Home | History | Annotate | Line # | Download | only in kern
sys_futex.c revision 1.9
      1 /*	$NetBSD: sys_futex.c,v 1.9 2020/05/03 01:26:39 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2018, 2019, 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Taylor R. Campbell and Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: sys_futex.c,v 1.9 2020/05/03 01:26:39 riastradh Exp $");
     34 
     35 /*
     36  * Futexes
     37  *
     38  *	The futex system call coordinates notifying threads waiting for
     39  *	changes on a 32-bit word of memory.  The word can be managed by
     40  *	CPU atomic operations in userland, without system calls, as long
     41  *	as there is no contention.
     42  *
     43  *	The simplest use case demonstrating the utility is:
     44  *
     45  *		// 32-bit word of memory shared among threads or
     46  *		// processes in userland.  lock & 1 means owned;
     47  *		// lock & 2 means there are waiters waiting.
     48  *		volatile int lock = 0;
     49  *
     50  *		int v;
     51  *
     52  *		// Acquire a lock.
     53  *		do {
     54  *			v = lock;
     55  *			if (v & 1) {
     56  *				// Lock is held.  Set a bit to say that
     57  *				// there are waiters, and wait for lock
     58  *				// to change to anything other than v;
     59  *				// then retry.
     60  *				if (atomic_cas_uint(&lock, v, v | 2) != v)
     61  *					continue;
     62  *				futex(FUTEX_WAIT, &lock, v | 2, NULL, NULL, 0);
     63  *				continue;
     64  *			}
     65  *		} while (atomic_cas_uint(&lock, v, v & ~1) != v);
     66  *		membar_enter();
     67  *
     68  *		...
     69  *
     70  *		// Release the lock.  Optimistically assume there are
     71  *		// no waiters first until demonstrated otherwise.
     72  *		membar_exit();
     73  *		if (atomic_cas_uint(&lock, 1, 0) != 1) {
     74  *			// There may be waiters.
     75  *			v = atomic_swap_uint(&lock, 0);
     76  *			// If there are still waiters, wake one.
     77  *			if (v & 2)
     78  *				futex(FUTEX_WAKE, &lock, 1, NULL, NULL, 0);
     79  *		}
     80  *
     81  *	The goal is to avoid the futex system call unless there is
     82  *	contention; then if there is contention, to guarantee no missed
     83  *	wakeups.
     84  *
     85  *	For a simple implementation, futex(FUTEX_WAIT) could queue
     86  *	itself to be woken, double-check the lock word, and then sleep;
     87  *	spurious wakeups are generally a fact of life, so any
     88  *	FUTEX_WAKE could just wake every FUTEX_WAIT in the system.
     89  *
     90  *	If this were all there is to it, we could then increase
     91  *	parallelism by refining the approximation: partition the
     92  *	waiters into buckets by hashing the lock addresses to reduce
     93  *	the incidence of spurious wakeups.  But this is not all.
     94  *
     95  *	The futex(FUTEX_CMP_REQUEUE, &lock, n, &lock2, m, val)
     96  *	operation not only wakes n waiters on lock if lock == val, but
     97  *	also _transfers_ m additional waiters to lock2.  Unless wakeups
     98  *	on lock2 also trigger wakeups on lock, we cannot move waiters
     99  *	to lock2 if they merely share the same hash as waiters on lock.
    100  *	Thus, we can't approximately distribute waiters into queues by
    101  *	a hash function; we must distinguish futex queues exactly by
    102  *	lock address.
    103  *
    104  *	For now, we use a global red/black tree to index futexes.  This
    105  *	should be replaced by a lockless radix tree with a thread to
    106  *	free entries no longer in use once all lookups on all CPUs have
    107  *	completed.
    108  *
    109  *	Specifically, we maintain two maps:
    110  *
    111  *	futex_tab.va[vmspace, va] for private futexes
    112  *	futex_tab.oa[uvm_voaddr] for shared futexes
    113  *
    114  *	This implementation does not support priority inheritance.
    115  */
    116 
    117 #include <sys/types.h>
    118 #include <sys/atomic.h>
    119 #include <sys/condvar.h>
    120 #include <sys/futex.h>
    121 #include <sys/mutex.h>
    122 #include <sys/rbtree.h>
    123 #include <sys/queue.h>
    124 
    125 #include <sys/syscall.h>
    126 #include <sys/syscallargs.h>
    127 #include <sys/syscallvar.h>
    128 
    129 #include <uvm/uvm_extern.h>
    130 
    131 /*
    132  * Lock order:
    133  *
    134  *	futex_tab.lock
    135  *	futex::fx_qlock			ordered by kva of struct futex
    136  *	 -> futex_wait::fw_lock		only one at a time
    137  *	futex_wait::fw_lock		only one at a time
    138  *	 -> futex::fx_abortlock		only one at a time
    139  */
    140 
    141 /*
    142  * union futex_key
    143  *
    144  *	A futex is addressed either by a vmspace+va (private) or by
    145  *	a uvm_voaddr (shared).
    146  */
    147 union futex_key {
    148 	struct {
    149 		struct vmspace			*vmspace;
    150 		vaddr_t				va;
    151 	}			fk_private;
    152 	struct uvm_voaddr	fk_shared;
    153 };
    154 
    155 /*
    156  * struct futex
    157  *
    158  *	Kernel state for a futex located at a particular address in a
    159  *	particular virtual address space.
    160  *
    161  *	N.B. fx_refcnt is an unsigned long because we need to be able
    162  *	to operate on it atomically on all systems while at the same
    163  *	time rendering practically impossible the chance of it reaching
    164  *	its max value.  In practice, we're limited by the number of LWPs
    165  *	that can be present on the system at any given time, and the
    166  *	assumption is that limit will be good enough on a 32-bit platform.
    167  *	See futex_wake() for why overflow needs to be avoided.
    168  */
    169 struct futex {
    170 	union futex_key		fx_key;
    171 	unsigned long		fx_refcnt;
    172 	bool			fx_shared;
    173 	bool			fx_on_tree;
    174 	struct rb_node		fx_node;
    175 
    176 	kmutex_t			fx_qlock;
    177 	TAILQ_HEAD(, futex_wait)	fx_queue;
    178 
    179 	kmutex_t			fx_abortlock;
    180 	LIST_HEAD(, futex_wait)		fx_abortlist;
    181 	kcondvar_t			fx_abortcv;
    182 };
    183 
    184 /*
    185  * struct futex_wait
    186  *
    187  *	State for a thread to wait on a futex.  Threads wait on fw_cv
    188  *	for fw_bitset to be set to zero.  The thread may transition to
    189  *	a different futex queue at any time under the futex's lock.
    190  */
    191 struct futex_wait {
    192 	kmutex_t		fw_lock;
    193 	kcondvar_t		fw_cv;
    194 	struct futex		*fw_futex;
    195 	TAILQ_ENTRY(futex_wait)	fw_entry;	/* queue lock */
    196 	LIST_ENTRY(futex_wait)	fw_abort;	/* queue abortlock */
    197 	int			fw_bitset;
    198 	bool			fw_aborting;	/* fw_lock */
    199 };
    200 
    201 /*
    202  * futex_tab
    203  *
    204  *	Global trees of futexes by vmspace/va and VM object address.
    205  *
    206  *	XXX This obviously doesn't scale in parallel.  We could use a
    207  *	pserialize-safe data structure, but there may be a high cost to
    208  *	frequent deletion since we don't cache futexes after we're done
    209  *	with them.  We could use hashed locks.  But for now, just make
    210  *	sure userland can't DoS the serial performance, by using a
    211  *	balanced binary tree for lookup.
    212  *
    213  *	XXX We could use a per-process tree for the table indexed by
    214  *	virtual address to reduce contention between processes.
    215  */
    216 static struct {
    217 	kmutex_t	lock;
    218 	struct rb_tree	va;
    219 	struct rb_tree	oa;
    220 } futex_tab __cacheline_aligned;
    221 
    222 static int
    223 compare_futex_key(void *cookie, const void *n, const void *k)
    224 {
    225 	const struct futex *fa = n;
    226 	const union futex_key *fka = &fa->fx_key;
    227 	const union futex_key *fkb = k;
    228 
    229 	if ((uintptr_t)fka->fk_private.vmspace <
    230 	    (uintptr_t)fkb->fk_private.vmspace)
    231 		return -1;
    232 	if ((uintptr_t)fka->fk_private.vmspace >
    233 	    (uintptr_t)fkb->fk_private.vmspace)
    234 		return +1;
    235 	if (fka->fk_private.va < fkb->fk_private.va)
    236 		return -1;
    237 	if (fka->fk_private.va > fkb->fk_private.va)
    238 		return -1;
    239 	return 0;
    240 }
    241 
    242 static int
    243 compare_futex(void *cookie, const void *na, const void *nb)
    244 {
    245 	const struct futex *fa = na;
    246 	const struct futex *fb = nb;
    247 
    248 	return compare_futex_key(cookie, fa, &fb->fx_key);
    249 }
    250 
    251 static const rb_tree_ops_t futex_rb_ops = {
    252 	.rbto_compare_nodes = compare_futex,
    253 	.rbto_compare_key = compare_futex_key,
    254 	.rbto_node_offset = offsetof(struct futex, fx_node),
    255 };
    256 
    257 static int
    258 compare_futex_shared_key(void *cookie, const void *n, const void *k)
    259 {
    260 	const struct futex *fa = n;
    261 	const union futex_key *fka = &fa->fx_key;
    262 	const union futex_key *fkb = k;
    263 
    264 	return uvm_voaddr_compare(&fka->fk_shared, &fkb->fk_shared);
    265 }
    266 
    267 static int
    268 compare_futex_shared(void *cookie, const void *na, const void *nb)
    269 {
    270 	const struct futex *fa = na;
    271 	const struct futex *fb = nb;
    272 
    273 	return compare_futex_shared_key(cookie, fa, &fb->fx_key);
    274 }
    275 
    276 static const rb_tree_ops_t futex_shared_rb_ops = {
    277 	.rbto_compare_nodes = compare_futex_shared,
    278 	.rbto_compare_key = compare_futex_shared_key,
    279 	.rbto_node_offset = offsetof(struct futex, fx_node),
    280 };
    281 
    282 static void	futex_wait_dequeue(struct futex_wait *, struct futex *);
    283 
    284 /*
    285  * futex_load(uaddr, kaddr)
    286  *
    287  *	Perform a single atomic load to read *uaddr, and return the
    288  *	result in *kaddr.  Return 0 on success, EFAULT if uaddr is not
    289  *	mapped.
