_OP_OP_MASK);
   1422 	int oparg = __SHIFTOUT(val3, FUTEX_OP_OPARG_MASK);
   1423 
   1424 	if (op & FUTEX_OP_OPARG_SHIFT) {
   1425 		KASSERT(oparg >= 0);
   1426 		KASSERT(oparg < 32);
   1427 		oparg = 1u << oparg;
   1428 		op &= ~FUTEX_OP_OPARG_SHIFT;
   1429 	}
   1430 
   1431 	switch (op) {
   1432 	case FUTEX_OP_SET:
   1433 		return oparg;
   1434 
   1435 	case FUTEX_OP_ADD:
   1436 		/*
   1437 		 * Avoid signed arithmetic overflow by doing
   1438 		 * arithmetic unsigned and converting back to signed
   1439 		 * at the end.
   1440 		 */
   1441 		return (int)((unsigned)oldval + (unsigned)oparg);
   1442 
   1443 	case FUTEX_OP_OR:
   1444 		return oldval | oparg;
   1445 
   1446 	case FUTEX_OP_ANDN:
   1447 		return oldval & ~oparg;
   1448 
   1449 	case FUTEX_OP_XOR:
   1450 		return oldval ^ oparg;
   1451 
   1452 	default:
   1453 		panic("invalid futex op");
   1454 	}
   1455 }
   1456 
   1457 /*
   1458  * futex_compute_cmp(oldval, val3)
   1459  *
   1460  *	Apply a FUTEX_WAIT_OP comparison to oldval.
   1461  */
   1462 static bool
   1463 futex_compute_cmp(int oldval, int val3)
   1464 {
   1465 	int cmp = __SHIFTOUT(val3, FUTEX_OP_CMP_MASK);
   1466 	int cmparg = __SHIFTOUT(val3, FUTEX_OP_CMPARG_MASK);
   1467 
   1468 	switch (cmp) {
   1469 	case FUTEX_OP_CMP_EQ:
   1470 		return (oldval == cmparg);
   1471 
   1472 	case FUTEX_OP_CMP_NE:
   1473 		return (oldval != cmparg);
   1474 
   1475 	case FUTEX_OP_CMP_LT:
   1476 		return (oldval < cmparg);
   1477 
   1478 	case FUTEX_OP_CMP_LE:
   1479 		return (oldval <= cmparg);
   1480 
   1481 	case FUTEX_OP_CMP_GT:
   1482 		return (oldval > cmparg);
   1483 
   1484 	case FUTEX_OP_CMP_GE:
   1485 		return (oldval >= cmparg);
   1486 
   1487 	default:
   1488 		panic("invalid futex cmp operation");
   1489 	}
   1490 }
   1491 
   1492 /*
   1493  * futex_func_wake_op(uaddr, val, uaddr2, val2, val3, retval)
   1494  *
   1495  *	Implement futex(FUTEX_WAKE_OP).
   1496  */
   1497 static int
   1498 futex_func_wake_op(bool shared, int *uaddr, int val, int *uaddr2, int val2,
   1499     int val3, register_t *retval)
   1500 {
   1501 	struct futex *f = NULL, *f2 = NULL;
   1502 	int oldval, newval, actual;
   1503 	unsigned nwoken = 0;
   1504 	int error;
   1505 
   1506 	/* Reject negative number of wakeups.  */
   1507 	if (val < 0 || val2 < 0) {
   1508 		error = EINVAL;
   1509 		goto out;
   1510 	}
   1511 
   1512 	/* Reject invalid operations before we start doing things.  */
   1513 	if ((error = futex_validate_op_cmp(val3)) != 0)
   1514 		goto out;
   1515 
   1516 	/* Look up the first futex, if any.  */
   1517 	error = futex_lookup(uaddr, shared, &f);
   1518 	if (error)
   1519 		goto out;
   1520 
   1521 	/* Look up the second futex, if any.  */
   1522 	error = futex_lookup(uaddr2, shared, &f2);
   1523 	if (error)
   1524 		goto out;
   1525 
   1526 	/*
   1527 	 * Under the queue locks:
   1528 	 *
   1529 	 * 1. Read/modify/write: *uaddr2 op= oparg.
