sys_lwp.c revision 1.19 1 1.19 yamt /* $NetBSD: sys_lwp.c,v 1.19 2007/05/17 14:51:41 yamt Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.2 ad * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.2 ad * by Nathan J. Williams, and Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad * 3. All advertising materials mentioning features or use of this software
19 1.2 ad * must display the following acknowledgement:
20 1.2 ad * This product includes software developed by the NetBSD
21 1.2 ad * Foundation, Inc. and its contributors.
22 1.2 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.2 ad * contributors may be used to endorse or promote products derived
24 1.2 ad * from this software without specific prior written permission.
25 1.2 ad *
26 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
37 1.2 ad */
38 1.2 ad
39 1.2 ad /*
40 1.2 ad * Lightweight process (LWP) system calls. See kern_lwp.c for a description
41 1.2 ad * of LWPs.
42 1.2 ad */
43 1.2 ad
44 1.2 ad #include <sys/cdefs.h>
45 1.19 yamt __KERNEL_RCSID(0, "$NetBSD: sys_lwp.c,v 1.19 2007/05/17 14:51:41 yamt Exp $");
46 1.2 ad
47 1.2 ad #include <sys/param.h>
48 1.2 ad #include <sys/systm.h>
49 1.2 ad #include <sys/pool.h>
50 1.2 ad #include <sys/proc.h>
51 1.2 ad #include <sys/types.h>
52 1.2 ad #include <sys/syscallargs.h>
53 1.2 ad #include <sys/kauth.h>
54 1.2 ad #include <sys/kmem.h>
55 1.2 ad #include <sys/sleepq.h>
56 1.2 ad
57 1.2 ad #include <uvm/uvm_extern.h>
58 1.2 ad
59 1.2 ad #define LWP_UNPARK_MAX 1024
60 1.2 ad
61 1.2 ad syncobj_t lwp_park_sobj = {
62 1.16 ad SOBJ_SLEEPQ_FIFO,
63 1.2 ad sleepq_unsleep,
64 1.7 yamt sleepq_changepri,
65 1.7 yamt sleepq_lendpri,
66 1.7 yamt syncobj_noowner,
67 1.2 ad };
68 1.2 ad
69 1.2 ad sleeptab_t lwp_park_tab;
70 1.2 ad
71 1.2 ad void
72 1.2 ad lwp_sys_init(void)
73 1.2 ad {
74 1.2 ad sleeptab_init(&lwp_park_tab);
75 1.2 ad }
76 1.2 ad
77 1.2 ad /* ARGSUSED */
78 1.2 ad int
79 1.2 ad sys__lwp_create(struct lwp *l, void *v, register_t *retval)
80 1.2 ad {
81 1.2 ad struct sys__lwp_create_args /* {
82 1.2 ad syscallarg(const ucontext_t *) ucp;
83 1.2 ad syscallarg(u_long) flags;
84 1.2 ad syscallarg(lwpid_t *) new_lwp;
85 1.2 ad } */ *uap = v;
86 1.2 ad struct proc *p = l->l_proc;
87 1.2 ad struct lwp *l2;
88 1.2 ad vaddr_t uaddr;
89 1.6 thorpej bool inmem;
90 1.2 ad ucontext_t *newuc;
91 1.2 ad int error, lid;
92 1.2 ad
93 1.2 ad newuc = pool_get(&lwp_uc_pool, PR_WAITOK);
94 1.2 ad
95 1.2 ad error = copyin(SCARG(uap, ucp), newuc, p->p_emul->e_ucsize);
96 1.2 ad if (error) {
97 1.2 ad pool_put(&lwp_uc_pool, newuc);
98 1.2 ad return error;
99 1.2 ad }
100 1.2 ad
101 1.2 ad /* XXX check against resource limits */
102 1.2 ad
103 1.2 ad inmem = uvm_uarea_alloc(&uaddr);
104 1.2 ad if (__predict_false(uaddr == 0)) {
105 1.2 ad pool_put(&lwp_uc_pool, newuc);
106 1.2 ad return ENOMEM;
107 1.2 ad }
108 1.2 ad
109 1.18 rmind error = newlwp(l, p, uaddr, inmem,
110 1.2 ad SCARG(uap, flags) & LWP_DETACHED,
111 1.5 cube NULL, 0, p->p_emul->e_startlwp, newuc, &l2);
112 1.18 rmind if (error) {
113 1.18 rmind uvm_uarea_free(uaddr);
114 1.18 rmind pool_put(&lwp_uc_pool, newuc);
115 1.18 rmind return error;
116 1.18 rmind }
117 1.2 ad
118 1.2 ad /*
119 1.2 ad * Set the new LWP running, unless the caller has requested that
120 1.2 ad * it be created in suspended state. If the process is stopping,
121 1.2 ad * then the LWP is created stopped.
