sys_futex.c revision 1.9 1 /* $NetBSD: sys_futex.c,v 1.9 2020/05/03 01:26:39 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 2018, 2019, 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Taylor R. Campbell and Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: sys_futex.c,v 1.9 2020/05/03 01:26:39 riastradh Exp $");
34
35 /*
36 * Futexes
37 *
38 * The futex system call coordinates notifying threads waiting for
39 * changes on a 32-bit word of memory. The word can be managed by
40 * CPU atomic operations in userland, without system calls, as long
41 * as there is no contention.
42 *
43 * The simplest use case demonstrating the utility is:
44 *
45 * // 32-bit word of memory shared among threads or
46 * // processes in userland. lock & 1 means owned;
47 * // lock & 2 means there are waiters waiting.
48 * volatile int lock = 0;
49 *
50 * int v;
51 *
52 * // Acquire a lock.
53 * do {
54 * v = lock;
55 * if (v & 1) {
56 * // Lock is held. Set a bit to say that
57 * // there are waiters, and wait for lock
58 * // to change to anything other than v;
59 * // then retry.
60 * if (atomic_cas_uint(&lock, v, v | 2) != v)
61 * continue;
62 * futex(FUTEX_WAIT, &lock, v | 2, NULL, NULL, 0);
63 * continue;
64 * }
65 * } while (atomic_cas_uint(&lock, v, v & ~1) != v);
66 * membar_enter();
67 *
68 * ...
69 *
70 * // Release the lock. Optimistically assume there are
71 * // no waiters first until demonstrated otherwise.
72 * membar_exit();
73 * if (atomic_cas_uint(&lock, 1, 0) != 1) {
74 * // There may be waiters.
75 * v = atomic_swap_uint(&lock, 0);
76 * // If there are still waiters, wake one.
77 * if (v & 2)
78 * futex(FUTEX_WAKE, &lock, 1, NULL, NULL, 0);
79 * }
80 *
81 * The goal is to avoid the futex system call unless there is
82 * contention; then if there is contention, to guarantee no missed
83 * wakeups.
84 *
85 * For a simple implementation, futex(FUTEX_WAIT) could queue
86 * itself to be woken, double-check the lock word, and then sleep;
87 * spurious wakeups are generally a fact of life, so any
88 * FUTEX_WAKE could just wake every FUTEX_WAIT in the system.
89 *
90 * If this were all there is to it, we could then increase
91 * parallelism by refining the approximation: partition the
92 * waiters into buckets by hashing the lock addresses to reduce
93 * the incidence of spurious wakeups. But this is not all.
94 *
95 * The futex(FUTEX_CMP_REQUEUE, &lock, n, &lock2, m, val)
96 * operation not only wakes n waiters on lock if lock == val, but
97 * also _transfers_ m additional waiters to lock2. Unless wakeups
98 * on lock2 also trigger wakeups on lock, we cannot move waiters
99 * to lock2 if they merely share the same hash as waiters on lock.
100 * Thus, we can't approximately distribute waiters into queues by
101 * a hash function; we must distinguish futex queues exactly by
102 * lock address.
103 *
104 * For now, we use a global red/black tree to index futexes. This
105 * should be replaced by a lockless radix tree with a thread to
106 * free entries no longer in use once all lookups on all CPUs have
107 * completed.
108 *
109 * Specifically, we maintain two maps:
110 *
111 * futex_tab.va[vmspace, va] for private futexes
112 * futex_tab.oa[uvm_voaddr] for shared futexes
113 *
114 * This implementation does not support priority inheritance.
115 */
116
117 #include <sys/types.h>
118 #include <sys/atomic.h>
119 #include <sys/condvar.h>
120 #include <sys/futex.h>
121 #include <sys/mutex.h>
122 #include <sys/rbtree.h>
123 #include <sys/queue.h>
124
125 #include <sys/syscall.h>
126 #include <sys/syscallargs.h>
127 #include <sys/syscallvar.h>
128
129 #include <uvm/uvm_extern.h>
130
131 /*
132 * Lock order:
133 *
134 * futex_tab.lock
135 * futex::fx_qlock ordered by kva of struct futex
136 * -> futex_wait::fw_lock only one at a time
137 * futex_wait::fw_lock only one at a time
138 * -> futex::fx_abortlock only one at a time
139 */
140
141 /*
142 * union futex_key
143 *
144 * A futex is addressed either by a vmspace+va (private) or by
145 * a uvm_voaddr (shared).
146 */
147 union futex_key {
148 struct {
149 struct vmspace *vmspace;
150 vaddr_t va;
151 } fk_private;
152 struct uvm_voaddr fk_shared;
153 };
154
155 /*
156 * struct futex
157 *
158 * Kernel state for a futex located at a particular address in a
159 * particular virtual address space.
160 *
161 * N.B. fx_refcnt is an unsigned long because we need to be able
162 * to operate on it atomically on all systems while at the same
163 * time rendering practically impossible the chance of it reaching
164 * its max value. In practice, we're limited by the number of LWPs
165 * that can be present on the system at any given time, and the
166 * assumption is that limit will be good enough on a 32-bit platform.
167 * See futex_wake() for why overflow needs to be avoided.
168 */
169 struct futex {
170 union futex_key fx_key;
171 unsigned long fx_refcnt;
172 bool fx_shared;
173 bool fx_on_tree;
174 struct rb_node fx_node;
175
176 kmutex_t fx_qlock;
177 TAILQ_HEAD(, futex_wait) fx_queue;
178
179 kmutex_t fx_abortlock;
180 LIST_HEAD(, futex_wait) fx_abortlist;
181 kcondvar_t fx_abortcv;
182 };
183
184 /*
185 * struct futex_wait
186 *
187 * State for a thread to wait on a futex. Threads wait on fw_cv
188 * for fw_bitset to be set to zero. The thread may transition to
189 * a different futex queue at any time under the futex's lock.
190 */
191 struct futex_wait {
192 kmutex_t fw_lock;
193 kcondvar_t fw_cv;
194 struct futex *fw_futex;
195 TAILQ_ENTRY(futex_wait) fw_entry; /* queue lock */
196 LIST_ENTRY(futex_wait) fw_abort; /* queue abortlock */
197 int fw_bitset;
198 bool fw_aborting; /* fw_lock */
199 };
200
201 /*
202 * futex_tab
203 *
204 * Global trees of futexes by vmspace/va and VM object address.
205 *
206 * XXX This obviously doesn't scale in parallel. We could use a
207 * pserialize-safe data structure, but there may be a high cost to
208 * frequent deletion since we don't cache futexes after we're done
209 * with them. We could use hashed locks. But for now, just make
210 * sure userland can't DoS the serial performance, by using a
211 * balanced binary tree for lookup.
212 *
213 * XXX We could use a per-process tree for the table indexed by
214 * virtual address to reduce contention between processes.
215 */
216 static struct {
217 kmutex_t lock;
218 struct rb_tree va;
219 struct rb_tree oa;
220 } futex_tab __cacheline_aligned;
221
222 static int
223 compare_futex_key(void *cookie, const void *n, const void *k)
224 {
225 const struct futex *fa = n;
226 const union futex_key *fka = &fa->fx_key;
227 const union futex_key *fkb = k;
228
229 if ((uintptr_t)fka->fk_private.vmspace <
230 (uintptr_t)fkb->fk_private.vmspace)
231 return -1;
232 if ((uintptr_t)fka->fk_private.vmspace >
233 (uintptr_t)fkb->fk_private.vmspace)
234 return +1;
235 if (fka->fk_private.va < fkb->fk_private.va)
236 return -1;
237 if (fka->fk_private.va > fkb->fk_private.va)
238 return -1;
239 return 0;
240 }
241
242 static int
243 compare_futex(void *cookie, const void *na, const void *nb)
244 {
245 const struct futex *fa = na;
246 const struct futex *fb = nb;
247
248 return compare_futex_key(cookie, fa, &fb->fx_key);
249 }
250
251 static const rb_tree_ops_t futex_rb_ops = {
252 .rbto_compare_nodes = compare_futex,
253 .rbto_compare_key = compare_futex_key,
254 .rbto_node_offset = offsetof(struct futex, fx_node),
255 };
256
257 static int
258 compare_futex_shared_key(void *cookie, const void *n, const void *k)
259 {
260 const struct futex *fa = n;
261 const union futex_key *fka = &fa->fx_key;
262 const union futex_key *fkb = k;
263
264 return uvm_voaddr_compare(&fka->fk_shared, &fkb->fk_shared);
265 }
266
267 static int
268 compare_futex_shared(void *cookie, const void *na, const void *nb)
269 {
270 const struct futex *fa = na;
271 const struct futex *fb = nb;
272
273 return compare_futex_shared_key(cookie, fa, &fb->fx_key);
274 }
275
276 static const rb_tree_ops_t futex_shared_rb_ops = {
277 .rbto_compare_nodes = compare_futex_shared,
278 .rbto_compare_key = compare_futex_shared_key,
279 .rbto_node_offset = offsetof(struct futex, fx_node),
280 };
281
282 static void futex_wait_dequeue(struct futex_wait *, struct futex *);
283
284 /*
285 * futex_load(uaddr, kaddr)
286 *
287 * Perform a single atomic load to read *uaddr, and return the
288 * result in *kaddr. Return 0 on success, EFAULT if uaddr is not
289 * mapped.