    290  */
    291 static inline int
    292 futex_load(int *uaddr, int *kaddr)
    293 {
    294 	return ufetch_int((u_int *)uaddr, (u_int *)kaddr);
    295 }
    296 
    297 /*
    298  * futex_test(uaddr, expected)
    299  *
    300  *	True if *uaddr == expected.  False if *uaddr != expected, or if
    301  *	uaddr is not mapped.
    302  */
    303 static bool
    304 futex_test(int *uaddr, int expected)
    305 {
    306 	int val;
    307 	int error;
    308 
    309 	error = futex_load(uaddr, &val);
    310 	if (error)
    311 		return false;
    312 	return val == expected;
    313 }
    314 
    315 /*
    316  * futex_sys_init()
    317  *
    318  *	Initialize the futex subsystem.
    319  */
    320 void
    321 futex_sys_init(void)
    322 {
    323 
    324 	mutex_init(&futex_tab.lock, MUTEX_DEFAULT, IPL_NONE);
    325 	rb_tree_init(&futex_tab.va, &futex_rb_ops);
    326 	rb_tree_init(&futex_tab.oa, &futex_shared_rb_ops);
    327 }
    328 
    329 /*
    330  * futex_sys_fini()
    331  *
    332  *	Finalize the futex subsystem.
    333  */
    334 void
    335 futex_sys_fini(void)
    336 {
    337 
    338 	KASSERT(RB_TREE_MIN(&futex_tab.oa) == NULL);
    339 	KASSERT(RB_TREE_MIN(&futex_tab.va) == NULL);
    340 	mutex_destroy(&futex_tab.lock);
    341 }
    342 
    343 /*
    344  * futex_queue_init(f)
    345  *
    346  *	Initialize the futex queue.  Caller must call futex_queue_fini
    347  *	when done.
    348  *
    349  *	Never sleeps.
    350  */
    351 static void
    352 futex_queue_init(struct futex *f)
    353 {
    354 
    355 	mutex_init(&f->fx_qlock, MUTEX_DEFAULT, IPL_NONE);
    356 	mutex_init(&f->fx_abortlock, MUTEX_DEFAULT, IPL_NONE);
    357 	cv_init(&f->fx_abortcv, "fqabort");
    358 	LIST_INIT(&f->fx_abortlist);
    359 	TAILQ_INIT(&f->fx_queue);
    360 }
    361 
    362 /*
    363  * futex_queue_drain(f)
    364  *
    365  *	Wait for any aborting waiters in f; then empty the queue of
    366  *	any stragglers and wake them.  Caller must guarantee no new
    367  *	references to f.
    368  *
    369  *	May sleep.
    370  */
    371 static void
    372 futex_queue_drain(struct futex *f)
    373 {
    374 	struct futex_wait *fw, *fw_next;
    375 
    376 	mutex_enter(&f->fx_abortlock);
    377 	while (!LIST_EMPTY(&f->fx_abortlist))
    378 		cv_wait(&f->fx_abortcv, &f->fx_abortlock);
    379 	mutex_exit(&f->fx_abortlock);
    380 
    381 	mutex_enter(&f->fx_qlock);
    382 	TAILQ_FOREACH_SAFE(fw, &f->fx_queue, fw_entry, fw_next) {
    383 		mutex_enter(&fw->fw_lock);
    384 		futex_wait_dequeue(fw, f);
    385 		cv_broadcast(&fw->fw_cv);
    386 		mutex_exit(&fw->fw_lock);
    387 	}
    388 	mutex_exit(&f->fx_qlock);
    389 }
    390 
    391 /*
    392  * futex_queue_fini(fq)
    393  *
    394  *	Finalize the futex queue initialized by futex_queue_init.  Queue
    395  *	must be empty.  Caller must not use f again until a subsequent
    396  *	futex_queue_init.
    397  */
    398 static void
    399 futex_queue_fini(struct futex *f)
    400 {
    401 
    402 	KASSERT(TAILQ_EMPTY(&f->fx_queue));
    403 	KASSERT(LIST_EMPTY(&f->fx_abortlist));
    404 	mutex_destroy(&f->fx_qlock);
    405 	mutex_destroy(&f->fx_abortlock);
    406 	cv_destroy(&f->fx_abortcv);
    407 }
    408 
    409 /*
    410  * futex_key_init(key, vm, va, shared)
    411  *
    412  *	Initialize a futex key for lookup, etc.
    413  */
    414 static int
    415 futex_key_init(union futex_key *fk, struct vmspace *vm, vaddr_t va, bool shared)
    416 {
    417 	int error = 0;
    418 
    419 	if (__predict_false(shared)) {
    420 		if (!uvm_voaddr_acquire(&vm->vm_map, va, &fk->fk_shared))
    421 			error = EFAULT;
    422 	} else {
    423 		fk->fk_private.vmspace = vm;
    424 		fk->fk_private.va = va;
    425 	}
    426 
    427 	return error;
    428 }
    429 
    430 /*
    431  * futex_key_fini(key, shared)
    432  *
    433  *	Release a futex key.
    434  */
    435 static void
    436 futex_key_fini(union futex_key *fk, bool shared)
    437 {
    438 	if (__predict_false(shared))
    439 		uvm_voaddr_release(&fk->fk_shared);
    440 	memset(fk, 0, sizeof(*fk));
    441 }
    442 
    443 /*
    444  * futex_create(fk, shared)
    445  *
    446  *	Create a futex.  Initial reference count is 1, representing the
    447  *	caller.  Returns NULL on failure.  Always takes ownership of the
    448  *	key, either transferring it to the newly-created futex, or releasing
    449  *	the key if creation fails.
    450  *
    451  *	Never sleeps for memory, but may sleep to acquire a lock.
    452  */
    453 static struct futex *
    454 futex_create(union futex_key *fk, bool shared)
    455 {
    456 	struct futex *f;
    457 
    458 	f = kmem_alloc(sizeof(*f), KM_NOSLEEP);
    459 	if (f == NULL) {
    460 		futex_key_fini(fk, shared);
    461 		return NULL;
    462 	}
    463 	f->fx_key = *fk;
    464 	f->fx_refcnt = 1;
    465 	f->fx_shared = shared;
    466 	f->fx_on_tree = false;
    467 	futex_queue_init(f);
    468 
    469 	return f;
    470 }
    471 
    472 /*
    473  * futex_destroy(f)
    474  *
    475  *	Destroy a futex created with futex_create.  Reference count
    476  *	must be zero.
    477  *
    478  *	May sleep.
    479  */
    480 static void
    481 futex_destroy(struct futex *f)
    482 {
    483 
    484 	ASSERT_SLEEPABLE();
    485 
    486 	KASSERT(atomic_load_relaxed(&f->fx_refcnt) == 0);
    487 	KASSERT(!f->fx_on_tree);
    488 
    489 	/* Drain and destroy the private queue.  */
    490 	futex_queue_drain(f);
    491 	futex_queue_fini(f);
    492 
    493 	futex_key_fini(&f->fx_key, f->fx_shared);
    494 
    495 	kmem_free(f, sizeof(*f));
    496 }
    497 
    498 /*
    499  * futex_hold(f)
    500  *
    501  *	Attempt to acquire a reference to f.  Return 0 on success,
    502  *	ENFILE on too many references.
    503  *
    504  *	Never sleeps.
    505  */
    506 static int
    507 futex_hold(struct futex *f)
    508 {
    509 	unsigned long refcnt;
    510 
    511 	do {
    512 		refcnt = atomic_load_relaxed(&f->fx_refcnt);
    513 		if (refcnt == ULONG_MAX)
    514 			return ENFILE;
    515 	} while (atomic_cas_ulong(&f->fx_refcnt, refcnt, refcnt + 1) != refcnt);
    516 
    517 	return 0;
    518 }
    519 
    520 /*
    521  * futex_rele(f)
    522  *
    523  *	Release a reference to f acquired with futex_create or
    524  *	futex_hold.
    525  *
    526  *	May sleep to free f.