122 1.2 ad */
123 1.2 ad mutex_enter(&p->p_smutex);
124 1.2 ad lwp_lock(l2);
125 1.2 ad lid = l2->l_lid;
126 1.2 ad if ((SCARG(uap, flags) & LWP_SUSPENDED) == 0 &&
127 1.4 pavel (l->l_flag & (LW_WREBOOT | LW_WSUSPEND | LW_WEXIT)) == 0) {
128 1.2 ad if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0)
129 1.2 ad l2->l_stat = LSSTOP;
130 1.2 ad else {
131 1.19 yamt KASSERT(lwp_locked(l2, l2->l_cpu->ci_schedstate.spc_mutex));
132 1.2 ad p->p_nrlwps++;
133 1.2 ad l2->l_stat = LSRUN;
134 1.19 yamt sched_enqueue(l2, false);
135 1.2 ad }
136 1.2 ad } else
137 1.2 ad l2->l_stat = LSSUSPENDED;
138 1.2 ad lwp_unlock(l2);
139 1.2 ad mutex_exit(&p->p_smutex);
140 1.2 ad
141 1.2 ad error = copyout(&lid, SCARG(uap, new_lwp), sizeof(lid));
142 1.2 ad if (error)
143 1.2 ad return error;
144 1.2 ad
145 1.2 ad return 0;
146 1.2 ad }
147 1.2 ad
148 1.2 ad int
149 1.2 ad sys__lwp_exit(struct lwp *l, void *v, register_t *retval)
150 1.2 ad {
151 1.2 ad
152 1.2 ad lwp_exit(l);
153 1.2 ad return 0;
154 1.2 ad }
155 1.2 ad
156 1.2 ad int
157 1.2 ad sys__lwp_self(struct lwp *l, void *v, register_t *retval)
158 1.2 ad {
159 1.2 ad
160 1.2 ad *retval = l->l_lid;
161 1.2 ad return 0;
162 1.2 ad }
163 1.2 ad
164 1.2 ad int
165 1.2 ad sys__lwp_getprivate(struct lwp *l, void *v, register_t *retval)
166 1.2 ad {
167 1.2 ad
168 1.2 ad *retval = (uintptr_t)l->l_private;
169 1.2 ad return 0;
170 1.2 ad }
171 1.2 ad
172 1.2 ad int
173 1.2 ad sys__lwp_setprivate(struct lwp *l, void *v, register_t *retval)
174 1.2 ad {
175 1.2 ad struct sys__lwp_setprivate_args /* {
176 1.2 ad syscallarg(void *) ptr;
177 1.2 ad } */ *uap = v;
178 1.2 ad
179 1.2 ad l->l_private = SCARG(uap, ptr);
180 1.2 ad return 0;
181 1.2 ad }
182 1.2 ad
183 1.2 ad int
184 1.2 ad sys__lwp_suspend(struct lwp *l, void *v, register_t *retval)
185 1.2 ad {
186 1.2 ad struct sys__lwp_suspend_args /* {
187 1.2 ad syscallarg(lwpid_t) target;
188 1.2 ad } */ *uap = v;
189 1.2 ad struct proc *p = l->l_proc;
190 1.2 ad struct lwp *t;
191 1.2 ad int error;
192 1.2 ad
193 1.2 ad mutex_enter(&p->p_smutex);
194 1.2 ad if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
195 1.2 ad mutex_exit(&p->p_smutex);
196 1.2 ad return ESRCH;
197 1.2 ad }
198 1.2 ad
199 1.2 ad /*
200 1.2 ad * Check for deadlock, which is only possible when we're suspending
201 1.2 ad * ourself. XXX There is a short race here, as p_nrlwps is only
202 1.2 ad * incremented when an LWP suspends itself on the kernel/user
203 1.2 ad * boundary. It's still possible to kill -9 the process so we
204 1.2 ad * don't bother checking further.