290 */
291 static inline int
292 futex_load(int *uaddr, int *kaddr)
293 {
294 return ufetch_int((u_int *)uaddr, (u_int *)kaddr);
295 }
296
297 /*
298 * futex_test(uaddr, expected)
299 *
300 * True if *uaddr == expected. False if *uaddr != expected, or if
301 * uaddr is not mapped.
302 */
303 static bool
304 futex_test(int *uaddr, int expected)
305 {
306 int val;
307 int error;
308
309 error = futex_load(uaddr, &val);
310 if (error)
311 return false;
312 return val == expected;
313 }
314
315 /*
316 * futex_sys_init()
317 *
318 * Initialize the futex subsystem.
319 */
320 void
321 futex_sys_init(void)
322 {
323
324 mutex_init(&futex_tab.lock, MUTEX_DEFAULT, IPL_NONE);
325 rb_tree_init(&futex_tab.va, &futex_rb_ops);
326 rb_tree_init(&futex_tab.oa, &futex_shared_rb_ops);
327 }
328
329 /*
330 * futex_sys_fini()
331 *
332 * Finalize the futex subsystem.
333 */
334 void
335 futex_sys_fini(void)
336 {
337
338 KASSERT(RB_TREE_MIN(&futex_tab.oa) == NULL);
339 KASSERT(RB_TREE_MIN(&futex_tab.va) == NULL);
340 mutex_destroy(&futex_tab.lock);
341 }
342
343 /*
344 * futex_queue_init(f)
345 *
346 * Initialize the futex queue. Caller must call futex_queue_fini
347 * when done.
348 *
349 * Never sleeps.
350 */
351 static void
352 futex_queue_init(struct futex *f)
353 {
354
355 mutex_init(&f->fx_qlock, MUTEX_DEFAULT, IPL_NONE);
356 mutex_init(&f->fx_abortlock, MUTEX_DEFAULT, IPL_NONE);
357 cv_init(&f->fx_abortcv, "fqabort");
358 LIST_INIT(&f->fx_abortlist);
359 TAILQ_INIT(&f->fx_queue);
360 }
361
362 /*
363 * futex_queue_drain(f)
364 *
365 * Wait for any aborting waiters in f; then empty the queue of
366 * any stragglers and wake them. Caller must guarantee no new
367 * references to f.
368 *
369 * May sleep.
370 */
371 static void
372 futex_queue_drain(struct futex *f)
373 {
374 struct futex_wait *fw, *fw_next;
375
376 mutex_enter(&f->fx_abortlock);
377 while (!LIST_EMPTY(&f->fx_abortlist))
378 cv_wait(&f->fx_abortcv, &f->fx_abortlock);
379 mutex_exit(&f->fx_abortlock);
380
381 mutex_enter(&f->fx_qlock);
382 TAILQ_FOREACH_SAFE(fw, &f->fx_queue, fw_entry, fw_next) {
383 mutex_enter(&fw->fw_lock);
384 futex_wait_dequeue(fw, f);
385 cv_broadcast(&fw->fw_cv);
386 mutex_exit(&fw->fw_lock);
387 }
388 mutex_exit(&f->fx_qlock);
389 }
390
391 /*
392 * futex_queue_fini(fq)
393 *
394 * Finalize the futex queue initialized by futex_queue_init. Queue
395 * must be empty. Caller must not use f again until a subsequent
396 * futex_queue_init.
397 */
398 static void
399 futex_queue_fini(struct futex *f)
400 {
401
402 KASSERT(TAILQ_EMPTY(&f->fx_queue));
403 KASSERT(LIST_EMPTY(&f->fx_abortlist));
404 mutex_destroy(&f->fx_qlock);
405 mutex_destroy(&f->fx_abortlock);
406 cv_destroy(&f->fx_abortcv);
407 }
408
409 /*
410 * futex_key_init(key, vm, va, shared)
411 *
412 * Initialize a futex key for lookup, etc.
413 */
414 static int
415 futex_key_init(union futex_key *fk, struct vmspace *vm, vaddr_t va, bool shared)
416 {
417 int error = 0;
418
419 if (__predict_false(shared)) {
420 if (!uvm_voaddr_acquire(&vm->vm_map, va, &fk->fk_shared))
421 error = EFAULT;
422 } else {
423 fk->fk_private.vmspace = vm;
424 fk->fk_private.va = va;
425 }
426
427 return error;
428 }
429
430 /*
431 * futex_key_fini(key, shared)
432 *
433 * Release a futex key.
434 */
435 static void
436 futex_key_fini(union futex_key *fk, bool shared)
437 {
438 if (__predict_false(shared))
439 uvm_voaddr_release(&fk->fk_shared);
440 memset(fk, 0, sizeof(*fk));
441 }
442
443 /*
444 * futex_create(fk, shared)
445 *
446 * Create a futex. Initial reference count is 1, representing the
447 * caller. Returns NULL on failure. Always takes ownership of the
448 * key, either transferring it to the newly-created futex, or releasing
449 * the key if creation fails.
450 *
451 * Never sleeps for memory, but may sleep to acquire a lock.
452 */
453 static struct futex *
454 futex_create(union futex_key *fk, bool shared)
455 {
456 struct futex *f;
457
458 f = kmem_alloc(sizeof(*f), KM_NOSLEEP);
459 if (f == NULL) {
460 futex_key_fini(fk, shared);
461 return NULL;
462 }
463 f->fx_key = *fk;
464 f->fx_refcnt = 1;
465 f->fx_shared = shared;
466 f->fx_on_tree = false;
467 futex_queue_init(f);
468
469 return f;
470 }
471
472 /*
473 * futex_destroy(f)
474 *
475 * Destroy a futex created with futex_create. Reference count
476 * must be zero.
477 *
478 * May sleep.
479 */
480 static void
481 futex_destroy(struct futex *f)
482 {
483
484 ASSERT_SLEEPABLE();
485
486 KASSERT(atomic_load_relaxed(&f->fx_refcnt) == 0);
487 KASSERT(!f->fx_on_tree);
488
489 /* Drain and destroy the private queue. */
490 futex_queue_drain(f);
491 futex_queue_fini(f);
492
493 futex_key_fini(&f->fx_key, f->fx_shared);
494
495 kmem_free(f, sizeof(*f));
496 }
497
498 /*
499 * futex_hold(f)
500 *
501 * Attempt to acquire a reference to f. Return 0 on success,
502 * ENFILE on too many references.
503 *
504 * Never sleeps.
505 */
506 static int
507 futex_hold(struct futex *f)
508 {
509 unsigned long refcnt;
510
511 do {
512 refcnt = atomic_load_relaxed(&f->fx_refcnt);
513 if (refcnt == ULONG_MAX)
514 return ENFILE;
515 } while (atomic_cas_ulong(&f->fx_refcnt, refcnt, refcnt + 1) != refcnt);
516
517 return 0;
518 }
519
520 /*
521 * futex_rele(f)
522 *
523 * Release a reference to f acquired with futex_create or
524 * futex_hold.
525 *
526 * May sleep to free f.