   1530 	 * 2. Unconditionally wake uaddr.
   1531 	 * 3. Conditionally wake uaddr2, if it previously matched val2.
   1532 	 */
   1533 	futex_queue_lock2(f, f2);
   1534 	do {
   1535 		error = futex_load(uaddr2, &oldval);
   1536 		if (error)
   1537 			goto out_unlock;
   1538 		newval = futex_compute_op(oldval, val3);
   1539 		error = ucas_int(uaddr2, oldval, newval, &actual);
   1540 		if (error)
   1541 			goto out_unlock;
   1542 	} while (actual != oldval);
   1543 	nwoken = (f ? futex_wake(f, val, NULL, 0, FUTEX_BITSET_MATCH_ANY) : 0);
   1544 	if (f2 && futex_compute_cmp(oldval, val3))
   1545 		nwoken += futex_wake(f2, val2, NULL, 0,
   1546 		    FUTEX_BITSET_MATCH_ANY);
   1547 
   1548 	/* Success! */
   1549 	error = 0;
   1550 out_unlock:
   1551 	futex_queue_unlock2(f, f2);
   1552 
   1553 out:
   1554 	/* Return the number of waiters woken. */
   1555 	*retval = nwoken;
   1556 
   1557 	/* Release the futexes, if we got them. */
   1558 	if (f2)
   1559 		futex_rele(f2);
   1560 	if (f)
   1561 		futex_rele(f);
   1562 	return error;
   1563 }
   1564 
   1565 /*
   1566  * do_futex(uaddr, op, val, timeout, uaddr2, val2, val3)
   1567  *
   1568  *	Implement the futex system call with all the parameters
   1569  *	parsed out.
   1570  */
   1571 int
   1572 do_futex(int *uaddr, int op, int val, const struct timespec *timeout,
   1573     int *uaddr2, int val2, int val3, register_t *retval)
   1574 {
   1575 	const bool shared = (op & FUTEX_PRIVATE_FLAG) ? false : true;
   1576 	const clockid_t clkid = (op & FUTEX_CLOCK_REALTIME) ? CLOCK_REALTIME
   1577 							    : CLOCK_MONOTONIC;
   1578 
   1579 	op &= FUTEX_CMD_MASK;
   1580 
   1581 	switch (op) {
   1582 	case FUTEX_WAIT:
   1583 		return futex_func_wait(shared, uaddr, val,
   1584 		    FUTEX_BITSET_MATCH_ANY, timeout, clkid, TIMER_RELTIME,
   1585 		    retval);
   1586 
   1587 	case FUTEX_WAKE:
   1588 		val3 = FUTEX_BITSET_MATCH_ANY;
   1589 		/* FALLTHROUGH */
   1590 	case FUTEX_WAKE_BITSET:
   1591 		return futex_func_wake(shared, uaddr, val, val3, retval);
   1592 
   1593 	case FUTEX_REQUEUE:
   1594 	case FUTEX_CMP_REQUEUE:
   1595 		return futex_func_requeue(shared, op, uaddr, val, uaddr2,
   1596 		    val2, val3, retval);
   1597 
   1598 	case FUTEX_WAIT_BITSET:
   1599 		return futex_func_wait(shared, uaddr, val, val3, timeout,
   1600 		    clkid, TIMER_ABSTIME, retval);
   1601 
   1602 	case FUTEX_WAKE_OP:
   1603 		return futex_func_wake_op(shared, uaddr, val, uaddr2, val2,
   1604 		    val3, retval);
   1605 
   1606 	case FUTEX_FD:
   1607 	default:
   1608 		return ENOSYS;
   1609 	}
   1610 }
   1611 
   1612 /*
   1613  * sys___futex(l, uap, retval)
   1614  *
   1615  *	__futex(2) system call: generic futex operations.