205 1.2 ad */
206 1.2 ad lwp_lock(t);
207 1.2 ad if ((t == l && p->p_nrlwps == 1) ||
208 1.4 pavel (l->l_flag & (LW_WCORE | LW_WEXIT)) != 0) {
209 1.2 ad lwp_unlock(t);
210 1.2 ad mutex_exit(&p->p_smutex);
211 1.2 ad return EDEADLK;
212 1.2 ad }
213 1.2 ad
214 1.2 ad /*
215 1.2 ad * Suspend the LWP. XXX If it's on a different CPU, we should wait
216 1.2 ad * for it to be preempted, where it will put itself to sleep.
217 1.2 ad *
218 1.2 ad * Suspension of the current LWP will happen on return to userspace.
219 1.2 ad */
220 1.2 ad error = lwp_suspend(l, t);
221 1.2 ad mutex_exit(&p->p_smutex);
222 1.2 ad
223 1.2 ad return error;
224 1.2 ad }
225 1.2 ad
226 1.2 ad int
227 1.2 ad sys__lwp_continue(struct lwp *l, void *v, register_t *retval)
228 1.2 ad {
229 1.2 ad struct sys__lwp_continue_args /* {
230 1.2 ad syscallarg(lwpid_t) target;
231 1.2 ad } */ *uap = v;
232 1.2 ad int error;
233 1.2 ad struct proc *p = l->l_proc;
234 1.2 ad struct lwp *t;
235 1.2 ad
236 1.2 ad error = 0;
237 1.2 ad
238 1.2 ad mutex_enter(&p->p_smutex);
239 1.2 ad if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
240 1.2 ad mutex_exit(&p->p_smutex);
241 1.2 ad return ESRCH;
242 1.2 ad }
243 1.2 ad
244 1.2 ad lwp_lock(t);
245 1.2 ad lwp_continue(t);
246 1.2 ad mutex_exit(&p->p_smutex);
247 1.2 ad
248 1.2 ad return error;
249 1.2 ad }
250 1.2 ad
251 1.2 ad int
252 1.2 ad sys__lwp_wakeup(struct lwp *l, void *v, register_t *retval)
253 1.2 ad {
254 1.2 ad struct sys__lwp_wakeup_args /* {
255 1.2 ad syscallarg(lwpid_t) target;
256 1.2 ad } */ *uap = v;
257 1.2 ad struct lwp *t;
258 1.2 ad struct proc *p;
259 1.2 ad int error;
260 1.2 ad
261 1.2 ad p = l->l_proc;
262 1.2 ad mutex_enter(&p->p_smutex);
263 1.2 ad
264 1.2 ad if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
265 1.2 ad mutex_exit(&p->p_smutex);
266 1.2 ad return ESRCH;
267 1.2 ad }
268 1.2 ad
269 1.2 ad lwp_lock(t);
270 1.15 ad t->l_flag |= (LW_CANCELLED | LW_UNPARKED);
271 1.2 ad
272 1.2 ad if (t->l_stat != LSSLEEP) {
273 1.16 ad lwp_unlock(t);
274 1.2 ad error = ENODEV;
275 1.16 ad } else if ((t->l_flag & LW_SINTR) == 0) {
276 1.16 ad lwp_unlock(t);
277 1.2 ad error = EBUSY;
278 1.16 ad } else {
279 1.16 ad /* Wake it up. lwp_unsleep() will release the LWP lock. */
280 1.16 ad lwp_unsleep(t);
281 1.16 ad error = 0;
282 1.2 ad }
283 1.2 ad
284 1.2 ad mutex_exit(&p->p_smutex);
285 1.2 ad
286 1.2 ad return error;
287 1.2 ad }
288 1.2 ad
289 1.2 ad int