527 */
528 static void
529 futex_rele(struct futex *f)
530 {
531 unsigned long refcnt;
532
533 ASSERT_SLEEPABLE();
534
535 do {
536 refcnt = atomic_load_relaxed(&f->fx_refcnt);
537 if (refcnt == 1)
538 goto trylast;
539 } while (atomic_cas_ulong(&f->fx_refcnt, refcnt, refcnt - 1) != refcnt);
540 return;
541
542 trylast:
543 mutex_enter(&futex_tab.lock);
544 if (atomic_dec_ulong_nv(&f->fx_refcnt) == 0) {
545 if (f->fx_on_tree) {
546 if (__predict_false(f->fx_shared))
547 rb_tree_remove_node(&futex_tab.oa, f);
548 else
549 rb_tree_remove_node(&futex_tab.va, f);
550 f->fx_on_tree = false;
551 }
552 } else {
553 /* References remain -- don't destroy it. */
554 f = NULL;
555 }
556 mutex_exit(&futex_tab.lock);
557 if (f != NULL)
558 futex_destroy(f);
559 }
560
561 /*
562 * futex_rele_not_last(f)
563 *
564 * Release a reference to f acquired with futex_create or
565 * futex_hold.
566 *
567 * This version asserts that we are not dropping the last
568 * reference to f.
569 */
570 static void
571 futex_rele_not_last(struct futex *f)
572 {
573 unsigned long refcnt;
574
575 do {
576 refcnt = atomic_load_relaxed(&f->fx_refcnt);
577 KASSERT(refcnt > 1);
578 } while (atomic_cas_ulong(&f->fx_refcnt, refcnt, refcnt - 1) != refcnt);
579 }
580
581 /*
582 * futex_lookup_by_key(key, shared, &f)
583 *
584 * Try to find an existing futex va reference in the specified key
585 * On success, return 0, set f to found futex or to NULL if not found,
586 * and increment f's reference count if found.
587 *
588 * Return ENFILE if reference count too high.
589 *
590 * Internal lookup routine shared by futex_lookup() and
591 * futex_lookup_create().
592 */
593 static int
594 futex_lookup_by_key(union futex_key *fk, bool shared, struct futex **fp)
595 {
596 struct futex *f;
597 int error = 0;
598
599 mutex_enter(&futex_tab.lock);
600 if (__predict_false(shared)) {
601 f = rb_tree_find_node(&futex_tab.oa, fk);
602 } else {
603 f = rb_tree_find_node(&futex_tab.va, fk);
604 }
605 if (f) {
606 error = futex_hold(f);
607 if (error)
608 f = NULL;
609 }
610 *fp = f;
611 mutex_exit(&futex_tab.lock);
612
613 return error;
614 }
615
616 /*
617 * futex_insert(f, fp)
618 *
619 * Try to insert the futex f into the tree by va. If there
620 * already is a futex for its va, acquire a reference to it, and
621 * store it in *fp; otherwise store f in *fp.
622 *
623 * Return 0 on success, ENFILE if there already is a futex but its
624 * reference count is too high.
625 */
626 static int
627 futex_insert(struct futex *f, struct futex **fp)
628 {
629 struct futex *f0;
630 int error;
631
632 KASSERT(atomic_load_relaxed(&f->fx_refcnt) != 0);
633 KASSERT(!f->fx_on_tree);
634
635 mutex_enter(&futex_tab.lock);
636 if (__predict_false(f->fx_shared))
637 f0 = rb_tree_insert_node(&futex_tab.oa, f);
638 else
639 f0 = rb_tree_insert_node(&futex_tab.va, f);
640 if (f0 == f) {
641 f->fx_on_tree = true;
642 error = 0;
643 } else {
644 KASSERT(atomic_load_relaxed(&f0->fx_refcnt) != 0);
645 KASSERT(f0->fx_on_tree);
646 error = futex_hold(f0);
647 if (error)
648 goto out;
649 }
650 *fp = f0;
651 out: mutex_exit(&futex_tab.lock);
652
653 return error;
654 }
655
656 /*
657 * futex_lookup(uaddr, shared, &f)
658 *
659 * Find a futex at the userland pointer uaddr in the current
660 * process's VM space. On success, return the futex in f and
661 * increment its reference count.
662 *
663 * Caller must call futex_rele when done.
664 */
665 static int
666 futex_lookup(int *uaddr, bool shared, struct futex **fp)
667 {
668 union futex_key fk;
669 struct vmspace *vm = curproc->p_vmspace;
670 vaddr_t va = (vaddr_t)uaddr;
671 int error;
672
673 /*
674 * Reject unaligned user pointers so we don't cross page
675 * boundaries and so atomics will work.
676 */
677 if ((va & 3) != 0)
678 return EINVAL;
679
680 /* Look it up. */
681 error = futex_key_init(&fk, vm, va, shared);
682 if (error)
683 return error;
684
685 error = futex_lookup_by_key(&fk, shared, fp);
686 futex_key_fini(&fk, shared);
687 if (error)
688 return error;
689
690 KASSERT(*fp == NULL || (*fp)->fx_shared == shared);
691 KASSERT(*fp == NULL || atomic_load_relaxed(&(*fp)->fx_refcnt) != 0);
692
693 /*
694 * Success! (Caller must still check whether we found
695 * anything, but nothing went _wrong_ like trying to use
696 * unmapped memory.)
697 */
698 KASSERT(error == 0);
699
700 return error;
701 }
702
703 /*
704 * futex_lookup_create(uaddr, shared, &f)
705 *
706 * Find or create a futex at the userland pointer uaddr in the
707 * current process's VM space. On success, return the futex in f
708 * and increment its reference count.
709 *
710 * Caller must call futex_rele when done.
711 */
712 static int
713 futex_lookup_create(int *uaddr, bool shared, struct futex **fp)
714 {
715 union futex_key fk;
716 struct vmspace *vm = curproc->p_vmspace;
717 struct futex *f = NULL;
718 vaddr_t va = (vaddr_t)uaddr;
719 int error;
720
721 /*
722 * Reject unaligned user pointers so we don't cross page
723 * boundaries and so atomics will work.
724 */
725 if ((va & 3) != 0)
726 return EINVAL;
727
728 error = futex_key_init(&fk, vm, va, shared);
729 if (error)
730 return error;
731
732 /*
733 * Optimistically assume there already is one, and try to find
734 * it.
735 */
736 error = futex_lookup_by_key(&fk, shared, fp);
737 if (error || *fp != NULL) {
738 /*
739 * We either found one, or there was an error.
740 * In either case, we are done with the key.
741 */
742 futex_key_fini(&fk, shared);
743 goto out;
744 }
745
746 /*
747 * Create a futex recoard. This tranfers ownership of the key
748 * in all cases.
749 */
750 f = futex_create(&fk, shared);
751 if (f == NULL) {
752 error = ENOMEM;
753 goto out;
754 }
755
756 /*
757 * Insert our new futex, or use existing if someone else beat
758 * us to it.
759 */
760 error = futex_insert(f, fp);
761 if (error)
762 goto out;
763 if (*fp == f)
764 f = NULL; /* don't release on exit */
765
766 /* Success! */
767 KASSERT(error == 0);
768
769 out: if (f != NULL)
770 futex_rele(f);
771 KASSERT(error || *fp != NULL);
772 KASSERT(error || atomic_load_relaxed(&(*fp)->fx_refcnt) != 0);
773 return error;
774 }
775
776 /*
777 * futex_wait_init(fw, bitset)
778 *
779 * Initialize a record for a thread to wait on a futex matching
780 * the specified bit set. Should be passed to futex_wait_enqueue
781 * before futex_wait, and should be passed to futex_wait_fini when
782 * done.
783 */
784 static void
785 futex_wait_init(struct futex_wait *fw, int bitset)
786 {
787
788 KASSERT(bitset);
789
790 mutex_init(&fw->fw_lock, MUTEX_DEFAULT, IPL_NONE);
791 cv_init(&fw->fw_cv, "futex");
792 fw->fw_futex = NULL;
793 fw->fw_bitset = bitset;
794 fw->fw_aborting = false;
795 }
796
797 /*
798 * futex_wait_fini(fw)
799 *
800 * Finalize a record for a futex waiter. Must not be on any
801 * futex's queue.