   1616  */
   1617 int
   1618 sys___futex(struct lwp *l, const struct sys___futex_args *uap,
   1619     register_t *retval)
   1620 {
   1621 	/* {
   1622 		syscallarg(int *) uaddr;
   1623 		syscallarg(int) op;
   1624 		syscallarg(int) val;
   1625 		syscallarg(const struct timespec *) timeout;
   1626 		syscallarg(int *) uaddr2;
   1627 		syscallarg(int) val2;
   1628 		syscallarg(int) val3;
   1629 	} */
   1630 	struct timespec ts, *tsp;
   1631 	int error;
   1632 
   1633 	/*
   1634 	 * Copy in the timeout argument, if specified.
   1635 	 */
   1636 	if (SCARG(uap, timeout)) {
   1637 		error = copyin(SCARG(uap, timeout), &ts, sizeof(ts));
   1638 		if (error)
   1639 			return error;
   1640 		tsp = &ts;
   1641 	} else {
   1642 		tsp = NULL;
   1643 	}
   1644 
   1645 	return do_futex(SCARG(uap, uaddr), SCARG(uap, op), SCARG(uap, val),
   1646 	    tsp, SCARG(uap, uaddr2), SCARG(uap, val2), SCARG(uap, val3),
   1647 	    retval);
   1648 }
   1649 
   1650 /*
   1651  * sys___futex_set_robust_list(l, uap, retval)
   1652  *
   1653  *	__futex_set_robust_list(2) system call for robust futexes.
   1654  */
   1655 int
   1656 sys___futex_set_robust_list(struct lwp *l,
   1657     const struct sys___futex_set_robust_list_args *uap, register_t *retval)
   1658 {
   1659 	/* {
   1660 		syscallarg(void *) head;
   1661 		syscallarg(size_t) len;
   1662 	} */
   1663 	void *head = SCARG(uap, head);
   1664 
   1665 	if (SCARG(uap, len) != _FUTEX_ROBUST_HEAD_SIZE)
   1666 		return EINVAL;
   1667 	if ((uintptr_t)head % sizeof(u_long))
   1668 		return EINVAL;
   1669 
   1670 	l->l_robust_head = (uintptr_t)head;
   1671 
   1672 	return 0;
   1673 }
   1674 
   1675 /*
   1676  * sys___futex_get_robust_list(l, uap, retval)
   1677  *
   1678  *	__futex_get_robust_list(2) system call for robust futexes.
   1679  */
   1680 int
   1681 sys___futex_get_robust_list(struct lwp *l,
   1682     const struct sys___futex_get_robust_list_args *uap, register_t *retval)
   1683 {
   1684 	/* {
   1685 		syscallarg(lwpid_t) lwpid;
   1686 		syscallarg(void **) headp;
   1687 		syscallarg(size_t *) lenp;
   1688 	} */
   1689 	void *head;
   1690 	const size_t len = _FUTEX_ROBUST_HEAD_SIZE;
   1691 	int error;
   1692 
   1693 	error = futex_robust_head_lookup(l, SCARG(uap, lwpid), &head);
   1694 	if (error)
   1695 		return error;
   1696 
   1697 	/* Copy out the head pointer and the head structure length. */
   1698 	error = copyout(&head, SCARG(uap, headp), sizeof(head));
   1699 	if (__predict_true(error == 0)) {
   1700 		error = copyout(&len, SCARG(uap, lenp), sizeof(len));
   1701 	}
   1702 
   1703 	return error;
   1704 }
   1705 
   1706 /*
   1707  * release_futex(uva, tid)
   1708  *
   1709  *	Try to release the robust futex at uva in the current process
   1710  *	on lwp exit.  If anything goes wrong, silently fail.  It is the
   1711  *	userland program's obligation to arrange correct behaviour.