290 1.2 ad sys__lwp_wait(struct lwp *l, void *v, register_t *retval)
291 1.2 ad {
292 1.2 ad struct sys__lwp_wait_args /* {
293 1.2 ad syscallarg(lwpid_t) wait_for;
294 1.2 ad syscallarg(lwpid_t *) departed;
295 1.2 ad } */ *uap = v;
296 1.2 ad struct proc *p = l->l_proc;
297 1.2 ad int error;
298 1.2 ad lwpid_t dep;
299 1.2 ad
300 1.2 ad mutex_enter(&p->p_smutex);
301 1.2 ad error = lwp_wait1(l, SCARG(uap, wait_for), &dep, 0);
302 1.2 ad mutex_exit(&p->p_smutex);
303 1.2 ad
304 1.2 ad if (error)
305 1.2 ad return error;
306 1.2 ad
307 1.2 ad if (SCARG(uap, departed)) {
308 1.2 ad error = copyout(&dep, SCARG(uap, departed), sizeof(dep));
309 1.2 ad if (error)
310 1.2 ad return error;
311 1.2 ad }
312 1.2 ad
313 1.2 ad return 0;
314 1.2 ad }
315 1.2 ad
316 1.2 ad /* ARGSUSED */
317 1.2 ad int
318 1.2 ad sys__lwp_kill(struct lwp *l, void *v, register_t *retval)
319 1.2 ad {
320 1.2 ad struct sys__lwp_kill_args /* {
321 1.2 ad syscallarg(lwpid_t) target;
322 1.2 ad syscallarg(int) signo;
323 1.2 ad } */ *uap = v;
324 1.2 ad struct proc *p = l->l_proc;
325 1.2 ad struct lwp *t;
326 1.2 ad ksiginfo_t ksi;
327 1.2 ad int signo = SCARG(uap, signo);
328 1.2 ad int error = 0;
329 1.2 ad
330 1.2 ad if ((u_int)signo >= NSIG)
331 1.2 ad return EINVAL;
332 1.2 ad
333 1.2 ad KSI_INIT(&ksi);
334 1.2 ad ksi.ksi_signo = signo;
335 1.2 ad ksi.ksi_code = SI_USER;
336 1.2 ad ksi.ksi_pid = p->p_pid;
337 1.2 ad ksi.ksi_uid = kauth_cred_geteuid(l->l_cred);
338 1.2 ad ksi.ksi_lid = SCARG(uap, target);
339 1.2 ad
340 1.2 ad mutex_enter(&proclist_mutex);
341 1.2 ad mutex_enter(&p->p_smutex);
342 1.2 ad if ((t = lwp_find(p, ksi.ksi_lid)) == NULL)
343 1.2 ad error = ESRCH;
344 1.2 ad else if (signo != 0)
345 1.2 ad kpsignal2(p, &ksi);
346 1.2 ad mutex_exit(&p->p_smutex);
347 1.2 ad mutex_exit(&proclist_mutex);
348 1.2 ad
349 1.2 ad return error;
350 1.2 ad }
351 1.2 ad
352 1.2 ad int
353 1.2 ad sys__lwp_detach(struct lwp *l, void *v, register_t *retval)
354 1.2 ad {
355 1.2 ad struct sys__lwp_detach_args /* {
356 1.2 ad syscallarg(lwpid_t) target;
357 1.2 ad } */ *uap = v;
358 1.2 ad struct proc *p;
359 1.2 ad struct lwp *t;
360 1.2 ad lwpid_t target;
361 1.2 ad int error;
362 1.2 ad
363 1.2 ad target = SCARG(uap, target);
364 1.2 ad p = l->l_proc;
365 1.2 ad
366 1.2 ad mutex_enter(&p->p_smutex);
367 1.2 ad
368 1.2 ad if (l->l_lid == target)
369 1.2 ad t = l;
370 1.2 ad else {
371 1.2 ad /*
372 1.2 ad * We can't use lwp_find() here because the target might
373 1.2 ad * be a zombie.