802 */
803 static void
804 futex_wait_fini(struct futex_wait *fw)
805 {
806
807 KASSERT(fw->fw_futex == NULL);
808
809 cv_destroy(&fw->fw_cv);
810 mutex_destroy(&fw->fw_lock);
811 }
812
813 /*
814 * futex_wait_enqueue(fw, f)
815 *
816 * Put fw on the futex queue. Must be done before futex_wait.
817 * Caller must hold fw's lock and f's lock, and fw must not be on
818 * any existing futex's waiter list.
819 */
820 static void
821 futex_wait_enqueue(struct futex_wait *fw, struct futex *f)
822 {
823
824 KASSERT(mutex_owned(&f->fx_qlock));
825 KASSERT(mutex_owned(&fw->fw_lock));
826 KASSERT(fw->fw_futex == NULL);
827 KASSERT(!fw->fw_aborting);
828
829 fw->fw_futex = f;
830 TAILQ_INSERT_TAIL(&f->fx_queue, fw, fw_entry);
831 }
832
833 /*
834 * futex_wait_dequeue(fw, f)
835 *
836 * Remove fw from the futex queue. Precludes subsequent
837 * futex_wait until a futex_wait_enqueue. Caller must hold fw's
838 * lock and f's lock, and fw must be on f.
839 */
840 static void
841 futex_wait_dequeue(struct futex_wait *fw, struct futex *f)
842 {
843
844 KASSERT(mutex_owned(&f->fx_qlock));
845 KASSERT(mutex_owned(&fw->fw_lock));
846 KASSERT(fw->fw_futex == f);
847
848 TAILQ_REMOVE(&f->fx_queue, fw, fw_entry);
849 fw->fw_futex = NULL;
850 }
851
852 /*
853 * futex_wait_abort(fw)
854 *
855 * Caller is no longer waiting for fw. Remove it from any queue
856 * if it was on one. Caller must hold fw->fw_lock.
857 */
858 static void
859 futex_wait_abort(struct futex_wait *fw)
860 {
861 struct futex *f;
862
863 KASSERT(mutex_owned(&fw->fw_lock));
864
865 /*
866 * Grab the futex queue. It can't go away as long as we hold
867 * fw_lock. However, we can't take the queue lock because
868 * that's a lock order reversal.
869 */
870 f = fw->fw_futex;
871
872 /* Put us on the abort list so that fq won't go away. */
873 mutex_enter(&f->fx_abortlock);
874 LIST_INSERT_HEAD(&f->fx_abortlist, fw, fw_abort);
875 mutex_exit(&f->fx_abortlock);
876
877 /*
878 * Mark fw as aborting so it won't lose wakeups and won't be
879 * transferred to any other queue.
880 */
881 fw->fw_aborting = true;
882
883 /* f is now stable, so we can release fw_lock. */
884 mutex_exit(&fw->fw_lock);
885
886 /* Now we can remove fw under the queue lock. */
887 mutex_enter(&f->fx_qlock);
888 mutex_enter(&fw->fw_lock);
889 futex_wait_dequeue(fw, f);
890 mutex_exit(&fw->fw_lock);
891 mutex_exit(&f->fx_qlock);
892
893 /*
894 * Finally, remove us from the abort list and notify anyone
895 * waiting for the abort to complete if we were the last to go.
896 */
897 mutex_enter(&f->fx_abortlock);
898 LIST_REMOVE(fw, fw_abort);
899 if (LIST_EMPTY(&f->fx_abortlist))
900 cv_broadcast(&f->fx_abortcv);
901 mutex_exit(&f->fx_abortlock);
902
903 /*
904 * Release our reference to the futex now that we are not
905 * waiting for it.
906 */
907 futex_rele(f);
908
909 /*
910 * Reacquire the fw lock as caller expects. Verify that we're
911 * aborting and no longer associated with a futex.
912 */
913 mutex_enter(&fw->fw_lock);
914 KASSERT(fw->fw_aborting);
915 KASSERT(fw->fw_futex == NULL);
916 }
917
918 /*
919 * futex_wait(fw, timeout, clkid, clkflags)
920 *
921 * fw must be a waiter on a futex's queue. Wait for timeout on
922 * the clock clkid according to clkflags (TIMER_*), or forever if
923 * timeout is NULL, for a futex wakeup. Return 0 on explicit
924 * wakeup or destruction of futex, ETIMEDOUT on timeout,
925 * EINTR/ERESTART on signal. Either way, fw will no longer be on
926 * a futex queue on return.
927 */
928 static int
929 futex_wait(struct futex_wait *fw, struct timespec *timeout, clockid_t clkid,
930 int clkflags)
931 {
932 int error = 0;
933
934 /* Test and wait under the wait lock. */
935 mutex_enter(&fw->fw_lock);
936
937 for (;;) {
938 /* If we're done already, stop and report success. */
939 if (fw->fw_bitset == 0 || fw->fw_futex == NULL) {
940 error = 0;
941 break;
942 }
943
944 /* If anything went wrong in the last iteration, stop. */
945 if (error)
946 break;
947
948 /* Not done yet. Wait. */
949 error = cv_timedwaitclock_sig(&fw->fw_cv, &fw->fw_lock,
950 timeout, clkid, clkflags, DEFAULT_TIMEOUT_EPSILON);
951 }
952
953 /*
954 * If we were woken up, the waker will have removed fw from the
955 * queue. But if anything went wrong, we must remove fw from
956 * the queue ourselves. While here, convert EWOULDBLOCK to
957 * ETIMEDOUT in case cv_timedwait_sig returned EWOULDBLOCK, and
958 * convert ERESTART to EINTR so that we don't restart with the
959 * same relative timeout after time has elapsed.
960 */
961 if (error) {
962 futex_wait_abort(fw);
963 if (error == EWOULDBLOCK)
964 error = ETIMEDOUT;
965 else if (error == ERESTART)
966 error = EINTR;
967 }
968
969 mutex_exit(&fw->fw_lock);
970
971 return error;
972 }
973
974 /*
975 * futex_wake(f, nwake, f2, nrequeue, bitset)
976 *
977 * Wake up to nwake waiters on f matching bitset; then, if f2 is
978 * provided, move up to nrequeue remaining waiters on f matching
979 * bitset to f2. Return the number of waiters actually woken.
980 * Caller must hold the locks of f and f2, if provided.
981 */
982 static unsigned
983 futex_wake(struct futex *f, unsigned nwake, struct futex *f2,
984 unsigned nrequeue, int bitset)
985 {
986 struct futex_wait *fw, *fw_next;
987 unsigned nwoken = 0;
988 int hold_error __diagused;
989
990 KASSERT(mutex_owned(&f->fx_qlock));
991 KASSERT(f2 == NULL || mutex_owned(&f2->fx_qlock));
992
993 /* Wake up to nwake waiters, and count the number woken. */
994 TAILQ_FOREACH_SAFE(fw, &f->fx_queue, fw_entry, fw_next) {
995 if ((fw->fw_bitset & bitset) == 0)
996 continue;
997 if (nwake > 0) {
998 mutex_enter(&fw->fw_lock);
999 if (__predict_false(fw->fw_aborting)) {
1000 mutex_exit(&fw->fw_lock);
1001 continue;
1002 }
1003 futex_wait_dequeue(fw, f);
1004 fw->fw_bitset = 0;
1005 cv_broadcast(&fw->fw_cv);
1006 mutex_exit(&fw->fw_lock);
1007 nwake--;
1008 nwoken++;
1009 /*
1010 * Drop the futex reference on behalf of the
1011 * waiter. We assert this is not the last
1012 * reference on the futex (our caller should
1013 * also have one).
1014 */
1015 futex_rele_not_last(f);
1016 } else {
1017 break;
1018 }
1019 }
1020
1021 if (f2) {
1022 /* Move up to nrequeue waiters from f's queue to f2's queue. */
1023 TAILQ_FOREACH_SAFE(fw, &f->fx_queue, fw_entry, fw_next) {
1024 if ((fw->fw_bitset & bitset) == 0)
1025 continue;
1026 if (nrequeue > 0) {
1027 mutex_enter(&fw->fw_lock);
1028 if (__predict_false(fw->fw_aborting)) {
1029 mutex_exit(&fw->fw_lock);
1030 continue;
1031 }
1032 futex_wait_dequeue(fw, f);
1033 futex_wait_enqueue(fw, f2);
1034 mutex_exit(&fw->fw_lock);
1035 nrequeue--;
1036 /*
1037 * Transfer the reference from f to f2.