   1712  */
   1713 static void
   1714 release_futex(uintptr_t const uptr, lwpid_t const tid, bool const is_pi,
   1715     bool const is_pending)
   1716 {
   1717 	int *uaddr;
   1718 	struct futex *f;
   1719 	int oldval, newval, actual;
   1720 	int error;
   1721 
   1722 	/* If it's misaligned, tough.  */
   1723 	if (__predict_false(uptr & 3))
   1724 		return;
   1725 	uaddr = (int *)uptr;
   1726 
   1727 	error = futex_load(uaddr, &oldval);
   1728 	if (__predict_false(error))
   1729 		return;
   1730 
   1731 	/*
   1732 	 * There are two race conditions we need to handle here:
   1733 	 *
   1734 	 * 1. User space cleared the futex word but died before
   1735 	 *    being able to issue the wakeup.  No wakeups will
   1736 	 *    ever be issued, oops!
   1737 	 *
   1738 	 * 2. Awakened waiter died before being able to acquire
   1739 	 *    the futex in user space.  Any other waiters are
   1740 	 *    now stuck, oops!
   1741 	 *
   1742 	 * In both of these cases, the futex word will be 0 (because
   1743 	 * it's updated before the wake is issued).  The best we can
   1744 	 * do is detect this situation if it's the pending futex and
   1745 	 * issue a wake without modifying the futex word.
   1746 	 *
   1747 	 * XXX eventual PI handling?
   1748 	 */
   1749 	if (__predict_false(is_pending && (oldval & ~FUTEX_WAITERS) == 0)) {
   1750 		register_t retval;
   1751 		(void) futex_func_wake(/*shared*/true, uaddr, 1,
   1752 		    FUTEX_BITSET_MATCH_ANY, &retval);
   1753 		return;
   1754 	}
   1755 
   1756 	/* Optimistically test whether we need to do anything at all.  */
   1757 	if ((oldval & FUTEX_TID_MASK) != tid)
   1758 		return;
   1759 
   1760 	/*
   1761 	 * We need to handle the case where this thread owned the futex,
   1762 	 * but it was uncontended.  In this case, there won't be any
   1763 	 * kernel state to look up.  All we can do is mark the futex
   1764 	 * as a zombie to be mopped up the next time another thread
   1765 	 * attempts to acquire it.
   1766 	 *
   1767 	 * N.B. It's important to ensure to set FUTEX_OWNER_DIED in
   1768 	 * this loop, even if waiters appear while we're are doing
   1769 	 * so.  This is beause FUTEX_WAITERS is set by user space
   1770 	 * before calling __futex() to wait, and the futex needs
   1771 	 * to be marked as a zombie when the new waiter gets into
   1772 	 * the kernel.
   1773 	 */
   1774 	if ((oldval & FUTEX_WAITERS) == 0) {
   1775 		do {
   1776 			error = futex_load(uaddr, &oldval);
   1777 			if (error)
   1778 				return;
   1779 			if ((oldval & FUTEX_TID_MASK) != tid)
   1780 				return;
   1781 			newval = oldval | FUTEX_OWNER_DIED;
   1782 			error = ucas_int(uaddr, oldval, newval, &actual);
   1783 			if (error)
   1784 				return;
   1785 		} while (actual != oldval);
   1786 
   1787 		/*
   1788 		 * If where is still no indication of waiters, then there is
   1789 		 * no more work for us to do.
   1790 		 */
   1791 		if ((oldval & FUTEX_WAITERS) == 0)
   1792 			return;
   1793 	}
   1794 
   1795 	/*
   1796 	 * Look for a shared futex since we have no positive indication
   1797 	 * it is private.  If we can't, tough.
   1798 	 */
   1799 	error = futex_lookup(uaddr, /*shared*/true, &f);
   1800 	if (error)
   1801 		return;
   1802 
   1803 	/*
   1804 	 * If there's no kernel state for this futex, there's nothing to
   1805 	 * release.
   1806 	 */
   1807 	if (f == NULL)
   1808 		return;
   1809 
   1810 	/* Work under the futex queue lock.  */
   1811 	futex_queue_lock(f);
   1812 
   1813 	/*
   1814 	 * Fetch the word: if the tid doesn't match ours, skip;
   1815 	 * otherwise, set the owner-died bit, atomically.