374 1.2 ad */
375 1.2 ad LIST_FOREACH(t, &p->p_lwps, l_sibling)
376 1.2 ad if (t->l_lid == target)
377 1.2 ad break;
378 1.2 ad }
379 1.2 ad
380 1.2 ad /*
381 1.2 ad * If the LWP is already detached, there's nothing to do.
382 1.2 ad * If it's a zombie, we need to clean up after it. LSZOMB
383 1.2 ad * is visible with the proc mutex held.
384 1.2 ad *
385 1.2 ad * After we have detached or released the LWP, kick any
386 1.2 ad * other LWPs that may be sitting in _lwp_wait(), waiting
387 1.2 ad * for the target LWP to exit.
388 1.2 ad */
389 1.2 ad if (t != NULL && t->l_stat != LSIDL) {
390 1.2 ad if ((t->l_prflag & LPR_DETACHED) == 0) {
391 1.2 ad p->p_ndlwps++;
392 1.2 ad t->l_prflag |= LPR_DETACHED;
393 1.2 ad if (t->l_stat == LSZOMB) {
394 1.17 ad /* Releases proc mutex. */
395 1.17 ad lwp_free(t, false, false);
396 1.2 ad return 0;
397 1.2 ad }
398 1.2 ad error = 0;
399 1.17 ad
400 1.17 ad /*
401 1.17 ad * Have any LWPs sleeping in lwp_wait() recheck
402 1.17 ad * for deadlock.
403 1.17 ad */
404 1.17 ad cv_broadcast(&p->p_lwpcv);
405 1.2 ad } else
406 1.2 ad error = EINVAL;
407 1.2 ad } else
408 1.2 ad error = ESRCH;
409 1.2 ad
410 1.2 ad mutex_exit(&p->p_smutex);
411 1.2 ad
412 1.2 ad return error;
413 1.2 ad }
414 1.2 ad
415 1.2 ad static inline wchan_t
416 1.2 ad lwp_park_wchan(struct proc *p, const void *hint)
417 1.2 ad {
418 1.2 ad return (wchan_t)((uintptr_t)p ^ (uintptr_t)hint);
419 1.2 ad }
420 1.2 ad
421 1.2 ad /*
422 1.2 ad * 'park' an LWP waiting on a user-level synchronisation object. The LWP
423 1.2 ad * will remain parked until another LWP in the same process calls in and
424 1.2 ad * requests that it be unparked.