1038 * As above, we assert that we are not
1039 * dropping the last reference to f here.
1040 *
1041 * XXX futex_hold() could theoretically
1042 * XXX fail here.
1043 */
1044 futex_rele_not_last(f);
1045 hold_error = futex_hold(f2);
1046 KASSERT(hold_error == 0);
1047 } else {
1048 break;
1049 }
1050 }
1051 } else {
1052 KASSERT(nrequeue == 0);
1053 }
1054
1055 /* Return the number of waiters woken. */
1056 return nwoken;
1057 }
1058
1059 /*
1060 * futex_queue_lock(f)
1061 *
1062 * Acquire the queue lock of f. Pair with futex_queue_unlock. Do
1063 * not use if caller needs to acquire two locks; use
1064 * futex_queue_lock2 instead.
1065 */
1066 static void
1067 futex_queue_lock(struct futex *f)
1068 {
1069 mutex_enter(&f->fx_qlock);
1070 }
1071
1072 /*
1073 * futex_queue_unlock(f)
1074 *
1075 * Release the queue lock of f.
1076 */
1077 static void
1078 futex_queue_unlock(struct futex *f)
1079 {
1080 mutex_exit(&f->fx_qlock);
1081 }
1082
1083 /*
1084 * futex_queue_lock2(f, f2)
1085 *
1086 * Acquire the queue locks of both f and f2, which may be null, or
1087 * which may have the same underlying queue. If they are
1088 * distinct, an arbitrary total order is chosen on the locks.
1089 *
1090 * Callers should only ever acquire multiple queue locks
1091 * simultaneously using futex_queue_lock2.
1092 */
1093 static void
1094 futex_queue_lock2(struct futex *f, struct futex *f2)
1095 {
1096
1097 /*
1098 * If both are null, do nothing; if one is null and the other
1099 * is not, lock the other and be done with it.
1100 */
1101 if (f == NULL && f2 == NULL) {
1102 return;
1103 } else if (f == NULL) {
1104 mutex_enter(&f2->fx_qlock);
1105 return;
1106 } else if (f2 == NULL) {
1107 mutex_enter(&f->fx_qlock);
1108 return;
1109 }
1110
1111 /* If both futexes are the same, acquire only one. */
1112 if (f == f2) {
1113 mutex_enter(&f->fx_qlock);
1114 return;
1115 }
1116
1117 /* Otherwise, use the ordering on the kva of the futex pointer. */
1118 if ((uintptr_t)f < (uintptr_t)f2) {
1119 mutex_enter(&f->fx_qlock);
1120 mutex_enter(&f2->fx_qlock);
1121 } else {
1122 mutex_enter(&f2->fx_qlock);
1123 mutex_enter(&f->fx_qlock);
1124 }
1125 }
1126
1127 /*
1128 * futex_queue_unlock2(f, f2)
1129 *
1130 * Release the queue locks of both f and f2, which may be null, or
1131 * which may have the same underlying queue.
1132 */
1133 static void
1134 futex_queue_unlock2(struct futex *f, struct futex *f2)
1135 {
1136
1137 /*
1138 * If both are null, do nothing; if one is null and the other
1139 * is not, unlock the other and be done with it.
1140 */
1141 if (f == NULL && f2 == NULL) {
1142 return;
1143 } else if (f == NULL) {
1144 mutex_exit(&f2->fx_qlock);
1145 return;
1146 } else if (f2 == NULL) {
1147 mutex_exit(&f->fx_qlock);
1148 return;
1149 }
1150
1151 /* If both futexes are the same, release only one. */
1152 if (f == f2) {
1153 mutex_exit(&f->fx_qlock);
1154 return;
1155 }
1156
1157 /* Otherwise, use the ordering on the kva of the futex pointer. */
1158 if ((uintptr_t)f < (uintptr_t)f2) {
1159 mutex_exit(&f2->fx_qlock);
1160 mutex_exit(&f->fx_qlock);
1161 } else {
1162 mutex_exit(&f->fx_qlock);
1163 mutex_exit(&f2->fx_qlock);
1164 }
1165 }
1166
1167 /*
1168 * futex_func_wait(uaddr, val, val3, timeout, clkid, clkflags, retval)
1169 *
1170 * Implement futex(FUTEX_WAIT).
1171 */
1172 static int
1173 futex_func_wait(bool shared, int *uaddr, int val, int val3,
1174 struct timespec *timeout, clockid_t clkid, int clkflags,
1175 register_t *retval)
1176 {
1177 struct futex *f;
1178 struct futex_wait wait, *fw = &wait;
1179 int error;
1180
1181 /*
1182 * If there's nothing to wait for, and nobody will ever wake
1183 * us, then don't set anything up to wait -- just stop here.
1184 */
1185 if (val3 == 0)
1186 return EINVAL;
1187
1188 /* Optimistically test before anything else. */
1189 if (!futex_test(uaddr, val))
1190 return EAGAIN;
1191
1192 /* Get the futex, creating it if necessary. */
1193 error = futex_lookup_create(uaddr, shared, &f);
1194 if (error)
1195 return error;
1196 KASSERT(f);
1197
1198 /* Get ready to wait. */
1199 futex_wait_init(fw, val3);
1200
1201 /*
1202 * Under the queue lock, check the value again: if it has
1203 * already changed, EAGAIN; otherwise enqueue the waiter.
1204 * Since FUTEX_WAKE will use the same lock and be done after
1205 * modifying the value, the order in which we check and enqueue
1206 * is immaterial.
1207 */
1208 futex_queue_lock(f);
1209 if (!futex_test(uaddr, val)) {
1210 futex_queue_unlock(f);
1211 error = EAGAIN;
1212 goto out;
1213 }
1214 mutex_enter(&fw->fw_lock);
1215 futex_wait_enqueue(fw, f);
1216 mutex_exit(&fw->fw_lock);
1217 futex_queue_unlock(f);
1218
1219 /*
1220 * We cannot drop our reference to the futex here, because
1221 * we might be enqueued on a different one when we are awakened.
1222 * The references will be managed on our behalf in the requeue
1223 * and wake cases.
1224 */
1225 f = NULL;
1226
1227 /* Wait. */
1228 error = futex_wait(fw, timeout, clkid, clkflags);
1229 if (error)
1230 goto out;
1231
1232 /* Return 0 on success, error on failure. */
1233 *retval = 0;
1234
1235 out: if (f != NULL)
1236 futex_rele(f);
1237 futex_wait_fini(fw);
1238 return error;
1239 }
1240
1241 /*
1242 * futex_func_wake(uaddr, val, val3, retval)
1243 *
1244 * Implement futex(FUTEX_WAKE) and futex(FUTEX_WAKE_BITSET).
1245 */
1246 static int
1247 futex_func_wake(bool shared, int *uaddr, int val, int val3, register_t *retval)
1248 {
1249 struct futex *f;
1250 unsigned int nwoken = 0;
1251 int error = 0;
1252
1253 /* Reject negative number of wakeups. */
1254 if (val < 0) {
1255 error = EINVAL;
1256 goto out;
1257 }
1258
1259 /* Look up the futex, if any. */
1260 error = futex_lookup(uaddr, shared, &f);
1261 if (error)
1262 goto out;
1263
1264 /* If there's no futex, there are no waiters to wake. */
1265 if (f == NULL)
1266 goto out;
1267
1268 /*
1269 * Under f's queue lock, wake the waiters and remember the
1270 * number woken.
1271 */
1272 futex_queue_lock(f);
1273 nwoken = futex_wake(f, val, NULL, 0, val3);
1274 futex_queue_unlock(f);
1275
1276 /* Release the futex. */
1277 futex_rele(f);
1278
1279 out:
1280 /* Return the number of waiters woken. */
1281 *retval = nwoken;
1282
1283 /* Success! */
1284 return error;
1285 }
1286
1287 /*
1288 * futex_func_requeue(op, uaddr, val, uaddr2, val2, val3, retval)
1289 *
1290 * Implement futex(FUTEX_REQUEUE) and futex(FUTEX_CMP_REQUEUE).