    527  */
    528 static void
    529 futex_rele(struct futex *f)
    530 {
    531 	unsigned long refcnt;
    532 
    533 	ASSERT_SLEEPABLE();
    534 
    535 	do {
    536 		refcnt = atomic_load_relaxed(&f->fx_refcnt);
    537 		if (refcnt == 1)
    538 			goto trylast;
    539 	} while (atomic_cas_ulong(&f->fx_refcnt, refcnt, refcnt - 1) != refcnt);
    540 	return;
    541 
    542 trylast:
    543 	mutex_enter(&futex_tab.lock);
    544 	if (atomic_dec_ulong_nv(&f->fx_refcnt) == 0) {
    545 		if (f->fx_on_tree) {
    546 			if (__predict_false(f->fx_shared))
    547 				rb_tree_remove_node(&futex_tab.oa, f);
    548 			else
    549 				rb_tree_remove_node(&futex_tab.va, f);
    550 			f->fx_on_tree = false;
    551 		}
    552 	} else {
    553 		/* References remain -- don't destroy it.  */
    554 		f = NULL;
    555 	}
    556 	mutex_exit(&futex_tab.lock);
    557 	if (f != NULL)
    558 		futex_destroy(f);
    559 }
    560 
    561 /*
    562  * futex_rele_not_last(f)
    563  *
    564  *	Release a reference to f acquired with futex_create or
    565  *	futex_hold.
    566  *
    567  *	This version asserts that we are not dropping the last
    568  *	reference to f.
    569  */
    570 static void
    571 futex_rele_not_last(struct futex *f)
    572 {
    573 	unsigned long refcnt;
    574 
    575 	do {
    576 		refcnt = atomic_load_relaxed(&f->fx_refcnt);
    577 		KASSERT(refcnt > 1);
    578 	} while (atomic_cas_ulong(&f->fx_refcnt, refcnt, refcnt - 1) != refcnt);
    579 }
    580 
    581 /*
    582  * futex_lookup_by_key(key, shared, &f)
    583  *
    584  *	Try to find an existing futex va reference in the specified key
    585  *	On success, return 0, set f to found futex or to NULL if not found,
    586  *	and increment f's reference count if found.
    587  *
    588  *	Return ENFILE if reference count too high.
    589  *
    590  *	Internal lookup routine shared by futex_lookup() and
    591  *	futex_lookup_create().
    592  */
    593 static int
    594 futex_lookup_by_key(union futex_key *fk, bool shared, struct futex **fp)
    595 {
    596 	struct futex *f;
    597 	int error = 0;
    598 
    599 	mutex_enter(&futex_tab.lock);
    600 	if (__predict_false(shared)) {
    601 		f = rb_tree_find_node(&futex_tab.oa, fk);
    602 	} else {
    603 		f = rb_tree_find_node(&futex_tab.va, fk);
    604 	}
    605 	if (f) {
    606 		error = futex_hold(f);
    607 		if (error)
    608 			f = NULL;
    609 	}
    610  	*fp = f;
    611 	mutex_exit(&futex_tab.lock);
    612 
    613 	return error;
    614 }
    615 
    616 /*
    617  * futex_insert(f, fp)
    618  *
    619  *	Try to insert the futex f into the tree by va.  If there
    620  *	already is a futex for its va, acquire a reference to it, and
    621  *	store it in *fp; otherwise store f in *fp.
    622  *
    623  *	Return 0 on success, ENFILE if there already is a futex but its
    624  *	reference count is too high.
    625  */
    626 static int
    627 futex_insert(struct futex *f, struct futex **fp)
    628 {
    629 	struct futex *f0;
    630 	int error;
    631 
    632 	KASSERT(atomic_load_relaxed(&f->fx_refcnt) != 0);
    633 	KASSERT(!f->fx_on_tree);
    634 
    635 	mutex_enter(&futex_tab.lock);
    636 	if (__predict_false(f->fx_shared))
    637 		f0 = rb_tree_insert_node(&futex_tab.oa, f);
    638 	else
    639 		f0 = rb_tree_insert_node(&futex_tab.va, f);
    640 	if (f0 == f) {
    641 		f->fx_on_tree = true;
    642 		error = 0;
    643 	} else {
    644 		KASSERT(atomic_load_relaxed(&f0->fx_refcnt) != 0);
    645 		KASSERT(f0->fx_on_tree);
    646 		error = futex_hold(f0);
    647 		if (error)
    648 			goto out;
    649 	}
    650 	*fp = f0;
    651 out:	mutex_exit(&futex_tab.lock);
    652 
    653 	return error;
    654 }
    655 
    656 /*
    657  * futex_lookup(uaddr, shared, &f)
    658  *
    659  *	Find a futex at the userland pointer uaddr in the current
    660  *	process's VM space.  On success, return the futex in f and
    661  *	increment its reference count.
    662  *
    663  *	Caller must call futex_rele when done.
    664  */
    665 static int
    666 futex_lookup(int *uaddr, bool shared, struct futex **fp)
    667 {
    668 	union futex_key fk;
    669 	struct vmspace *vm = curproc->p_vmspace;
    670 	vaddr_t va = (vaddr_t)uaddr;
    671 	int error;
    672 
    673 	/*
    674 	 * Reject unaligned user pointers so we don't cross page
    675 	 * boundaries and so atomics will work.
    676 	 */
    677 	if ((va & 3) != 0)
    678 		return EINVAL;
    679 
    680 	/* Look it up. */
    681 	error = futex_key_init(&fk, vm, va, shared);
    682 	if (error)
    683 		return error;
    684 
    685 	error = futex_lookup_by_key(&fk, shared, fp);
    686 	futex_key_fini(&fk, shared);
    687 	if (error)
    688 		return error;
    689 
    690 	KASSERT(*fp == NULL || (*fp)->fx_shared == shared);
    691 	KASSERT(*fp == NULL || atomic_load_relaxed(&(*fp)->fx_refcnt) != 0);
    692 
    693 	/*
    694 	 * Success!  (Caller must still check whether we found
    695 	 * anything, but nothing went _wrong_ like trying to use
    696 	 * unmapped memory.)
    697 	 */
    698 	KASSERT(error == 0);
    699 
    700 	return error;
    701 }
    702 
    703 /*
    704  * futex_lookup_create(uaddr, shared, &f)
    705  *
    706  *	Find or create a futex at the userland pointer uaddr in the
    707  *	current process's VM space.  On success, return the futex in f
    708  *	and increment its reference count.
    709  *
    710  *	Caller must call futex_rele when done.
    711  */
    712 static int
    713 futex_lookup_create(int *uaddr, bool shared, struct futex **fp)
    714 {
    715 	union futex_key fk;
    716 	struct vmspace *vm = curproc->p_vmspace;
    717 	struct futex *f = NULL;
    718 	vaddr_t va = (vaddr_t)uaddr;
    719 	int error;
    720 
    721 	/*
    722 	 * Reject unaligned user pointers so we don't cross page
    723 	 * boundaries and so atomics will work.
    724 	 */
    725 	if ((va & 3) != 0)
    726 		return EINVAL;
    727 
    728 	error = futex_key_init(&fk, vm, va, shared);
    729 	if (error)
    730 		return error;
    731 
    732 	/*
    733 	 * Optimistically assume there already is one, and try to find
    734 	 * it.
    735 	 */
    736 	error = futex_lookup_by_key(&fk, shared, fp);
    737 	if (error || *fp != NULL) {
    738 		/*
    739 		 * We either found one, or there was an error.
    740 		 * In either case, we are done with the key.
    741 		 */
    742 		futex_key_fini(&fk, shared);
    743 		goto out;
    744 	}
    745 
    746 	/*
    747 	 * Create a futex recoard.  This tranfers ownership of the key
    748 	 * in all cases.
    749 	 */
    750 	f = futex_create(&fk, shared);
    751 	if (f == NULL) {
    752 		error = ENOMEM;
    753 		goto out;
    754 	}
    755 
    756 	/*
    757 	 * Insert our new futex, or use existing if someone else beat
    758 	 * us to it.
    759 	 */
    760 	error = futex_insert(f, fp);
    761 	if (error)
    762 		goto out;
    763 	if (*fp == f)
    764 		f = NULL;	/* don't release on exit */
    765 
    766 	/* Success!  */
    767 	KASSERT(error == 0);
    768 
    769 out:	if (f != NULL)
    770 		futex_rele(f);
    771 	KASSERT(error || *fp != NULL);
    772 	KASSERT(error || atomic_load_relaxed(&(*fp)->fx_refcnt) != 0);
    773 	return error;
    774 }
    775 
    776 /*
    777  * futex_wait_init(fw, bitset)
    778  *
    779  *	Initialize a record for a thread to wait on a futex matching
    780  *	the specified bit set.  Should be passed to futex_wait_enqueue
    781  *	before futex_wait, and should be passed to futex_wait_fini when
    782  *	done.
    783  */
    784 static void
    785 futex_wait_init(struct futex_wait *fw, int bitset)
    786 {
    787 
    788 	KASSERT(bitset);
    789 
    790 	mutex_init(&fw->fw_lock, MUTEX_DEFAULT, IPL_NONE);
    791 	cv_init(&fw->fw_cv, "futex");
    792 	fw->fw_futex = NULL;
    793 	fw->fw_bitset = bitset;
    794 	fw->fw_aborting = false;
    795 }
    796 
    797 /*
    798  * futex_wait_fini(fw)
    799  *
    800  *	Finalize a record for a futex waiter.  Must not be on any
    801  *	futex's queue.