425 1.2 ad */
426 1.2 ad int
427 1.2 ad sys__lwp_park(struct lwp *l, void *v, register_t *retval)
428 1.2 ad {
429 1.2 ad struct sys__lwp_park_args /* {
430 1.2 ad syscallarg(const struct timespec *) ts;
431 1.2 ad syscallarg(ucontext_t *) uc;
432 1.2 ad syscallarg(const void *) hint;
433 1.2 ad } */ *uap = v;
434 1.2 ad const struct timespec *tsp;
435 1.2 ad struct timespec ts, tsx;
436 1.2 ad struct timeval tv;
437 1.2 ad sleepq_t *sq;
438 1.2 ad wchan_t wchan;
439 1.2 ad int timo, error;
440 1.2 ad
441 1.2 ad /* Fix up the given timeout value. */
442 1.2 ad if ((tsp = SCARG(uap, ts)) != NULL) {
443 1.2 ad if ((error = copyin(tsp, &ts, sizeof(ts))) != 0)
444 1.2 ad return error;
445 1.2 ad getnanotime(&tsx);
446 1.2 ad timespecsub(&ts, &tsx, &ts);
447 1.2 ad tv.tv_sec = ts.tv_sec;
448 1.2 ad tv.tv_usec = ts.tv_nsec / 1000;
449 1.2 ad if (tv.tv_sec < 0 || (tv.tv_sec == 0 && tv.tv_usec < 0))
450 1.2 ad return ETIMEDOUT;
451 1.2 ad if ((error = itimerfix(&tv)) != 0)
452 1.2 ad return error;
453 1.2 ad timo = tvtohz(&tv);
454 1.2 ad } else
455 1.2 ad timo = 0;
456 1.2 ad
457 1.2 ad /* Find and lock the sleep queue. */
458 1.2 ad wchan = lwp_park_wchan(l->l_proc, SCARG(uap, hint));
459 1.2 ad sq = sleeptab_lookup(&lwp_park_tab, wchan);
460 1.2 ad
461 1.2 ad /*
462 1.2 ad * Before going the full route and blocking, check to see if an
463 1.2 ad * unpark op is pending.
464 1.2 ad */
465 1.19 yamt lwp_lock(l);
466 1.8 ad if ((l->l_flag & (LW_CANCELLED | LW_UNPARKED)) != 0) {
467 1.8 ad l->l_flag &= ~(LW_CANCELLED | LW_UNPARKED);
468 1.19 yamt lwp_unlock(l);
469 1.2 ad sleepq_unlock(sq);
470 1.2 ad return EALREADY;
471 1.2 ad }
472 1.8 ad lwp_unlock_to(l, sq->sq_mutex);
473 1.2 ad
474 1.10 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks); /* XXX for compat32 */
475 1.19 yamt sleepq_enqueue(sq, sched_kpri(l), wchan, "parked", &lwp_park_sobj);
476 1.19 yamt error = sleepq_block(timo, true);
477 1.13 yamt switch (error) {
478 1.14 yamt case EWOULDBLOCK:
479 1.14 yamt error = ETIMEDOUT;
480 1.14 yamt break;
481 1.14 yamt case ERESTART:
482 1.14 yamt error = EINTR;
483 1.14 yamt break;
484 1.14 yamt default:
485 1.14 yamt /* nothing */
486 1.14 yamt break;
487 1.13 yamt }
488 1.13 yamt return error;
489 1.2 ad }
490 1.2 ad
491 1.2 ad int
492 1.2 ad sys__lwp_unpark(struct lwp *l, void *v, register_t *retval)
493 1.2 ad {
494 1.2 ad struct sys__lwp_unpark_args /* {
495 1.2 ad syscallarg(lwpid_t) target;
496 1.2 ad syscallarg(const void *) hint;
497 1.2 ad } */ *uap = v;
498 1.2 ad struct proc *p;
499 1.2 ad struct lwp *t;
500 1.2 ad sleepq_t *sq;
501 1.2 ad lwpid_t target;
502 1.2 ad wchan_t wchan;
503 1.2 ad int swapin;
504 1.2 ad
505 1.2 ad p = l->l_proc;
506 1.2 ad target = SCARG(uap, target);
507 1.2 ad
508 1.2 ad /*
509 1.2 ad * Easy case: search for the LWP on the sleep queue. If
510 1.2 ad * it's parked, remove it from the queue and set running.