1291 */
1292 static int
1293 futex_func_requeue(bool shared, int op, int *uaddr, int val, int *uaddr2,
1294 int val2, int val3, register_t *retval)
1295 {
1296 struct futex *f = NULL, *f2 = NULL;
1297 unsigned nwoken = 0; /* default to zero woken on early return */
1298 int error;
1299
1300 /* Reject negative number of wakeups or requeues. */
1301 if (val < 0 || val2 < 0) {
1302 error = EINVAL;
1303 goto out;
1304 }
1305
1306 /* Look up the source futex, if any. */
1307 error = futex_lookup(uaddr, shared, &f);
1308 if (error)
1309 goto out;
1310
1311 /* If there is none, nothing to do. */
1312 if (f == NULL)
1313 goto out;
1314
1315 /*
1316 * We may need to create the destination futex because it's
1317 * entirely possible it does not currently have any waiters.
1318 */
1319 error = futex_lookup_create(uaddr2, shared, &f2);
1320 if (error)
1321 goto out;
1322
1323 /*
1324 * Under the futexes' queue locks, check the value; if
1325 * unchanged from val3, wake the waiters.
1326 */
1327 futex_queue_lock2(f, f2);
1328 if (op == FUTEX_CMP_REQUEUE && !futex_test(uaddr, val3)) {
1329 error = EAGAIN;
1330 } else {
1331 error = 0;
1332 nwoken = futex_wake(f, val, f2, val2, FUTEX_BITSET_MATCH_ANY);
1333 }
1334 futex_queue_unlock2(f, f2);
1335
1336 out:
1337 /* Return the number of waiters woken. */
1338 *retval = nwoken;
1339
1340 /* Release the futexes if we got them. */
1341 if (f2)
1342 futex_rele(f2);
1343 if (f)
1344 futex_rele(f);
1345 return error;
1346 }
1347
1348 /*
1349 * futex_validate_op_cmp(val3)
1350 *
1351 * Validate an op/cmp argument for FUTEX_WAKE_OP.
1352 */
1353 static int
1354 futex_validate_op_cmp(int val3)
1355 {
1356 int op = __SHIFTOUT(val3, FUTEX_OP_OP_MASK);
1357 int cmp = __SHIFTOUT(val3, FUTEX_OP_CMP_MASK);
1358
1359 if (op & FUTEX_OP_OPARG_SHIFT) {
1360 int oparg = __SHIFTOUT(val3, FUTEX_OP_OPARG_MASK);
1361 if (oparg < 0)
1362 return EINVAL;
1363 if (oparg >= 32)
1364 return EINVAL;
1365 op &= ~FUTEX_OP_OPARG_SHIFT;
1366 }
1367
1368 switch (op) {
1369 case FUTEX_OP_SET:
1370 case FUTEX_OP_ADD:
1371 case FUTEX_OP_OR:
1372 case FUTEX_OP_ANDN:
1373 case FUTEX_OP_XOR:
1374 break;
1375 default:
1376 return EINVAL;
1377 }
1378
1379 switch (cmp) {
1380 case FUTEX_OP_CMP_EQ:
1381 case FUTEX_OP_CMP_NE:
1382 case FUTEX_OP_CMP_LT:
1383 case FUTEX_OP_CMP_LE:
1384 case FUTEX_OP_CMP_GT:
1385 case FUTEX_OP_CMP_GE:
1386 break;
1387 default:
1388 return EINVAL;
1389 }
1390
1391 return 0;
1392 }
1393
1394 /*
1395 * futex_compute_op(oldval, val3)
1396 *
1397 * Apply a FUTEX_WAIT_OP operation to oldval.
1398 */
1399 static int
1400 futex_compute_op(int oldval, int val3)
1401 {
1402 int op = __SHIFTOUT(val3, FUTEX_OP_OP_MASK);
1403 int oparg = __SHIFTOUT(val3, FUTEX_OP_OPARG_MASK);
1404
1405 if (op & FUTEX_OP_OPARG_SHIFT) {
1406 KASSERT(oparg >= 0);
1407 KASSERT(oparg < 32);
1408 oparg = 1u << oparg;
1409 op &= ~FUTEX_OP_OPARG_SHIFT;
1410 }
1411
1412 switch (op) {
1413 case FUTEX_OP_SET:
1414 return oparg;
1415
1416 case FUTEX_OP_ADD:
1417 /*
1418 * Avoid signed arithmetic overflow by doing
1419 * arithmetic unsigned and converting back to signed
1420 * at the end.
1421 */
1422 return (int)((unsigned)oldval + (unsigned)oparg);
1423
1424 case FUTEX_OP_OR:
1425 return oldval | oparg;
1426
1427 case FUTEX_OP_ANDN:
1428 return oldval & ~oparg;
1429
1430 case FUTEX_OP_XOR:
1431 return oldval ^ oparg;
1432
1433 default:
1434 panic("invalid futex op");
1435 }
1436 }
1437
1438 /*
1439 * futex_compute_cmp(oldval, val3)
1440 *
1441 * Apply a FUTEX_WAIT_OP comparison to oldval.
1442 */
1443 static bool
1444 futex_compute_cmp(int oldval, int val3)
1445 {
1446 int cmp = __SHIFTOUT(val3, FUTEX_OP_CMP_MASK);
1447 int cmparg = __SHIFTOUT(val3, FUTEX_OP_CMPARG_MASK);
1448
1449 switch (cmp) {
1450 case FUTEX_OP_CMP_EQ:
1451 return (oldval == cmparg);
1452
1453 case FUTEX_OP_CMP_NE:
1454 return (oldval != cmparg);
1455
1456 case FUTEX_OP_CMP_LT:
1457 return (oldval < cmparg);
1458
1459 case FUTEX_OP_CMP_LE:
1460 return (oldval <= cmparg);
1461
1462 case FUTEX_OP_CMP_GT:
1463 return (oldval > cmparg);
1464
1465 case FUTEX_OP_CMP_GE:
1466 return (oldval >= cmparg);
1467
1468 default:
1469 panic("invalid futex cmp operation");
1470 }
1471 }
1472
1473 /*
1474 * futex_func_wake_op(uaddr, val, uaddr2, val2, val3, retval)
1475 *
1476 * Implement futex(FUTEX_WAKE_OP).
1477 */
1478 static int
1479 futex_func_wake_op(bool shared, int *uaddr, int val, int *uaddr2, int val2,
1480 int val3, register_t *retval)
1481 {
1482 struct futex *f = NULL, *f2 = NULL;
1483 int oldval, newval, actual;
1484 unsigned nwoken = 0;
1485 int error;
1486
1487 /* Reject negative number of wakeups. */
1488 if (val < 0 || val2 < 0) {
1489 error = EINVAL;
1490 goto out;
1491 }
1492
1493 /* Reject invalid operations before we start doing things. */
1494 if ((error = futex_validate_op_cmp(val3)) != 0)
1495 goto out;
1496
1497 /* Look up the first futex, if any. */
1498 error = futex_lookup(uaddr, shared, &f);
1499 if (error)
1500 goto out;
1501
1502 /* Look up the second futex, if any. */
1503 error = futex_lookup(uaddr2, shared, &f2);
1504 if (error)
1505 goto out;
1506
1507 /*
1508 * Under the queue locks:
1509 *
1510 * 1. Read/modify/write: *uaddr2 op= oparg.
1511 * 2. Unconditionally wake uaddr.
1512 * 3. Conditionally wake uaddr2, if it previously matched val2.
1513 */
1514 futex_queue_lock2(f, f2);
1515 do {
1516 error = futex_load(uaddr2, &oldval);
1517 if (error)
1518 goto out_unlock;
1519 newval = futex_compute_op(oldval, val3);
1520 error = ucas_int(uaddr2, oldval, newval, &actual);
1521 if (error)
1522 goto out_unlock;
1523 } while (actual != oldval);
1524 nwoken = (f ? futex_wake(f, val, NULL, 0, FUTEX_BITSET_MATCH_ANY) : 0);
1525 if (f2 && futex_compute_cmp(oldval, val3))
1526 nwoken += futex_wake(f2, val2, NULL, 0,
1527 FUTEX_BITSET_MATCH_ANY);
1528
1529 /* Success! */
1530 error = 0;
1531 out_unlock:
1532 futex_queue_unlock2(f, f2);
1533
1534 out:
1535 /* Return the number of waiters woken. */
1536 *retval = nwoken;
1537
1538 /* Release the futexes, if we got them. */
1539 if (f2)
1540 futex_rele(f2);
1541 if (f)
1542 futex_rele(f);
1543 return error;
1544 }
1545
1546 /*
1547 * do_futex(uaddr, op, val, timeout, uaddr2, val2, val3)
1548 *
1549 * Implement the futex system call with all the parameters
1550 * parsed out.