    802  */
    803 static void
    804 futex_wait_fini(struct futex_wait *fw)
    805 {
    806 
    807 	KASSERT(fw->fw_futex == NULL);
    808 
    809 	cv_destroy(&fw->fw_cv);
    810 	mutex_destroy(&fw->fw_lock);
    811 }
    812 
    813 /*
    814  * futex_wait_enqueue(fw, f)
    815  *
    816  *	Put fw on the futex queue.  Must be done before futex_wait.
    817  *	Caller must hold fw's lock and f's lock, and fw must not be on
    818  *	any existing futex's waiter list.
    819  */
    820 static void
    821 futex_wait_enqueue(struct futex_wait *fw, struct futex *f)
    822 {
    823 
    824 	KASSERT(mutex_owned(&f->fx_qlock));
    825 	KASSERT(mutex_owned(&fw->fw_lock));
    826 	KASSERT(fw->fw_futex == NULL);
    827 	KASSERT(!fw->fw_aborting);
    828 
    829 	fw->fw_futex = f;
    830 	TAILQ_INSERT_TAIL(&f->fx_queue, fw, fw_entry);
    831 }
    832 
    833 /*
    834  * futex_wait_dequeue(fw, f)
    835  *
    836  *	Remove fw from the futex queue.  Precludes subsequent
    837  *	futex_wait until a futex_wait_enqueue.  Caller must hold fw's
    838  *	lock and f's lock, and fw must be on f.
    839  */
    840 static void
    841 futex_wait_dequeue(struct futex_wait *fw, struct futex *f)
    842 {
    843 
    844 	KASSERT(mutex_owned(&f->fx_qlock));
    845 	KASSERT(mutex_owned(&fw->fw_lock));
    846 	KASSERT(fw->fw_futex == f);
    847 
    848 	TAILQ_REMOVE(&f->fx_queue, fw, fw_entry);
    849 	fw->fw_futex = NULL;
    850 }
    851 
    852 /*
    853  * futex_wait_abort(fw)
    854  *
    855  *	Caller is no longer waiting for fw.  Remove it from any queue
    856  *	if it was on one.  Caller must hold fw->fw_lock.
    857  */
    858 static void
    859 futex_wait_abort(struct futex_wait *fw)
    860 {
    861 	struct futex *f;
    862 
    863 	KASSERT(mutex_owned(&fw->fw_lock));
    864 
    865 	/*
    866 	 * Grab the futex queue.  It can't go away as long as we hold
    867 	 * fw_lock.  However, we can't take the queue lock because
    868 	 * that's a lock order reversal.
    869 	 */
    870 	f = fw->fw_futex;
    871 
    872 	/* Put us on the abort list so that fq won't go away.  */
    873 	mutex_enter(&f->fx_abortlock);
    874 	LIST_INSERT_HEAD(&f->fx_abortlist, fw, fw_abort);
    875 	mutex_exit(&f->fx_abortlock);
    876 
    877 	/*
    878 	 * Mark fw as aborting so it won't lose wakeups and won't be
    879 	 * transferred to any other queue.
    880 	 */
    881 	fw->fw_aborting = true;
    882 
    883 	/* f is now stable, so we can release fw_lock.  */
    884 	mutex_exit(&fw->fw_lock);
    885 
    886 	/* Now we can remove fw under the queue lock.  */
    887 	mutex_enter(&f->fx_qlock);
    888 	mutex_enter(&fw->fw_lock);
    889 	futex_wait_dequeue(fw, f);
    890 	mutex_exit(&fw->fw_lock);
    891 	mutex_exit(&f->fx_qlock);
    892 
    893 	/*
    894 	 * Finally, remove us from the abort list and notify anyone
    895 	 * waiting for the abort to complete if we were the last to go.
    896 	 */
    897 	mutex_enter(&f->fx_abortlock);
    898 	LIST_REMOVE(fw, fw_abort);
    899 	if (LIST_EMPTY(&f->fx_abortlist))
    900 		cv_broadcast(&f->fx_abortcv);
    901 	mutex_exit(&f->fx_abortlock);
    902 
    903 	/*
    904 	 * Release our reference to the futex now that we are not
    905 	 * waiting for it.
    906 	 */
    907 	futex_rele(f);
    908 
    909 	/*
    910 	 * Reacquire the fw lock as caller expects.  Verify that we're
    911 	 * aborting and no longer associated with a futex.
    912 	 */
    913 	mutex_enter(&fw->fw_lock);
    914 	KASSERT(fw->fw_aborting);
    915 	KASSERT(fw->fw_futex == NULL);
    916 }
    917 
    918 /*
    919  * futex_wait(fw, timeout, clkid, clkflags)
    920  *
    921  *	fw must be a waiter on a futex's queue.  Wait for timeout on
    922  *	the clock clkid according to clkflags (TIMER_*), or forever if
    923  *	timeout is NULL, for a futex wakeup.  Return 0 on explicit
    924  *	wakeup or destruction of futex, ETIMEDOUT on timeout,
    925  *	EINTR/ERESTART on signal.  Either way, fw will no longer be on
    926  *	a futex queue on return.
    927  */
    928 static int
    929 futex_wait(struct futex_wait *fw, struct timespec *timeout, clockid_t clkid,
    930     int clkflags)
    931 {
    932 	int error = 0;
    933 
    934 	/* Test and wait under the wait lock.  */
    935 	mutex_enter(&fw->fw_lock);
    936 
    937 	for (;;) {
    938 		/* If we're done already, stop and report success.  */
    939 		if (fw->fw_bitset == 0 || fw->fw_futex == NULL) {
    940 			error = 0;
    941 			break;
    942 		}
    943 
    944 		/* If anything went wrong in the last iteration, stop.  */
    945 		if (error)
    946 			break;
    947 
    948 		/* Not done yet.  Wait.  */
    949 		error = cv_timedwaitclock_sig(&fw->fw_cv, &fw->fw_lock,
    950 		    timeout, clkid, clkflags, DEFAULT_TIMEOUT_EPSILON);
    951 	}
    952 
    953 	/*
    954 	 * If we were woken up, the waker will have removed fw from the
    955 	 * queue.  But if anything went wrong, we must remove fw from
    956 	 * the queue ourselves.  While here, convert EWOULDBLOCK to
    957 	 * ETIMEDOUT in case cv_timedwait_sig returned EWOULDBLOCK, and
    958 	 * convert ERESTART to EINTR so that we don't restart with the
    959 	 * same relative timeout after time has elapsed.
    960 	 */
    961 	if (error) {
    962 		futex_wait_abort(fw);
    963 		if (error == EWOULDBLOCK)
    964 			error = ETIMEDOUT;
    965 		else if (error == ERESTART)
    966 			error = EINTR;
    967 	}
    968 
    969 	mutex_exit(&fw->fw_lock);
    970 
    971 	return error;
    972 }
    973 
    974 /*
    975  * futex_wake(f, nwake, f2, nrequeue, bitset)
    976  *
    977  *	Wake up to nwake waiters on f matching bitset; then, if f2 is
    978  *	provided, move up to nrequeue remaining waiters on f matching
    979  *	bitset to f2.  Return the number of waiters actually woken.
    980  *	Caller must hold the locks of f and f2, if provided.
    981  */
    982 static unsigned
    983 futex_wake(struct futex *f, unsigned nwake, struct futex *f2,
    984     unsigned nrequeue, int bitset)
    985 {
    986 	struct futex_wait *fw, *fw_next;
    987 	unsigned nwoken = 0;
    988 	int hold_error __diagused;
    989 
    990 	KASSERT(mutex_owned(&f->fx_qlock));
    991 	KASSERT(f2 == NULL || mutex_owned(&f2->fx_qlock));
    992 
    993 	/* Wake up to nwake waiters, and count the number woken.  */
    994 	TAILQ_FOREACH_SAFE(fw, &f->fx_queue, fw_entry, fw_next) {
    995 		if ((fw->fw_bitset & bitset) == 0)
    996 			continue;
    997 		if (nwake > 0) {
    998 			mutex_enter(&fw->fw_lock);
    999 			if (__predict_false(fw->fw_aborting)) {
   1000 				mutex_exit(&fw->fw_lock);
   1001 				continue;
   1002 			}
   1003 			futex_wait_dequeue(fw, f);
   1004 			fw->fw_bitset = 0;
   1005 			cv_broadcast(&fw->fw_cv);
   1006 			mutex_exit(&fw->fw_lock);
   1007 			nwake--;
   1008 			nwoken++;
   1009 			/*
   1010 			 * Drop the futex reference on behalf of the
   1011 			 * waiter.  We assert this is not the last
   1012 			 * reference on the futex (our caller should
   1013 			 * also have one).
   1014 			 */
   1015 			futex_rele_not_last(f);
   1016 		} else {
   1017 			break;
   1018 		}
   1019 	}
   1020 
   1021 	if (f2) {
   1022 		/* Move up to nrequeue waiters from f's queue to f2's queue. */
   1023 		TAILQ_FOREACH_SAFE(fw, &f->fx_queue, fw_entry, fw_next) {
   1024 			if ((fw->fw_bitset & bitset) == 0)
   1025 				continue;
   1026 			if (nrequeue > 0) {
   1027 				mutex_enter(&fw->fw_lock);
   1028 				if (__predict_false(fw->fw_aborting)) {
   1029 					mutex_exit(&fw->fw_lock);
   1030 					continue;
   1031 				}
   1032 				futex_wait_dequeue(fw, f);
   1033 				futex_wait_enqueue(fw, f2);
   1034 				mutex_exit(&fw->fw_lock);
   1035 				nrequeue--;
   1036 				/*
   1037 				 * Transfer the reference from f to f2.