511 1.2 ad */
512 1.2 ad wchan = lwp_park_wchan(p, SCARG(uap, hint));
513 1.2 ad sq = sleeptab_lookup(&lwp_park_tab, wchan);
514 1.2 ad
515 1.2 ad TAILQ_FOREACH(t, &sq->sq_queue, l_sleepchain)
516 1.2 ad if (t->l_proc == p && t->l_lid == target)
517 1.2 ad break;
518 1.2 ad
519 1.15 ad if (__predict_true(t != NULL)) {
520 1.15 ad swapin = sleepq_remove(sq, t);
521 1.2 ad sleepq_unlock(sq);
522 1.15 ad if (swapin)
523 1.15 ad uvm_kick_scheduler();
524 1.15 ad return 0;
525 1.15 ad }
526 1.15 ad
527 1.15 ad /*
528 1.15 ad * The LWP hasn't parked yet. Take the hit and mark the
529 1.15 ad * operation as pending.
530 1.15 ad */
531 1.15 ad sleepq_unlock(sq);
532 1.15 ad mutex_enter(&p->p_smutex);
533 1.15 ad if ((t = lwp_find(p, target)) == NULL) {
534 1.2 ad mutex_exit(&p->p_smutex);
535 1.15 ad return ESRCH;
536 1.15 ad }
537 1.15 ad lwp_lock(t);
538 1.2 ad
539 1.15 ad /*
540 1.15 ad * It may not have parked yet, we may have raced, or it
541 1.15 ad * is parked on a different user sync object.
542 1.15 ad */
543 1.15 ad if (t->l_syncobj == &lwp_park_sobj) {
544 1.15 ad /* Releases the LWP lock. */
545 1.16 ad lwp_unsleep(t);
546 1.15 ad } else {
547 1.15 ad /*
548 1.15 ad * Set the operation pending. The next call to _lwp_park
549 1.15 ad * will return early.
550 1.15 ad */
551 1.15 ad t->l_flag |= LW_UNPARKED;
552 1.15 ad lwp_unlock(t);
553 1.2 ad }
554 1.2 ad
555 1.15 ad mutex_exit(&p->p_smutex);
556 1.2 ad return 0;
557 1.2 ad }
558 1.2 ad
559 1.2 ad int
560 1.2 ad sys__lwp_unpark_all(struct lwp *l, void *v, register_t *retval)
561 1.2 ad {
562 1.2 ad struct sys__lwp_unpark_all_args /* {
563 1.2 ad syscallarg(const lwpid_t *) targets;
564 1.2 ad syscallarg(size_t) ntargets;
565 1.2 ad syscallarg(const void *) hint;
566 1.2 ad } */ *uap = v;
567 1.2 ad struct proc *p;
568 1.2 ad struct lwp *t;
569 1.2 ad sleepq_t *sq;
570 1.2 ad wchan_t wchan;
571 1.2 ad lwpid_t targets[32], *tp, *tpp, *tmax, target;
572 1.2 ad int swapin, error;
573 1.15 ad u_int ntargets;
574 1.2 ad size_t sz;
575 1.2 ad
576 1.2 ad p = l->l_proc;
577 1.2 ad ntargets = SCARG(uap, ntargets);
578 1.2 ad
579 1.2 ad if (SCARG(uap, targets) == NULL) {
580 1.2 ad /*
581 1.2 ad * Let the caller know how much we are willing to do, and
582 1.2 ad * let it unpark the LWPs in blocks.
583 1.2 ad */
584 1.2 ad *retval = LWP_UNPARK_MAX;
585 1.2 ad return 0;
586 1.2 ad }
587 1.2 ad if (ntargets > LWP_UNPARK_MAX || ntargets == 0)
588 1.2 ad return EINVAL;
589 1.2 ad
590 1.2 ad /*
591 1.2 ad * Copy in the target array. If it's a small number of LWPs, then
592 1.2 ad * place the numbers on the stack.