1551 */
1552 int
1553 do_futex(int *uaddr, int op, int val, struct timespec *timeout, int *uaddr2,
1554 int val2, int val3, register_t *retval)
1555 {
1556 const bool shared = (op & FUTEX_PRIVATE_FLAG) ? false : true;
1557 const clockid_t clkid = (op & FUTEX_CLOCK_REALTIME) ? CLOCK_REALTIME
1558 : CLOCK_MONOTONIC;
1559
1560 op &= FUTEX_CMD_MASK;
1561
1562 switch (op) {
1563 case FUTEX_WAIT:
1564 return futex_func_wait(shared, uaddr, val,
1565 FUTEX_BITSET_MATCH_ANY, timeout, clkid, TIMER_RELTIME,
1566 retval);
1567
1568 case FUTEX_WAKE:
1569 val3 = FUTEX_BITSET_MATCH_ANY;
1570 /* FALLTHROUGH */
1571 case FUTEX_WAKE_BITSET:
1572 return futex_func_wake(shared, uaddr, val, val3, retval);
1573
1574 case FUTEX_REQUEUE:
1575 case FUTEX_CMP_REQUEUE:
1576 return futex_func_requeue(shared, op, uaddr, val, uaddr2,
1577 val2, val3, retval);
1578
1579 case FUTEX_WAIT_BITSET:
1580 return futex_func_wait(shared, uaddr, val, val3, timeout,
1581 clkid, TIMER_ABSTIME, retval);
1582
1583 case FUTEX_WAKE_OP:
1584 return futex_func_wake_op(shared, uaddr, val, uaddr2, val2,
1585 val3, retval);
1586
1587 case FUTEX_FD:
1588 default:
1589 return ENOSYS;
1590 }
1591 }
1592
1593 /*
1594 * sys___futex(l, uap, retval)
1595 *
1596 * __futex(2) system call: generic futex operations.
1597 */
1598 int
1599 sys___futex(struct lwp *l, const struct sys___futex_args *uap,
1600 register_t *retval)
1601 {
1602 /* {
1603 syscallarg(int *) uaddr;
1604 syscallarg(int) op;
1605 syscallarg(int) val;
1606 syscallarg(const struct timespec *) timeout;
1607 syscallarg(int *) uaddr2;
1608 syscallarg(int) val2;
1609 syscallarg(int) val3;
1610 } */
1611 struct timespec ts, *tsp;
1612 int error;
1613
1614 /*
1615 * Copy in the timeout argument, if specified.
1616 */
1617 if (SCARG(uap, timeout)) {
1618 error = copyin(SCARG(uap, timeout), &ts, sizeof(ts));
1619 if (error)
1620 return error;
1621 tsp = &ts;
1622 } else {
1623 tsp = NULL;
1624 }
1625
1626 return do_futex(SCARG(uap, uaddr), SCARG(uap, op), SCARG(uap, val),
1627 tsp, SCARG(uap, uaddr2), SCARG(uap, val2), SCARG(uap, val3),
1628 retval);
1629 }
1630
1631 /*
1632 * sys___futex_set_robust_list(l, uap, retval)
1633 *
1634 * __futex_set_robust_list(2) system call for robust futexes.
1635 */
1636 int
1637 sys___futex_set_robust_list(struct lwp *l,
1638 const struct sys___futex_set_robust_list_args *uap, register_t *retval)
1639 {
1640 /* {
1641 syscallarg(void *) head;
1642 syscallarg(size_t) len;
1643 } */
1644 void *head = SCARG(uap, head);
1645
1646 if (SCARG(uap, len) != _FUTEX_ROBUST_HEAD_SIZE)
1647 return EINVAL;
1648 if ((uintptr_t)head % sizeof(u_long))
1649 return EINVAL;
1650
1651 l->l_robust_head = (uintptr_t)head;
1652
1653 return 0;
1654 }
1655
1656 /*
1657 * sys___futex_get_robust_list(l, uap, retval)
1658 *
1659 * __futex_get_robust_list(2) system call for robust futexes.
1660 */
1661 int
1662 sys___futex_get_robust_list(struct lwp *l,
1663 const struct sys___futex_get_robust_list_args *uap, register_t *retval)
1664 {
1665 /* {
1666 syscallarg(lwpid_t) lwpid;
1667 syscallarg(void **) headp;
1668 syscallarg(size_t *) lenp;
1669 } */
1670 void *head;
1671 const size_t len = _FUTEX_ROBUST_HEAD_SIZE;
1672 int error;
1673
1674 error = futex_robust_head_lookup(l, SCARG(uap, lwpid), &head);
1675 if (error)
1676 return error;
1677
1678 /* Copy out the head pointer and the head structure length. */
1679 error = copyout(&head, SCARG(uap, headp), sizeof(head));
1680 if (__predict_true(error == 0)) {
1681 error = copyout(&len, SCARG(uap, lenp), sizeof(len));
1682 }
1683
1684 return error;
1685 }
1686
1687 /*
1688 * release_futex(uva, tid)
1689 *
1690 * Try to release the robust futex at uva in the current process
1691 * on lwp exit. If anything goes wrong, silently fail. It is the
1692 * userland program's obligation to arrange correct behaviour.
1693 */
1694 static void
1695 release_futex(uintptr_t const uptr, lwpid_t const tid, bool const is_pi,
1696 bool const is_pending)
1697 {
1698 int *uaddr;
1699 struct futex *f;
1700 int oldval, newval, actual;
1701 int error;
1702
1703 /* If it's misaligned, tough. */
1704 if (__predict_false(uptr & 3))
1705 return;
1706 uaddr = (int *)uptr;
1707
1708 error = futex_load(uaddr, &oldval);
1709 if (__predict_false(error))
1710 return;
1711
1712 /*
1713 * There are two race conditions we need to handle here:
1714 *
1715 * 1. User space cleared the futex word but died before
1716 * being able to issue the wakeup. No wakeups will
1717 * ever be issued, oops!
1718 *
1719 * 2. Awakened waiter died before being able to acquire
1720 * the futex in user space. Any other waiters are
1721 * now stuck, oops!
1722 *
1723 * In both of these cases, the futex word will be 0 (because
1724 * it's updated before the wake is issued). The best we can
1725 * do is detect this situation if it's the pending futex and
1726 * issue a wake without modifying the futex word.
1727 *
1728 * XXX eventual PI handling?
1729 */
1730 if (__predict_false(is_pending && (oldval & ~FUTEX_WAITERS) == 0)) {
1731 register_t retval;
1732 (void) futex_func_wake(/*shared*/true, uaddr, 1,
1733 FUTEX_BITSET_MATCH_ANY, &retval);
1734 return;
1735 }
1736
1737 /* Optimistically test whether we need to do anything at all. */
1738 if ((oldval & FUTEX_TID_MASK) != tid)
1739 return;
1740
1741 /*
1742 * We need to handle the case where this thread owned the futex,
1743 * but it was uncontended. In this case, there won't be any
1744 * kernel state to look up. All we can do is mark the futex
1745 * as a zombie to be mopped up the next time another thread
1746 * attempts to acquire it.
1747 *
1748 * N.B. It's important to ensure to set FUTEX_OWNER_DIED in
1749 * this loop, even if waiters appear while we're are doing
1750 * so. This is beause FUTEX_WAITERS is set by user space
1751 * before calling __futex() to wait, and the futex needs
1752 * to be marked as a zombie when the new waiter gets into
1753 * the kernel.