   1816 	 */
   1817 	do {
   1818 		error = futex_load(uaddr, &oldval);
   1819 		if (error)
   1820 			goto out;
   1821 		if ((oldval & FUTEX_TID_MASK) != tid)
   1822 			goto out;
   1823 		newval = oldval | FUTEX_OWNER_DIED;
   1824 		error = ucas_int(uaddr, oldval, newval, &actual);
   1825 		if (error)
   1826 			goto out;
   1827 	} while (actual != oldval);
   1828 
   1829 	/*
   1830 	 * If there may be waiters, try to wake one.  If anything goes
   1831 	 * wrong, tough.
   1832 	 *
   1833 	 * XXX eventual PI handling?
   1834 	 */
   1835 	if (oldval & FUTEX_WAITERS)
   1836 		(void)futex_wake(f, 1, NULL, 0, FUTEX_BITSET_MATCH_ANY);
   1837 
   1838 	/* Unlock the queue and release the futex.  */
   1839 out:	futex_queue_unlock(f);
   1840 	futex_rele(f);
   1841 }
   1842 
   1843 /*
   1844  * futex_robust_head_lookup(l, lwpid)
   1845  *
   1846  *	Helper function to look up a robust head by LWP ID.
   1847  */
   1848 int
   1849 futex_robust_head_lookup(struct lwp *l, lwpid_t lwpid, void **headp)
   1850 {
   1851 	struct proc *p = l->l_proc;
   1852 
   1853 	/* Find the other lwp, if requested; otherwise use our robust head.  */
   1854 	if (lwpid) {
   1855 		mutex_enter(p->p_lock);
   1856 		l = lwp_find(p, lwpid);
   1857 		if (l == NULL) {
   1858 			mutex_exit(p->p_lock);
   1859 			return ESRCH;
   1860 		}
   1861 		*headp = (void *)l->l_robust_head;
   1862 		mutex_exit(p->p_lock);
   1863 	} else {
   1864 		*headp = (void *)l->l_robust_head;
   1865 	}
   1866 	return 0;
   1867 }
   1868 
   1869 /*
   1870  * futex_fetch_robust_head(uaddr)
   1871  *
   1872  *	Helper routine to fetch the futex robust list head that
   1873  *	handles 32-bit binaries running on 64-bit kernels.
   1874  */
   1875 static int
   1876 futex_fetch_robust_head(uintptr_t uaddr, u_long *rhead)
   1877 {
   1878 #ifdef _LP64
   1879 	if (curproc->p_flag & PK_32) {
   1880 		uint32_t rhead32[_FUTEX_ROBUST_HEAD_NWORDS];
   1881 		int error;
   1882 
   1883 		error = copyin((void *)uaddr, rhead32, sizeof(rhead32));
   1884 		if (__predict_true(error == 0)) {
   1885 			for (int i = 0; i < _FUTEX_ROBUST_HEAD_NWORDS; i++) {
   1886 				if (i == _FUTEX_ROBUST_HEAD_OFFSET) {
   1887 					/*
   1888 					 * Make sure the offset is sign-
   1889 					 * extended.
   1890 					 */
   1891 					rhead[i] = (int32_t)rhead32[i];
   1892 				} else {
   1893 					rhead[i] = rhead32[i];
   1894 				}
   1895 			}
   1896 		}
   1897 		return error;
   1898 	}
   1899 #endif /* _L64 */
   1900 
   1901 	return copyin((void *)uaddr, rhead,
   1902 	    sizeof(*rhead) * _FUTEX_ROBUST_HEAD_NWORDS);
   1903 }
   1904 
   1905 /*
   1906  * futex_decode_robust_word(word)
   1907  *
   1908  *	Decode a robust futex list word into the entry and entry
   1909  *	properties.
   1910  */
   1911 static inline void
   1912 futex_decode_robust_word(uintptr_t const word, uintptr_t * const entry,
   1913     bool * const is_pi)
   1914 {
   1915 	*is_pi = (word & _FUTEX_ROBUST_ENTRY_PI) ? true : false;
   1916 	*entry = word & ~_FUTEX_ROBUST_ENTRY_PI;
   1917 }
   1918 
   1919 /*
   1920  * futex_fetch_robust_entry(uaddr)
   1921  *
   1922  *	Helper routine to fetch and decode a robust futex entry
   1923  *	that handles 32-bit binaries running on 64-bit kernels.