593 1.2 ad */
594 1.2 ad sz = sizeof(target) * ntargets;
595 1.2 ad if (sz <= sizeof(targets))
596 1.2 ad tp = targets;
597 1.2 ad else {
598 1.2 ad KERNEL_LOCK(1, l); /* XXXSMP */
599 1.2 ad tp = kmem_alloc(sz, KM_SLEEP);
600 1.2 ad KERNEL_UNLOCK_ONE(l); /* XXXSMP */
601 1.2 ad if (tp == NULL)
602 1.2 ad return ENOMEM;
603 1.2 ad }
604 1.2 ad error = copyin(SCARG(uap, targets), tp, sz);
605 1.2 ad if (error != 0) {
606 1.2 ad if (tp != targets) {
607 1.2 ad KERNEL_LOCK(1, l); /* XXXSMP */
608 1.2 ad kmem_free(tp, sz);
609 1.2 ad KERNEL_UNLOCK_ONE(l); /* XXXSMP */
610 1.2 ad }
611 1.2 ad return error;
612 1.2 ad }
613 1.2 ad
614 1.2 ad swapin = 0;
615 1.2 ad wchan = lwp_park_wchan(p, SCARG(uap, hint));
616 1.2 ad sq = sleeptab_lookup(&lwp_park_tab, wchan);
617 1.2 ad
618 1.2 ad for (tmax = tp + ntargets, tpp = tp; tpp < tmax; tpp++) {
619 1.2 ad target = *tpp;
620 1.2 ad
621 1.2 ad /*
622 1.2 ad * Easy case: search for the LWP on the sleep queue. If
623 1.2 ad * it's parked, remove it from the queue and set running.
624 1.2 ad */
625 1.2 ad TAILQ_FOREACH(t, &sq->sq_queue, l_sleepchain)
626 1.2 ad if (t->l_proc == p && t->l_lid == target)
627 1.2 ad break;
628 1.2 ad
629 1.2 ad if (t != NULL) {
630 1.2 ad swapin |= sleepq_remove(sq, t);
631 1.2 ad continue;
632 1.2 ad }
633 1.2 ad
634 1.2 ad /*
635 1.2 ad * The LWP hasn't parked yet. Take the hit and
636 1.2 ad * mark the operation as pending.
637 1.2 ad */
638 1.2 ad sleepq_unlock(sq);
639 1.2 ad mutex_enter(&p->p_smutex);
640 1.2 ad if ((t = lwp_find(p, target)) == NULL) {
641 1.2 ad mutex_exit(&p->p_smutex);
642 1.2 ad sleepq_lock(sq);
643 1.2 ad continue;
644 1.2 ad }
645 1.2 ad lwp_lock(t);
646 1.2 ad
647 1.15 ad /*
648 1.15 ad * It may not have parked yet, we may have raced, or
649 1.15 ad * it is parked on a different user sync object.
650 1.15 ad */
651 1.15 ad if (t->l_syncobj == &lwp_park_sobj) {
652 1.15 ad /* Releases the LWP lock. */
653 1.16 ad lwp_unsleep(t);
654 1.2 ad } else {
655 1.2 ad /*
656 1.15 ad * Set the operation pending. The next call to
657 1.15 ad * _lwp_park will return early.
658 1.2 ad */
659 1.8 ad t->l_flag |= LW_UNPARKED;
660 1.2 ad lwp_unlock(t);
661 1.2 ad }
662 1.15 ad
663 1.15 ad mutex_exit(&p->p_smutex);
664 1.15 ad sleepq_lock(sq);
665 1.2 ad }
666 1.2 ad
667 1.2 ad sleepq_unlock(sq);
668 1.2 ad if (tp != targets) {
669 1.2 ad KERNEL_LOCK(1, l); /* XXXSMP */
670 1.2 ad kmem_free(tp, sz);
671 1.2 ad KERNEL_UNLOCK_ONE(l); /* XXXSMP */
672 1.2 ad }
673 1.2 ad if (swapin)
674 1.3 ad uvm_kick_scheduler();
675 1.15 ad
676 1.2 ad return 0;
677 1.2 ad }
678