   1038 				 * As above, we assert that we are not
   1039 				 * dropping the last reference to f here.
   1040 				 *
   1041 				 * XXX futex_hold() could theoretically
   1042 				 * XXX fail here.
   1043 				 */
   1044 				futex_rele_not_last(f);
   1045 				hold_error = futex_hold(f2);
   1046 				KASSERT(hold_error == 0);
   1047 			} else {
   1048 				break;
   1049 			}
   1050 		}
   1051 	} else {
   1052 		KASSERT(nrequeue == 0);
   1053 	}
   1054 
   1055 	/* Return the number of waiters woken.  */
   1056 	return nwoken;
   1057 }
   1058 
   1059 /*
   1060  * futex_queue_lock(f)
   1061  *
   1062  *	Acquire the queue lock of f.  Pair with futex_queue_unlock.  Do
   1063  *	not use if caller needs to acquire two locks; use
   1064  *	futex_queue_lock2 instead.
   1065  */
   1066 static void
   1067 futex_queue_lock(struct futex *f)
   1068 {
   1069 	mutex_enter(&f->fx_qlock);
   1070 }
   1071 
   1072 /*
   1073  * futex_queue_unlock(f)
   1074  *
   1075  *	Release the queue lock of f.
   1076  */
   1077 static void
   1078 futex_queue_unlock(struct futex *f)
   1079 {
   1080 	mutex_exit(&f->fx_qlock);
   1081 }
   1082 
   1083 /*
   1084  * futex_queue_lock2(f, f2)
   1085  *
   1086  *	Acquire the queue locks of both f and f2, which may be null, or
   1087  *	which may have the same underlying queue.  If they are
   1088  *	distinct, an arbitrary total order is chosen on the locks.
   1089  *
   1090  *	Callers should only ever acquire multiple queue locks
   1091  *	simultaneously using futex_queue_lock2.
   1092  */
   1093 static void
   1094 futex_queue_lock2(struct futex *f, struct futex *f2)
   1095 {
   1096 
   1097 	/*
   1098 	 * If both are null, do nothing; if one is null and the other
   1099 	 * is not, lock the other and be done with it.
   1100 	 */
   1101 	if (f == NULL && f2 == NULL) {
   1102 		return;
   1103 	} else if (f == NULL) {
   1104 		mutex_enter(&f2->fx_qlock);
   1105 		return;
   1106 	} else if (f2 == NULL) {
   1107 		mutex_enter(&f->fx_qlock);
   1108 		return;
   1109 	}
   1110 
   1111 	/* If both futexes are the same, acquire only one. */
   1112 	if (f == f2) {
   1113 		mutex_enter(&f->fx_qlock);
   1114 		return;
   1115 	}
   1116 
   1117 	/* Otherwise, use the ordering on the kva of the futex pointer.  */
   1118 	if ((uintptr_t)f < (uintptr_t)f2) {
   1119 		mutex_enter(&f->fx_qlock);
   1120 		mutex_enter(&f2->fx_qlock);
   1121 	} else {
   1122 		mutex_enter(&f2->fx_qlock);
   1123 		mutex_enter(&f->fx_qlock);
   1124 	}
   1125 }
   1126 
   1127 /*
   1128  * futex_queue_unlock2(f, f2)
   1129  *
   1130  *	Release the queue locks of both f and f2, which may be null, or
   1131  *	which may have the same underlying queue.
   1132  */
   1133 static void
   1134 futex_queue_unlock2(struct futex *f, struct futex *f2)
   1135 {
   1136 
   1137 	/*
   1138 	 * If both are null, do nothing; if one is null and the other
   1139 	 * is not, unlock the other and be done with it.
   1140 	 */
   1141 	if (f == NULL && f2 == NULL) {
   1142 		return;
   1143 	} else if (f == NULL) {
   1144 		mutex_exit(&f2->fx_qlock);
   1145 		return;
   1146 	} else if (f2 == NULL) {
   1147 		mutex_exit(&f->fx_qlock);
   1148 		return;
   1149 	}
   1150 
   1151 	/* If both futexes are the same, release only one. */
   1152 	if (f == f2) {
   1153 		mutex_exit(&f->fx_qlock);
   1154 		return;
   1155 	}
   1156 
   1157 	/* Otherwise, use the ordering on the kva of the futex pointer.  */
   1158 	if ((uintptr_t)f < (uintptr_t)f2) {
   1159 		mutex_exit(&f2->fx_qlock);
   1160 		mutex_exit(&f->fx_qlock);
   1161 	} else {
   1162 		mutex_exit(&f->fx_qlock);
   1163 		mutex_exit(&f2->fx_qlock);
   1164 	}
   1165 }
   1166 
   1167 /*
   1168  * futex_func_wait(uaddr, val, val3, timeout, clkid, clkflags, retval)
   1169  *
   1170  *	Implement futex(FUTEX_WAIT).
   1171  */
   1172 static int
   1173 futex_func_wait(bool shared, int *uaddr, int val, int val3,
   1174     struct timespec *timeout, clockid_t clkid, int clkflags,
   1175     register_t *retval)
   1176 {
   1177 	struct futex *f;
   1178 	struct futex_wait wait, *fw = &wait;
   1179 	int error;
   1180 
   1181 	/*
   1182 	 * If there's nothing to wait for, and nobody will ever wake
   1183 	 * us, then don't set anything up to wait -- just stop here.
   1184 	 */
   1185 	if (val3 == 0)
   1186 		return EINVAL;
   1187 
   1188 	/* Optimistically test before anything else.  */
   1189 	if (!futex_test(uaddr, val))
   1190 		return EAGAIN;
   1191 
   1192 	/* Get the futex, creating it if necessary.  */
   1193 	error = futex_lookup_create(uaddr, shared, &f);
   1194 	if (error)
   1195 		return error;
   1196 	KASSERT(f);
   1197 
   1198 	/* Get ready to wait.  */
   1199 	futex_wait_init(fw, val3);
   1200 
   1201 	/*
   1202 	 * Under the queue lock, check the value again: if it has
   1203 	 * already changed, EAGAIN; otherwise enqueue the waiter.
   1204 	 * Since FUTEX_WAKE will use the same lock and be done after
   1205 	 * modifying the value, the order in which we check and enqueue
   1206 	 * is immaterial.
   1207 	 */
   1208 	futex_queue_lock(f);
   1209 	if (!futex_test(uaddr, val)) {
   1210 		futex_queue_unlock(f);
   1211 		error = EAGAIN;
   1212 		goto out;
   1213 	}
   1214 	mutex_enter(&fw->fw_lock);
   1215 	futex_wait_enqueue(fw, f);
   1216 	mutex_exit(&fw->fw_lock);
   1217 	futex_queue_unlock(f);
   1218 
   1219 	/*
   1220 	 * We cannot drop our reference to the futex here, because
   1221 	 * we might be enqueued on a different one when we are awakened.
   1222 	 * The references will be managed on our behalf in the requeue
   1223 	 * and wake cases.
   1224 	 */
   1225 	f = NULL;
   1226 
   1227 	/* Wait. */
   1228 	error = futex_wait(fw, timeout, clkid, clkflags);
   1229 	if (error)
   1230 		goto out;
   1231 
   1232 	/* Return 0 on success, error on failure. */
   1233 	*retval = 0;
   1234 
   1235 out:	if (f != NULL)
   1236 		futex_rele(f);
   1237 	futex_wait_fini(fw);
   1238 	return error;
   1239 }
   1240 
   1241 /*
   1242  * futex_func_wake(uaddr, val, val3, retval)
   1243  *
   1244  *	Implement futex(FUTEX_WAKE) and futex(FUTEX_WAKE_BITSET).
   1245  */
   1246 static int
   1247 futex_func_wake(bool shared, int *uaddr, int val, int val3, register_t *retval)
   1248 {
   1249 	struct futex *f;
   1250 	unsigned int nwoken = 0;
   1251 	int error = 0;
   1252 
   1253 	/* Reject negative number of wakeups.  */
   1254 	if (val < 0) {
   1255 		error = EINVAL;
   1256 		goto out;
   1257 	}
   1258 
   1259 	/* Look up the futex, if any.  */
   1260 	error = futex_lookup(uaddr, shared, &f);
   1261 	if (error)
   1262 		goto out;
   1263 
   1264 	/* If there's no futex, there are no waiters to wake.  */
   1265 	if (f == NULL)
   1266 		goto out;
   1267 
   1268 	/*
   1269 	 * Under f's queue lock, wake the waiters and remember the
   1270 	 * number woken.
   1271 	 */
   1272 	futex_queue_lock(f);
   1273 	nwoken = futex_wake(f, val, NULL, 0, val3);
   1274 	futex_queue_unlock(f);
   1275 
   1276 	/* Release the futex.  */
   1277 	futex_rele(f);
   1278 
   1279 out:
   1280 	/* Return the number of waiters woken.  */
   1281 	*retval = nwoken;
   1282 
   1283 	/* Success!  */
   1284 	return error;
   1285 }
   1286 
   1287 /*
   1288  * futex_func_requeue(op, uaddr, val, uaddr2, val2, val3, retval)
   1289  *
   1290  *	Implement futex(FUTEX_REQUEUE) and futex(FUTEX_CMP_REQUEUE).