   1924  */
   1925 static int
   1926 futex_fetch_robust_entry(uintptr_t const uaddr, uintptr_t * const valp,
   1927     bool * const is_pi)
   1928 {
   1929 	uintptr_t val = 0;
   1930 	int error = 0;
   1931 
   1932 #ifdef _LP64
   1933 	if (curproc->p_flag & PK_32) {
   1934 		uint32_t val32;
   1935 
   1936 		error = ufetch_32((uint32_t *)uaddr, &val32);
   1937 		if (__predict_true(error == 0))
   1938 			val = val32;
   1939 	} else
   1940 #endif /* _LP64 */
   1941 		error = ufetch_long((u_long *)uaddr, (u_long *)&val);
   1942 	if (__predict_false(error))
   1943 		return error;
   1944 
   1945 	futex_decode_robust_word(val, valp, is_pi);
   1946 	return 0;
   1947 }
   1948 
   1949 /*
   1950  * futex_release_all_lwp(l, tid)
   1951  *
   1952  *	Release all l's robust futexes.  If anything looks funny in
   1953  *	the process, give up -- it's userland's responsibility to dot
   1954  *	the i's and cross the t's.
   1955  */
   1956 void
   1957 futex_release_all_lwp(struct lwp * const l, lwpid_t const tid)
   1958 {
   1959 	u_long rhead[_FUTEX_ROBUST_HEAD_NWORDS];
   1960 	int limit = 1000000;
   1961 	int error;
   1962 
   1963 	/* If there's no robust list there's nothing to do. */
   1964 	if (l->l_robust_head == 0)
   1965 		return;
   1966 
   1967 	/* Read the final snapshot of the robust list head. */
   1968 	error = futex_fetch_robust_head(l->l_robust_head, rhead);
   1969 	if (error) {
   1970 		printf("WARNING: pid %jd (%s) lwp %jd tid %jd:"
   1971 		    " unmapped robust futex list head\n",
   1972 		    (uintmax_t)l->l_proc->p_pid, l->l_proc->p_comm,
   1973 		    (uintmax_t)l->l_lid, (uintmax_t)tid);
   1974 		return;
   1975 	}
   1976 
   1977 	const long offset = (long)rhead[_FUTEX_ROBUST_HEAD_OFFSET];
   1978 
   1979 	uintptr_t next, pending;
   1980 	bool is_pi, pending_is_pi;
   1981 
   1982 	futex_decode_robust_word(rhead[_FUTEX_ROBUST_HEAD_LIST],
   1983 	    &next, &is_pi);
   1984 	futex_decode_robust_word(rhead[_FUTEX_ROBUST_HEAD_PENDING],
   1985 	    &pending, &pending_is_pi);
   1986 
   1987 	/*
   1988 	 * Walk down the list of locked futexes and release them, up
   1989 	 * to one million of them before we give up.
   1990 	 */
   1991 
   1992 	while (next != l->l_robust_head && limit-- > 0) {
   1993 		/* pending handled below. */
   1994 		if (next != pending)
   1995 			release_futex(next + offset, tid, is_pi, false);
   1996 		error = futex_fetch_robust_entry(next, &next, &is_pi);
   1997 		if (error)
   1998 			break;
   1999 		preempt_point();
   2000 	}
   2001 	if (limit <= 0) {
   2002 		printf("WARNING: pid %jd (%s) lwp %jd tid %jd:"
   2003 		    " exhausted robust futex limit\n",
   2004 		    (uintmax_t)l->l_proc->p_pid, l->l_proc->p_comm,
   2005 		    (uintmax_t)l->l_lid, (uintmax_t)tid);
   2006 	}
   2007 
   2008 	/* If there's a pending futex, it may need to be released too. */
   2009 	if (pending != 0) {
   2010 		release_futex(pending + offset, tid, pending_is_pi, true);
   2011 	}
   2012 }
   2013