1754 */
1755 if ((oldval & FUTEX_WAITERS) == 0) {
1756 do {
1757 error = futex_load(uaddr, &oldval);
1758 if (error)
1759 return;
1760 if ((oldval & FUTEX_TID_MASK) != tid)
1761 return;
1762 newval = oldval | FUTEX_OWNER_DIED;
1763 error = ucas_int(uaddr, oldval, newval, &actual);
1764 if (error)
1765 return;
1766 } while (actual != oldval);
1767
1768 /*
1769 * If where is still no indication of waiters, then there is
1770 * no more work for us to do.
1771 */
1772 if ((oldval & FUTEX_WAITERS) == 0)
1773 return;
1774 }
1775
1776 /*
1777 * Look for a shared futex since we have no positive indication
1778 * it is private. If we can't, tough.
1779 */
1780 error = futex_lookup(uaddr, /*shared*/true, &f);
1781 if (error)
1782 return;
1783
1784 /*
1785 * If there's no kernel state for this futex, there's nothing to
1786 * release.
1787 */
1788 if (f == NULL)
1789 return;
1790
1791 /* Work under the futex queue lock. */
1792 futex_queue_lock(f);
1793
1794 /*
1795 * Fetch the word: if the tid doesn't match ours, skip;
1796 * otherwise, set the owner-died bit, atomically.
1797 */
1798 do {
1799 error = futex_load(uaddr, &oldval);
1800 if (error)
1801 goto out;
1802 if ((oldval & FUTEX_TID_MASK) != tid)
1803 goto out;
1804 newval = oldval | FUTEX_OWNER_DIED;
1805 error = ucas_int(uaddr, oldval, newval, &actual);
1806 if (error)
1807 goto out;
1808 } while (actual != oldval);
1809
1810 /*
1811 * If there may be waiters, try to wake one. If anything goes
1812 * wrong, tough.
1813 *
1814 * XXX eventual PI handling?
1815 */
1816 if (oldval & FUTEX_WAITERS)
1817 (void)futex_wake(f, 1, NULL, 0, FUTEX_BITSET_MATCH_ANY);
1818
1819 /* Unlock the queue and release the futex. */
1820 out: futex_queue_unlock(f);
1821 futex_rele(f);
1822 }
1823
1824 /*
1825 * futex_robust_head_lookup(l, lwpid)
1826 *
1827 * Helper function to look up a robust head by LWP ID.
1828 */
1829 int
1830 futex_robust_head_lookup(struct lwp *l, lwpid_t lwpid, void **headp)
1831 {
1832 struct proc *p = l->l_proc;
1833
1834 /* Find the other lwp, if requested; otherwise use our robust head. */
1835 if (lwpid) {
1836 mutex_enter(p->p_lock);
1837 l = lwp_find(p, lwpid);
1838 if (l == NULL) {
1839 mutex_exit(p->p_lock);
1840 return ESRCH;
1841 }
1842 *headp = (void *)l->l_robust_head;
1843 mutex_exit(p->p_lock);
1844 } else {
1845 *headp = (void *)l->l_robust_head;
1846 }
1847 return 0;
1848 }
1849
1850 /*
1851 * futex_fetch_robust_head(uaddr)
1852 *
1853 * Helper routine to fetch the futex robust list head that
1854 * handles 32-bit binaries running on 64-bit kernels.
1855 */
1856 static int
1857 futex_fetch_robust_head(uintptr_t uaddr, u_long *rhead)
1858 {
1859 #ifdef _LP64
1860 if (curproc->p_flag & PK_32) {
1861 uint32_t rhead32[_FUTEX_ROBUST_HEAD_NWORDS];
1862 int error;
1863
1864 error = copyin((void *)uaddr, rhead32, sizeof(rhead32));
1865 if (__predict_true(error == 0)) {
1866 for (int i = 0; i < _FUTEX_ROBUST_HEAD_NWORDS; i++) {
1867 if (i == _FUTEX_ROBUST_HEAD_OFFSET) {
1868 /*
1869 * Make sure the offset is sign-
1870 * extended.
1871 */
1872 rhead[i] = (int32_t)rhead32[i];
1873 } else {
1874 rhead[i] = rhead32[i];
1875 }
1876 }
1877 }
1878 return error;
1879 }
1880 #endif /* _L64 */
1881
1882 return copyin((void *)uaddr, rhead,
1883 sizeof(*rhead) * _FUTEX_ROBUST_HEAD_NWORDS);
1884 }
1885
1886 /*
1887 * futex_decode_robust_word(word)
1888 *
1889 * Decode a robust futex list word into the entry and entry
1890 * properties.
1891 */
1892 static inline void
1893 futex_decode_robust_word(uintptr_t const word, uintptr_t * const entry,
1894 bool * const is_pi)
1895 {
1896 *is_pi = (word & _FUTEX_ROBUST_ENTRY_PI) ? true : false;
1897 *entry = word & ~_FUTEX_ROBUST_ENTRY_PI;
1898 }
1899
1900 /*
1901 * futex_fetch_robust_entry(uaddr)
1902 *
1903 * Helper routine to fetch and decode a robust futex entry
1904 * that handles 32-bit binaries running on 64-bit kernels.
1905 */
1906 static int
1907 futex_fetch_robust_entry(uintptr_t const uaddr, uintptr_t * const valp,
1908 bool * const is_pi)
1909 {
1910 uintptr_t val = 0;
1911 int error = 0;
1912
1913 #ifdef _LP64
1914 if (curproc->p_flag & PK_32) {
1915 uint32_t val32;
1916
1917 error = ufetch_32((uint32_t *)uaddr, &val32);
1918 if (__predict_true(error == 0))
1919 val = val32;
1920 } else
1921 #endif /* _LP64 */
1922 error = ufetch_long((u_long *)uaddr, (u_long *)&val);
1923 if (__predict_false(error))
1924 return error;
1925
1926 futex_decode_robust_word(val, valp, is_pi);
1927 return 0;
1928 }
1929
1930 /*
1931 * futex_release_all_lwp(l, tid)
1932 *
1933 * Release all l's robust futexes. If anything looks funny in
1934 * the process, give up -- it's userland's responsibility to dot
1935 * the i's and cross the t's.
1936 */
1937 void
1938 futex_release_all_lwp(struct lwp * const l, lwpid_t const tid)
1939 {
1940 u_long rhead[_FUTEX_ROBUST_HEAD_NWORDS];
1941 int limit = 1000000;
1942 int error;
1943
1944 /* If there's no robust list there's nothing to do. */
1945 if (l->l_robust_head == 0)
1946 return;
1947
1948 /* Read the final snapshot of the robust list head. */
1949 error = futex_fetch_robust_head(l->l_robust_head, rhead);
1950 if (error) {
1951 printf("WARNING: pid %jd (%s) lwp %jd tid %jd:"
1952 " unmapped robust futex list head\n",
1953 (uintmax_t)l->l_proc->p_pid, l->l_proc->p_comm,
1954 (uintmax_t)l->l_lid, (uintmax_t)tid);
1955 return;
1956 }
1957
1958 const long offset = (long)rhead[_FUTEX_ROBUST_HEAD_OFFSET];
1959
1960 uintptr_t next, pending;
1961 bool is_pi, pending_is_pi;
1962
1963 futex_decode_robust_word(rhead[_FUTEX_ROBUST_HEAD_LIST],
1964 &next, &is_pi);
1965 futex_decode_robust_word(rhead[_FUTEX_ROBUST_HEAD_PENDING],
1966 &pending, &pending_is_pi);
1967
1968 /*
1969 * Walk down the list of locked futexes and release them, up
1970 * to one million of them before we give up.
1971 */
1972
1973 while (next != l->l_robust_head && limit-- > 0) {
1974 /* pending handled below. */
1975 if (next != pending)
1976 release_futex(next + offset, tid, is_pi, false);
1977 error = futex_fetch_robust_entry(next, &next, &is_pi);
1978 if (error)
1979 break;
1980 preempt_point();
1981 }
1982 if (limit <= 0) {
1983 printf("WARNING: pid %jd (%s) lwp %jd tid %jd:"
1984 " exhausted robust futex limit\n",
1985 (uintmax_t)l->l_proc->p_pid, l->l_proc->p_comm,
1986 (uintmax_t)l->l_lid, (uintmax_t)tid);
1987 }
1988
1989 /* If there's a pending futex, it may need to be released too. */
1990 if (pending != 0) {
1991 release_futex(pending + offset, tid, pending_is_pi, true);
1992 }
1993 }
1994