   1291  */
   1292 static int
   1293 futex_func_requeue(bool shared, int op, int *uaddr, int val, int *uaddr2,
   1294     int val2, int val3, register_t *retval)
   1295 {
   1296 	struct futex *f = NULL, *f2 = NULL;
   1297 	unsigned nwoken = 0;	/* default to zero woken on early return */
   1298 	int error;
   1299 
   1300 	/* Reject negative number of wakeups or requeues. */
   1301 	if (val < 0 || val2 < 0) {
   1302 		error = EINVAL;
   1303 		goto out;
   1304 	}
   1305 
   1306 	/* Look up the source futex, if any. */
   1307 	error = futex_lookup(uaddr, shared, &f);
   1308 	if (error)
   1309 		goto out;
   1310 
   1311 	/* If there is none, nothing to do. */
   1312 	if (f == NULL)
   1313 		goto out;
   1314 
   1315 	/*
   1316 	 * We may need to create the destination futex because it's
   1317 	 * entirely possible it does not currently have any waiters.
   1318 	 */
   1319 	error = futex_lookup_create(uaddr2, shared, &f2);
   1320 	if (error)
   1321 		goto out;
   1322 
   1323 	/*
   1324 	 * Under the futexes' queue locks, check the value; if
   1325 	 * unchanged from val3, wake the waiters.
   1326 	 */
   1327 	futex_queue_lock2(f, f2);
   1328 	if (op == FUTEX_CMP_REQUEUE && !futex_test(uaddr, val3)) {
   1329 		error = EAGAIN;
   1330 	} else {
   1331 		error = 0;
   1332 		nwoken = futex_wake(f, val, f2, val2, FUTEX_BITSET_MATCH_ANY);
   1333 	}
   1334 	futex_queue_unlock2(f, f2);
   1335 
   1336 out:
   1337 	/* Return the number of waiters woken.  */
   1338 	*retval = nwoken;
   1339 
   1340 	/* Release the futexes if we got them.  */
   1341 	if (f2)
   1342 		futex_rele(f2);
   1343 	if (f)
   1344 		futex_rele(f);
   1345 	return error;
   1346 }
   1347 
   1348 /*
   1349  * futex_validate_op_cmp(val3)
   1350  *
   1351  *	Validate an op/cmp argument for FUTEX_WAKE_OP.
   1352  */
   1353 static int
   1354 futex_validate_op_cmp(int val3)
   1355 {
   1356 	int op = __SHIFTOUT(val3, FUTEX_OP_OP_MASK);
   1357 	int cmp = __SHIFTOUT(val3, FUTEX_OP_CMP_MASK);
   1358 
   1359 	if (op & FUTEX_OP_OPARG_SHIFT) {
   1360 		int oparg = __SHIFTOUT(val3, FUTEX_OP_OPARG_MASK);
   1361 		if (oparg < 0)
   1362 			return EINVAL;
   1363 		if (oparg >= 32)
   1364 			return EINVAL;
   1365 		op &= ~FUTEX_OP_OPARG_SHIFT;
   1366 	}
   1367 
   1368 	switch (op) {
   1369 	case FUTEX_OP_SET:
   1370 	case FUTEX_OP_ADD:
   1371 	case FUTEX_OP_OR:
   1372 	case FUTEX_OP_ANDN:
   1373 	case FUTEX_OP_XOR:
   1374 		break;
   1375 	default:
   1376 		return EINVAL;
   1377 	}
   1378 
   1379 	switch (cmp) {
   1380 	case FUTEX_OP_CMP_EQ:
   1381 	case FUTEX_OP_CMP_NE:
   1382 	case FUTEX_OP_CMP_LT:
   1383 	case FUTEX_OP_CMP_LE:
   1384 	case FUTEX_OP_CMP_GT:
   1385 	case FUTEX_OP_CMP_GE:
   1386 		break;
   1387 	default:
   1388 		return EINVAL;
   1389 	}
   1390 
   1391 	return 0;
   1392 }
   1393 
   1394 /*
   1395  * futex_compute_op(oldval, val3)
   1396  *
   1397  *	Apply a FUTEX_WAIT_OP operation to oldval.
   1398  */
   1399 static int
   1400 futex_compute_op(int oldval, int val3)
   1401 {
   1402 	int op = __SHIFTOUT(val3, FUTEX_OP_OP_MASK);
   1403 	int oparg = __SHIFTOUT(val3, FUTEX_OP_OPARG_MASK);
   1404 
   1405 	if (op & FUTEX_OP_OPARG_SHIFT) {
   1406 		KASSERT(oparg >= 0);
   1407 		KASSERT(oparg < 32);
   1408 		oparg = 1u << oparg;
   1409 		op &= ~FUTEX_OP_OPARG_SHIFT;
   1410 	}
   1411 
   1412 	switch (op) {
   1413 	case FUTEX_OP_SET:
   1414 		return oparg;
   1415 
   1416 	case FUTEX_OP_ADD:
   1417 		/*
   1418 		 * Avoid signed arithmetic overflow by doing
   1419 		 * arithmetic unsigned and converting back to signed
   1420 		 * at the end.
   1421 		 */
   1422 		return (int)((unsigned)oldval + (unsigned)oparg);
   1423 
   1424 	case FUTEX_OP_OR:
   1425 		return oldval | oparg;
   1426 
   1427 	case FUTEX_OP_ANDN:
   1428 		return oldval & ~oparg;
   1429 
   1430 	case FUTEX_OP_XOR:
   1431 		return oldval ^ oparg;
   1432 
   1433 	default:
   1434 		panic("invalid futex op");
   1435 	}
   1436 }
   1437 
   1438 /*
   1439  * futex_compute_cmp(oldval, val3)
   1440  *
   1441  *	Apply a FUTEX_WAIT_OP comparison to oldval.
   1442  */
   1443 static bool
   1444 futex_compute_cmp(int oldval, int val3)
   1445 {
   1446 	int cmp = __SHIFTOUT(val3, FUTEX_OP_CMP_MASK);
   1447 	int cmparg = __SHIFTOUT(val3, FUTEX_OP_CMPARG_MASK);
   1448 
   1449 	switch (cmp) {
   1450 	case FUTEX_OP_CMP_EQ:
   1451 		return (oldval == cmparg);
   1452 
   1453 	case FUTEX_OP_CMP_NE:
   1454 		return (oldval != cmparg);
   1455 
   1456 	case FUTEX_OP_CMP_LT:
   1457 		return (oldval < cmparg);
   1458 
   1459 	case FUTEX_OP_CMP_LE:
   1460 		return (oldval <= cmparg);
   1461 
   1462 	case FUTEX_OP_CMP_GT:
   1463 		return (oldval > cmparg);
   1464 
   1465 	case FUTEX_OP_CMP_GE:
   1466 		return (oldval >= cmparg);
   1467 
   1468 	default:
   1469 		panic("invalid futex cmp operation");
   1470 	}
   1471 }
   1472 
   1473 /*
   1474  * futex_func_wake_op(uaddr, val, uaddr2, val2, val3, retval)
   1475  *
   1476  *	Implement futex(FUTEX_WAKE_OP).
   1477  */
   1478 static int
   1479 futex_func_wake_op(bool shared, int *uaddr, int val, int *uaddr2, int val2,
   1480     int val3, register_t *retval)
   1481 {
   1482 	struct futex *f = NULL, *f2 = NULL;
   1483 	int oldval, newval, actual;
   1484 	unsigned nwoken = 0;
   1485 	int error;
   1486 
   1487 	/* Reject negative number of wakeups.  */
   1488 	if (val < 0 || val2 < 0) {
   1489 		error = EINVAL;
   1490 		goto out;
   1491 	}
   1492 
   1493 	/* Reject invalid operations before we start doing things.  */
   1494 	if ((error = futex_validate_op_cmp(val3)) != 0)
   1495 		goto out;
   1496 
   1497 	/* Look up the first futex, if any.  */
   1498 	error = futex_lookup(uaddr, shared, &f);
   1499 	if (error)
   1500 		goto out;
   1501 
   1502 	/* Look up the second futex, if any.  */
   1503 	error = futex_lookup(uaddr2, shared, &f2);
   1504 	if (error)
   1505 		goto out;
   1506 
   1507 	/*
   1508 	 * Under the queue locks:
   1509 	 *
   1510 	 * 1. Read/modify/write: *uaddr2 op= oparg.
   1511 	 * 2. Unconditionally wake uaddr.
   1512 	 * 3. Conditionally wake uaddr2, if it previously matched val2.
   1513 	 */
   1514 	futex_queue_lock2(f, f2);
   1515 	do {
   1516 		error = futex_load(uaddr2, &oldval);
   1517 		if (error)
   1518 			goto out_unlock;
   1519 		newval = futex_compute_op(oldval, val3);
   1520 		error = ucas_int(uaddr2, oldval, newval, &actual);
   1521 		if (error)
   1522 			goto out_unlock;
   1523 	} while (actual != oldval);
   1524 	nwoken = (f ? futex_wake(f, val, NULL, 0, FUTEX_BITSET_MATCH_ANY) : 0);
   1525 	if (f2 && futex_compute_cmp(oldval, val3))
   1526 		nwoken += futex_wake(f2, val2, NULL, 0,
   1527 		    FUTEX_BITSET_MATCH_ANY);
   1528 
   1529 	/* Success! */
   1530 	error = 0;
   1531 out_unlock:
   1532 	futex_queue_unlock2(f, f2);
   1533 
   1534 out:
   1535 	/* Return the number of waiters woken. */
   1536 	*retval = nwoken;
   1537 
   1538 	/* Release the futexes, if we got them. */
   1539 	if (f2)
   1540 		futex_rele(f2);
   1541 	if (f)
   1542 		futex_rele(f);
   1543 	return error;
   1544 }
   1545 
   1546 /*
   1547  * do_futex(uaddr, op, val, timeout, uaddr2, val2, val3)
   1548  *
   1549  *	Implement the futex system call with all the parameters
   1550  *	parsed out.
   1551  */
   1552 int
   1553 do_futex(int *uaddr, int op, int val, struct timespec *timeout, int *uaddr2,
   1554     int val2, int val3, register_t *retval)
   1555 {
   1556 	const bool shared = (op & FUTEX_PRIVATE_FLAG) ? false : true;
   1557 	const clockid_t clkid = (op & FUTEX_CLOCK_REALTIME) ? CLOCK_REALTIME
   1558 							    : CLOCK_MONOTONIC;
   1559 
   1560 	op &= FUTEX_CMD_MASK;
   1561 
   1562 	switch (op) {
   1563 	case FUTEX_WAIT:
   1564 		return futex_func_wait(shared, uaddr, val,
   1565 		    FUTEX_BITSET_MATCH_ANY, timeout, clkid, TIMER_RELTIME,
   1566 		    retval);
   1567 
   1568 	case FUTEX_WAKE:
   1569 		val3 = FUTEX_BITSET_MATCH_ANY;
   1570 		/* FALLTHROUGH */
   1571 	case FUTEX_WAKE_BITSET:
   1572 		return futex_func_wake(shared, uaddr, val, val3, retval);
   1573 
   1574 	case FUTEX_REQUEUE:
   1575 	case FUTEX_CMP_REQUEUE:
   1576 		return futex_func_requeue(shared, op, uaddr, val, uaddr2,
   1577 		    val2, val3, retval);
   1578 
   1579 	case FUTEX_WAIT_BITSET:
   1580 		return futex_func_wait(shared, uaddr, val, val3, timeout,
   1581 		    clkid, TIMER_ABSTIME, retval);
   1582 
   1583 	case FUTEX_WAKE_OP:
   1584 		return futex_func_wake_op(shared, uaddr, val, uaddr2, val2,
   1585 		    val3, retval);
   1586 
   1587 	case FUTEX_FD:
   1588 	default:
   1589 		return ENOSYS;
   1590 	}
   1591 }
   1592 
   1593 /*
   1594  * sys___futex(l, uap, retval)
   1595  *
   1596  *	__futex(2) system call: generic futex operations.
   1597  */
   1598 int
   1599 sys___futex(struct lwp *l, const struct sys___futex_args *uap,
   1600     register_t *retval)
   1601 {
   1602 	/* {
   1603 		syscallarg(int *) uaddr;
   1604 		syscallarg(int) op;
   1605 		syscallarg(int) val;
   1606 		syscallarg(const struct timespec *) timeout;
   1607 		syscallarg(int *) uaddr2;
   1608 		syscallarg(int) val2;
   1609 		syscallarg(int) val3;
   1610 	} */
   1611 	struct timespec ts, *tsp;
   1612 	int error;
   1613 
   1614 	/*
   1615 	 * Copy in the timeout argument, if specified.
   1616 	 */
   1617 	if (SCARG(uap, timeout)) {
   1618 		error = copyin(SCARG(uap, timeout), &ts, sizeof(ts));
   1619 		if (error)
   1620 			return error;
   1621 		tsp = &ts;
   1622 	} else {
   1623 		tsp = NULL;
   1624 	}
   1625 
   1626 	return do_futex(SCARG(uap, uaddr), SCARG(uap, op), SCARG(uap, val),
   1627 	    tsp, SCARG(uap, uaddr2), SCARG(uap, val2), SCARG(uap, val3),
   1628 	    retval);
   1629 }
   1630 
   1631 /*
   1632  * sys___futex_set_robust_list(l, uap, retval)
   1633  *
   1634  *	__futex_set_robust_list(2) system call for robust futexes.
   1635  */
   1636 int
   1637 sys___futex_set_robust_list(struct lwp *l,
   1638     const struct sys___futex_set_robust_list_args *uap, register_t *retval)
   1639 {
   1640 	/* {
   1641 		syscallarg(void *) head;
   1642 		syscallarg(size_t) len;
   1643 	} */
   1644 	void *head = SCARG(uap, head);
   1645 
   1646 	if (SCARG(uap, len) != _FUTEX_ROBUST_HEAD_SIZE)
   1647 		return EINVAL;
   1648 	if ((uintptr_t)head % sizeof(u_long))
   1649 		return EINVAL;
   1650 
   1651 	l->l_robust_head = (uintptr_t)head;
   1652 
   1653 	return 0;
   1654 }
   1655 
   1656 /*
   1657  * sys___futex_get_robust_list(l, uap, retval)
   1658  *
   1659  *	__futex_get_robust_list(2) system call for robust futexes.
   1660  */
   1661 int
   1662 sys___futex_get_robust_list(struct lwp *l,
   1663     const struct sys___futex_get_robust_list_args *uap, register_t *retval)
   1664 {
   1665 	/* {
   1666 		syscallarg(lwpid_t) lwpid;
   1667 		syscallarg(void **) headp;
   1668 		syscallarg(size_t *) lenp;
   1669 	} */
   1670 	void *head;
   1671 	const size_t len = _FUTEX_ROBUST_HEAD_SIZE;
   1672 	int error;
   1673 
   1674 	error = futex_robust_head_lookup(l, SCARG(uap, lwpid), &head);
   1675 	if (error)
   1676 		return error;
   1677 
   1678 	/* Copy out the head pointer and the head structure length. */
   1679 	error = copyout(&head, SCARG(uap, headp), sizeof(head));
   1680 	if (__predict_true(error == 0)) {
   1681 		error = copyout(&len, SCARG(uap, lenp), sizeof(len));
   1682 	}
   1683 
   1684 	return error;
   1685 }
   1686 
   1687 /*
   1688  * release_futex(uva, tid)
   1689  *
   1690  *	Try to release the robust futex at uva in the current process
   1691  *	on lwp exit.  If anything goes wrong, silently fail.  It is the
   1692  *	userland program's obligation to arrange correct behaviour.
   1693  */
   1694 static void
   1695 release_futex(uintptr_t const uptr, lwpid_t const tid, bool const is_pi,
   1696     bool const is_pending)
   1697 {
   1698 	int *uaddr;
   1699 	struct futex *f;
   1700 	int oldval, newval, actual;
   1701 	int error;
   1702 
   1703 	/* If it's misaligned, tough.  */
   1704 	if (__predict_false(uptr & 3))
   1705 		return;
   1706 	uaddr = (int *)uptr;
   1707 
   1708 	error = futex_load(uaddr, &oldval);
   1709 	if (__predict_false(error))
   1710 		return;
   1711 
   1712 	/*
   1713 	 * There are two race conditions we need to handle here:
   1714 	 *
   1715 	 * 1. User space cleared the futex word but died before
   1716 	 *    being able to issue the wakeup.  No wakeups will
   1717 	 *    ever be issued, oops!
   1718 	 *
   1719 	 * 2. Awakened waiter died before being able to acquire
   1720 	 *    the futex in user space.  Any other waiters are
   1721 	 *    now stuck, oops!
   1722 	 *
   1723 	 * In both of these cases, the futex word will be 0 (because
   1724 	 * it's updated before the wake is issued).  The best we can
   1725 	 * do is detect this situation if it's the pending futex and
   1726 	 * issue a wake without modifying the futex word.
   1727 	 *
   1728 	 * XXX eventual PI handling?
   1729 	 */
   1730 	if (__predict_false(is_pending && (oldval & ~FUTEX_WAITERS) == 0)) {
   1731 		register_t retval;
   1732 		(void) futex_func_wake(/*shared*/true, uaddr, 1,
   1733 		    FUTEX_BITSET_MATCH_ANY, &retval);
   1734 		return;
   1735 	}
   1736 
   1737 	/* Optimistically test whether we need to do anything at all.  */
   1738 	if ((oldval & FUTEX_TID_MASK) != tid)
   1739 		return;
   1740 
   1741 	/*
   1742 	 * We need to handle the case where this thread owned the futex,
   1743 	 * but it was uncontended.  In this case, there won't be any
   1744 	 * kernel state to look up.  All we can do is mark the futex
   1745 	 * as a zombie to be mopped up the next time another thread
   1746 	 * attempts to acquire it.
   1747 	 *
   1748 	 * N.B. It's important to ensure to set FUTEX_OWNER_DIED in
   1749 	 * this loop, even if waiters appear while we're are doing
   1750 	 * so.  This is beause FUTEX_WAITERS is set by user space
   1751 	 * before calling __futex() to wait, and the futex needs
   1752 	 * to be marked as a zombie when the new waiter gets into
   1753 	 * the kernel.
   1754 	 */
   1755 	if ((oldval & FUTEX_WAITERS) == 0) {
   1756 		do {
   1757 			error = futex_load(uaddr, &oldval);
   1758 			if (error)
   1759 				return;
   1760 			if ((oldval & FUTEX_TID_MASK) != tid)
   1761 				return;
   1762 			newval = oldval | FUTEX_OWNER_DIED;
   1763 			error = ucas_int(uaddr, oldval, newval, &actual);
   1764 			if (error)
   1765 				return;
   1766 		} while (actual != oldval);
   1767 
   1768 		/*
   1769 		 * If where is still no indication of waiters, then there is
   1770 		 * no more work for us to do.
   1771 		 */
   1772 		if ((oldval & FUTEX_WAITERS) == 0)
   1773 			return;
   1774 	}
   1775 
   1776 	/*
   1777 	 * Look for a shared futex since we have no positive indication
   1778 	 * it is private.  If we can't, tough.
   1779 	 */
   1780 	error = futex_lookup(uaddr, /*shared*/true, &f);
   1781 	if (error)
   1782 		return;
   1783 
   1784 	/*
   1785 	 * If there's no kernel state for this futex, there's nothing to
   1786 	 * release.
   1787 	 */
   1788 	if (f == NULL)
   1789 		return;
   1790 
   1791 	/* Work under the futex queue lock.  */
   1792 	futex_queue_lock(f);
   1793 
   1794 	/*
   1795 	 * Fetch the word: if the tid doesn't match ours, skip;
   1796 	 * otherwise, set the owner-died bit, atomically.
   1797 	 */
   1798 	do {
   1799 		error = futex_load(uaddr, &oldval);
   1800 		if (error)
   1801 			goto out;
   1802 		if ((oldval & FUTEX_TID_MASK) != tid)
   1803 			goto out;
   1804 		newval = oldval | FUTEX_OWNER_DIED;
   1805 		error = ucas_int(uaddr, oldval, newval, &actual);
   1806 		if (error)
   1807 			goto out;
   1808 	} while (actual != oldval);
   1809 
   1810 	/*
   1811 	 * If there may be waiters, try to wake one.  If anything goes
   1812 	 * wrong, tough.
   1813 	 *
   1814 	 * XXX eventual PI handling?
   1815 	 */
   1816 	if (oldval & FUTEX_WAITERS)
   1817 		(void)futex_wake(f, 1, NULL, 0, FUTEX_BITSET_MATCH_ANY);
   1818 
   1819 	/* Unlock the queue and release the futex.  */
   1820 out:	futex_queue_unlock(f);
   1821 	futex_rele(f);
   1822 }
   1823 
   1824 /*
   1825  * futex_robust_head_lookup(l, lwpid)
   1826  *
   1827  *	Helper function to look up a robust head by LWP ID.
   1828  */
   1829 int
   1830 futex_robust_head_lookup(struct lwp *l, lwpid_t lwpid, void **headp)
   1831 {
   1832 	struct proc *p = l->l_proc;
   1833 
   1834 	/* Find the other lwp, if requested; otherwise use our robust head.  */
   1835 	if (lwpid) {
   1836 		mutex_enter(p->p_lock);
   1837 		l = lwp_find(p, lwpid);
   1838 		if (l == NULL) {
   1839 			mutex_exit(p->p_lock);
   1840 			return ESRCH;
   1841 		}
   1842 		*headp = (void *)l->l_robust_head;
   1843 		mutex_exit(p->p_lock);
   1844 	} else {
   1845 		*headp = (void *)l->l_robust_head;
   1846 	}
   1847 	return 0;
   1848 }
   1849 
   1850 /*
   1851  * futex_fetch_robust_head(uaddr)
   1852  *
   1853  *	Helper routine to fetch the futex robust list head that
   1854  *	handles 32-bit binaries running on 64-bit kernels.
   1855  */
   1856 static int
   1857 futex_fetch_robust_head(uintptr_t uaddr, u_long *rhead)
   1858 {
   1859 #ifdef _LP64
   1860 	if (curproc->p_flag & PK_32) {
   1861 		uint32_t rhead32[_FUTEX_ROBUST_HEAD_NWORDS];
   1862 		int error;
   1863 
   1864 		error = copyin((void *)uaddr, rhead32, sizeof(rhead32));
   1865 		if (__predict_true(error == 0)) {
   1866 			for (int i = 0; i < _FUTEX_ROBUST_HEAD_NWORDS; i++) {
   1867 				if (i == _FUTEX_ROBUST_HEAD_OFFSET) {
   1868 					/*
   1869 					 * Make sure the offset is sign-
   1870 					 * extended.
   1871 					 */
   1872 					rhead[i] = (int32_t)rhead32[i];
   1873 				} else {
   1874 					rhead[i] = rhead32[i];
   1875 				}
   1876 			}
   1877 		}
   1878 		return error;
   1879 	}
   1880 #endif /* _L64 */
   1881 
   1882 	return copyin((void *)uaddr, rhead,
   1883 	    sizeof(*rhead) * _FUTEX_ROBUST_HEAD_NWORDS);
   1884 }
   1885 
   1886 /*
   1887  * futex_decode_robust_word(word)
   1888  *
   1889  *	Decode a robust futex list word into the entry and entry
   1890  *	properties.
   1891  */
   1892 static inline void
   1893 futex_decode_robust_word(uintptr_t const word, uintptr_t * const entry,
   1894     bool * const is_pi)
   1895 {
   1896 	*is_pi = (word & _FUTEX_ROBUST_ENTRY_PI) ? true : false;
   1897 	*entry = word & ~_FUTEX_ROBUST_ENTRY_PI;
   1898 }
   1899 
   1900 /*
   1901  * futex_fetch_robust_entry(uaddr)
   1902  *
   1903  *	Helper routine to fetch and decode a robust futex entry
   1904  *	that handles 32-bit binaries running on 64-bit kernels.
   1905  */
   1906 static int
   1907 futex_fetch_robust_entry(uintptr_t const uaddr, uintptr_t * const valp,
   1908     bool * const is_pi)
   1909 {
   1910 	uintptr_t val = 0;
   1911 	int error = 0;
   1912 
   1913 #ifdef _LP64
   1914 	if (curproc->p_flag & PK_32) {
   1915 		uint32_t val32;
   1916 
   1917 		error = ufetch_32((uint32_t *)uaddr, &val32);
   1918 		if (__predict_true(error == 0))
   1919 			val = val32;
   1920 	} else
   1921 #endif /* _LP64 */
   1922 		error = ufetch_long((u_long *)uaddr, (u_long *)&val);
   1923 	if (__predict_false(error))
   1924 		return error;
   1925 
   1926 	futex_decode_robust_word(val, valp, is_pi);
   1927 	return 0;
   1928 }
   1929 
   1930 /*
   1931  * futex_release_all_lwp(l, tid)
   1932  *
   1933  *	Release all l's robust futexes.  If anything looks funny in
   1934  *	the process, give up -- it's userland's responsibility to dot
   1935  *	the i's and cross the t's.
   1936  */
   1937 void
   1938 futex_release_all_lwp(struct lwp * const l, lwpid_t const tid)
   1939 {
   1940 	u_long rhead[_FUTEX_ROBUST_HEAD_NWORDS];
   1941 	int limit = 1000000;
   1942 	int error;
   1943 
   1944 	/* If there's no robust list there's nothing to do. */
   1945 	if (l->l_robust_head == 0)
   1946 		return;
   1947 
   1948 	/* Read the final snapshot of the robust list head. */
   1949 	error = futex_fetch_robust_head(l->l_robust_head, rhead);
   1950 	if (error) {
   1951 		printf("WARNING: pid %jd (%s) lwp %jd tid %jd:"
   1952 		    " unmapped robust futex list head\n",
   1953 		    (uintmax_t)l->l_proc->p_pid, l->l_proc->p_comm,
   1954 		    (uintmax_t)l->l_lid, (uintmax_t)tid);
   1955 		return;
   1956 	}
   1957 
   1958 	const long offset = (long)rhead[_FUTEX_ROBUST_HEAD_OFFSET];
   1959 
   1960 	uintptr_t next, pending;
   1961 	bool is_pi, pending_is_pi;
   1962 
   1963 	futex_decode_robust_word(rhead[_FUTEX_ROBUST_HEAD_LIST],
   1964 	    &next, &is_pi);
   1965 	futex_decode_robust_word(rhead[_FUTEX_ROBUST_HEAD_PENDING],
   1966 	    &pending, &pending_is_pi);
   1967 
   1968 	/*
   1969 	 * Walk down the list of locked futexes and release them, up
   1970 	 * to one million of them before we give up.
   1971 	 */
   1972 
   1973 	while (next != l->l_robust_head && limit-- > 0) {
   1974 		/* pending handled below. */
   1975 		if (next != pending)
   1976 			release_futex(next + offset, tid, is_pi, false);
   1977 		error = futex_fetch_robust_entry(next, &next, &is_pi);
   1978 		if (error)
   1979 			break;
   1980 		preempt_point();
   1981 	}
   1982 	if (limit <= 0) {
   1983 		printf("WARNING: pid %jd (%s) lwp %jd tid %jd:"
   1984 		    " exhausted robust futex limit\n",
   1985 		    (uintmax_t)l->l_proc->p_pid, l->l_proc->p_comm,
   1986 		    (uintmax_t)l->l_lid, (uintmax_t)tid);
   1987 	}
   1988 
   1989 	/* If there's a pending futex, it may need to be released too. */
   1990 	if (pending != 0) {
   1991 		release_futex(pending + offset, tid, pending_is_pi, true);
   1992 	}
   1993 }
   1994